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Although convolutional neural network (CNN) paradigms have expanded to transfer learning and ensemble
models from original individual CNN architectures, few studies have focused on the performance comparison
of the applicability of these techniques in detecting and localizing rice diseases. Moreover, most CNN-based
rice disease detection studies only considered a small number of diseases in their experiments. Both these short-
comings were addressed in this study. In this study, a rice disease classification comparison of six CNN-based
deep-learning architectures (DenseNet121, Inceptionv3, MobileNetV2, resNext101, Resnet152V, and
Seresnext101) was conducted using a database of nine of the most epidemic rice diseases in Bangladesh. In ad-
dition,we applied a transfer learning approach to DenseNet121,MobileNetV2, Resnet152V, Seresnext101, and an
ensemblemodel called DEX (Densenet121, EfficientNetB7, and Xception) to compare the six individual CNNnet-
works, transfer learning, and ensemble techniques. The results suggest that the ensemble framework provides
the best accuracy of 98%, and transfer learning can increase the accuracy by 17% from the results obtained by
Seresnext101 in detecting and localizing rice leaf diseases. The high accuracy in detecting and categorisation
rice leaf diseases using CNN suggests that the deepCNNmodel is promising in the plant disease detection domain
and can significantly impact the detection of diseases in real-time agricultural systems. This research is significant
for farmers in rice-growing countries, as like many other plant diseases, rice diseases require timely and early
identification of infected diseases and this research develops a rice leaf detection systembased on CNN that is ex-
pected to help farmers to make fast decisions to protect their agricultural yields and quality.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The observable success of convolutional neural networks (CNNs) has
shifted the technology in detecting and localizing rice diseases using
their leaves. Following the path, recent CNN studies suggest that the
use of CNNhas increased in rice leaf disease detection and segmentation
(Chen et al., 2021; Patil and Kumar, 2022). Usually, a diseased rice leaf is
coveredwith spots, colours, and diseased shapes (Mohanty et al., 2016).
Thus, a diseased leaf which has a different colour texture and dimension
than a healthy rice leaf provides an opportunity to perform image anal-
ysis using a CNN network and to collect information on inconsistency
among the pixels of the entire leaf (Mitkal et al., 2016; Xu et al.,
2020). Each of the pixels of a leaf is expected to be similar concerning
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any characteristic or available property, such as colour, intensity, or tex-
ture. However, in a case where a small group of pixels differs from
others, it provides information about inconsistency in an object or the
presence of other objects.

Despite this fact, a handful of research efforts were devoted (Chen
et al., 2018; Akhter et al., 2019; Islam et al., 2018; Sarker et al. 2016)
in detecting rice disease using CNN, however, there are still gaps in
the CNN-based rice leaf disease detection research. Firstly, as rice dis-
eases are different from country to country, a comprehensive study on
most of the epidemic diseases in a given country should be conducted.
The number of types of rice diseases should be increased instead of
using a few key classes (Acharya et al., 2020). Secondly, a study should
informwhether original CNN architectures, transfer learning, or ensem-
ble techniques can provide better accuracy for rice leaf disease
detection. Consequently, this study aims to examine the success of
original state-of-the-art CNN architectures, such as DenseNet121
(Huang et al., 2017), Inceptionv3 (Adegun and Viriri, 2021),MobileNetV2
(Nagasubramanian et al., 2020), resNext101 (Adegun and Viriri, 2021),
unications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://
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Resnet152V (Sankupellay and Konovalov, 2018) and Seresnext101
(Chen et al., 2018; He et al., 2015) in classifying the rice plant disease
detection. The ultimate goal of this research is to reach the model
that provides the highest accuracy rate in classifying rice leaf disease
detection. Furthermore, this study also aims to conduct a transfer
learning of DenseNet121, MobileNetV2, Resnet152V (Xie et al.,
2017), and Seresnext101 (Chen et al., 2018) networks, and ensemble
learning of Densenet121, EfficientNetB7, and Xception (Chollet,
2017) networks.

Another motivation to conduct this research is that rice disease de-
tection is still preliminary among farmers in most developing countries
with technical laggards. A commonly used method for rice disease de-
tection is still manual visual inspection - simply using naked-eye obser-
vation by trained experts (Mohanty et al., 2016). In doing so, a large
team of experts, as well as continuous monitoring, are required. This is
costly and time-consuming for poor farmers when a farm is large. On
the other hand, in some countries, farmers do not have proper mecha-
nisms or even have no idea that they can consult with experts. Manual
plant disease identification is a more laborious task, subject to human
errors, and can be done only in limited areas. Therefore, automatic de-
tection techniques have become increasingly in demand.

The main contributions of this paper are as follows: firstly, this re-
search provides a comparison of six original CNN architectures, namely
DenseNet121, Inceptionv3, MobileNetV2, resNext101, Resnet152V, and
Seresnext101, using a dataset of the ninemost epidemic rice diseases in
Bangladesh. Secondly, we also applied a transfer learning approach on
DenseNet121,MobileNetV2, Resnet152V, and Seresnext101 to conclude
if transfer learning is capable of increasing accuracy, and thirdly, an
ensembled model called DEX based on Densenet121, EfficientNetB7
andXception networkswere applied to drawa comparison amongorig-
inal, transfer learning, and ensemble techniques.

2. Literature review

This section reviews the related research work aiming at a deep-
learning network model that can provide better accuracy for rice leaf
disease detection. It includes an overview of the basic CNN networks
and their various architectural structures. Several image processing
technologies that were applied to rice leaf disease detection are also
discussed.

2.1. Types of rice diseases

As a cereal grain, rice is the most widely consumed staple food for
over half of the population in the world (Nguyen-Quoc and Hoang,
2020). Like many other developing countries, rice is the major source
of income for rural farmers, especially in Bangladesh. Therefore, when
rice production is hindered due to various rice diseases, it impacts the
national economy.

Rice diseases are commonly involved in an abnormal physiological
process that distorts the rice plant's normal structure, growth, and nu-
trition. Each country, however, has different rice diseases that impact
people differently (Acharya et al., 2020). For example, rice yellow mot-
tle disease is not known to occur in other parts of the world, except
Tanzania (Huang et al., 2017). Blast rice disease causes 11–15% yield
loss annually (Adegun and Viriri, 2021). Sarker et al. reported that
Sheath blight, a rice disease caused by Rhizoctonia solani, affects the
crop in almost every season in Bangladesh. The disease reduces the
quality of the rice as well as the quantity of the crop, which in turn af-
fects the economy of a country like Bangladesh where agriculture is
the main sector (Nagasubramanian et al., 2020). However, among all
the rice diseases, the following are the most adverse rice diseases in
Bangladesh (Sankupellay and Konovalov, 2018):

1. Bacterial Leaf Blight: Xanthomonas Oryzae Pvoryzae is responsible
for bacterial leaf blight (BL), occurringmostly during thewet season,
23
especially whenwater overflows through ricefields. In some areas in
Asia, it can reduce crop yield by up to 50%, even up to 80% (Chen
et al., 2018).

2. Blight: Bacterial panicle blight, also known as blight, is caused by
gram-negative bacterial pathogens Burkholderia glumae and
B. gladioli. It is a prevalent disease inmany rice-growing regions glob-
ally. The symptoms of bacterial panicle blight include several charac-
teristic features. Panicle discolouration is a common symptom,
where affected panicles may turn dark brown or black. Another
symptom is grain rot, where the infected grains may exhibit decay
or rotting. Additionally, sterile florets, which fail to produce viable
seeds, are observed in affected panicles (Sainath et al., 2015; Zhu
and Gong, 2018).

3. Brown Spot: Brown leaf spots are another serious rice diseaseworld-
wide, caused by Bipolaris Oryzae (Breda de Haan) Shoemaker. The
symptoms are leaf spots throughout the growing season, mostly on
the leaf blade, small spots of dark brown to reddish-brown, circular
to oval in shape, while older spots have a light, reddish-brown or
grey centre surrounded by a dark to reddish-brown margin (Zhu
and Gong, 2018).

4. Hispa: Rice Hispa, scientifically known as Dicladispa Armigera, is a
major pest that affects rice plants. It is commonly found during the
tillering stage of rice growth, with higher populations observed at
this stage. Rice Hispa feeds on the epidermis of the upper leaves,
causing scraping damage. In the context of Sylhet, a region in
Bangladesh, it is mentioned that Rice Hispa forms part of a large
and contiguous population that extends into neighbouring Assam.
This suggests that the pest is prevalent and poses a significant prob-
lem in both areas (He et al., 2015).

5. Leaf Scald: Leaf scald, caused byMicrodochiumOryzae, is a fungal dis-
ease. This causes the scalded appearance of leaves. Zonate lesions of
alternating light tan and dark brown starting from leaf tips or edges,
oblong lesionswith light brown halos inmature leaves. Individual le-
sions are 15 cm long and 0.51 cmwide ormay almost cover an entire
leaf. The continuous enlargement and coalescing of lesions result in
the blighting of a large part of the leaf blade.

6. Leaf Smut: Leaf smut, caused by the fungus Entyloma Oryzae, is a
type of smut disease that affects rice plants. However, it does not pro-
duce smut balls on spikelets. Instead, leaf smut causes dark brown to
black lesions on the leaves of the rice plant. These lesions are com-
posed of masses of fungal spores. False smut causes chalkiness of
grains which leads to a reduction in grain weight. It also reduces
seed germination. Velvety smut balls on spikelets, Spore balls are ini-
tially orange and turn greenish black when mature, they are some
identifiable symptoms of leaf smut. The second stage of infection oc-
curs when the spikelet nearly reaches maturity.

7. Leaf Blast: Blast disease is a rice disease caused by Rhizoctonia solani.
It affects the crop in almost every season in Bangladesh, causing
11–15% yield loss annually reported that Sheath blight. The disease
reduces the rice quality as well as its quantity, which in turn affects
the economy of a country like Bangladesh where agriculture is the
main sector (Chen et al., 2018).

8. Shath Blight: Sheath blight is caused by the fungal pathogen Rhizoc-
tonia solani. It is a widespread disease that affects rice plants in both
temperate and tropical rice-growing regions. The typical symptoms
of sheath blight manifest as oval to irregular lesions on the rice
sheath (the protective covering of the stem) and leaf blades. These
lesions typically have a greyish inner colour and a dark brown mar-
gin. The distinct colouration helps in identifying and distinguishing
the disease from other rice pathogens.

9. Tungro: Tungro is a viral disease that affects rice plants. It is distrib-
uted in South and Southeast Asia, including Bangladesh. The disease
is characterized by several characteristic features, such as stunted
growth of the plant, twisted leaves, reduced tillering (formation of
side shoots) and delayed flowering. The main vector responsible for
the transmission of rice tungro virus is the green planthopper
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(Nephotettix virus). In Bangladesh, susceptible rice varieties are par-
ticularly susceptible to Tungro disease. Studies have shown that
tungro incidences were common in susceptible cultivars, with re-
corded incidence rates ranging from 85% to 81% in the south to
northwest of the country. This indicates a significant impact of the
disease on rice cultivation in these regions.

2.1. Convolutional neural networks
In CNNs, the term “convolutional” refers to the mathematical opera-

tion of convolution, which combines two functions to produce a third
function. In the context of CNNs, convolutional layers apply filters or ker-
nels to the input data, resulting in the generation of feature maps. These
feature maps capture different aspects or patterns in the input data.

CNNs consist of multiple layers arranged sequentially. The basic
structure typically includes an input layer, followed by several
convolutional layers, pooling layers, a fully connected layer, and finally
an output layer. The convolutional layers are responsible for extracting
features from the input data through the application of filters. The
pooling layers help reduce the spatial dimensions of the feature maps,
reducing computational complexity. The fully connected layer connects
the extracted features to the output layer, allowing the network tomake
predictions or perform classification based on the learned features.

The input and output layers are considered the visible layers of the
CNN, while the intermediate layers, such as convolutional and pooling
layers, are referred to as hidden layers. These hidden layers play a cru-
cial role in learning and extracting hierarchical representations from
the input data. Overall, the combination of convolutional layers, pooling
layers, and fully connected layers in CNNs allows the network to effec-
tively learn and recognize patterns in complex data, making them par-
ticularly well-suited for tasks such as image recognition and computer
vision (Xie et al., 2017).

2.1.1. State-of-the-art CNN architectures. In this study, several CNN archi-
tectures are divided into three broad categories, original, transfer learn-
ing, and ensemble technique. The architecture of a basic CNN is given in
Fig. 1.

2.1.2. Original CNN networks. An original CNN architecture in this re-
search refers to a CNN network and algorithm that is available in
Fig. 1. The architectur
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Keras or Github. In this research, a CNN algorithm is kept original as
first proposed by its authors and programmers, with no change of pro-
cessing units, parameters and hyper-parameter optimization strategies,
design patterns and connectivity of layers. Often a well-known CNN
network was developed and evolved by different researchers and pro-
grammers through various challenges For example, the AlexNet archi-
tecture was the winner of ILSVRC 2012 and was proposed by
Krizhevsky et al., (Chollet, 2017) ResNet was proposed by He et al.
(Chollet, 2017) from Microsoft and won 2015 ILSVRC. DenseNet as an
extension of ResNet was first proposed in 2016 by Huang et al. from
Facebook (Chollet, 2017; Patil and Kumar, 2022). Several original CNN
architectures with the versions are discussed in the next sections:

2.1.2.1. DenseNet-121. DenseNet-121 architecture iteratively concat-
enates the feature maps from one layer to another layer along the net-
work, which is useful for classification tasks. The DenseNet-121 model
was claimed better than MobileNetV2, ResNet50 and NASNet architec-
tures (Shujaat et al., 2021).

2.1.2.2. Inception V3. Inception V3 developed by Google is the third
release in the Deep Learning Evolutionary Architectures series. The In-
ception V3 architecture, which has the Softmax function in the last
layer, consists of 42 layers in total and the input layer takes images
with 299 × 299 pixels.

2.1.2.3. MobileNetV2. Overall, MobileNetV2's design choices make it
well-suited for deployment on resource-constrained mobile devices
while maintaining competitive performance for various computer vi-
sion tasks such as image classification, object detection, and semantic
segmentation. One key feature of MobileNetV2 is the use of an inverted
residual structure with residual connections between the bottleneck
layers. Inverted residual blocks aim to reduce computational complexity
while maintaining accuracy. The residual connections help in gradient
flowand facilitate the training of deeper networks. The intermediate ex-
pansion layer inMobileNetV2 incorporates lightweight depth-wise con-
volutions (referred to as depth-wise separable convolutions) to
introduce non-linearity and filter features efficiently. Depth-wise con-
volutions separate the spatial and channel-wise convolutions, reducing
the computational costwhile retaining the expressive power of the net-
work.

The architecture of MobileNetV2 typically starts with an initial fully
convolutional layer with 32 filters. This layer processes the input data
e of a basic CNN.
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and extracts initial features. It is followed by 19 residual bottleneck
layers, which are the primary building blocks of the network. These bot-
tleneck layers further refine and transform the features, utilizing the
inverted residual structure and depth-wise convolutions (Shujaat
et al., 2021).

2.1.2.4. ResNeXt. ResNeXt, short for Aggregated Residual Transform
Network, is a CNN architecture that builds upon the concepts of Resid-
ual Networks (ResNets) and Inception Networks. It introduces the
idea of a split, transform, and merge block and emphasizes the concept
of cardinality to improve performance. In ResNeXt, a split, transform,
and merge block is used, where multiple transformations are applied
within the block. These transformations help in learning diverse repre-
sentations and capturing different levels of abstraction. The cardinality
parameter is introduced to define the number of transformation paths
within the block. Increasing cardinality has been shown to enhance
the model's performance. ResNeXt has demonstrated impressive per-
formance in various computer vision tasks, including image classifica-
tion, object detection, and image segmentation. By combining the
concepts of ResNets, Inception Networks, and cardinality-based trans-
formations, ResNeXt achieves improved accuracy while maintaining
computational efficiency. It's worth noting that the details of ResNeXt's
architecture, such as the number of layers, cardinality, and block config-
urations, may vary depending on specific implementations and varia-
tions. Different versions of ResNeXt have been proposed to optimize
the trade-off between performance and computational cost for different
tasks and datasets (Patil and Kumar, 2022).

2.1.2.5. ResNet. ResNet, short for Residual Network, introduced the
concept of residual layers and skip connections to address the issue of
vanishing gradients in deep neural networks. The main innovation of
ResNet is the residual layer, which allows the network to learn residual
mappings rather than attempting to learn the full mapping from the
input to the desired output directly. By using residual layers, the net-
work canmore easily capture and propagate gradients through the net-
work, even in very deep architectures. To facilitate the flow of gradients
and address the vanishing gradient problem, ResNet incorporates skip
connections, also known as shortcut connections or identity mappings.
These connections enable the gradients to flow directly from the end
layers to earlier layers, bypassing the intermediate layers. This allows
the gradients to propagate more effectively, preventing them from
diminishing or vanishing as they backpropagate through the network.
The skip connections in ResNet also enable the network to be
significantly deeper than previous architectures. ResNet models have
been successfully built with depths of 50, 101, or even 152 layers. The
ability to train and effectively optimize such deep networks has been a
major advancement in the field of deep learning. By using residual
layers and skip connections, ResNet mitigates the vanishing gradient
problem and facilitates the training of very deep neural networks. This
has led to improved performance and accuracy in various computer vi-
sion tasks, including image classification, object detection, and image
segmentation (Alegbejo et al., 2006; Ou, 1980).

2.1.3. Transfer learning. One approach, a transfer learning technique, is
based on the knowledge gained from a training dataset and is used for
training a different but relevant task or field (Weiss et al., 2016). In
this deep learning process, the first few layers are trained to define the
characteristics of the task. The last few layers of the trained network
can be removed and retrained with new layers for the target task. It re-
fers to the situation whereby what has been learned in one setting is
adopted to improve the optimization in another setting. With limited
computational requirements, ResNeXt-101 achieved state-of-the-art
power and time speed (Albawi et al., 2017).

Training a deep learning model with a small dataset is often insuffi-
cient for its model's performance. Transfer learning is a process of pre-
initialize a model using the weights obtained by training a different
model on a larger, different, dataset. In the work conducted by Karimi
et al. (2021), it was reported that although transfer learning reduced
25
the training time on the target task, accuracy improvement depends
on data quality. Large improvements are observed only when the seg-
mentation task is more challenging and the target training data is
smaller (Hossain et al., 2017).

2.1.4. Ensemble technique. Ensemble learning is one of the deep learning
technologies that combine multiple primary learners through a fusion
strategy to improve overall generalization performance (He et al.,
2015). Ensemble learning has attracted a lot of attention because of its
easy-to-understand structure and promising classification performance
by combining more than one CNN model. Ensemble learning is a tech-
nique that incorporates multiple models for final decision-making The
ultimate goal of an ensemble is that by combining multiple models,
the errors of a single model can be corrected (compensated for) by
other models, making the overall score (prediction and classification)
of the ensemble better than any individual participating model
(Kawasaki et al., 2015).

3. Literature review

The literature review suggests that four approaches can be used for
the automatic diagnosis of rice diseases.

The first approach to automatic rice disease detection is through
conventional means, such as pattern recognition techniques (Chen
et al., 2018; Akhter et al., 2019). The study by Phadikar Sil (Islam et al.,
2018) proposed an approach to rice disease identification in which the
diseased rice images were classified using a self-organizing map
(SOM) (via a neural network) that extracted the train images character-
istics of the infected parts of a leaf were obtained from the rice diseases,
while four different types of images were used for testing purposes. Sat-
isfactory classification results have been reported. Sarker et al. (2016)
presented a technique that uses only one feature, namely red, green,
and blue (RGB) values, to detect and classify rice diseases. Using
image processing, a disease was identified based on percentages of
RGB values of an affected region. After extracting the RGB percentages
from the affected region and grouping them into different classes,
theywere fed into a simple classifier calledNaive Bayes,which classified
diseases into different categories. Three rice diseases were successfully
detected and identified using this technique: rice, brown spot, rice
blight and rice blast. This technique was efficient and faster because
only one feature (RGB values) extracted from the affected area was
used, requiring minimal computation time to identify and classify the
diseases. Instead of processing the whole leaf, this technique was suc-
cessful in detecting the diseases using only small parts.

The second method is to use a Support Vector Machine (SVM). For
example, Albawi et al. (2017); Hossain et al. (2017) used this method.
Alfred et al. (2021) proposed an automated approach to classify rice
plant diseases, brown spot diseases and leaf smut diseases based on
their morphological changes. A total of 1000 spot images taken with a
Nikon COOLPIX P4 digital camera of a rice field were used. Results
were reported with 79.5% and 68.1% accuracy on the Bayesian and
SVM classifiers, respectively. An SVM technique was also used by
(Singh and Misra, 2017) for multiclass classification to identify three
types of rice diseases (bacterial leaf blight, brown spot and leaf smut).
The images of infected rice plants were taken with a digital camera
from a paddy field and achieved an accuracy of 93.33% on the training
data set and 73.33% on the test data set.

The third approach is the digital image processing techniques of
McNeely-White et al. (2020); Atila et al. (2021); Chambon et al.
(2021). Zhou et al. investigated a technique for assessing the extent of
hop disease in rice crops, using a fuzzy C-means algorithm to classify re-
gions into one of four classes: no disease, light disease, moderate dis-
ease, and severe disease. Their study achieved an accuracy of 87% in
distinguishing cases in which a planthopper did or did not occur,
while the accuracy in distinguishing four groups was 63.5%. Chambon
et al. (2021)was to identify and classify six types ofmineral deficiencies
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in rice. The study used features such as texture and colour for a devel-
oped specific multi-layer neural network. Both networks consist of a
hidden layer with a different number (40 for texture and 70 forcolourr)
of neurons in the hidden layer, in which 88.56% of the pixels were cor-
rectly classified. Similarly, the same authors proposed another similar
work that successfully identified two types of diseases (blast and
brown spot) affecting rice plants (Chambon et al., 2021).

The fourth approach is texture analysis and feature extraction using
computer vision for enhancing the accuracy and rapidity of diagnosing
the results. Phadikar and Sil (2008) developed an approach of texture
analysis to identify four rice diseases (bacterial leaf blight, blast,
brown spot and tungro virus) using fractal Fourier. In their proposed
study, the image of a rice leaf was converted to CIELab colour space,
and the system was able to achieve an accuracy of 92.5% (Phadikar
and Sil, 2008). The features extracted from diseased and unaffected
leaf images, the grey level co-occurrence matrix (GLCM) and the colour
moment of the leaf lesion region were implemented by Lu et al. (2017)
to create a 2-dimensional\\D feature vector and related features. Re-
dundant features were eliminated with a genetic algorithm-based fea-
ture selection method to generate 14-D feature vectors to minimize
complexity. The technique has shown a promising result. However, to
improve its detection accuracy, there is a need for more optimization
procedures to take place. The key features of rice diseases, the brown
spot and blast diseases, were described utilizing the colour of texture
of rice leaf photos by Phadikar and Sil (2008). However, the efficiency
of rice disease identification needs to be improved.

Phadikar et al. (2012), the entropy-based bipolar threshold tech-
nique was employed for the segmentation of the image after improving
its brightness and contrast. The author sought to integrate image pro-
cessing and soft computing technique for the detection of rice plants
attacked by several types of diseases. The idea behind the technique
was robust when utilized effectively. However, the average accuracy
of identification on the four datasets was 82% which indicated that
more enhancement was still required. Image processing and machine
learning methods were utilized to non-destructively screen seedlings
with rickets (Islam et al., 2018).Moreover, genetic algorithmswere em-
ployed to develop SVM classifiers to optimize feature selection and
model parameters for differentiating healthy seedlings and infected
ones. The overall accuracy achieved in their studywas 87.9%. Since a dis-
ease may have several different symptoms at the same time, this ap-
proach should be tested if other diseases are also present. It suggests
that this approach has its limitations. Therefore, deep learning-based
models became popular to detect diseases in various plants.

Singh and Singh (2010) studyperformed rice plant disease detection
with a deep CNN. Using a VGGNet architecture, researchers at Chen et al.
(2021) performed the classification of rice plant diseases. Chen et al.
also proposed a CNN model, namely MobileNet Beta, by extending a
pre-trained MobileNetV2 model to detect plant diseases (Chen et al.,
2020). Too et al. reported that the DenseNet architecture achieved a
high test accuracy of 99.75% (Praveen Kumar and Domnic, 2019).
Geetharamani and Pandian trained a 9-layer CNN architecture using
the PlantVillage dataset and achieved a classification accuracy of
96.46% using the test dataset (Too et al., 2019). Mohanty et al. (2016),
on the other hand, used AlexNet and GoogLeNet to classify plant dis-
eases and achieved a classification accuracy of 99.35% Geetharamani
and Pandian (2019). Using the PlantVillage dataset, the Ferentinoss
model of the VGG architecture delivered the highest accuracy at
99.53% (Arnal Barbedo, 2013).

Zhou et al. (2013) reported an automatic identification and diagno-
sis of rice diseases using CNNas a deep learningmethod. Using a dataset
of 500 natural images of diseased and healthy rice leaves and stems cap-
tured from the rice experimental field, a CNN network was trained to
identify 10 common rice diseases. Under the 10-fold cross-validation
strategy, the proposed CNN-based model achieved an accuracy of
95.48%.
26
Sanyal and Patel (2008) suggested a faster R-CNN approach, which
seemed to be ideal for the detection of rice diseases due to its good
speed and high accuracy. Shrivastava et al. (2019) also applied a CNNal-
gorithm for rice plant disease classification using a transfer learning of
deep convolution neural network. Using an AlexNet CNN model, the
model was able to classify rice diseases with a classification accuracy
of 91.37%.

Asfarian et al. (2014) developed a CNN approach for detecting dis-
eases and pests (five classes of diseases, three classes of pests, and one
class of healthy plants and others) from rice plant images. A total num-
ber of 1426 images were collected that were captured using four differ-
ent types of cameras and the system achieved a mean validation
accuracy of 94.33%.

Akhter et al. (2019) also suggested a new stacked CNN architecture
that used two-stage training to substantially reduce the model size
while retaining a high classification accuracy. Several CNNarchitectures,
such as MobileNet, NasNet Mobile, and SqueezeNet, were used. Experi-
mental results showed that the proposed architecture achieved the de-
sired accuracy of 93.3% with a significantly reduced model size, for
example, 99% smaller than that of VGG16.

3.1.1. Knowledge gap in rice LEAF disease detection using CNN
Despite the fact, Phadikar et al. (2012) observed that computer-

aided rice disease detection and classification have received special at-
tention, Asfarian et al. (2014) criticized for low accuracy rates using
the rice disease detection models. Our literature review in this study
also suggest that the classification accuracies by most of the existing
methods are between 50% and 95% (Asfarian et al., 2014). Moreover,
those achieving higher accuracies were usually tested with fewer dis-
eases. The performance would deteriorate if more diseases were in-
cluded. (Acharya et al., 2020) and (Huang et al., 2017) discussed the
gap between the current capabilities of image-based methods for auto-
matic rice disease identification and the real-world implementation
needs.

4. Methodology

The experiments in this study were conducted based on Google
CoLab using the Keras library. TensorFlow which is one of the best Py-
thon deep learning libraries available for working with machine learn-
ing methods on Python was used. In this study, the original, transfer
learning and ensemble models were trained using google collab Tesla
graphics processing unit (GPU). TPU is available through the Google
Collaboratory framework by Google. Initially, the colab framework pro-
vides up to 12GB random accessmemory (RAM) and about 360GB GPU
in the cloud for research purposes.

4.1. Datasets

Data collection was the exceedingly cardinal quest for our research.
Wehave put a vast effort to gather a great number of datasets. Since this
research aimed to detect rice diseases, that mainly occurred in
Bangladesh,most rice epidemic diseases found in the countrywere con-
sidered. Therefore, the data collected from rice leaf images included a
combination of the Rice Leaf Disease Dataset from the University of Cal-
ifornia Irvine (UCI) Machine Learning Repository, a dataset from pub-
licly available respiratory and a dataset collected from Bangladesh Rice
Research Institute (BRRI). An example of rice leaves with various dis-
eases is given in Fig. 2.

The final combined dataset contains nine (9) classes of rice
diseases, with each class having one hundred (100) images for
each type of disease. Images in the dataset are coloured images of
various sizes and have a white background. The original images
were divided into training and test sets with a ratio of 70:30 (see
Table 1).



Table 1
Images used in the train, test and validation sets.

Total images Training images Validation images

Original Dataset 900 630 270
Augmented Dataset 42,876 34,992 7884
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4.2. Process of experiments

The processes of the experiments are described in Fig. 3.

(1) Image Acquisition: In this step, we downloaded the images from
the targeted sites to provide as input. Images in the dataset were
checked manually to identify if they had a white background. In
the case where images (mainly from the BRRI) had coloured
backgrounds, images were placed on a white background. If dis-
ease symptoms such as spots, diseased colour, and diseased
shape were not visible in an image, the image was removed
from the dataset.

(2) Image Augmentation: Image augmentation is used in this step.
Image augmentation is the procedure by which an existing
dataset is expanded by transforming the original dataset to cre-
ate more new data, and in such a way that new data are also
label-preserving (Sankupellay and Konovalov, 2018, Meeras
Salman Al-Shemarry et al., 2019). The goal is to increase the var-
iance of the dataset while ensuring that new data aremeaningful
and do not merely add unnecessary volume to the dataset
(Sankupellay and Konovalov, 2018). When used in a machine-
learning context, it can improve model generalization, make
trained models more robust to unseen data, and increase model
accuracy (Sankupellay and Konovalov, 2018).

With these aims, we conducted data augmentation in the training
data. However, position augmentation such as scaling, cropping, flip-
ping, rotation, and colour augmentation such as brightness, contrast,
and saturation was deployed. Random rotation from −15 degrees to
15 degrees, rotations of multiple of 90 degrees at random, random dis-
tortion, shear transformation, vertical flip, horizontal flip, skewing and
intensity transformation were also used as part of the data augmenta-
tion process. In this way, 10 augmented images from every original
image have been created. Random choice of a subset of the transforma-
tions helps augment an original image in a heterogeneous way.

In this study, each pixel value of images in the original and aug-
mented images was first normalized dividing by 255. The images were
then resized to a default size accepted by each model. In our experi-
ment, input image resolutions were necessarily resized for all models
of EfficientNet architecture due to our hardware limitations. Through
trial and error, it was seen that the maximum allowed input size that
our hardware resources were sufficient for the training of the
EfficientNet model which has the highest number of parameters of
132 × 132. Therefore, the input size for all models of EfficientNet archi-
tecturewas set as 132 × 132 to evaluate all models under the same con-
ditions. Table II summarizes the default image resolutions and the
number of parameters defined for deep learning models.
Fig. 2. Images examples of
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(3) Training: A CNN learner model is created at this stage. By using
DenseNet, EfficientNetB3, MobileNet, VGG16 and ResNet10 ar-
chitectures, a model was trained based on the given dataset
and then tested its classification accuracy.

All the models were trained for 175 epochs (iterations) with Early
Stopping callbacks (patience = 10 iterations) Patience is the number
of epochs with no improvement after which training will be stopped.
An Adam optimizer, a combination of Stochastic Gradient Descent
(SGD) with momentum and RMSProp (Root Mean Squared Propaga-
tion, or RMSProp, is an extension of gradient descent and the AdaGrad
version of gradient descent that uses a decaying average of partial gra-
dients in the adaptation of the step size for each parameter.) were
used for faster convergence with the parameters like learning rate was
set at αα = 0.0001, β1β1 = 0.9, β2β2 = 0.999 and ϵ =
1 × 10 − 7ϵ = 1 × 10 − 7. The same optimizer was used for all three
models and then the models were saved as .h5 files. The time taken
for model training is −31 s (s)/epoch (Iterations) for DenseNet201
and 17 s/epoch for each of the models ResNet50V2 and Inceptionv3.

In this research standard deviationwas used as amodel performance
metric since the dataset used in this experiment does not have any
major imbalance. Categorical cross-entropy was used as a loss function
for all CNN architectures since this work deals with multi-class classifi-
cation. All intermediate layers of the CNN architectures used in this
work have relu as the activation function while the activation function
used in the last layer was softmax. The hyperparameters used are as fol-
lows: the dropout rate was 0.3, the learning rate was 0.0001, the batch
size was 64, and the number of epochs was 275. An adaptive moment
estimation (Adam) optimizer was used for updating themodel weights.
All the images were resized to the default image size for each prior
architecture.

(4) Classification: In this step, neural networks (DenseNet121,
Inceptionv3, MobileNetV2, resNext101, Resnet152V, resnext101,
and Xception) were used in the automatic detection of leaf dis-
eases. The neural network was chosen as a classification tool
due to its well-known technique as a successful classifier for
many real applications. After the training model, the evaluation
model was built for rice disease detection based on the highest
probability of occurrence, the images of rice leaves were classi-
fied into different disease classes using a softmax output layer.
the rice diseases used.



Fig. 3. Process of experiments.
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5. Experimental results

The results from the experiments are presented in three sections
based on the architectures of original individual networks, transfer
learning and ensemble techniques. The results obtained are expected
to answer the following questions:

1. Which original CNN network provides better accuracy in detecting
rice leaf disease?

2. Does transfer learning improve accuracy?
3. Does the ensemble technique improve the accuracy?

Several performance measures for machine learning classification
models are used to assess howwell those CNN base algorithms perform
in a given context. The following performance metrics are considered:

5.1. Accuracy

Accuracy is one metric for evaluating classification models. Infor-
mally, accuracy is the fraction of predictions our model got right. For-
mally, Accuracy is the ratio of correctly labelled images to the total
number of samples (Kawasaki et al., 2015). The formula for accuracy
is given below (1):

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

ð1Þ

5.2. Precision

Precision is defined as the probability given a positive label, and how
many of them are positive (Ferentinos, 2018). Precision tells us how
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many of the correctly predicted cases turned out to be positive. Preci-
sion is a useful metric in cases where FP is a higher concern than FN.
The formula of precision is given below (2):

Precision ¼ TP
TP þ FP

ð2Þ

5.3. Recall

Recall or Sensitivity is the accuracy of positively predicted instances
describing how many were labelled correctly (Kawasaki et al., 2015).
Recall tells us how many of the actual positive cases we were able to
predict correctly with our model. The recall is a useful metric in cases
where FN trumps FP. The formula of recall is given below (3):

F1 � score ¼ 2
1

Recall þ 1
Precision

ð3Þ

F1-score, as an additional measure for classification accuracy, con-
siders both precision and recall. F1-score is a harmonic mean of Preci-
sion and Recall, and so it gives a combined idea about these two
metrics. It is maximum when Precision is equal to Recall.

5.4. Specificity

Specificity refers to the ability of a diagnostic test to correctly iden-
tify a rice leaf that is healthy or free from disease. It measures the per-
centage of true negative results. A highly specific test has a low false
positive rate. However, in case of a highly specific test can be interpreted
with confidence as a strong indication that the rice leaf is a diseased one.
The equation is given below (4):



Table 2
Classification accuracy of the individual CNN networks in
detecting rice diseases.

Architecture Accuracy

DenseNet121 97%
Inceptionv3 97%
MobileNetV2 94%
resNext101 96%
Resnet152V 93%
Seresnext101 79%
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Specificity ¼ TN
TN þ FP

ð4Þ

5.5. Training loss and validation loss

Training loss is a measure of howwell a model fits the training data.
It quantifies the discrepancy between the predicted output of themodel
and the actual target values in the training set. The goal during training
is tominimize this loss, which indicates that themodel is learning to ac-
curately represent the relationship between the input data and the cor-
responding output targets.

Validation loss, on the other hand, assesses howwell themodel gen-
eralizes to new, unseen data. It measures the discrepancy between the
model's predictions and the true target values in a validation set or a
portion of the training data that is held out for evaluation. The validation
loss helps determine if the model has learned meaningful patterns or if
it is overfitting.

Overfitting occurswhen amodel becomes too complex or too closely
fits the training data. In such cases, themodel may start capturing noise
or irrelevant patterns from the training set, making it less effective at
generalizing to new data. Overfitting is often characterized by a low
training loss but a high validation loss, indicating that the model is not
performing well on unseen data.

To combat overfitting, techniques such as regularization, dropout,
and early stopping can be employed. Regularization methods help pre-
vent themodel from excessively fitting the training data by introducing
penalties or constraints on the model's parameters. Dropout randomly
deactivates a portion of the neurons during training, reducing the
model's reliance on specific features or patterns. Early stopping stops
the training processwhen the validation loss starts to increase, prevent-
ing the model from further overfitting.

The aim is to strike a balance where the model minimizes both the
training loss and the validation loss, indicating that it is learning mean-
ingful patternswithout overfitting the data. This ensures that themodel
generalizes well and performs accurately on unseen data.

5.6. Confusion matrix

A confusion matrix is a table that summarizes the results of a classi-
fication model by comparing the predicted labels with the true labels of
a dataset. It provides a comprehensive view of themodel's performance
by displaying the counts of true positive (TP), false positive (FP), true
negative (TN), and false negative (FN) predictions. Confusion matrices
are valuable tools in evaluating and comparing different models,
selecting appropriate thresholds, and understanding the trade-offs be-
tween various performance measures. They offer a clear and concise
summary of the model's predictive performance and are widely used
in machine learning and classification tasks.

5.7. Support

Support refers to the number of actual occurrences or instances of a
particular class within a dataset. It represents the frequency or preva-
lence of a specific class. Imbalanced support occurs when there is a sig-
nificant disparity in the number of instances between different classes
in the training data. For example, if one class has a much larger number
of instances compared to another class, the dataset is considered imbal-
anced. Imbalanced support can pose challenges in training classifiers
and evaluating their performance. Classifiers tend to be biased towards
the majority class due to the larger number of instances, resulting in
lower accuracy or performance metrics for the minority class. This im-
balance can indicate potential structural weaknesses in the reported
scores of the classifier, as the overall performance may not accurately
reflect its ability to correctly classify all classes. To address imbalanced
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support, various techniques can be employed. Stratified sampling is
one approach that ensures each class is represented proportionally in
the training and evaluation datasets. This helps provide amore balanced
representation of classes during model training and evaluation.
Rebalancing techniques, such as oversampling the minority class or
undersampling the majority class, can also be used to mitigate the
effects of imbalanced support during training.

5.8. Which original CNN network provides better accuracy in detecting rice
LEAF disease?

In this section, the performances of the six original individual CNN
networks (DenseNet121, Inceptionv3, MobileNetV2, resNext101,
Resnet152V, and Seresnext101) are presented. The classification perfor-
mance of the models is first presented. The overall measures for those
models are then discussed. Gathering in addition to the descriptors, pos-
sible causes, and areas of opportunity for improvement of results.

Table 2 displays the accuracy of the DenseNet121, Inceptionv3,
MobileNetV2, resNext101, Resnet152V, Seresnext101. The
DenseNet121 and Inceptionv3 models achieved the highest accuracy
at 97% and Seresnext101 gave the lowest accuracy value of 79%.

The Precision, Recall, F1-score and Specificity obtained by the
DenseNet121, Inceptionv3, MobileNetV2, resNext101, Resnet152V,
and Seresnext101 models for each of the classes are shown in Table 3.
Considering the precision values for each on the test dataset,
DenseNet121, Inceptionv3, and MobileNetV2, architectures provide
the best performance. The above table suggests that the DenseNet121,
Inceptionv3, and MobileNetV2 models classified Blight, Leaf Blast and
Tungro diseases with 99% accuracy. The Seresnext101 performed low
precision having the lowest identification of the Bacterial blight leaf
with only 56% accuracy. All models identified Hispa with an average ac-
curacy by the six models. Seresnext-101 requires large amounts of im-
ages for training to learn accurate representations compared with
DenseNet121, Inceptionv3, MobileNetV2, resNext101, and Resnet152V.
If the network receives less testing data, it provides lower classification
accuracy. Moreover, the architecture and hyperparameters of the
SEResNeXt-101model could impact its performance. If themodel archi-
tecture is not suitable for the specific image classification task, or if
hyperparameters such as learning rate, batch size, or regularization set-
tings are not properly tuned, it could result in lower accuracy. Lastly,
since the SEResNeXt-101 model is too complex and has too many pa-
rameters relative to the size of the trainingdataset, leading to overfitting
and reducing performance on new images (See Table 4).

5.9. Does transfer learning improve accuracy?

In this section, the performance of four transfer learning CNN archi-
tectures is presented. Table 6 shows the accuracies obtained in the test
sets by DenseNet121, Seresnext101, EfficientNet and, Xception models.
The test accuracies shown in Table 5 were calculated as the ratio of the
number of correctly classified samples to the number of all samples. The
DenseNet1121 model achieved the highest accuracy of 97%. However,
the accuracy improvement from the original network to transfer learn-
ing by the SeresNext101 network is mentionable. The network



Table 3
Precision, Recall, f1 and Specificity result of CNN networks with transfer learning.

Bacterial leaf blight Blight Brown Spot Hispa Leaf blast Leaf scaled Leaf smut Sheath Blight Tungro

Densenet121
Precision 96% 99% 97% 97% 99% 96% 96% 94% 99%
Recall 100% 100% 92% 99% 93% 97% 97% 95% 99%
F1-score 98% 100% 95% 98% 96% 96% 97% 95% 99%
Support (N) 872 864 871 870 869 854 869 870 869
Specificity 99.97% 100.00% 99.07% 99.87% 99.11% 99.67% 99.67% 99.52% 99.90%

Inceptionv3
Precision 96% 99% 97% 97% 99% 96% 96% 94% 99%
Recall 99% 100% 92% 97% 90% 99% 100% 96% 97%
F1-score 98% 100% 95% 94% 95% 97% 98% 98% 97%
Support (N) 868 869 864 871 867 869 867 867 866
Specificity 100.00% 99.99% 98.48% 99.81% 98.78% 99.74% 99.09% 99.93% 99.97%

Mobilenetv2
Precision 96% 99% 97% 97% 99% 96% 96% 94% 99%
Recall 99% 100% 92% 97% 90% 99% 100% 96% 97%
F1-score 98% 100% 95% 94% 95% 97% 98% 98% 97%
Support (N) 868 869 864 871 867 869 867 867 866
Specificity 99.93% 99.99% 99.07% 99.97% 98.81% 99.94% 99.94% 99.57% 99.69%

Resnet152v2
Precision 94% 100% 100% 84% 86% 89% 96% 97% 98%
Recall 99% 100% 89% 87% 82% 96% 99% 95% 94%
F1-score 96% 100% 94% 85% 84% 93% 97% 96% 96%
Support (N) 872 869 864 866 868 870 870 863 866
Specificity 99.91% 100.00% 98.78% 98.44% 97.97% 99.51% 99.85% 99.41% 99.27%

Resnext101
Precision 96% 100% 93% 97% 99% 96% 96% 94% 99%
Recall 100% 100% 92% 99% 93% 97% 97% 95% 99%
F1-score 98% 100% 95% 98% 96% 96% 97% 95% 99%
Support (N) 872 864 871 870 869 854 869 870 869
Specificity 99.24% 99.72% 96.39% 95.15% 98.34% 97.72% 99.66% 99.25% 99.40%

Seresnext101
Precision 56% 87% 79% 84% 72% 96% 80% 95% 81%
Recall 93% 86% 40% 71% 65% 73% 89% 95% 99%
F1-score 70% 87% 53% 77% 69% 83% 84% 95% 89%
Support (N) 867 860 865 872 868 870 867 867 872
Specificity 99.26% 98.63% 94.23% 97.06% 96.51% 97.32% 98.84% 99.45% 99.93%

Table 4
Table 4 shows the values of TP, TN, FP, and FN by the different CNN architectures.

Bacterial
leaf blight

Blight Brown
Spot

Hispa Leaf
blast

Leaf
scaled

Leaf
smut

Sheath
Blight

Tungro

Densenet121
TP 870 864 804 861 805 830 845 836 862
FN 39 6 24 30 7 38 31 50 8
FP 2 0 67 9 64 24 24 34 7
TN 7130 7171 7146 7141 7165 7149 7141 7121 7164

Inceptionv3
TP 867 863 756 857 778 852 805 860 863
FN 36 0 58 73 19 7 78 22 14
FP 0 1 111 14 89 19 66 5 2
TN 7212 7251 7190 7171 7229 7237 7166 7228 7236

Mobilenetv2
TP 863 868 794 849 781 861 863 836 844
FN 37 9 82 3 54 29 8 27
FP 5 1 67 2 86 4 4 31 22
TN 7125 761 7160 7097 7160 7111 7134 7155 7137

resnet152v2
TP 865 869 772 750 716 834 859 819 811
FN 60 4 2 148 118 99 34 26 16
FP 7 92 116 152 36 11 44 55
TN 7383 7442 7449 7301 7329 7346 7411 7426 7433

Resnext101
TP 809 844 559 453 733 678 844 810 821
FN 78 72 70 74 418 59 255 89 105
FP 62 23 303 412 131 189 27 61 49
TN 8079 8089 8096 8089 7746 8102 7902 8068 8053

Seresnext101
TP 808 742 345 616 566 635 769 820 866
FN 647 101 90 113 218 24 195 46 200
FP 59 118 520 256 302 235 98 47 6
TN 7928 8481 8487 8457 8356 8548 8380 8529 8370
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improved by a 17% accuracy increase after applying the transfer learn-
ing approach.

Table 6 shows the Precision, Recall, F1-score, and Specificity results
from the CNN networks with transfer learning. In general, high Preci-
sion, high Recall, and high Specificity represent a better model. The ex-
perimental results demonstrate that SeresNext-101 had a low precision
in detecting Bacterial leaf Blight with 56% accuracy. However, after
transfer learning, the model reached 98% accuracy.

The associated TP, FN, FP, and TNare shown in Table 8. For rice disease
detection and classification, we applied the seresNext101 Model with a
transfer learning approach as the model received the lowest accuracy in
earlier experiments (Without transfer learning). In addition to the
SeresNext101 model, we also selected DenseNet121, EfficientNet and
Xception models for rice leaf disease detection and classification. As
these are deep convolutional networks and we were interested to see if
the models are useful for small-scale datasets. The confusion matrix of
DenseNet121, Seresnext101, EfficientNet andXception is shown in Fig. 4.

5.10. Does the ensemble technique improve the accuracy?

In this research, the ensemble stack is developed on three different
original CNN models, Densenet121, EfficientNetB7, and XceptionNet.
To accelerate the training process, we adopted a transfer learning
strategy. In addition to this, the output from these models was sent to
a post-processing block containing a fully connected layer followed by
a dropout layer and a final logit layer for classifying the image. For better
convergence of our models, we used a learning rate decaying strategy
which divided the learning rate by 10 only when the loss stops decreas-
ing for three continuous epochs and an early-stopping strategy that
halts the training process after the learning rate decayed 5 times
(Kawasaki et al., 2015).
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Table 5
Accuracy results of CNN networks with transfer learning.

Architecture Accuracy

DenseNet121 97%
Seresnext101 96%
EfficientNet 95%
Xception 92%
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All the models have been trained for 60 epochs with Early Stopping
callbacks (patience = 10 epochs). Adam optimizer, a combination of
SGD with momentum and RMSProp, was used for faster convergence
with the parameters as learning rate αα = 0.0001, β1β1 = 0.9,
β2β2 = 0.999 and ϵ= 1 × 10 − 7ϵ= 1 × 10 − 7. The same optimizer
is used for all three models and then the models are saved as .h5 files.
The time taken for model training is −31 s/epoch for DenseNet201
and 17 s/epoch for each of the models ResNet50V2 and Inceptionv3.
In Figure the gradual change in the loss function (both training as well
as validation) through the epochs has been depicted for all threemodels
of DenseNet201, ResNet50V2 and Inceptionv3. With a 97.62% (see
Table 7) accuracy, the ensemble model outperformed the original CNN
architecture (Densenet121, EfficientNetB7 and XceptionNet).

The precision on ensembling suggests that the model received 99%
on Bacterial blight, which was 98% with transfer learning and 56% on
the original CNN model (see Table 8). Even though the F1-score had
the lowest accuracy (53% in the case of Brown Spot using Seresnext101)
the ensemble model had 95% in that case). However, the Precision, Re-
call, f1 and Specificity result of CNN networks with the ensemble is
shown in Table 8.

Fig. 5 shows the confusion matrix of the ensemble model. Fig. 6
shows the training accuracy and validation accuracy of the ensemble
model of Densenet121, EfficientNetB7 and XceptionNet, where the
x-axis represents the number of epochs and the y-axis represents the
accuracy and loss percentages. Fig. 6 indicates that the training and
validation data are split appropriately with no over-fitting.

Fig. 7 shows the training loss and validation loss over epochs by the
ensemble technique. A loss function is used in CNN to optimize an
architecture. The loss is calculated on training and validation and its in-
terpretation is based on howwell themodel is doing in these two sets. It
is the sum of errorsmade for each example in training or validation sets.
Table 6
Precision, Recall, f1 and Specificity result of CNN networks (Based on the number of images).

Bacterial leaf blight Blight Brown Spot Hispa

Densenet121
Precision 97% 96% 97% 98%
Recall 98% 100% 93% 98%
F1-score 98% 98% 95% 98%
Support (N) 715 804 884 871
Specificity 99.80% 99.92% 99.17% 99.72%

Serenext101
Precision 98% 96% 95% 97%
Recall 98% 100% 92% 96%
F1-score 98% 98% 94% 96%
Support (N) 713 804 888 877
Specificity 99.71% 99.73% 99.07% 99.49%

EfficientNet
Precision 98% 97% 97% 96%
Recall 98% 98% 92% 97%
F1-score 98% 98% 94% 97%
Support (N) 717 811 883 869
Specificity 99.84% 99.78% 99.07% 99.70%

Xception
Precision 95% 98% 94% 90%
Recall 97% 98% 89% 97%
F1-score 96% 98% 92% 94%
Support (N) 716 815 889 871
Specificity 99.73% 99.78% 98.84% 99.70%
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Loss value implies how poorly or well a model behaves after each itera-
tion of optimization. Fig. 7 suggests that the training losswas around 3%
while the validation loss was 5% in 175 epochs.

Fig. 8 presents the accuracy of six different CNN-based models
(DenseNet121, Inceptionv3, MobileNetV2, resNext101, Resnet152V
and Seresnext101), transfer learning and ensemble model on nine clas-
ses of rice:

6. Discussions

In this research, we performed an in-depth investigation of the per-
formances of original individual CNN, transfer learning, and ensemble
models. We compared the results of six different CNN-based models
of DenseNet121, Inceptionv3, MobileNetV2, resNext101, Resnet152V
and SeresNext101 by applying them to the nine classes of rice diseases
(see Fig. 8 for accuracy). The dataset used includes 14,118 rice leaf
images. After image expansion through rotation, we obtained 34,992
images for training and 7884 images for testing. Among the original in-
dividual networks, Densenet121 provides the best classification results
in identifying rice leaf diseases. Bari et al., 2021; Nayak and Singh, 2021
also support the findings that Denesenet121 delivers relatively high ac-
curacy. This is because, in DenseNet, each layer obtains a “collective
knowledge” from all preceding layers as layers receive inputs from all
preceding layers and pass them on to the next layers.

Our investigation suggests that transfer learning of deep learning
models provides slightly improved accuracy than the original individual
networks for small datasets (Number of imageless than 2000). In this
case, only after careful training including transfer learning, the accuracy
was higher than the original CNN architecture. The transfer learning
strategies in this research were based on using the pre-trained model
for training and extracting features. Surprisingly we found that
seresNext101 has improved by 17% of accuracy after a transfer learning
process. This is consistent with the results from the study conducted by
Oloko-Oba and Viriri (2021) that SE-ResNeXt-101 normally would in-
volve more parameters and was computationally expensive but has
shown good results on the ImageNet classification tasks. Performing
transfer learning from images trained on Imagenet (general images
such as cats, dogs, etc.) or MURA (X-ray images on different parts of
the body but not the chest) improved results compared to scenarios
when transfer learning was not used at all.
Leaf blast Leaf scaled Leaf smut Sheath Blight Tungro

95% 99% 96% 94% 94%
97% 90% 97% 99% 97%
96% 94% 96% 96% 95%
912 1154 842 908 718
98.34% 99.64% 99.67% 99.85% 99.76%

95% 94% 91% 92% 98%
97% 92% 91% 97% 95%
96% 94% 94% 93% 97%
908 1152 841 910 716
98.85% 99.64% 99.59% 99.45% 99.52%

97% 98% 92% 93% 90%
95% 90% 95% 96% 98%
98% 94% 93% 94% 94%
908 1153 845 910 712
98.36% 99.45% 99.34% 99.45% 99.84%

95% 91% 89% 87% 94%
86% 88% 95% 92% 93%
90% 90% 92% 90% 93%
910 1147 833 915 712
98.21% 99.50% 98.38% 99.02% 99.42%



Fig. 4. (A): CM after TL of DenseNet121. (B): CM after TL of EfficientNetB7.(C): CM after TL of Xception. (D): CM after TL of Seresnext101.
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Not surprisingly, fromour investigation,we found that the ensemble
of deep learning models improved its accuracy over a single CNN archi-
tecture. Our findings also support the study by (Acharya et al., 2020).
Table 7
Accuracy results of the Ensemble model.

Architecture Accuracy

Ensemble model (DEX) 97.62%
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7. Contributions of this research

This research offers several key contributions. Firstly, this research
experimented using nine types of rice diseases. Secondly, in this re-
search, a comparison of six original CNN architectures (DenseNet121,
Inceptionv3,MobileNetV2, resNext101, Resnet152V, and Seresnext101)
was conducted. Thirdly, we applied a transfer learning approach on
DenseNet121, MobileNetV2, Resnet152V, Seresnext101, and an ensem-
ble model called DEX (Densenet121, EfficientNetB7, and Xception) to
drawa comparison among the original CNNnetworks, transfer learning,



Table 8
Precision, Recall, f1 and Specificity result of ensembled CNN networks.

Ensemble DEX model (Densenet121, EfficientNetB7 & XceptionNet)

Bacterial blight Blight Brown Spot Hispa Leaf blast Leaf scaled Leaf smut Sheath Blight Tungro

Precision 99% 99% 99% 98% 97% 99% 94% 96% 96%
Recall 99% 100% 93% 99% 98% 94% 99% 99% 99%
F1-score 99% 99% 95% 99% 97% 97% 96% 96% 98%
Specificity 99.84% 100% 99.12% 99.70% 98.36% 99.45% 99.34% 99.45% 99.84%
Support 711 803 886 878 912 1146 844 913 715

Fig. 5. CM of ensembled three CNN.

Fig. 6. Training and validation errors over the iteration of ensembled three CNN.
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Fig. 7. Training and validation accuracy over the epochs of ensembled three CNN.
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and ensemble technique. The results suggest that the ensemble frame-
work provides the best accuracy of 98%, and the transfer learning in-
creases a 17% accuracy from the results by Seresnext101 in detecting
and localizing rice leaf diseases.

8. Conclusion and future research

There are some limitations in the current stage of the research,
which need to address in future work. The use of free-of-charge re-
sources (Google Colab) limits the experiments of this study. As Google
Colab offers the server for a limited time, the hyperparameter tuning,
training the base model training other than Imagenet (this research
used Imagenet as the base database), and the application of Adadelta,
Fig. 8. Accuracy comparison among individu
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FTRL, NAdam, Adadelta, andmanymore optimizerswere not performed
in this study. Another limitation is that the research used secondary
data that are available publicly, not primary data directly collected
from fields.

In the future, wewant to create a user interface for the detection and
localization of rice leaf diseases for farmers. This interface would not
only detect but also provide a guide on how the diseases can be con-
trolled. As mobile phones are seen as a preferred technological device
among developing country users, we aim to develop a mobile phone-
based rice leaf disease detection application tool.

The experimentation and the observations presented here are very
important when models are being constructed with small datasets.
In this research, the accuracy of the ensemble DEX model from
al CNN, transfer learning and ensemble.
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Densenet121, EfficientNetB7 & XceptionNet was found to produce the
highest accuracy in classifying rice diseases from rice leaves. The success
of the proposed architecture was compared with the transfer learning
and six state-of-the-art individual CNN architectures. Experimental
studies were conducted in both original and augmented versions of
the image dataset. Considering both the average accuracy and the aver-
age precision metric on both the original and augmented datasets, the
DEX model was found to be superior to other CNN architectures.
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