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Abstract: Cyber-physical security is vital for protecting key computing infrastructure against cyber
attacks. Individuals, corporations, and society can all suffer considerable digital asset losses due
to cyber attacks, including data loss, theft, financial loss, reputation harm, company interruption,
infrastructure damage, ransomware attacks, and espionage. A cyber-physical attack harms both
digital and physical assets. Cyber-physical system security is more challenging than software-level
cyber security because it requires physical inspection and monitoring. This paper proposes an
innovative and effective algorithm to strengthen cyber-physical security (CPS) with minimal human
intervention. It is an approach based on human activity recognition (HAR), where GoogleNet–
BiLSTM network hybridization has been used to recognize suspicious activities in the cyber-physical
infrastructure perimeter. The proposed HAR-CPS algorithm classifies suspicious activities from
real-time video surveillance with an average accuracy of 73.15%. It incorporates machine vision at the
IoT edge (Mez) technology to make the system latency tolerant. Dual-layer security has been ensured
by operating the proposed algorithm and the GoogleNet–BiLSTM hybrid network from a cloud
server, which ensures the security of the proposed security system. The innovative optimization
scheme makes it possible to strengthen cyber-physical security at only USD 4.29± 0.29 per month.

Keywords: cyber-physical security; human activity recognition; GoogleNet; BiLSTM; deep learning;
algorithm

1. Introduction

The field of cyber security that deals with the security of physical computing de-
vices is called cyber-physical security. A wide range of devices, for example, desktops,
laptops, servers, network switches, routers, the Internet of Things (IoT), etc., fall under
the category of cyber-physical systems. As a matter of fact, every physical system associ-
ated with computing is a subset of cyber-physical systems [1]. Cyber-physical security is
critical because attacks on these systems can have serious consequences, including hard-
ware damage, service interruption, malware injection through physical ports, and data
disclosure. Cybersecurity is incomplete without cyber-physical security. Organizations
take various measures to protect both digital and physical assets. However, guarding
physical assets 24/7 is much more challenging than digital assets [2]. The Human Activity
Recognition-based Cyber-Physical Security (HAR-CPS) algorithm presented in this paper
is an innovative and effective solution to beat this challenge.
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One common way to secure cyber-physical infrastructure is to isolate it in a confined
room and restrict access [3]. However, this is only possible for server computers that allow
remote access through computer networks and is impossible to do for desktops and laptops
of the office desks. Organizations hire security guards and keep the entrances locked
during non-office hours. Many organizations have Closed-Circuit Television Cameras
(CCTV) and monitor everything from the control room [4]. Whether secured by guards or
monitored from a control room through CCTV, it requires human involvement and their
undivided attention. It is beyond human capability to monitor the security status with a
maximum attention level because the average attention span of adults is 20 min [5]. This
is a significant vulnerability in cyber-physical security. Applying Artificial Intelligence
(AI)-driven solutions is a potential way to overcome this vulnerability [6]. A literature
review has shown the effective application of AI, including in healthcare [7], robotics [8],
microbiology [9], image segmentation [10], and road construction [11]. HAR is a subbranch
of AI that has been applied in the proposed methodology to strengthen cyber-physical
system security.

The proposed HAR-CPS algorithm uses a combination of GoogleNet [12] and BiL-
STM [13] networks. The BiLSTM network learns from the features extracted by GoogleNet
and later automatically recognizes the activities it is trained to classify. BiLSTM networks
are well known for their excellent capabilities in classifying time-dependent variables [14].
However, they are limited by their feature extraction capabilities. On the other hand,
GoogleNet is an excellent CNN for extracting features [15]. However, its computational
complexities impose a challenge in time-dependent classification. Combining GoogleNet
and BiLSTM networks together to recognize activities from real-time video streams compen-
sates for the weaknesses of each system and makes the classifier more effective. Depending
on the level of suspicious activities, the proposed HAR-CPS generates an alarm to alert the
responsible authorities. This paper also focuses on the security of the proposed security
system. That is why the entire system is deployed in the cloud so that the intruders fail
to attack the proposed security system physically. A USB camera connected to an IoT
device to transmit the video to the cloud is the only cyber-physical component of the
proposed system. IoT cloud computing combines Internet of Things (IoT) devices and
cloud computing services to process, analyze, and store data from IoT devices in a more
scalable, flexible, and efficient way [16]. That is why it has been used in this research project.
The core contributions of the proposed system are:

• Development and training of a GoogleNet–BiLSTM hybrid network to classify desig-
nated human activities from video with an average accuracy of 73.15%.

• Creative design of the cyber-physical security system using IoT and cloud computing
to ensure the cyber-physical security of the proposed security system.

• Formulation of the novel HAR-CPS algorithm to use the GoogleNet–BiLSTM hybrid
network to ensure security.

• Application of Machine Vision at the Edge (Mez) to minimize the cloud resources for
cost minimization.

The rest of the paper has been organized into five sections. The second section contains
a literature review. The methodology has been presented in the third section of this paper.
The methodology is further divided into two more subsections: Dataset and Network
Architecture. The fourth section of this paper demonstrates the experimental results and
performance evaluation. Finally, the paper is concluded in the fifth section.

2. Literature Review

According to the A. Ray et al., human activity recognition (HAR) is a vibrant re-
search field [17]. HAR is a field in computer vision and machine learning that focuses on
recognizing and classifying different human activities [18]. The recent advancements in
this research domain demonstrate the outstanding performances of convolutional neural
network (CNN)-based approaches [19]. The commercial application of HAR technology is
visible in different sectors, including the healthcare sector, fitness tracking, smart homes,
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smart surveillance and security, and sports analysis [20]. The proposed methodology of
this paper is an application of HAR in cyber-physical security. The application of HAR tech-
nology in security is not new. L. P. O. Paula et al. developed a front door security system
using a human activity recognition-based approach [21]. It strengthens the security at the
front door by alerting respected authorities if violent activities are detected. The concepts
of the proposed paper align with this paper. However, the HAR-CPS algorithm explores
the potential of applying HAR in cyber-physical security. “Cyber-physical security”, ab-
breviated as CPS, describes safeguarding systems comprising physical and computational
resources [22].

Research conducted by Sarp B. et al. used a Raspberry Pi-based security system
similar to the proposed methodology [23]. However, there was no artificial intelligence
applied in their approach. It was a video and audio transmission system that allows users
to see outdoor activities and maintain verbal communication. The proposed HAR-CPS
algorithm is much more advanced. It uses a sophisticated GoogleNet–BiLSTM network
to automatically classify the activities and notify the authorities if there are any threats to
cyber-physical security. The security system developed by Aldawira R. C. et al. has an
innovative application of IoT, a motion sensor, and a touch sensor [24]. Despite the scope
of applying HAR technology, most of the research has focused on video surveillance and
simple sensor-based approaches [25–27]. Compared to these papers, the proposed HAR-
CSP algorithm is more advanced and effective than most of the state-of-the-art applications
of HAR in securing cyber-physical systems.

Kong M. et al. developed a real-time video surveillance system that addresses net-
work latency challenges for real-time video communication [28]. Similar challenges have
been faced in the edge-computing-enabled video segmentation research conducted by
Wan S. [29]. Transmitting video in real time requires a high bandwidth and is sensitive to
time delays. A significant amount of time delay caused by latency interrupts the frame
sequence [30]. Moreover, video processing requires a large amount of cloud resources,
which increases the expenditure. According to M. Darwich, cost minimization for video
processing provided through cloud services is essential [31]. Real-time video transmission
through latency-sensitive networks and video processing in the cloud are two challenges
the proposed methodology face as well. A. George et al. developed an effective commu-
nication technology for real-time video transmission through a latency-sensitive network
while maintaining acceptable quality using machine vision at the IoT edge (Mez) [32].
The proposed methodology uses Mez technology to manage the latency sensitivity and
cloud resource usage for video processing.

Video analysis and its applications in intelligent surveillance, autonomous vehicles,
video analysis, video retrieval, and entertainment rely heavily on computer-vision-based
human activity recognition [33]. This paper’s analysis agrees with both observation and
technique of the proposed methodology. While designing a cyber-physical system security
algorithm, it is best to focus on combining computer vision and machine learning. A tem-
porary pose-based human action recognition system was created by Mazzia V. et al. [34].
In a test with 227,000 parameters, it obtained 90.86 percent accuracy, and while the paper’s
precision is impressive, the high computational cost renders it unsuitable for develop-
ing a cheap security system. A DCNN-based architecture using depth vision guided by
Wen Q. et al. obtained a promising 93.89 percent accuracy [35]. To train robots on video
datasets, this strategy overcomes the difficulty of collecting and classifying large amounts of
data. The Microsoft Kinect camera is required for it, which is not cost-effective. Compared
to these approaches, the proposed HAR-CPS algorithm is computationally simple and less
expensive, yet is a high-performing solution to cyber-physical system security [36].

3. Methodology

A GoogleNet–BiLSTM hybrid network is employed as the classifier in the proposed HAR-
CPS algorithm. A video dataset is necessary for this type of hybrid network. In this section,
we explain the HAR-CPS algorithm, along with the video dataset selection criteria, dataset
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processing, network design, the HAR-CPS method’s operating principle, and mathematical
interpretations. Figure 1 provides a visual summary of the proposed approach.

Figure 1. The overview of the proposed methodology.

3.1. Dataset Selection

The proposed HAR-CPS algorithm is an approach based on human activity recognition
approach. There are multiple human activity recognition (HAR) datasets. This research
has studied and analyzed the most widely used HAR datasets. These datasets are listed
in Table 1 [33]. Each dataset is rich enough to train a CNN to recognize human activities.
However, the purpose of this research is to recognize activities that are considered threats
to the security of cyber-physical systems.

Table 1. Human activity recognition (HAR) dataset descriptions.

Dataset Categories Videos Description

ActivityNet [37] 200 21,313
Activities conducted on a daily, social, and
domestic basis, including games and workouts.

Charades [38] 157 66,493
Routine chores performed within the house,
such as refilling glasses, folding towels, etc.

HMDB51 [39] 51 5100
Movement of the body and face, as well as
contact with objects, are all included.

Kinetics-700 [40] 700 530,336
Interactions involving a single person as
well as those involving many people.

STAIR Actions [41] 100 109,478
Frequent indoor activities in the house,
workplace, bathroom, and kitchen,
including item handling, etc.

UCF101 [42] 101 13,320

Interactions between humans and
other objects, movements of the body
that do not include other objects, and
the utilization of various instruments.
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Usually, large-scale cyber-physical systems are kept in confined rooms with limited
access. Trained security personnel check the credentials of anyone who wants to access
the cyber-physical systems. The proposed HAR-CPS algorithm aims to keep the physical
computing infrastructure safe and monitor security breaches as a real human security
guard would. Anyone accessing the cyber-physical system without proper authorization
and keys to unlock the doors will apply physical force to open the door. The attacker may
punch the door to break it. Someone may try to break the door by kicking or hitting it.
Pushing the door is another physical force someone may use to break it. Instead of physical
force, intruders may carry weapons to gain access to cyber-physical systems. We have
selected five activities listed in Table 2 from this observation. These five activities are our
core dataset selection criteria.

Table 2. Description of the incidents and class names.

Serial Incident Class

1 Trying to break the door by punching Punch
2 Trying to kick open the door Kick
3 Hitting on the doorknob to break it Hit
4 Showing up in front of the door with a weapon Weapon
4 Pushing the door to open it forcefully Push

According to our inspection, the HMDB51 dataset contains the target categories
mentioned in Table 2. This dataset has a total of 47 categories of videos. The five selected
activities are a subset of these 47 categories. This is why HMDB51 is the selected dataset
for this experiment. The video clips of the HMDB51 dataset are realistic and original
footage. There are no animation or made-up clips. That is why these videos do not require
additional filtering and feature enhancement.

3.2. The Hybrid Network Architecture

The proposed CPS algorithm combines GoogleNet and a Long Short-Term Memory
(LSTM) network. GoogleNet is used to extract the features from the dataset. The LSTM
network uses those features to recognize the activities in real time.

3.2.1. Sequence Folding

A BiLSTM is a recurrent neural network (RNN) that processes sequential data by
collecting past and future context. Sequence folding speeds up and improves RNN training,
including for BiLSTMs. The input sequence is split into smaller, fixed-length subsequences,
or “folds”, in sequence folding. The BiLSTM, which comprises two independent LSTMs,
a forward LSTM and a backward LSTM, processes these folds concurrently. The forward
LSTM reads the subsequences from left to right and the reverse LSTM from right to left.
The data are then more fully represented by concatenating the hidden states from both
LSTMs at each time step [43].

Detecting suspicious activities in real time is crucial in cyber-physical security. A grayscale
video stream at 30 FPS contains more than 9000 frames in a 5 min video. At the same rate,
24 h video footage contains 2.6× 106 frames. The frame amount will be 3 times more if
color video is streamed. Extracting features directly from the video is impractical because
of this large number of frames. It introduces a very high latency. As a result, the system
fails to detect suspicious activities in real time. We have used the sequence folding method
defined by Equation (1) to convert the video sequence into a separate set of images.

N

∑
i=1

I(mi, ni) =
T

∑
t=1

fr((mt, nt), t) (1)
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where fr((mt, nt), t) is a time-dependent frame. This time-dependent frame is converted
into time-independent individual images expressed by I(mi, ni). These frames are sent to
the cloud server. The time-independent frames minimize the latency.

3.2.2. Feature Extractor Network in Cloud

Feature extraction from image frames is computationally expensive. Resource-constrained
IoT devices are not suitable for it. We used GoogleNet for feature extraction. Google Cloud
has GoogleNet readily available, which is a pre-trained network. However, the entire
GoogleNet has not been used. It is a 22-layer deep convolutional neural network (CNN). We
used did not use the last three layers. The 19th layer is an average pooling layer. According
to the GoogleNet architecture, this layer is responsible for averaging the extracted features.
The research approach used in this paper utilizes GoogleNet for feature extraction. That is
why the input to the BiLSTM network has been taken from the 19th layer of GoogleNet [44].
The extracted features are converted into a feature vector using Algorithm 1.

Algorithm 1 Constructing Feature Vector.
Input: GoogleNet, GN ; Frame, F
Output: Feature Vector, Fs;
Initiate: Allocate Virtual Machine, VM;
Start
Ls ← VM(Size(Layers(1, GN)))
Ls ← VM(Convert(Ls, Fs))
for i← 1 : F do

Feature← VM(pooling(F))
Fs ← VM(Concat(Feature))

end for
VM(save(Fs))
end

Algorithm 1 initializes the virtual machine (VM) in the cloud to extract features from
the images. The number of VMs depends on the requests and the service level agreement
(SLA) with the service provider. This paper initializes a single VM to construct the feature
vector. Algorithm 1 takes GoogleNet and the corresponding frames as the input. Initially, it
converts the frame according to the GoogleNet input layer size and stores the resized image
as an Ls variable. After that, the features are extracted from video frames in a loop. In every
iteration, the features are added to a feature vector Fs. When no more frames remain,
the algorithm saves the feature vector. It takes 475 ms to initiate the virtual resources and
an additional 711 ms to extract the features per frame. It takes 1.19 s to extract features
from a one-minute video. The 1.19 s time delay is considered real time.

3.2.3. GoogleNet–BiLSTM Hybridization

The BiLSTM network is ideal for classifying sequential data, and GoogleNet is opti-
mally designed to extract distinguishable features from images. The hybridization of these
two different networks develops a system efficient in feature extraction and sequential
data classification. GoogleNet–BiLSTM hybridization has been developed and studied
from this observation, illustrated in Figure 2. The BiLSTM network in the experimental
setup receives the video features from GoogleNet’s average pooling layer. These features
are passed to the BiLSTM layer. The responses from this layer are concatenated. These
concatenated responses are sent to the dense layer. It follows a fully connected network
architecture and a Softmax layer for classification. The classification layer has five output
nodes. Each node produces a confidence score, representing the probability of being a
certain class.
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Figure 2. The GoogleNet–BiLSTM Hybridization.

3.2.4. Training the Hybrid Network

The BiLSTM network was trained with the features extracted from GoogleNet. The dataset
was split into training, testing, and validation datasets with a ratio of 70:15:15. The training
dataset was used to train the network. The validation dataset was used to validate the
learning progress during the training. The testing dataset was kept separate and untouched
during the training period. It was used to test the performance of the trained hybrid system
during experimental analysis. Instead of using the entire dataset simultaneously, we used
batch normalization with a mini-batch of size 16. During every iteration, the video clips
were internally shuffled within the mini-batch.

Learning algorithms play a vital role in the collective performance of machine learning
models. In this experiment, three widely used learning algorithms for deep neural net-
works have been studied. They are the Adaptive Gradient algorithm (AdaGrad) [45], the
Root Mean Squared Propagation (RMSProp) [46], and the Adaptive Moment Estimation
(ADAM) [47]. These learning algorithms are expressed in Equations (2)–(4), respectively.

ω
(t+1)
i = ωt

i −
η√

∑t
τ=1 g2

τ,i

gt,i (2)
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ω
(t+1)
i = ωt

i −
η√

(vt) + ε
∆t (3)

ω
(t+1)
i = ωt

i −mt(
α√

vt + ε
) (4)

where ω
(t+1)
i and ωt

i refer to the updated value of the ith weight at time step t + 1 and t,
respectively. η in Equations (2) and (3) is the learning rate. In Equation (2), gt,i is the loss
function. Both Equations (3) and (4) contain ε, which adds a small constant to prevent
division by zero. vt in these equations is the exponentially decaying average of the squared
gradients at time step t. The loss function in Equation (3) is measured by ∆t. mt and α
in Equation (4) represent the first moment and learning rate, respectively. The learning
algorithms adjust the weights of the hidden nodes of deep neural networks. The more
efficient this process is, the better the performance of the trained network becomes. We ex-
perimented with all three of the aforementioned algorithms and analyzed the performance
using a validation loss curve illustrated in Figure 3.

Figure 3. The optimization algorithm selection.

The validation loss curve shows that the AdaGrad learning algorithm reduces the
validation loss to 250 iterations. However, there is lots of variation between 250 and 700 it-
erations. After that, the validation loss reduces again. Compared to this, the performance
of RMSProps is much better than AdaGrad. However, the characteristics of the validation
loss curve are almost similar. According to the experimental analysis in Figure 3, ADAM is
the best-performing learning algorithm. That is why ADAM has been used as the learning
algorithm in this research. The proposed network has been trained with 1000 iterations
and 568 epochs. The learning progress is illustrated in Figure 4.

It takes 342 min and 19 s to complete the training. It was observed that the accuracy of
the validation data increases sharply, and the validation loss falls sharply until the 200th
iteration. After that, the slope is negligible, and the learning curve maintains smooth
progress. It ends with a 72.48% validation accuracy. The initial learning rate is 0.001 and the
final learning rate is 0.0001. A dynamic learning rate was used in this experiment which
adjusts itself depending on the accuracy and loss.

3.2.5. HAR-CPS Algorithm

The proposed innovative HAR-CPS algorithm, presented as Algorithm 2, uses the
trained GoogleNet–BiLSTM hybrid network to classify the target categories. It runs in a
virtual machine provisioned through a pay-as-you-go payment method. It is more efficient
to reduce the computational resources to minimize the cost. The proposed algorithm has
been designed to minimize the cost. Human activity recognition is the most computation-



Electronics 2023, 12, 1892 9 of 16

ally expensive process. The algorithm calls the GoogleNet–BiLSTM hybrid network only
when necessary. For the rest of the time, it performs simple linear 2D subtraction. As a
result, the cost is minimized.

Figure 4. The learning curve with validation training accuracy and validation loss.

Algorithm 2 takes the CCTV video stream and HTTP Live Streaming (HSL) request as
inputs. Initially, it initiates a variable i, reads the frames from the video stream, and stores
the first frame in the F[i] array. When there is a frame, the while loop is activated. In this
loop, the HLS request is accepted for each frame and the frames are continuously read
and stored in the F[i] array. The frame difference is calculated by taking the difference
between two successive frames. If there is more than a 70% difference between two
frames, the proposed HAR-CPS algorithm sends the frame to the GoogleNet–BiLSTM
hybrid network. This network classifies the frame and returns the predicted class with a
confidence score. If the confidence score is higher than 80%, an alarm is generated according
to the identified action. Otherwise, Algorithm 2 does not take any action.

Algorithm 2 applies GoogleNet–BiLSTM to recognize human activities only when
two successive frames have more than 70% dissimilarity. Once two successive frames
have more than 70% difference, the proposed HAR-CPS algorithm passes the frame to the
GoogleNet–BiLSTM network. It predicts human activity on the video stream and returns a
confidence score. If the confidence score is more than 80%, an alert is generated through a
security API.

3.3. Latency and Cloud Resource Optimization Using Mez

The original Mez architecture was built to link several IoT camera nodes simultane-
ously. The edge server is linked to it through a wireless network [32]. In the suggested
setup, only one camera is linked to a Raspberry Pi 4. Unlike the original Mez system,
the proposed system communicates with the cloud server over a licensed 4G spectrum.
As a result, a modified Mez architecture, as shown in Figure 5, was adopted in this ex-
periment. This architecture includes a 4G network sensor to check network quality. It
exchanges data with the Network Latency Controller.
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Algorithm 2 The HAR-CPS Algorithm
Input: CCTV Video Stream, vs; HLS Request, Hl
Initiate: Allocate Cloud Resource;
Output: Alert, a;
Start
i← 0
F[i]← read(vs)
while vs = True do

i← i + 1
Accept HLS Request
F[i]← read(vs)
d← di f f erence(F[i− 1], F[i])
if d ≥ 0.70 then

[p, s]← GoogleNetBiLSTM[F[i]]
if s ≥ 0.80 then

a← class(p)
SecurityAPI(a)

end if
else

NoAction
end if

end while
end

The Pi server in Figure 5 is the subscriber in the subscriber–publisher messaging
system. It uses the Remote Procedure Call (RPC) protocol to communicate with the edge
server through the Broker model. The same communication protocol is used in the Pi
Camera Node (PCN), which is the publisher of the messaging system. The IoT camera node
also uses the Broker model to communicate with the edge server. The edge server has a per-
sistent storage and log management system, which stores threshold values, network quality
information, and every event log. The Network Latency Controller (NLC) in Figure 5 is
connected to an NTA00002B Nemo Outdoor 5G NR Drive Test sensor manufactured by
Keysight Technologies, Inc. [48]. It senses the 5G network parameters, including band-
width, throughput, latency, traffic volume, signal intensity, discontinuity, and interference.
Depending on the bandwidth demand, availability, and current throughput, the NLC
adjusts the knob values of the Mez to maintain a quality–latency trade-off.

Figure 5. The Mez architecture.
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3.3.1. Latency vs. Quality Trade-Off

The suggested system uses Mez technology’s latency vs. quality trade-off capabilities.
The frame quality may be adjusted using five different knob settings depending on the
application precision requirements. Table 3 lists the possible knob settings, their functions,
the influence on frame size reduction, and the application scopes.

Table 3. The knob configuration and effects.

Knob Role Frame Size
Reduction

Scope

1 Resolution
Adjustment

84% Resolutions: 1312 × 736,
960 × 528, 640 × 352, and 480 × 256

2 Colorspace
Modification

62% Colorspaces: BGR, Grayscale,
HSV, LAB, and LUV

3 Blurring 46% Kernel size: 5 × 5, 8 × 8, 10 × 10,
and 15 × 15

4 Artifact
Removal 98% Countour-based approach

5 Frame
Differincing

40% Linear frame difference-based
method

3.3.2. Cloud Resource Optimization

The proposed HAR-CPS algorithm optimizes cloud resource usage using Mez [32]
technology. The empirical analysis shows that keeping the first knob setting listed in Table 3
at 940× 528 resolution reduces the frame size by 8%, lowering the cloud resource usage for
video processing. The grayscale colorspace has been used, which reduces the frame size by
11%. Although Table 3 shows that blurring reduces the frame size, the proposed methodol-
ogy does not use this knob. It has been observed that blurring the video downgrades the
feature quality extracted by GoogleNet. However, artefact removal and frame difference
knobs have been used, and they reduced the frame size by 14% and 16%, respectively.
After applying Mez technology, the average frame size reduction was 49%. As a result,
cloud resource usage was reduced by almost 50%.

4. Results and Performance Evaluation

The proposed cyber-physical security algorithm based on human activity recognition
is a deep-learning-based approach that runs on a cloud server. The performance of the
system was evaluated from two different perspectives. First, the proposed GoogleNet–
BiLSTM hybrid network was evaluated. After that, the performance of the cloud system
was studied.

4.1. Performance of the GoogleNet–BiLSTM Hybrid Network

The performance of the proposed GoogleNet–BiLSTM hybrid network was evaluated
using state-of-the-art machine learning performance evaluation metrics. The literature
review showed that machine-learning-based image classification where CNN or LSTM
networks are utilized use accuracy, sensitivity, specificity, false positive rate (FPR), and false
negative rate (FNR) evaluation metrics [7]. The mathematical definitions of these evaluation
metrics are listed in Table 4. These values are calculated from the True Positive (TP), True
Negative (TN), False Positive (FP), and False Negative (FN), which are obtained from the
confusion matrix illustrated in Figure 6.
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Table 4. The evaluation metrics used in this research.

Evaluation
Metrics

Mathematical
Expression Role

Accuracy TP+TN
TP+TN+FP+FN Classification accuracy

Sensitivity TP
TP+FN

Correct identification of
actual positive cases

Specificity TN
TN+FP True negative rate

False positive
rate

1− Speci f icity Type I error

False negative
rate

1− Sensitivity Type II error

The performance of the proposed GoogleNet–BiLSTM network in terms of the state-
of-the-art machine learning evaluated metrics listed in Table 4 [7]. The performance of the
proposed network is detailed in Table 5. The experimental result shows that the proposed
system best classifies the “kick” category. The average classification accuracy is 73.15%.
The average sensitivity, specificity, false positive rate, and false negative rate are 71.52%,
72.22%, 28.48%, and 27.78%, respectively.

Figure 6. The confusion matrix for performance analysis.

Table 5. Classification performance of the GoogleNet–BiLSTM network.

Activity Accuracy Sensitivity Specificity FPR FNR

Hit 73.10% 70.0% 62.2% 30.0% 37.8%
Kick 76.78% 61.3% 80.3% 38.7% 19.7%
Punch 71.47% 80.0% 75.3% 20.0% 24.7%
Push 68.63% 72.5% 66.7% 27.5% 33.3%
Weapon 75.79% 73.8% 76.60 % 26.2% 23.4%

4.1.1. Performance Comparison

The performance of the proposed system was compared with four different mod-
els. These models are BiLSTM, CNN [49], MLP [50], and LSTM [51]. The experimental
dataset has different lengths of videos. We categorized them into 30 s and 60 s video
clips. This experiment was conducted to understand the effect of the proposed system on
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video clips with different durations. The results of the experiment are detailed in Table 6,
demonstrating that the proposed system outperforms other similar approaches.

Table 6. Performance comparison of the proposed system with different models and video lengths.

Model Name

Frame Sequence

30 s Clips 60 s Clips

Accuracy Precision Recall F-1 Score Accuracy Precision Recall F-1 Score

BiLSTM 70.45% 68.41% 65.41% 62.40% 72.45% 69.74% 68.41% 58.41%
CNN 63.47% 65.71% 63.91% 60.84% 65.44% 69.71% 62.48% 57.94%
MLP 65.71% 62.78% 65.46% 61.75% 66.78% 65.17% 65.17% 55.17%
LSTM 67.40% 64.71% 66.34% 65.37% 68.41% 62.47% 66.34% 62.78%
Proposed
Model 74.17% 72.85% 67.46% 66.74% 74.79% 73.01% 68.70% 67.41%

4.1.2. Resource Optimization Performance

The proposed GoogleNet–BiLSTM hybrid network runs in a cloud server, which
handles the video stream from the proposed system [52]. Cloud resource optimization is
a major contribution of the proposed methodology. A pay-as-you-go payment scheme is
used to implement the HAR-CPS algorithm. This means that the expenditure increases
with resource usage. The cloud resource optimization statistics over 60 min (averaged every
10 min) are listed in Table 7. The statistical data show that the optimization scheme used in
this paper is most effective in primary memory usage reduction. It reduces the primary
memory consumption by 64.44%. It has a positive effect on CPU usage as well. The pro-
posed HAR-CPS system uses 0.45% less CPU after resource optimization. The average disk
writing time is 0.12 MB/s after using the Mez, which is a 43.58% reduction. According
to the SLA with the cloud service provider, based on the computational resource usage
listed in Table 7, the predicted monthly cost of providing cyber-physical security using the
proposed system is USD 4.29 only. This is predicted by the pay-as-you-go payment system
with the probability of ±6.82% deviation.

Table 7. The cloud resource optimization statistics over 60 min.

Without Mez With Mez

Time CPU
(%)

Memory
(MB)

Disk
(MB/s)

CPU
(%)

B
(MB)

Disk
(MB/s)

10 0.2 151 0.10 0.1 37 0.13

20 0.8 155 0.20 0.5 47 0.13

30 1.1 90 0.10 0.4 57 0.13

40 1.2 78 0.30 0.1 36 0.13

50 0.7 120 0.30 0.3 50 0.07

60 0.7 140 0.30 0.6 34 0.13

5. Limitations and Future Scope

The experimental results and performance evaluation demonstrate the acceptability
of the proposed HAR-CPS algorithm to strengthen the security of cyber-physical systems.
Despite the impressive performance, it has several limitations, which have been discussed
in this section. However, instead of considering them as limitations, these have been
considered as the future scope of this research. These limitations are:



Electronics 2023, 12, 1892 14 of 16

5.1. Limited Number of Actions

The proposed algorithm effectively classifies five human actions that are potential
threats to cyber-physical system security. However, more actions may be considered as
a security risk that this paper has not considered. The limited number of actions is a
significant limitation of this research. The GoogleNet–BiLSTM hybrid network has the
potential to learn to classify hundreds of different types of actions. This requires datasets
with more categories. The subsequent version of the proposed HAR-CPS will be trained to
categorize more human activities to ensure more rigorous cyber-physical security.

5.2. Camera–Subject Angle Sensitivity

The proposed system’s accuracy is sensitive to the viewing angle between the subject
and the camera. The intruders must be within a 40 to 60 degrees viewing angle. Al-
though the camera is placed to maintain this particular viewing angle, it is still considered
a weakness of the system. A geometrical image transformation algorithm is a potential so-
lution to reduce the camera–subject angle sensitivity. Subsequent research on the proposed
HAR-CPS algorithm will explore this opportunity.

5.3. Security of the HAR-CPS Device

A significant portion of the proposed HAR-CPS algorithm runs on a cloud server. As a
result, it is secured from cyber-physical attacks. However, imaging and IoT devices are kept on
the premises and are vulnerable to cyber-physical attacks. A creative camouflage deployment
model is a potential solution to this problem, opening new research opportunities.

It is beyond the scope of any approach to ensure 100% security. There are always
weaknesses in security systems. The proposed HAR-CPS system is no different. It is effec-
tive in strengthening cyber-physical security within its application domain. The limitations
of the proposed system pave the path to conducting more research in this domain and to
developing a better version of the HAR-CPS algorithm.

6. Conclusions

Cyber-physical security is the protection of critical infrastructure systems that are
integrated with computer networks and software. Both physical and digital components
are affected in the case of a cyber-physical security breach. Firewalls, intrusion detection
systems, frequent vulnerability assessments, and other forms of cyber and physical security,
such as access control and surveillance, must be put in place to ensure the safety of these
systems. However, implementing cyber-physical system surveillance and security is more
challenging than software-based cybersecurity. The human activity recognition-based
cyber-physical security (HAR-CPS) algorithm rises to this challenge with flying colors.
It reduces the necessity of human intervention in cyber-physical security surveillance
and automatically recognizes suspicious activities with an average accuracy of 73.15%.
The innovative classifier based on a GoogleNet–BiLSTM network and the algorithm are
run on the cloud server, away from the cyber-physical system. As a result, the proposed
system remains secured when the cyber-physical system is under attack. The effective
application of Mez technology automatically adjusts the video quality to tolerate the latency
sensitivity and prevents real-time video transmission interruption. It also reduces the frame
size, which optimizes the cloud server expenditure. That is why the innovative HAR-CPS
algorithm strengthens cyber-physical security at only USD 4.29± 0.29 per month.

Author Contributions: All authors contributed equally. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Available on request.

Conflicts of Interest: The authors declare no conflict of interest.



Electronics 2023, 12, 1892 15 of 16

References
1. Duo, W.; Zhou, M.; Abusorrah, A. A survey of cyber attacks on cyber physical systems: Recent advances and challenges.

IEEE/CAA J. Autom. Sin. 2022, 9, 784–800. [CrossRef]
2. Zhao, Z.; Xu, Y. Performance based attack detection and security analysis for cyber-physical systems. Int. J. Robust Nonlinear

Control 2023, 33, 3267–3284. [CrossRef]
3. Hammoudeh, M.; Epiphaniou, G.; Pinto, P. Cyber-Physical Systems: Security Threats and Countermeasures. J. Sens. Actuator

Netw. 2023, 12, 18. [CrossRef]
4. De Pascale, D.; Sangiovanni, M.; Cascavilla, G.; Tamburri, D.A.; Van Den Heuvel, W.J. Securing Cyber-Physical Spaces with

Hybrid Analytics: Vision and Reference Architecture. In Proceedings of the Computer Security: ESORICS 2022 International
Workshops: CyberICPS 2022, SECPRE 2022, SPOSE 2022, CPS4CIP 2022, CDT & SECOMANE 2022, EIS 2022, and SecAssure 2022,
Copenhagen, Denmark, 26–30 September 2022; Springer: Berlin/Heidelberg, Germany, 2023; pp. 398–408.

5. Jadhao, A.; Bagade, A.; Taware, G.; Bhonde, M. Effect of background color perception on attention span and short-term memory
in normal students. Natl. J. Physiol. Pharm. Pharmacol. 2020, 10, 981–984. [CrossRef]

6. Del Giudice, M.; Scuotto, V.; Orlando, B.; Mustilli, M. Toward the human–centered approach. A revised model of individual
acceptance of AI. Hum. Resour. Manag. Rev. 2023, 33, 100856. [CrossRef]

7. Faruqui, N.; Yousuf, M.A.; Whaiduzzaman, M.; Azad, A.; Barros, A.; Moni, M.A. LungNet: A hybrid deep-CNN model for lung
cancer diagnosis using CT and wearable sensor-based medical IoT data. Comput. Biol. Med. 2021, 139, 104961. [CrossRef]

8. Chakraborty, P.; Yousuf, M.A.; Zahidur Rahman, M.; Faruqui, N. How can a robot calculate the level of visual focus of
human’s attention. In Proceedings of the International Joint Conference on Computational Intelligence: IJCCI 2019; Springer:
Berlin/Heidelberg, Germany, 2020; pp. 329–342.

9. Trivedi, S.; Patel, N.; Faruqui, N. Bacterial Strain Classification using Convolutional Neural Network for Automatic Bacterial
Disease Diagnosis. In Proceedings of the 2023 13th International Conference on Cloud Computing, Data Science & Engineering
(Confluence), Noida, India, 19–20 January 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 325–332.

10. Trivedi, S.; Patel, N.; Faruqui, N. NDNN based U-Net: An Innovative 3D Brain Tumor Segmentation Method. In Proceedings of
the 2022 IEEE 13th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York,
NY, NY, USA, 26–29 October 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 538–546.

11. Arman, M.S.; Hasan, M.M.; Sadia, F.; Shakir, A.K.; Sarker, K.; Himu, F.A. Detection and classification of road damage using
R-CNN and faster R-CNN: A deep learning approach. In Proceedings of the Cyber Security and Computer Science: Second EAI
International Conference, ICONCS 2020, Dhaka, Bangladesh, 15–16 February 2020; Proceedings 2; Springer: Berlin/Heidelberg,
Germany, 2020; pp. 730–741.

12. Ibrahim, Y.; Wang, H.; Adam, K. Analyzing the reliability of convolutional neural networks on gpus: Googlenet as a case study.
In Proceedings of the 2020 International Conference on Computing and Information Technology (ICCIT-1441), Tabuk, Saudi
Arabia, 9–10 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6.

13. Wei, X.; Wu, J.; Ajayi, K.; Oyen, D. Visual descriptor extraction from patent figure captions: A case study of data efficiency
between BiLSTM and transformer. In Proceedings of the 22nd ACM/IEEE Joint Conference on Digital Libraries, Cologne,
Germany, 20–24 June 2022; pp. 1–5.

14. Zhang, X.; Kim, T. A hybrid attention and time series network for enterprise sales forecasting under digital management and
edge computing. J. Cloud Comput. 2023, 12, 1–21. [CrossRef]

15. Yang, L.; Yu, X.; Zhang, S.; Long, H.; Zhang, H.; Xu, S.; Liao, Y. GoogLeNet based on residual network and attention mechanism
identification of rice leaf diseases. Comput. Electron. Agric. 2023, 204, 107543. [CrossRef]

16. Pflanzner, T.; Kertész, A. A taxonomy and survey of IoT cloud applications. EAI Endorsed Trans. Internet Things 2018,
3, Terjedelem-14. [CrossRef]

17. Ray, A.; Kolekar, M.H.; Balasubramanian, R.; Hafiane, A. Transfer Learning Enhanced Vision-based Human Activity Recognition:
A Decade-long Analysis. Int. J. Inf. Manag. Data Insights 2023, 3, 100142. [CrossRef]

18. Beddiar, D.R.; Nini, B.; Sabokrou, M.; Hadid, A. Vision-based human activity recognition: A survey. Multimed. Tools Appl. 2020,
79, 30509–30555. [CrossRef]

19. Park, H.; Kim, N.; Lee, G.H.; Choi, J.K. MultiCNN-FilterLSTM: Resource-efficient sensor-based human activity recognition in IoT
applications. Future Gener. Comput. Syst. 2023, 139, 196–209. [CrossRef]

20. Kulsoom, F.; Narejo, S.; Mehmood, Z.; Chaudhry, H.N.; Bashir, A.K. A review of machine learning-based human activity
recognition for diverse applications. Neural Comput. Appl. 2022, 34, 18289–18324. [CrossRef]

21. Paula, L.P.O.; Faruqui, N.; Mahmud, I.; Whaiduzzaman, M.; Hawkinson, E.C.; Trivedi, S. A Novel Front Door Security (FDS)
Algorithm using GoogleNet-BiLSTM Hybridization. IEEE Access 2023, 11, 19122–19134. [CrossRef]

22. Kobara, K. Cyber physical security for industrial control systems and IoT. IEICE Trans. Inf. Syst. 2016, 99, 787–795. [CrossRef]
23. Sarp, B.; Karalar, T. Real time smart door system for home security. Int. J. Sci. Res. Inf. Syst. Eng. 2015, 1, 121–123.
24. Aldawira, C.R.; Putra, H.W.; Hanafiah, N.; Surjarwo, S.; Wibisurya, A. Door security system for home monitoring based on

ESp32. Procedia Comput. Sci. 2019, 157, 673–682.
25. Sanjay Satam, S.; El-Ocla, H. Home Security System Using Wireless Sensors Network. Wirel. Pers. Commun. 2022, 125, 1185–1201.

[CrossRef]

http://doi.org/10.1109/JAS.2022.105548
http://dx.doi.org/10.1002/rnc.6556
http://dx.doi.org/10.3390/jsan12010018
http://dx.doi.org/10.5455/njppp.2020.10.06162202017072020
http://dx.doi.org/10.1016/j.hrmr.2021.100856
http://dx.doi.org/10.1016/j.compbiomed.2021.104961
http://dx.doi.org/10.1186/s13677-023-00390-1
http://dx.doi.org/10.1016/j.compag.2022.107543
http://dx.doi.org/10.4108/eai.6-4-2018.154391
http://dx.doi.org/10.1016/j.jjimei.2022.100142
http://dx.doi.org/10.1007/s11042-020-09004-3
http://dx.doi.org/10.1016/j.future.2022.09.024
http://dx.doi.org/10.1007/s00521-022-07665-9
http://dx.doi.org/10.1109/ACCESS.2023.3248509
http://dx.doi.org/10.1587/transinf.2015ICI0001
http://dx.doi.org/10.1007/s11277-022-09596-z


Electronics 2023, 12, 1892 16 of 16

26. Banerjee, P.; Datta, P.; Pal, S.; Chakraborty, S.; Roy, A.; Poddar, S.; Dhali, S.; Ghosh, A. Home Security System Using RaspberryPi.
In Advanced Energy and Control Systems; Springer: Berlin/Heidelberg, Germany, 2022; pp. 167–176.

27. Tao, J.; Wu, H.; Deng, S.; Qi, Z. Overview of Intelligent Home Security and Early Warning System based on Internet of Things
Technology. Int. Core J. Eng. 2022, 8, 727–732.

28. Kong, M.; Guo, Y.; Alkhazragi, O.; Sait, M.; Kang, C.H.; Ng, T.K.; Ooi, B.S. Real-time optical-wireless video surveillance system
for high visual-fidelity underwater monitoring. IEEE Photonics J. 2022, 14, 7315609. [CrossRef]

29. Wan, S.; Ding, S.; Chen, C. Edge computing enabled video segmentation for real-time traffic monitoring in internet of vehicles.
Pattern Recognit. 2022, 121, 108146. [CrossRef]

30. Ujikawa, H.; Okamoto, Y.; Sakai, Y.; Shimada, T.; Yoshida, T. Time distancing to avoid network microbursts from drones’
high-definition video streams. IEICE Commun. Express 2023, 12, 126–131. [CrossRef]

31. Darwich, M.; Ismail, Y.; Darwich, T.; Bayoumi, M. Cost Minimization of Cloud Services for On-Demand Video Streaming. SN
Comput. Sci. 2022, 3, 226. [CrossRef]

32. George, A.; Ravindran, A.; Mendieta, M.; Tabkhi, H. Mez: An adaptive messaging system for latency-sensitive multi-camera
machine vision at the iot edge. IEEE Access 2021, 9, 21457–21473. [CrossRef]

33. Kong, Y.; Fu, Y. Human action recognition and prediction: A survey. Int. J. Comput. Vis. 2022, 130, 1366–1401. [CrossRef]
34. Mazzia, V.; Angarano, S.; Salvetti, F.; Angelini, F.; Chiaberge, M. Action Transformer: A self-attention model for short-time

pose-based human action recognition. Pattern Recognit. 2022, 124, 108487. [CrossRef]
35. Qi, W.; Wang, N.; Su, H.; Aliverti, A. DCNN based human activity recognition framework with depth vision guiding. Neurocom-

puting 2022, 486, 261–271. [CrossRef]
36. Hesse, N.; Baumgartner, S.; Gut, A.; Van Hedel, H.J. Concurrent Validity of a Custom Method for Markerless 3D Full-Body

Motion Tracking of Children and Young Adults based on a Single RGB-D Camera. IEEE Trans. Neural Syst. Rehabil. Eng. 2023, 31,
1943–1951. [CrossRef]

37. Caba Heilbron, F.; Escorcia, V.; Ghanem, B.; Carlos Niebles, J. Activitynet: A large-scale video benchmark for human activity
understanding. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12
June 2015; pp. 961–970.

38. Sigurdsson, G.A.; Gupta, A.; Schmid, C.; Farhadi, A.; Alahari, K. Charades-ego: A large-scale dataset of paired third and first
person videos. arXiv 2018, arXiv:1804.09626 .

39. Sharma, V.; Gupta, M.; Pandey, A.K.; Mishra, D.; Kumar, A. A Review of Deep Learning-based Human Activity Recognition on
Benchmark Video Datasets. Appl. Artif. Intell. 2022, 36, 2093705. [CrossRef]

40. Carreira, J.; Noland, E.; Hillier, C.; Zisserman, A. A short note on the kinetics-700 human action dataset. arXiv 2019,
arXiv:1907.06987.

41. Yoshikawa, Y.; Lin, J.; Takeuchi, A. Stair actions: A video dataset of everyday home actions. arXiv 2018, arXiv:1804.04326.
42. Soomro, K.; Zamir, A.R.; Shah, M. UCF101: A dataset of 101 human actions classes from videos in the wild. arXiv 2012,

arXiv:1212.0402.
43. Liu, G.; Guo, J. Bidirectional LSTM with attention mechanism and convolutional layer for text classification. Neurocomputing

2019, 337, 325–338. [CrossRef]
44. Kumar, V.; Tripathi, V.; Pant, B. Exploring the strengths of neural codes for video retrieval. In Machine Learning, Advances

in Computing, Renewable Energy and Communication: Proceedings of MARC 2020; Springer: Berlin/Heidelberg, Germany, 2021;
pp. 519–531.

45. Lydia, A.; Francis, S. Adagrad—An optimizer for stochastic gradient descent. Int. J. Inf. Comput. Sci. 2019, 6, 566–568.
46. Turitsyn, S.K.; Schafer, T.; Mezentsev, V.K. Generalized root-mean-square momentum method to describe chirped return-to-zero

signal propagation in dispersion-managed fiber links. IEEE Photonics Technol. Lett. 1999, 11, 203–205. [CrossRef]
47. Newey, W.K. Adaptive estimation of regression models via moment restrictions. J. Econom. 1988, 38, 301–339. [CrossRef]
48. Berlt, P.; Altinel, B.; Bornkessel, C.; Hein, M.A. Concept for Virtual Drive Testing on the Basis of Challenging V2X and LTE Link

Scenarios. In Proceedings of the 2022 16th European Conference on Antennas and Propagation (EuCAP), Madrid, Spain, 27
March–1 April 2022; IEEE: PIscataway, NJ, USA, 2022; pp. 1–5.

49. Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017
International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; IEEE: PIscataway, NJ,
USA, 2017; pp. 1–6.

50. Riedmiller, M.; Lernen, A. Multi layer perceptron. In Machine Learning Lab Special Lecture; University of Freiburg: Breisgau,
Germany, 2014; pp. 7–24.

51. Bin, Y.; Yang, Y.; Shen, F.; Xu, X.; Shen, H.T. Bidirectional long-short term memory for video description. In Proceedings of the
24th ACM international conference on Multimedia, Amsterdam, The Netherlands, 15–19 October 2016; pp. 436–440.

52. Hossen, R.; Whaiduzzaman, M.; Uddin, M.N.; Islam, M.J.; Faruqui, N.; Barros, A.; Sookhak, M.; Mahi, M.J.N. Bdps: An efficient
spark-based big data processing scheme for cloud fog-iot orchestration. Information 2021, 12, 517. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JPHOT.2022.3147844
http://dx.doi.org/10.1016/j.patcog.2021.108146
http://dx.doi.org/10.1587/comex.2022XBL0184
http://dx.doi.org/10.1007/s42979-022-01140-x
http://dx.doi.org/10.1109/ACCESS.2021.3055775
http://dx.doi.org/10.1007/s11263-022-01594-9
http://dx.doi.org/10.1016/j.patcog.2021.108487
http://dx.doi.org/10.1016/j.neucom.2021.11.044
http://dx.doi.org/10.1109/TNSRE.2023.3251440
http://dx.doi.org/10.1080/08839514.2022.2093705
http://dx.doi.org/10.1016/j.neucom.2019.01.078
http://dx.doi.org/10.1109/68.740704
http://dx.doi.org/10.1016/0304-4076(88)90048-6
http://dx.doi.org/10.3390/info12120517

	Introduction
	Literature Review
	Methodology
	Dataset Selection
	The Hybrid Network Architecture
	Sequence Folding
	Feature Extractor Network in Cloud
	GoogleNet–BiLSTM Hybridization
	Training the Hybrid Network
	HAR-CPS Algorithm

	Latency and Cloud Resource Optimization Using Mez
	Latency vs. Quality Trade-Off
	Cloud Resource Optimization


	Results and Performance Evaluation
	Performance of the GoogleNet–BiLSTM Hybrid Network
	Performance Comparison
	Resource Optimization Performance


	Limitations and Future Scope
	Limited Number of Actions
	Camera–Subject Angle Sensitivity
	Security of the HAR-CPS Device

	Conclusions
	References

