
Received 4 July 2023, accepted 6 August 2023, date of publication 15 August 2023, date of current version 24 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3305506

Confimizer: A Novel Algorithm to Optimize Cloud
Resource by Confidentiality-Cost Trade-Off
Using BiLSTM Network
SANDESH ACHAR 1, NURUZZAMAN FARUQUI 2, ANUSHA BODEPUDI 3,
AND MANJUNATH REDDY 4
1Department of Software Engineering, Walmart Global Tech, Sunnyvale, CA 94086, USA
2Department of Software Engineering, Daffodil International University, Daffodil Smart City, Birulia, Dhaka 1216, Bangladesh
3Workday Inc., Pleasanton, TX 94588, USA
4Biometric Ultrasound Fingerprint Technology, Qualcomm Inc., San Diego, CA 92121, USA

Corresponding author: Sandesh Achar (sandeshachar26@gmail.com)

ABSTRACT The world is expiring a 23% annual data growth rate and is projected to have a total surplus
volume of 175 Zettabytes by 2025. It imposes significant challenges for small to medium-sized businesses
to allocate funds for large-size data storage. The initial large upfront and maintenance costs have made
cloud storage services popular. It comes with confidentiality concerns. Encrypting data before storing it
in cloud storage is the most effective solution to this challenge. Encrypting and decrypting large volumes
of data allocate massive amounts of expensive resources. Storing in plain text reduces system load and
expenditure but introduces confidentiality concerns. This paper proposed a Confimizer, a novel algorithm,
to optimize cloud resources and reduce costs by balancing the trade-off between confidentiality and cost.
It reduces the system overload by 13.75%, saving 9.20% expenditure. It saves 12.33% storage and reduces
API calls by 52.99%. The Confimizer uses an optimized BiLSTM network that classifies data according
to the confidentiality level by 84.00% accuracy, 76.92% precision, 74.47% recall, and 75.01 F1 score.
The innovative approach, optimized BiLSTM network architecture, and outstanding performance of the
Confimizer make it a unique and effective cloud resource optimization algorithm.

INDEX TERMS Cloud computing, resource optimization, data confidentiality, optimization, deep learning.

I. INTRODUCTION
The vision of having computing as a utility has come to
fruition through the power of cloud computing [1]. This
technology has made a significant impact on various facets
of the digital services that we utilize today. Small and
medium-sized enterprises (SMEs), in particular, stand among
the top business-level consumers of cloud services. This
technology enables them to conduct their operations with-
out necessitating a substantial investment in large-scale
Information Technology (IT) infrastructure [2]. Maintain-
ing and operating hardware demands a considerable initial
investment, continued maintenance, and a team of dedi-
cated experts [3]. The fundamental service models of cloud

The associate editor coordinating the review of this manuscript and
approving it for publication was Michael Lyu.

computing–Software-as-a-Service (SaaS), Infrastructure-as-
a-Service (IaaS), and Platform-as-a-Service (PaaS) [4]–allow
users to select the model that best suits their needs. However,
there are inherent limitations in the business models based on
cloud services. These limitations include concerns related to
data confidentiality and the potential for escalating costs due
to intensive usage [5]. This paper outlines the potential for
overcoming these challenges within the existing scope.

Encryption is an effective and easier solution to data con-
fidentiality concerns. This concern is also known as data
privacy or data security [6]. Popular cloud service providers,
including Google App Engine and Amazon, have on-demand
data encryption services [7]. They use Security-as-Service
architecture. Provisioning these services to ensure confiden-
tiality has become simpler through API integration [8]. These
services are advanced enough to maintain data integrity and

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 89205

https://orcid.org/0000-0002-5994-4706
https://orcid.org/0000-0001-9306-9637
https://orcid.org/0009-0006-0136-2814
https://orcid.org/0009-0008-4712-0284

S. Achar et al.: Confimizer: A Novel Algorithm to Optimize Cloud Resource

confidentiality. However, the challenge is discovering the
scope of cost minimization by encrypting confidential data
only. The pay-as-you-go payment method of cloud service
is efficient because of its scalability [9]. The expenditure
remains minimum when the usage is minimum. Encrypt-
ing every data the users create increases the expenditure by
requiring higher storage, making more API calls, and using
more cloud resources. Storing data without encryption leads
to data confidentiality concerns [10]. This paper proposes
a novel solution that minimizes the Request for Encryption
Service (RES) without raising any risk to confidentiality.

A BiLSTM network has been designed, implemented, and
optimized in this paper to classify the level of confidentiality
required for the data over the cloud applications [11]. The
proposed network classifies the user data into four cate-
gories labeled (i) High, (ii) Average, (iii) Below Average,
and (iv) Low. The classification received from the network is
used in the Confimizer algorithm to encrypt the data, which
requires confidentiality only. This simple yet innovative idea,
a novel algorithm, and effective implementation ensures opti-
mal use of cloud resource and minimize the cost. The core
contributions of this research have been listed below:

• Development of the novel Confimizer algorithm to
minimize cost by maintaining a balance between con-
fidentiality and cost, which is a unique approach to
optimization.

• Design, implementation, and optimization of a BiLSTM
network to predict from a dataset of variable length
of string with 84.00% accuracy, 76.92% precision, and
74.57% recall.

• Reducing the annual cost for cloud resources by 9.20%
and using 12.33% less storage than usual.

• Achieving an average of 52.99% fewer API calls con-
tributes to cost and cloud resource usage reduction.

• Reducing the computational load on a cloud server by
13.75% on average.

The rest of the paper has been organized into five sections.
The literature review has been presented in section two. The
proposed methodology has been developed and the third
section. The fourth highlight the experimental results and
presents an in-depth analysis of the findings. The limitation
and future scope of the proposed algorithm are in section four.
Finally, the paper has been concluded in section five.

II. LITERATURE REVIEW
Confidentiality-based data classification for cloud computing
models is a potential research field with the potential of
numerous applications, including resource optimization [12].
Ali et al. [13] has developed a confidentiality-based cloud
computing model called Classification-as-a-Service (C2aaS)
to tackle the security concern related to cloud storage and
preventing system overload. Another study conducted by
Zardari et al. [14] developed a KNN-based classifier to clas-
sify data into confidential and non-confidential before storing
them on cloud storage. Their approach used encrypts the

confidential data only to develop an efficient and memory
space-friendly cloud computing scheme. The proposed Con-
fimizer is a cloud resource optimization algorithm that agrees
with the hypotheses of Ali et al. [13] and Zardari et al. [14].
However, the Confimizer uses the BiLSTM network to clas-
sify the data into four classes, whereas Zardari et al. [14] used
a KNN classifier limited to binary classification only. The
proposed methodology uses 128-bit and 256-bit encryption
depending on the confidentiality level, making it robust and
more efficient.

A survey by Butt et al. [15] highlights the state-of-the-
art cloud security solutions. Most of the research has been
observed to focus on data confidentiality in the cloud, ignor-
ing the additional cloud resources and associated costs with
it [16], [17], [18]. Encrypting data requires additional com-
putational resources, including more storage, higher band-
width for transmission, and more processing time than plane
text [19]. That is why encrypting everything is not an efficient
solution for cloud confidentiality. The proposed Confimizer
has been developed from this observation. It ensures confi-
dentiality by encrypting confidential data while saving sig-
nificant cloud resources by leaving non-confidential data as
plain text. The information security and associated technical
issues for cloud storage have been studied by Hui et al. [20].
The proposed Confimizer addresses the problems of
optimizing the cloud resources while ensuring essential
confidentiality.

A hybrid AES-ECC cryptography method proposed by
Kumar et al. [21], a combination of orthogonal knowledge
swarm optimization with oblique cryptography proposed
by Reddy et al. [22], enhanced encryption scheme applica-
ble for lightweight data intended for multi-cloud developed
by Raj et al. [23], and single pre-shared key-based homo-
morphic encryption scheme developed by Kara et al. [24]
are some effective methodologies to ensure confidentiality
in cloud storage. While these approaches deserve appreci-
ation for methodological innovation and effective perfor-
mance, it comes with an optimizable computational cost.
The proposed Confimizer studies cloud storage data confi-
dentiality from a resource optimization perspective, which
is absent in the state-of-the-art research reviewed in this
section. The proposed methodology maximizes the proba-
bility of achieving an optimal confidentiality-cost trade-off
using the proposed novel Confimizer algorithm and BiLSTM
network.

III. METHODOLOGY
The proposed Confimizer is a Natural Language Processing
(NLP)-based approach. It starts with preparing and process-
ing the dataset consisting of varying text lengths. A vector
is formed from the textual dataset. The vectorized words
are used in an exclusively designed BiLSTM network. This
network predicts the level of confidentiality. According to the
level of confidentiality, the Confimizer algorithm decides on
the applicability and type of encryption.

89206 VOLUME 11, 2023

S. Achar et al.: Confimizer: A Novel Algorithm to Optimize Cloud Resource

A. DATASET & PRE-PROCESSING
The proposed Confimizer is a unique concept, and a related
dataset has not been found. Several research projects pub-
lished in recent literature focused on the same domain. How-
ever, the dataset used in those papers has not been made
public [25], [26], [27]. Because of having confidential data,
it goes against engineering ethics to disclose the dataset [28].
Dataset Background: This paper uses a dataset obtained

from a medium-scale marketing agency with 154 employees
and more than 92 active clients. This company handles both
digital and traditional marketing for clients. The clients share
both regular and confidential information with the agency.
According to the terms and conditions of the agency, it is
bound to ensure the integrity and confidentiality of clients’
data. They use local storage devices and encrypt everything
the clients share. It has exceeded the agency’s financial capa-
bility to add more storage units to tackle the high volume of
data.

Moving to cloud storage provisioned through a pay-as-
you-go payment scheme is the instant and primary solu-
tion to the agency’s problem. However, it goes against the
confidentiality and integrity agreement. Encrypting all data
before storing it on the cloud storage is a solution to this
problem. However, it costs additional encryption and decryp-
tion service. Moreover, the volume of the data increases
after encryption which continuously accrues additional costs.
It has been observed that the agency receives sensitive and
non-sensitive data. Encrypting only the sensitive data and
storing non-sensitive data as they are is an effective solution
to reduce the annual cloud service subscription cost. A dataset
has been created by removing the affiliation of the clients
to research to reduce the storage cost while maintaining
confidentiality. This dataset has been used in this paper with
the agreement of research purpose application only with the
consent of non-disclosure.
Dataset Description: The dataset is a collection of strings

with varying lengths defined by equation 1 where Dt is
the dataset, Si(l) is the ith string of length l. A subset
of this dataset has been presented in table 1. There are
6450 instances in this dataset. Each instance has a unique
ID generated from the individual client ID. This string con-
tains different types of information, including confidential
and non-confidential information. Depending on the level of
confidentiality, the strings have been labeled with four classes
defined by equation 2. These four classes are (1) Low (L), (2)
Below Average (B), (3) Average (A), and (4) High (H).

Dt =
m∑
i=1

Si(l)wherel = {x|x ∈ N } (1)

Ci = {L,B,A,H}wherel = {y|y ∈ N , x ≤ 4} (2)

1) DATASET PROCESSING
a: TEXT CLEANING
The dataset Dt is a collection of characters defined by
equation 3, including irrelevant characters (ic), punctuation

TABLE 1. A subset of the dataset that shows one instance from every
label.

(pc), and symbols that create emojis (es) which is a set
expressed by V . Removing elements defined by equation
4 is text cleaning. The text cleaning function follows the
working principle expressed in equation 5 where n represents
the cleaned character.

ci = {c1, c2, c3, . . . , cn} (3)

V = {ic, pc, es} (4)

F(ci) =

{
′′ if ci ∈ V
ci otherwise

(5)

This paper considers the words containing less meaningful
information as Stop-Words (SWs). Removing the SWs is a
part of the text cleaning. The SWs have not been defined in
this paper. Instead, the existing stop-words listed in Natural
Language Toolkit (NLTK), a popular NLP library, have been
used [29].

b: TEXT NORMALIZATION
The text normalization involves converting every character
into lowercase letters designed using the function defined
in equation 6. Here, L() is the function, and ci is the ith

input character. This function replaces the capital letters with
corresponding small letters.

L(ci) =

{
lowercase of ci if ci is an uppercase letter
ci otherwise

(6)

c: TOKENIZATION
The strings are split into valid words to use for Natural
Language Processing (NLP). The dataset used in this paper
is a collection of strings. A set of strings is defined as a col-
lection of characters. Training a system to predict the level of
confidentiality requires feature extraction fromwords instead
of characters. The string expressed by s is converted into a set

VOLUME 11, 2023 89207

S. Achar et al.: Confimizer: A Novel Algorithm to Optimize Cloud Resource

of tokens that represent tokens using the tokenization function
defined in equation 7

T (S) = (t1, t2, . . . , tm) (7)

In equation 7, T is the tokenization function, S is the
sentence to be tokenized, and (t1, t2, . . . , tm) is the sequence
of tokens resulting from the tokenization of S.

d: Word2Vec FORMATION
After performing Stemming and Part of Speech (POS) Tag-
ging [30], the words are converted into vectors. The process
uses a neural network with a vocabulary size of V , the size
of hidden layer N , the input word is w, and the context
word is c. The input layer and hidden layer weights are W
and w′, respectively. The vectorization method expressed in
equation 8 maximizes the average log probability of a context
word for a given the word w.

1
T

T∑
t=1

∑
−m≤j≤m,j̸=0

log p(wt+j|wt) (8)

here, T is the length of the text, m represents the size of the
context window, and p(wt+j)|wt defines the probability of the
context word. The probability is calculated using equation 9.

p(wO|wI) =
exp(v′wO

T vwI)∑V
j=1 exp(v′j

T vwI)
(9)

The vectorization process keeps the semantically similar
words closer and expands the distance among dissimilar
words. Every word is identified with a vector value and
direction with is exclusive to that particular word.

2) DATASET SPLITTING
The dataset used in this experiment has been split into
training, testing, and validation sets by maintaining a
ratio of 70:15:15. At this ratio, 968 instances for test-
ing, 968 instances for validation, and the remaining
4514 instances have been used for training. The training
dataset has been used to train the BiLSTM network. The
validation dataset has been used during the training progress
to validate the performance improvement of the network
through k-fold cross-validation at k = 8. The testing dataset
has been kept untouched during training and validation and
used after training the network.

B. BiLSTM NETWORK ARCHITECTURE
A simple BiLSTM network architecture, illustrated in
figure 1, has been designed and implemented in this paper.
The length of the input text is not constant. That is why the
BiLSTM network has been used to handle up to 1200 input
tokens at a time. The signals from the input layer are passed to
the Embedding layer, which generates a 3D Tensor vector of
shape vector. This vector contains information on the batch
size (B), maximum length (L), and embedding dimension
(V). This vector is transmitted to both forward and backward

FIGURE 1. The BiLSTM network architecture.

LSTM layers and generates the average of both layers. There
is a global max-pooling layer after the BiLSTM layer. This
layer condenses the sequences generated by the BiLSTM
layer into a single vector for each batch instance. These
condensed features are used in the dense layer to learn the fea-
tures. Finally, the output layer classifies the signals received
from the dense layer.

1) CONCEPTUAL DESIGN OF THE NETWORK
The proposed BiLSTM networks consist of three gates. They
are - forget gate, input gate, and output gate, which are defined
by equations 10, 11, and 12, respectively.

ft = σ (Wf · [ht−1, xt]+ bf) (10)

it = σ (Wi · [ht−1, xt]+ bi) (11)

ot = σ (Wo[ht−1, xt]+ bo) (12)

In equations 10, 11, and 12, ft , it , and ot represent activa-
tion time step at t of forget, input, output gate, respectively.
The σ is the sigmoid activation function. The weights of
these three input gates are the Wf , Wi, and ot . In these three
equations, ht−1 represents the previous hidden state, and xt
is the current input. The bf , bi, and ot are the bias terms of
equations 10, 11, and 12, respectively.

89208 VOLUME 11, 2023

S. Achar et al.: Confimizer: A Novel Algorithm to Optimize Cloud Resource

FIGURE 2. Learning progress of the proposed BiLSTM network.

Each cell in the BiLSTMnetworkmaintains a cell state and
a hidden state for both forward and backward layers, which
are defined by equation 13 where Ct is the cell state and ht is
the hidden state at time t .

C̃t = tanh(WC · [ht−1, xt]+ bC) (13)

The cells and hidden states are updated using equation 14,
and 15 where it is the input gate’s activation function, and
tanh(Ct) ensures mapping between -1 to +1.

Ct = ft · Ct−1 + it · C̃t (14)

ht = ot · tanh(Ct) (15)

The BiLSTM network propagates forward using equation
16 and backward by equation 17 where hft is the forward
propagation hidden state and hbt is the backward propagation
hidden state.

hft = LSTMforward (h
f
t−1, xt) (16)

hbt = LSTMbackward (hbt+1, xt) (17)

Both forward and backward layers contribute to the output.
There are three ways of generating output from BiLSTM
layers. And they are concatenated, summed, or averaged
output. The averaged output is governed by equation 18 has
been used in this paper.

ht =
hft + h

b
t

2
(18)

The outputs from the BiLSTM layer enter the global max
pooling layer 19. The sequence of vectors, S = s1, s2, . . . , sn,
produced by the BiLSTM layer where si refers to a vector
of ith features. The max pooling layer produces a single
vector P. Each element of the vector, Pj, is calculated using
equation 19.

Pj =
n

max
i=1

(si,j) (19)

In equation 19, n is the length of the input sequence, si,j
represents the j-th feature of the i-th vector. The max-pooling

operation is defined by max. The outputs from the global
max-pooling layer enter into the dense layer, which is defined
by equation 20. The

Y = f

(
d∑
i=1

(xi · wi)+ b

)
(20)

In equation 20, Y is the output of a neuron, d is the number
of dimensions in the input, xi is the i-th input, wi is the weight
associated with the i-th input, b is the bias, and f is the ReLU
activation function expressed by equation 21.

f (x) = max(0, x) (21)

Finally, the outputs of the dense layer enter the output layer,
which has four nodes representing the four classes of the
dataset. Each node uses the Sigmoid activation function given
in equation 22. This function maps the signals from the dense
layer into output and generates probabilistic output. The node
with the highest probability is considered the predicted class.

f (x) =
1

1+ e−x
(22)

2) LEARNING & OPTIMIZATION ALGORITHM
There are 4514 instances in the dataset. Instead of using all
these instances simultaneously, this paper uses a mini-batch
method by dividing the training dataset into smaller batches.
For ease of operation, 4500 instances have been used, and
it has been divided into 90 mini-batches with 50 instances
in each batch. Batch normalization has been used in this
experiment to accelerate and stabilize the learning process.
The Adaptive Moment Estimation (ADAM) optimization
algorithm has been used to update the weights of the BiLSTM
network. The learning progress of the proposed BiLSTM net-
work has been illustrated in figure 2. Figure 2(a) illustrates the
training and validation accuracy. The training and validation
loss curves are in figure 2(b).

VOLUME 11, 2023 89209

S. Achar et al.: Confimizer: A Novel Algorithm to Optimize Cloud Resource

a: BATCH NORMALIZATION
Batch normalization in this paper aims to have zero mean
and unit variance in each mini-batch when possible. The
mini-batches are expressed by equation 23. The mean (µB)
and variance (σ 2

B) are calculated using equation 24 and 25,
respectively.

B = {x1, x2, . . . , x90} (23)

µB =
1
m

m∑
i=1

xi (24)

σ 2
B =

1
m

m∑
i=1

(xi − µB)2 (25)

The µB and σ 2
B have been used in equation 26 to normalize

the activation of the mini-batches where ϵ has been used to
prevent zero division error.

x̂i =
xi − µB√
σ 2
B + ϵ

(26)

Once the normalized activations are calculated, the shift-
ing and scaling are applied with learnable parameters γ

and β, respectively. The shifting and scaling are done using
equation 27.

yi = γ x̂i + β (27)

b: OPTIMIZATION ALGORITHM
TheADAMoptimization algorithm has been used to optimize
the learning process because it is a combination of Gradient
Descent with Momentum (GDM) and RMS Prop optimizer.
In this paper, the first moment and second moment have been
calculated using equations 28 and 29, respectively.

mt+1i = β1mti + (1− β1)∇wiJ (w) (28)

mt+1i = β1mti + (1− β1)∇wiJ (w) (29)

However, these moments have not been directly applied.
The biases of these moments have been corrected using equa-
tions 30 and 31. After this correction, the ADAM generates
optimal results.

m̂t+1i =
mt+1i

1− β t+11

(30)

v̂t+1i =
vt+1i

1− β t+12

(31)

After correcting the biases, the next phases have been
implemented. It involves updating the weights using adaptive
learning rates and moments with correct biases. The weight
updating process is expressed by equation 32.

wt+1i = wti −
η√

v̂t+1i + ϵ

m̂t+1i (32)

The overall optimization algorithm used in this paper is
governed by equations 28, 29, 30, 31, and 32. In these equa-
tions, the weight is represented using wti . The gradient of the

cost function is ∇wiJ (w). The first and second moments are
expressed by mti and v

t
i , respectively. The exponential decay

is represented by β1 and β2. Although the process uses an
adaptive learning rate, there is a global learning rateη is a
global learning rate and it is expressed by ϵ, which is a small
constant. The corrected biases of first and second moments
are m̂it+1 and v̂it+1, respectively.

C. CONFIMIZER WORKING PRINCIPLE
The workflow diagram illustrated in figure 3 reflects the
proposed Confimizer’s working principle. The data from the
clients are the input text for Confimizer. This text is processed
to transfer to a BiLSTM network marked as figure 3(a). The
BiLSTM network marked as figure 3(b) classifies the input
texts into one of the four classes. Depending on the level of
confidentiality, the encryption is done, which is marked as
figure 3(c).

1) CONFIMIZER ALGORITHM
The proposedConfimizer algorithm, presented in algorithm 1,
uses the BiLSTM network to classify the text data received
from the clients. The BiLSTM network requires vectorized
text which is done in text processing. It is a function named
‘Text Processing()’ in the algorithm. The processed texts
are passed to the BiLSTM network, which classifies the
text according to the level of confidentiality. If the text has
low or below-average confidentiality, then the Confimizer
algorithm calls the storage API and sends the data to the
cloud server for storage. When the input text has average
confidentiality, the algorithm calls AES encryption API and
encrypts the text with a 128-bit key. After that, it is sent to
cloud storage through the storage API. For text containing
highly confidential information, the Confimizer algorithm
encrypts the text with a 256-bit key and sends it to the cloud
server for storing it.

The Confimizer algorithm encrypts only confidential data
and leaves the basic data as plain text. As a result, it reduces
the encryption API call. The plain text takes less storage
than the encrypted text with the same length. That means it
reduces the bandwidth required to transmit the data, reduces
the cloud storage required, and optimizes the cloud resource
by lowering the number of API calls.

IV. EXPERIMENTAL RESULTS AND EVALUATION
A. EXPERIMENTAL ENVIRONMENT
The Confimizer algorithm was deployed in an experimental
environment for study and evaluation. This test employed a
64-bit version of Ubuntu Server (OS). Two data centers host
ten VMs, simulating 150 to 2000 mock tasks. Each server in
the test data centers is a Dell PowerEdge R940 Rack Server
equipped with 8 SSDs. A pair of Intel Xeon Gold 6252 pro-
cessors powers the computation of these devices. A total
of 48 threads can run simultaneously across the processor’s
24 cores. The highest possible frequency is 10.4 GT/s. The
cache memory size is 35.75MB. This machine has 4 slots for

89210 VOLUME 11, 2023

S. Achar et al.: Confimizer: A Novel Algorithm to Optimize Cloud Resource

FIGURE 3. The workflow diagram of confimizer.

Algorithm 1 The Confimizer Algorithm
1: Input: Input Text:IT ,User Request:Ur ;
2: Output: Storage API, APIs; Encrypt API, APIe;
3: Start
4: if Ur == True then
5: confidentiality← 0
6: Word2Vec← Text Processing(Input Text)
7: [L,B,A,H]← BiLSTM (Word2Vec)
8: if confidentiality == ’L’ then
9: APIs(IT)

10: else if confidentiality == ’B’ then
11: APIe(IT)
12: else if confidentiality == ’A’ then
13: APIs(APIe(IT , 128))
14: else if confidentiality == ’H’ then
15: APIs(APIe(IT , 256))
16: else
17: APIs(IT)
18: end if
19: end if
20: end

main memory and can accommodate a maximum of 32GB.
Their main memory can transfer data at a rate of 3200 MT/s.
The PERC H330 Adapter FH storage controller has been
utilized in these server machines. There are eight SSD con-
nections for a total capacity of 15.36 terabytes. The highest
transfer rate for data from these storage devices is 6Gbps.

B. EVALUATION METRICS
The performance of the proposed Confimizer has been eval-
uated from two perspectives. It is a Deep Learning (DL)

dependent solution that uses predictions from a BiLSTM net-
work. From this context, the evaluation metrics are machine
learning evaluationmetrics. On the other hand, it is a practical
solution developed to balance between confidentiality and
cloud resource usage. From this point of view, the evaluation
metrics are performance comparisons in terms of various
measurements.

1) DL PERFORMANCE EVALUATION METRICS
After reviewing the relevant research, we concluded that the
most commonmachine learning assessment measures are F1-
score, accuracy, precision, and recall [31], [32], [33]. The
equations 33, 34, 35, and 36, have been used to define these
metrics in their respective order. Measurements for these
evaluation metrics include True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN). These
values were taken from examining the confusion matrix,
which has been presented in section IV-C.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(33)

Precision =
TP

TP+ FP
(34)

Recall =
TP

TP+ FN
(35)

F1 =
2 ∗ Precision ∗ Recall
Precision+ Recall

(36)

2) EVALUATION METRICS ON APPLICATION
The concept of the Confimizer has been developed to solve a
problem that emerged frommaintaining confidentiality while
outsourcing the data storage to a cloud server. The challenge
is to optimize cloud resource usage to reduce the annual
cost. The evaluation metrics from the application viewpoint

VOLUME 11, 2023 89211

S. Achar et al.: Confimizer: A Novel Algorithm to Optimize Cloud Resource

TABLE 2. Performance analysis on the evaluation metrics.

compare cost, storage, memory consumption, CPU usage,
and API calls before and after using the Confimizer.

C. CONFUSION MATRIX ANALYSIS
The confusion matrix illustrated in figure 4 has been obtained
from the experiments conducted using the proposed BiLSTM
network. The confusion matrix summarizes the classifier’s
accurate and incorrect predictions and helps evaluate clas-
sification models. It can uncover trends and nuances in
misclassification and determine accuracy, recall, F1 score,
and specificity [34]. A confusion matrix is a table that defines
the performance of a machine learning classifier with True
Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN) [35]. These numbers are used to cal-
culate state-of-the-art machine learning evaluation metrics,
including accuracy, precision, recall, and F1-score.

D. CLASSIFICATION PERFORMANCE ANALYSIS
The performance of the Confimizer algorithm depends on the
classification accuracy of the proposed Deep Neural Network
(DNN) listed in table 2. We analyzed the performance of a
deep neural network using K-fold cross-validation, compar-
ing metrics such as accuracy, precision, recall, and F1 scores.
The average accuracy, precision, recall, and F1-score across
the five folds are 84.00%, 76.92%, 74.57%, and 75.01%,
respectively.

In the first fold, themodel achieved an accuracy of 83.41%,
precision of 79.14%, recall of 76.41%, and an F1 score of
76.84%. The highest accuracy (85.01%) was observed in the
fifth fold, while the lowest accuracy (83.04%) occurred in the
fourth fold. Precision scores ranged from 73.48% (fifth fold)
to 79.14% (first fold). The highest recall (76.41%) and F1
score (76.84%) were obtained in the first fold.

The results indicate that the deep neural network model
demonstrates consistent performance across the 5-fold cross-
validation, with average accuracy, precision, recall, and F1
scores of 84.00%, 76.92%, 74.57%, and 75.01%, respec-
tively. However, variations in the performance metrics across
folds highlight the importance of using cross-validation to
obtain a more reliable estimate of the model’s performance.
Despite the fifth fold having the highest accuracy, it exhibited
the lowest precision among all folds. This suggests that,
although the model correctly classified a large proportion of
instances, it may have produced more false positives com-
pared to the other folds. Conversely, the first fold achieved
the highest precision, recall, and F1 scores, indicating a better

TABLE 3. Annual cost comparison before and after using the Confimizer.

balance between identifying true positives and avoiding
false positives. The deep neural network classifier analysis
using 5-fold cross-validation revealed consistent performance
across different folds.

E. ANNUAL COST COMPARISON
The experimental performance of the proposed Confimizer
has been presented in this paper. The annual cost comparison
presented in this section is the estimation calculated based
on the monthly expenditure of the last 12 months. The data
exchanged over the previous 12 months have been fetched
from the cloud storage. The expenditure has been obtained
from the monthly billing report of the service provider. Using
the same cost calculation criteria, the annual cost after apply-
ing the Confimizer has been calculated in this section. The
table 3 lists the annual cost before and after using the pro-
posed Confimizer.

The innovative Confimizer algorithm has been a boon for
companies seeking to cut their cloud service costs. An annual
comparison showcases the significant impact of Confimizer
in controlling expenses. Initially, the cost per month ranged
from $749.38 in July to a high of $964.66 in August.
However, after applying Confimizer, the monthly expen-
ditures dropped noticeably, with costs fluctuating between
$664.69 and $896.14. The table outlines the consistent
reduction in cost, varying from 5.89% in November to an
impressive 11.91% cutback in April. On average, Confimizer
managed to shave off a significant 9.20% from the monthly
cloud service costs. This continual reduction leads to substan-
tial yearly savings, translating to an average decrease from
$859.86 to $781.22 per month. These findings underscore
Confimizer’s potential to significantly transform the financial
dynamics of cloud services, making it a game-changing tool
in the sector. The difference between before and after using
the Confimizer is illustrated in figure 5.

F. STORAGE COMPARISON
An experiment has been done on ten randomly selected
instances to identify the effect of the Confimizer on storage
demand reduction. The findings of the experiment have been

89212 VOLUME 11, 2023

S. Achar et al.: Confimizer: A Novel Algorithm to Optimize Cloud Resource

FIGURE 4. Confusion matrix analysis.

FIGURE 5. The annual cost comparison before and after using Confimizer.

listed in table 4. With an average data reduction rate of
12.33%, the Confimizer effectively optimizes storage utiliza-
tion, offering substantial savings. The algorithm showcases
its efficacy in several instances, with storage reduction per-
centages ranging from 12.39% to as high as 27.51%. Notably,
in two cases, Confimizer managed to curtail storage usage
from 1794 KB to 1300.5 KB and 1279 KB to 1001.22 KB,
respectively, resulting in around 20% storage savings. How-
ever, it is essential to note that the algorithm showed no
improvement in three instances, leaving the data storage
unchanged. These three instances were non-confidential data.

TABLE 4. Storage usage comparison before and after using the
Confimizer.

As a result, there is no effect of before and after using the
proposed approach.

Figure 6 shows the storage required before and after using
the Confimizer. It also illustrates the percentage savings.
Confimizer has demonstrated its value overall in enhancing
storage efficiency. This novel approach, therefore, proves
vital for businesses seeking to minimize their cloud storage
costs while maintaining their data storage needs.

G. API CALLS COMPARISON
The Confimizer reduces the number of API calls to encrypt
and decrypt the data. An observation made over ten days
shows 79,668API calls daily on average. After using the Con-
fimizer, the API calls reduce to 37,217 within the same time
duration. It reflects an average 52.99% API call reduction.
The observational data has been listed in table 5.
Figure 7 illustrates the effect on the API calls. It shows

a significant API call reduction over ten days. Throughout

VOLUME 11, 2023 89213

S. Achar et al.: Confimizer: A Novel Algorithm to Optimize Cloud Resource

FIGURE 6. Storage usage comparison before and after using the
Confimizer.

TABLE 5. API calls comparison before and after using the Confimizer.

FIGURE 7. Comparison between API calls before and after using the
Confimizer.

the experiment, the algorithm’s performance was consistently
robust, with the highlight being a dramatic 64.727% decrease
on the sixth day. The impressive reduction achieved by the
Confimizer algorithm signifies a potential for enhanced sys-
tem performance and reduced operational costs, and a more
sustainable approach to managing resources within cloud
services.

H. PERFORMANCE ON COMPUTATIONAL LOAD
We analyzed the effect of Confimizer, a system optimization
tool, on CPU, memory, and disk usage over a week-long

FIGURE 8. The CPU usage comparison before and after Confimizer.

FIGURE 9. The memory consumption comparison before and after
Confimizer.

period. Table 6 compares the system resource utilization of
a computer with and without Confimizer. For each day, the
following metrics are recorded CPU usage (in percentage),
Memory usage (in megabytes, MB), and Disk usage (in
megabytes per second, MB/s).

Analyzing the table 6, we observe that using Confimizer
led to reduced resource utilization. The average CPU usage
without Confimizer was 0.19%, while with Confimizer,
it decreased to 0.18%. Our comparative analysis of CPU
usage data, illustrated in figure 8 indicates that Confimizer
can contribute to reduced resource consumption, although
the observed improvements are modest. While these results
provide some evidence of Confimizer’s effectiveness, it is
essential to consider the potential variations in long-term
effects based on usage patterns and system configurations.
More extensive studies and continuous monitoring of CPU
usage with Confimizer will help determine its effectiveness
in a wide range of scenarios and environments.

The average memory usage without Confimizer was
3,224 MB, whereas, with Confimizer, it dropped to
2,998 MB, a reduction of approximately 7%. The perfor-
mance illustrated in figure 9 indicates that Confimizer can
effectively reduce memory usage, with reductions ranging
from approximately 208 to 268 MB per day. Lower mem-
ory consumption can lead to improved system performance,
especially in multitasking scenarios or when working with
memory-intensive applications.

89214 VOLUME 11, 2023

S. Achar et al.: Confimizer: A Novel Algorithm to Optimize Cloud Resource

TABLE 6. Performance comparison on computational load.

FIGURE 10. The disk access comparison before and after Confimizer.

And the average disk usage without Confimizer was
0.11 MB/s, while with Confimizer, it declined to 0.1 MB/s.
The comparison of disk usage presented in figure 10 data
between systems without Confimizer and with Confimizer
reveals a consistent decrease in disk usage (MB/s) when
utilizing the Confimizer optimization tool. In all cases, there
was a reduction of 0.01 MB/s to 0.02 MB/s in disk usage
when Confimizer was implemented. This indicates that Con-
fimizer can provide modest improvements in optimizing
disk resource consumption, potentially leading to faster data
access, reduced disk wear, and improved overall system
performance.

The results indicate that Confimizer positively impacts
cloud system resource utilization by lowering CPU, mem-
ory, and disk usage. This reduction in resource consumption
can lead to improved system performance, especially when
resources are constrained. The most significant improvement
was observed in memory usage, with an average reduction
of 7%, and the overall system overload reduction is 13.75%
considering all parameters.

V. LIMITATION AND FUTURE SCOPE
The proposed Confimizer is an effective algorithm in reduc-
ing cloud computational load by ranking data based on
confidentiality level. Like any computing system in theworld,
this algorithm has some limitations.

A. WEB APPLICATION INTEGRATION ONLY
The proposed algorithm has experimented with web appli-
cations only. It has not been implemented for Android or
iOS mobile applications. The proposed algorithm runs on the
device of the users. It intelligently decides tomake encryption

and, subsequently, decryption requests. The algorithm has
been implemented for web applications using the Django
framework, which is for web applications. The implemen-
tation pattern for Android or iOS applications will differ,
which has not been done in this experiment. It is a significant
limitation of this research. However, it paves to conduct two
more subsequent research to implement the Confimizer in
Android and iOS applications.

B. LACK OF GENERALIZATION
The conceptual idea of the Confimizer algorithm has been
implemented in this research. It is a Deep Learning (DL)-
based approach that requires a relevant dataset. The dataset
used in this experiment is not publicly available. It is also
beyond the scope of experimenting with the trained model
with types of datasets. As a result, it is evident that the
BiLSTM network trained for one organization may not be
suitable for another organization. As a result, the Confimizer
algorithm suffers from generalizability.

C. OBSERVATION DURATION
The performance analysis was done through the data col-
lected through an observational period of seven days. Observ-
ing the proposed solution’s complete behavior is a short
duration. However, because of the time constraint, the anal-
ysis was done with the data obtained from this time frame.
It gives the scope to perform more research on Confimizer in
data analytics and data mining domains.

This paper considers the aforementioned limitations as
opportunities to conduct subsequent research projects to over-
come them and keep developing the proposed Confimizer and
coming up with better version as Confimizer 2.0, Confimizer
3.0, and so on.

VI. CONCLUSION
Digital data storage has become a challenge. At a 23% annual
growth rate, the total volume of data will cross 175 Zettabytes
by 2025. Almost every organization uses digital computers
and data storage for their daily operations. Especially orga-
nizations that offer technical services are more dependent
on data. Data theft, data loss, or any damage to data may
lead to devastating effects. That is why safe, secure, and
reliable storage is essential. However, the rapid growth rate of
data and ever-rising storage demand have made cloud storage
more beneficial than deploying on-premise storage. However,

VOLUME 11, 2023 89215

S. Achar et al.: Confimizer: A Novel Algorithm to Optimize Cloud Resource

cloud storage imposes the challenge of data confidentiality.
Assuring it causes additional expenditure. The Confimizer
algorithm ensures confidentiality in cloud computing and
reduces cloud resource consumption. As a result, the cost
reduces without compromising confidentiality.

The core concept of the Confimizer algorithm is sim-
ple yet innovative and effective. Securing data involves
encryption and decryption, which consume computational
resources. The additional expenditure for encryption and
decryption is not significant for small volumes of data. How-
ever, it becomes a major issue for massive volumes of data.
The pay-as-you-go payment method of cloud storage service
becomes expensive for voluminous data. The methodology
of the Confimizer labels the data according to their confi-
dentiality level. It encrypts the data which are confidential
only, and leaves the other data as plain text. A BiLSTM
network has been designed and optimized in this research to
predict the input data’s confidentiality level. The algorithm
uses the prediction from the BiLSTM network and applies
AES-256 for the most confidential data. For average confi-
dentiality, it applies AES-128. And the algorithm leaves the
below-average and low confidential data as plain text.

This simple yet effective algorithm reduces the computa-
tional resource consumption by 13.75%. As a result, it signif-
icantly reduces the expenditure. On average, it saves 9.20%
cost of cloud storage without compromising confidentiality.
After using the Confimizer, the average API calls reduce
by 52.99% in the experimental settings. Another outstanding
effect of the Confimizer is the storage demand reduction.
It requires 12.33% storage when the Confimizer is used.
The well-optimized and properly designed BiLSTM network
plays the most significant role in the Confimizer algorithm.
The algorithm performs remarkably well because of the
accurate prediction from the network. The overall accuracy,
precision, recall, and F1-score of the BiLSTM network are
84.00%, 76.92%, 74.7%, and 75.01%.

Despite the outstanding performance and potential of
the Confimizer, it suffers from multiple limitations. The
experiment presented in this paper is replicable. However,
it requires the dataset used in this experiment which is
confidential. A BiLSTM network trained for a particular
organization will be effective in that organization. Moreover,
the performance analyses presented in this paper have been
observed briefly. Observation over several years is suitable to
generate potentially more acceptable results. However, these
limitations don’t undermine the outstanding performance
of the Confimizer algorithm. These are more opportunities
for further development and strengthening of the algorithm
through subsequent experiments.

REFERENCES
[1] J. Surbiryala and C. Rong, ‘‘Cloud computing: History and overview,’’ in

Proc. IEEE Cloud Summit, Aug. 2019, pp. 1–7.
[2] J. Zhao, L. Zhang, and Y. Zhao, ‘‘Informatization of accounting systems

in small- and medium-sized enterprises based on artificial intelligence-
enabled cloud computing,’’ Comput. Intell. Neurosci., vol. 2022, pp. 1–9,
Aug. 2022.

[3] H. Saini, A. Upadhyaya, and M. K. Khandelwal, ‘‘Benefits of cloud
computing for business enterprises: A review,’’ in Proc. Int. Conf. Adv.
Comput. Manage. (ICACM), 2019, p. 5.

[4] D. Rani and R. K. Ranjan, ‘‘A comparative study of SaaS, PaaS and IaaS in
cloud computing,’’ Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 4, no. 6,
pp. 458–461, 2014.

[5] M. Rady, T. Abdelkader, and R. Ismail, ‘‘Integrity and confidentiality in
cloud outsourced data,’’ Ain Shams Eng. J., vol. 10, no. 2, pp. 275–285,
Jun. 2019.

[6] N. Khan and S. Anandaraj, ‘‘A survey on preserving data confidentiality
in cloud computing using different schemes,’’ in Proc. 3rd Soft Com-
put. Signal Process. (ICSCSP), vol. 2. Germany: Springer-Verlag, 2022,
pp. 211–219.

[7] A. R. Patel, R. V. Tiwari, and R. A. Khureshi, ‘‘Comparative study of
top cloud providers on basis of service availability and cost,’’ Int. J.
Multidisciplinary Res., vol. 4, no. 6, pp. 1–8, Dec. 2022.

[8] V. Veeresh and L. R. Parvathy, ‘‘Data privacy in cloud computing, an
implementation by Django, A Python-based free and open-source web
framework,’’ Int. J. Intell. Syst. Appl. Eng., vol. 10, no. 3s, pp. 56–66,
2022.

[9] S. Zhao, J. Miao, J. Zhao, and N. Naghshbandi, ‘‘A comprehensive and
systematic review of the banking systems based on pay-as-you-go payment
fashion and cloud computing in the pandemic era,’’ Inf. Syst. e-Business
Manage., vol. 21, pp. 1–29, Jan. 2023.

[10] J. Huang, W. Susilo, F. Guo, G. Wu, Z. Zhao, and Q. Huang, ‘‘An
anonymous authentication system for pay-as-you-go cloud computing∗,’’
IEEE Trans. Depend. Sec. Comput., vol. 19, no. 2, pp. 1280–1291,
Mar./Apr. 2022.

[11] Y. Gao, W. Liu, and F. Lombardi, ‘‘Design and implementation of an
approximate softmax layer for deep neural networks,’’ in Proc. IEEE Int.
Symp. Circuits Syst. (ISCAS), Oct. 2020, pp. 1–5.

[12] P. B. Prince and S. P. J. Lovesum, ‘‘Privacy enforced access control model
for secured data handling in cloud-based pervasive health care system,’’
Social Netw. Comput. Sci., vol. 1, no. 5, p. 239, Sep. 2020.

[13] M. Ali, L. T. Jung, A. H. Sodhro, A. A. Laghari, S. B. Belhaouari,
and Z. Gillani, ‘‘A confidentiality-based data classification-as-a-service
(C2aaS) for cloud security,’’ Alexandria Eng. J., vol. 64, pp. 749–760,
Feb. 2023.

[14] M. A. Zardari and L. T. Jung, ‘‘Classification of file data based on con-
fidentiality in cloud computing using K-NN classifier,’’ Int. J. Bus. Anal.,
vol. 3, no. 2, pp. 61–78, Apr. 2016.

[15] U. A. Butt, R. Amin, M. Mehmood, H. Aldabbas, M. T. Alharbi, and
N. Albaqami, ‘‘Cloud security threats and solutions: A survey,’’ Wireless
Pers. Commun., vol. 128, no. 1, pp. 387–413, Jan. 2023.

[16] B. Abd-El-Atty, M. ElAffendi, and A. A. A. El-Latif, ‘‘A novel image
cryptosystem using gray code, quantum walks, and Henon map for
cloud applications,’’ Complex Intell. Syst., vol. 9, no. 1, pp. 609–624,
Feb. 2023.

[17] S. A. Sheik and A. P. Muniyandi, ‘‘Secure authentication schemes in cloud
computing with glimpse of artificial neural networks: A review,’’ Cyber
Secur. Appl., vol. 1, Dec. 2023, Art. no. 100002.

[18] M. K. Abdul-Hussein and H. T. S. ALRikabi, ‘‘Secured transfer and
storage image data for cloud communications,’’ Int. J. Online Biomed.
Eng., vol. 19, no. 6, pp. 4–17, May 2023.

[19] K. Vinitha, P. Thirumoorthy, and S. Hemalatha, ‘‘Data storage, data for-
warding, data retrieval with big data deepfakes in secure cloud storage,’’
in Handbook of Research on Advanced Practical Approaches to Deep-
fake Detection and Applications. Hershey, PA, USA: IGI Global, 2023,
pp. 106–119.

[20] S. C. Hui, M. Y. Kwok, E. W. S. Kong, and D. K. W. Chiu, ‘‘Information
security and technical issues of cloud storage services: A qualitative study
on university students in Hong Kong,’’ Library Hi Tech, vol. 41, no. 3,
Mar. 2023.

[21] S. Kumar and D. Kumar, ‘‘Securing of cloud storage data using hybrid
AES-ECC cryptographic approach,’’ J. Mobile Multimedia, vol. 19, no. 2,
pp. 363–388, Nov. 2022.

[22] N. M. Reddy, G. Ramesh, S. B. Kasturi, D. Sharmila, G. Gopichand, and
L. T. Robinson, ‘‘Secure data storage and retrieval system using hybridiza-
tion of orthogonal knowledge swarm optimization and oblique cryptogra-
phy algorithm in cloud,’’ Appl. Nanosci., vol. 13, no. 3, pp. 2449–2461,
2023.

[23] S. Raj and B. Arunkumar, ‘‘Enhanced encryption for light weight data
in a multi-cloud system,’’ Distrib. Parallel Databases, vol. 41, nos. 1–2,
pp. 65–74, 2023.

89216 VOLUME 11, 2023

S. Achar et al.: Confimizer: A Novel Algorithm to Optimize Cloud Resource

[24] M. Kara, A. Laouid, A. Bounceur, M. Hammoudeh, and M. Alshaikh,
‘‘Perfect confidentiality through unconditionally secure homomorphic
encryption using OTP with a single pre-shared key,’’ J. Inf. Sci. Eng.,
vol. 39, no. 1, pp. 183–195, 2023.

[25] X. Zhang, C. Chen, Y. Xie, X. Chen, J. Zhang, and Y. Xiang, ‘‘A survey
on privacy inference attacks and defenses in cloud-based deep neural net-
work,’’ Comput. Standards Interfaces, vol. 83, Jan. 2023, Art. no. 103672.

[26] Y. S. Abdulsalam and M. Hedabou, ‘‘Security and privacy in cloud com-
puting: Technical review,’’ Future Internet, vol. 14, no. 1, p. 11, Dec. 2021.

[27] R. K. Nema, A. K. Saxena, and R. Srivastava, ‘‘Survey of the security
algorithms over cloud environment to protect information,’’ in Proc. 10th
Int. Conf. Emerg. Trends Eng. Technol.-Signal Inf. Process. (ICETET-SIP),
Apr. 2022, pp. 1–6.

[28] K. Shilton, D. Heidenblad, A. Porter, S. Winter, and M. Kendig, ‘‘Role-
playing computer ethics: Designing and evaluating the privacy by design
(PbD) simulation,’’ Sci. Eng. Ethics, vol. 26, no. 6, pp. 2911–2926,
Dec. 2020.

[29] S. Bird, E. Klein, and E. Loper,Natural Language ProcessingWith Python:
Analyzing Text With the Natural Language Toolkit. Sebastopol, CA, USA:
O’Reilly Media, 2009.

[30] S. Dutta and B. Arora, ‘‘Parts of speech (POS) tagging for Dogri lan-
guage,’’ in Proc. 2nd Int. Conf. Comput., Commun., Cyber-Secur. (IC4S).
Singapore: Springer, 2021, pp. 529–540.

[31] N. Faruqui, M. A. Yousuf, M. Whaiduzzaman, A. K. M. Azad, A. Barros,
and M. A. Moni, ‘‘LungNet: A hybrid deep-CNN model for lung cancer
diagnosis using CT andwearable sensor-basedmedical IoT data,’’Comput.
Biol. Med., vol. 139, Dec. 2021, Art. no. 104961.

[32] L. P. O. Paula, N. Faruqui, I. Mahmud, M. Whaiduzzaman,
E. C. Hawkinson, and S. Trivedi, ‘‘A novel front door security (FDS)
algorithm using GoogleNet-BiLSTM hybridization,’’ IEEE Access,
vol. 11, pp. 19122–19134, 2023.

[33] S. Trivedi, N. Patel, and N. Faruqui, ‘‘Bacterial strain classification using
convolutional neural network for automatic bacterial disease diagnosis,’’
in Proc. 13th Int. Conf. Cloud Comput., Data Sci. Eng. (Confluence),
Jan. 2023, pp. 325–332.

[34] R. Yacouby and D. Axman, ‘‘Probabilistic extension of precision, recall,
and F1 score for more thorough evaluation of classification models,’’ in
Proc. 1st Workshop Eval. Comparison NLP Syst., 2020, pp. 79–91.

[35] E. Beauxis-Aussalet and L. Hardman, ‘‘Visualization of confusion matrix
for non-expert users,’’ in Proc. IEEE Conf. Vis. Anal. Sci. Technol. (VAST),
2014, pp. 1–2.

SANDESH ACHAR is currently a cloud dis-
tributed computing architect and the engineering
leader with experience building, scaling, and man-
aging a ‘‘world-class’’ engineering team for lead-
ing fortune 1000 organizations. He is also with
Walmart Global Tech, as the Senior Manager of
Engineering. He was the Director of Cloud Engi-
neering, leading site reliability engineering, pro-
gram management, database engineering teams,
spread globally, for the fastest-growing, and multi-

million-dollar product line with Workday Inc. In his experience with Intuit
Inc., he has successfully led the migration of more than 100 enterprise
systems to amulti-cloud environment. Hismost recent scholarly articles have
been published in International Journal of Engineering journals on forensics,
greener cloud, cloud security, artificial intelligence, machine learning, and
observability.

NURUZZAMAN FARUQUI received the Bach-
elor of Science degree (Hons.) in electrical and
electronics engineering (EEE) from North South
University, Bangladesh, in 2016, and the master’s
degree in information technology from the Insti-
tute of Information Technology (IIT), Jahangirna-
gar University (JU), Bangladesh, in 2018.

He is currently a Senior Lecturer with the
Department of Software Engineering (SWE), Daf-
fodil International University, Bangladesh. He is

also a youtuber and the author. He is also globally recognized for his
educational video content on neural networks using MATLAB. He is also
a Research Coordinator with the Department of SWE. He has authored three
books so far. His research interests include artificial intelligence, machine
learning, deep learning, cloud computing, and image processing.

Mr. Faruqui is also a member of The Institution of Engineers, Bangladesh
(IEB). He is also a member of Bangladesh Society for Private University
Academics (BSPUA).

ANUSHA BODEPUDI is currently a Principal
Site Reliability Engineer with Workday Inc., for
one of their fastest-growing, multi-million-dollar
product line. Prior to Workday, she was with Intuit
Inc., where she designed architectural solutions for
the migration of applications from traditional data
centers to multi-cloud platforms. Her most recent
scholarly works have appeared in Asian Journal
of Applied Science and Engineering, Engineer-
ing International, and ABC Journal of Advanced
Research.

MANJUNATH REDDY is currently an experi-
enced engineering technology leader with a proven
track record in the industry. Highly influential and
methodical engineering technology leader encom-
passing over more than 22 years of leadership
experience with a proven track record of building
and leading large-scale teams in North America
and Asia to deliver complex technologies, ser-
vices, IP for mobile, compute, and automotive
products. He is also the lead of the embedded soft-

ware and hardware engineering teams globally to deliver software, services,
and applications for products shipping in millions of units. He is also the
innovative leader with deep expertise in embedded software and platforms
and a demonstrated history of building products, partnerships, and ecosys-
tems to enable billions of dollars in revenue. A customer-focused leader with
a strong track record of building and sustaining executive relationships.

VOLUME 11, 2023 89217

