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Abstract
COVID-19, pneumonia, and tuberculosis have had a significant effect on recent global health. Since 2019, COVID-19 has been
a major factor underlying the increase in respiratory-related terminal illness. Early-stage interpretation and identification of
these diseases from X-ray images is essential to aid medical specialists in diagnosis. In this study, (COV-X-net19) a convo-
lutional neural network model is developed and customized with a soft attention mechanism to classify lung diseases into
four classes: normal, COVID-19, pneumonia, and tuberculosis using chest X-ray images. Image preprocessing is carried out
by adjusting optimal parameters to preprocess the images before undertaking training of the classification models.
Moreover, the proposed model is optimized by experimenting with different architectural structures and hyperparameters
to further boost performance. The performance of the proposed model is compared with eight state-of-the-art transfer
learning models for a comparative evaluation. Results suggest that the COV-X-net19 outperforms other models with a testing
accuracy of 95.19%, precision of 96.49% and F1-score of 95.13%. Another novel approach of this study is to find out the
probable reason behind image misclassification by analyzing the handcrafted imaging features with statistical evaluation.
A statistical analysis known as analysis of variance test is performed, to identify at which point the model can identify a
class accurately, and at which point the model cannot identify the class. The potential features responsible for the misclassi-
fication are also found. Moreover, Random Forest Feature importance technique and Minimum Redundancy Maximum
Relevance technique are also explored. The methods and findings of this study can benefit in the clinical perspective in
early detection and enable a better understanding of the cause of misclassification.
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Introduction
Being one of the most widespread reasons for early mortal-
ity, lung disease is regarded as a major global health issue.
According to the World Health Organization, more than six
million people had died as a result of this pandemic world-
wide by December 2022.1 COVID-19 primarily affects the
airways and, as a result, negatively impacts the lungs of
affected individuals. It manifests as an upper respiratory
tract and lung infection.2 Tuberculosis, a recognized com-
municable disease, is one of the top 10 leading causes of
mortality worldwide, and manifests as a chronic pulmonary
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disease fueled by pathogenic bacterial colonization.3 The
bacterium known as ‘Mycobacterium tuberculosis’ is the
primary cause of tuberculosis. Tuberculosis can be success-
fully resolved with early diagnosis and the subsequent
delivery of the appropriate treatment.4 Bacterial infection
is also a primary factor in the development of pneumonia,
a condition marked by inflammation and consolidation of
the lung tissue.5 By using antimicrobial agents such as anti-
biotics and antivirals, the manageability of pneumonia can
be significantly enhanced. However, prevention of some
complications that may result in early mortality, depends
on the prompt diagnosis and effective treatment.6

Deep learning-based techniques, in particular convolu-
tional neural networks (CNN), have shown remarkable
advances in the identification and segmentation of
medical images.7 Deep learning has made significant
strides and these systems are now frequently employed in
the research of Computer Aided Diagnosis systems using
various medical imaging modalities. Appropriate risk
factor prognosis can prevent lung diseases from developing
into chronic, serious, and life-threatening problems. This is
because prompt diagnosis and careful treatment planning
can stop infections from spreading and lung disorders
from getting worse, lowering the overall mortality rate.
Chest X-ray (CXR) images are considered useful for mon-
itoring and examining several lung conditions, including
COVID-19, tuberculosis, and pneumonia. CXR can be
used to diagnose lung disorders and research on this topic
has shown that these images can provide valuable informa-
tion about how the condition is evolving.8 The CXR pat-
terns of lung disease create differentiation difficulties and
frequently result in considerable inter-reader heterogeneity
among radiologists.9 There is an urgent need for new auto-
mated image analysis techniques that can improve radio-
logical qualitative assessments because of probable future
waves of diseases and the resulting increase in radiologist
workloads. The diagnosis of lung disorders may benefit
from a reliable automated process based on deep-learning
methods with CXR images. A neural network may concen-
trate on, and highlight the most crucial areas of, an input
image due to the soft-attention process.10 In this article,
soft attention is integrated in the proposed CNNmodel to cat-
egorize lung disease, drawing inspiration from the work pre-
sented by Xu et al.11 for image caption generation. Analysis
of variance (ANOVA) is arguably the most popular statistical
technique for evaluating hypotheses at present. This tech-
nique is employed to compare the means of two or more
groups that differ significantly from one another.12

This study proposes a fully automated and novel
deep-learning model to classify CXR images into four
classes: normal, COVID-19, pneumonia, and tuberculosis.
The images are preprocessed employing several widely used
image preprocessing techniques to ensure the highest possible
performance of the model. The study also presents an analysis
regarding misclassification. Twenty-four handcrafted features

are extracted from the images and the difference between the
classified and misclassified values for the features are shown
by performing ANOVA testing. The automated statistical ana-
lysis of misclassification has not previously been undertaken
in any notable studies. The major contributions and methods
of the study can be summarized as follows:

1. The quality of the images is improved by applying a
variety of image preprocessing techniques, including
Text Removing, Image Resizing, Morphological
Opening, Contrast limited adaptive histogram equal-
ization (contrast limited adaptive histogram equaliza-
tion [CLAHE]), Histogram Equalization, and Fast
Fourier Transform (FFT).

2. A custom CNN model is developed with soft attention
mechanism which can interpret lung disorders using
X-ray images relevant features prominently and the per-
formance of the proposed model is compared with
several transfer learning models, including VGG16,
VGG19, InceptionV3, MobileNetV1, MobileNetV2 in
terms of accuracy and training time. Additionally, abla-
tion study is carried out for rigorous experiment in order
to enhance the accuracy.

3. To identify the differences between classified and mis-
classified classes an ANOVA test is performed. The
ANOVA test is performed twice, firstly, on the four
classes concerning each feature, where we find a
F-statistics on which point the model can identify a
class correctly and another F-statistics at which point
the model cannot classify the disease correctly, and sec-
ondly, on the individual class concerning each feature
which shows highest F-value, and it is the most respon-
sible for the misclassification. Another two-feature selec-
tion technique, random forest feature ranking and
Minimum Redundancy Maximum Relevance (MRMR)
method is used to find out optimal features and justifica-
tion of ANOVA test results.

Literature review
Over the past several years, a number of studies have been
conducted on the automated detection and classification of
lung diseases, including COVID-19. Rahman et al.3 per-
formed image preprocessing, data augmentation, image
segmentation, and a deep-learning classification approach,
to accurately diagnose tuberculosis from CXR images.
Nine different transfer learning based deep CNN models
were evaluated. The best-performing model, ChexNet,
had accuracy, precision, sensitivity, F1-score, and specifi-
city of 96.47%, 96.62%, 96.47%, 96.47%, and 96.51%,
respectively. Ahn et al.13 introduced a new technique that
integrates sparse spatial pyramid (SSP) features from a
local image dictionary with domain-transferred CNNs
(DT-CNNs) to increase the performance of X-ray image
categorization. Very deep CNNs provided by the VGG
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have been used. The DT-CNNs and SSP successfully iden-
tified the classes with 47% and 82% recall, respectively.
Pereira et al.14 proposed a classification scheme based on
the following viewpoints: (i) a classification with multiple
classes; (ii) a hierarchical classification. Over-sampling
and under-sampling methods were applied to balance the
dataset. The proposed approach tested in RYDLS-20 pro-
duced a macro-average F1-score of 0.65 and an F1-score
of 0.89 for the COVID-19 identification in the scenario of
hierarchical classification. Munusamy et al.15 developed a
novel FractalCovNet architecture utilizing U-Net and
Fractal blocks to split chest CT scan pictures and locate
the lesion sites. Transfer learning was also utilized to clas-
sify CXR images using the same FractalCovNet architec-
ture, and the classification result was compared.
FractalCovNet got an accuracy of 99% where the precision,
recall, and F1 score was 99%, 87%, and 92%, respectively.
Hassanien et al.16 proposed a learning-based method for the
detection of COVID-19-infected patients using X-ray
images. The multilevel thresholding with the support
vector machine (SVM) approach was proposed, which
demonstrated superior classification performance with
COVID-19 for infected lung identification. According to
the findings of the suggested model, the lung classification
had an average sensitivity, specificity, and accuracy of
95.76%, 99.7%, and 97.48%, respectively. Abbas et al.
202017 developed a model labeled Decompose, Transfer,
and Compose (DeTraC), to classify COVID-19 using
CXR images. DeTraC was successful in identifying
COVID-19 X-ray pictures from other cases with moderate
acute respiratory syndrome and cases with severe acute
respiratory syndrome with a high accuracy of 93.1%.
Guan et al.18 considered the issue of multilabel thorax
disease classification on CXR images and proposed a
model which is a category-wise residual attention learning
(CRAL) framework. A class-specific attentive view pre-
dicted the existence of numerous diseases using CRAL.
The average area under the receiver operating characteris-
tics curve (AUC) score obtained by CRAL was 81%.
Mueen et al.19 proposed a content-based image retrieval
method which used multilevel image features and a
state-of-the-art machine learning method, SVM. They
extracted three levels of features: global, local, and pixel
and combined them in one large feature vector and it
achieved a recognition rate of 89%. Sharma et al.20 intro-
duced deep CNN architectures to extract features from
CXR images and classify pneumonia with both augmented
and original datasets. Among the models, model 1 (with an
augmented dataset and dropout layer) achieved the highest
testing accuracy of 90.68%. Avuçlu21 experimented with
five different machine learning algorithms, Multi-Class
SVM, k Nearest Neighbor, Decision Tree, Multinomial
Logistic Regression, Naive Bayes (NB), where NB per-
formed best in terms of testing accuracy (93.87%). In add-
ition, the Cohen Kappa test was used to determine the

dependability of agreement between two or more observers.
Heidari et al.,22 proposed a transfer learning-based CNNmodel
based on VGG16 where the CNN model yielded 94.5% accur-
acy. In the study, the original images were processed to create
two sets of filtered images using a bilateral filter and a histogram
equalization technique. The CNN deep-learning model’s three
input channels are then fed with the original image and the
two filtered images, increasing the model’s capacity for
learning. Hussain et al.,23 proposed a deep CNN model
called CoroDet for the classification of COVID-19, and for
four-class classification, the model achieved an accuracy of
91.2%. In Table 1, the methodology, findings and results
and limitation of the papers are pointed out.

The outcome of the research is to classify CXR images into
four categories: normal, COVID-19, pneumonia, and tubercu-
losis with automated and innovative process. To achieve the
best potential performance of the model, images are prepro-
cessed using a variety of widely used image preprocessing tech-
niques. A misclassification analysis is also presented.
Twenty-four manually extracted features are taken from the
images, and an ANOVA test is used to demonstrate the differ-
ence between correctly and incorrectly classified values for each
feature. Moreover, random forest feature selection and MRMR
methods implemented for finding out the optimal features.
From the previous study presented in Table 1, no prominent
studies using automated statistical analysis of misclassification
have been conducted before. Moreover, effective image prepro-
cessing techniques with optimal parameter values and develop-
ing a CNNmodel with ablation study is another novel approach
of the study.

Methodology
In recent years, there has been a growing interest in utilizing
deep-learning techniques to improve the accuracy and effi-
ciency of medical image analysis. One particular application
is the classification of CXR images, which is a critical task in
effectively diagnosing various respiratory diseases. In this
study, we introduce a deep-learning approach to classify
CXR images into four classes, with the aim of improving
diagnostic accuracy and reducing the workload of medical
professionals.

The process and results of our study, including the data
preprocessing, the deep-learning model with an additional
soft attention layer, feature extraction, and statistical ana-
lysis are presented in Figure 1.

The entire workflow of the study can be summarized as
follows:

1. The dataset analyzed in this study is imbalanced, con-
sisting of 7106 images consisting of four classes
which are COVID-19, normal, pneumonia, and tubercu-
losis, respectively.

2. Images in the dataset are found with uneven size, noise,
and visible artifacts. To address these challenges and to
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Table 1. Summarizing table of literature review.

Authors Year Methodology Findings and result Limitation

Rahman et al.3 2020 Image preprocessing, data augmentation,
image segmentation, and classification
using transfer learning-based model

Highest test
accuracy 96.47%,

Binary classification, inadequate image
preprocessing

Ahn et al.13 2016 Integration of SSP features from a local
image dictionary with DT-CNNs using
VGG

Highest recall 82% Image preprocessing approaches have
undergone fewer experiments

Pereira et al.14 2020 Multiclass and hierarchical classification,
utilizing over-sampling and
under-sampling methods to balance the
dataset

Highest F1-score
89%

No evaluation of the suggested model’s
performance in relation to other
models

Munusamy
et al.15

2021 Development of FractalCovNet architecture
using U-Net and Fractal blocks for lesion
site localization in chest CT scan images.
Transfer learning is used for
classification

Highest test
accuracy 99%

Insufficient image preprocessing

Hassanien
et al.16

2020 Learning-based method, multilevel
thresholding with SVM approach for
infected lung identification

Highest test
accuracy 97.48%

Fewer experiments with
image-processing techniques and a
limited number of classification models

Abbas et al.17 2020 Model labeled Decompose, Transfer, and
Compose (DeTraC) for classifying
COVID-19 using CXR images

Highest test
accuracy 93.1%

Confined dataset, insufficient
hyperparameter tweaking

Guan and
Huang18

2018 CRAL framework for multilabel thorax
disease classification on CXR images

Average AUC score
81%

Insufficient image processing

Mueen et al.19 2007 CBIR method using multilevel image
features and SVM

CBIR method
achieved a
recognition rate
of 89%

Lack of performance comparisons
between the suggested model and
other models

Sharma
et al.20

2020 Deep CNN architectures for feature
extraction and classification of
pneumonia in CXR images using
augmented and original datasets

Highest test
accuracy 90.68%

Fewer investigations on imagine
preprocessing techniques, and
inadequate model robustness analysis

Avuçlu21 2022 Experimentation with five machine learning
algorithms for COVID-19 classification
using CXR images

Highest test
accuracy 93.87%

Minimal experimentation with image
processing methods, insufficient
dataset

Heidari et al.22 2020 VGG16 with bilateral filtering and
histogram equalization technique

Highest test
accuracy 94.5%

Lack of an evaluation of the efficacy of the
suggested model against different
models

Hussain
et al.23

2021 Deep CNN model called CoroDet for the
classification of COVID-19

Highest test
accuracy 91.2%

Small dataset, inadequate
hyperparameter tuning, lack of
performance evaluations between the
proposed model and other models

2022 A model called BNCNN was introduced, Insufficient investigations to determine

(continued)

4 DIGITAL HEALTH



Table 1. Continued.

Authors Year Methodology Findings and result Limitation

Al-Shourbaji
et al.24

data preprocessing, feature extraction,
and classification

Highest test
accuracy 99.14%

the underlying causes of the
misinterpretation

Anter et al.25 2021 Proposed a new model called AFCM-LSMA
uses adaptive Fuzzy C-means and an
improved SMA for diagnosing COVID-19

Highest test
accuracy 96%

Lack of analysis to ascertain the causes of
misclassification

Proposed
study

This method is proposed for automated
classification of CXR image using a novel
COV-X-net19 model with effective image
preprocessing and finding out the
reason of misinterpretation of
misclassified image

COV-X-net19 model
achieves 95.19%
test accuracy

Optimization of proposed model can be
done by modifying the scratch
implementation of the CNN layers in
order to increasing the accuracy

AFCM-LSMA: adaptive fuzzy C-means with level set method and affine transformation; AAUC: The average area under the receiver operating characteristics
curve; BNCNN: binary neural network with convolutional neural network; CBIR: content-based image retrieval; CNN: convolutional neural network; CRAL:
category-wise residual attention learning; CT: computed tomography; CXR: chest X-ray; DT: domain-transferred; SMA: slime mould algorithm; SSP: sparse
spatial pyramid; SVM: support vector machine; VGG: visual geometry group.

Figure 1. Demonstration of the proposed methodology.
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achieve a high level of accuracy, a number of image pre-
processing approaches are employed, including text
removal, image resizing, morphological opening,
CLAHE, histogram equalization, and FFT.

3. A deep-learning model is developed based on deep
CNN with an additional soft attention layer to perform
the classification. Though our dataset is unbalanced,
this model is able to achieve optimal performance.

4. In order to achieve the maximum performance from our
proposed model, an ablation study is applied. The acti-
vation function, pooling layers, learning rate, optimizer,
and loss function are the backbone of the ablation study.

5. The performance of the model is compared with eight
transfer learning models, named VGG16, VGG19,
MobileNetV2, MobileNet, Inception V3, Densenet201,
EfficientNetB1, and EfficientNetB5.

6. Feature analysis is a novel part of this study used in
finding the features that are responsible for both cor-
rectly classifying and misclassifying an image.
Twenty-four features are extracted from the region of
interest (ROI) of classified and misclassified images
with the goal of determining the factors of misclassifica-
tion. We next separate the values into two autonomous
data frames to obtain improved statistical information.
Finding the features that led to the misclassification is
the main objective of this experiment. In order to
assess the importance and influence of each character-
istic on the probability of misclassifications, we con-
ducted an ANOVA test using the features. The
discriminating potential of individual characteristics
and their impact on classification accuracy are both
insightfully examined in this investigation. It should
be emphasized that while the CNN and transfer learn-
ing models’ roles were only focused on classification,
the handcrafted features are solely used in ANOVA
test, Random Forest feature selection and MRMR
method.

7. The ANOVA test is used to find out the difference
between the features of a particular class. In the
ANOVA test, an F-value indicates how distinct two dif-
ferent classes are. The test is applied with four classes at
a time and the feature is found for which our proposed
model can classify the class accurately and finds the
values for which our model is not able to classify an
image.

8. In a second analysis, the ANOVA test is performed
between the features of classified and misclassified
images, and some features are found to differ signifi-
cantly from those of a classified image. This suggests
that features with the highest F-value in the ANOVA
test are therefore responsible for incorrect image classi-
fication. In addition, random forest feature ranking and
MRMR method are applied to the extracted features to
find out the optimal features and to justify the ANOVA
test results.

Dataset
The dataset26 used in this study is a merged dataset of four
publicly available sources with a total of 7135 images. Four
distinct classes are obtained: COVID-19, normal, pneumo-
nia, and tuberculosis classes. The authors of this dataset
declared that pneumonia and normal images were selected
from retrospective cohorts of one to 5-year-old pediatric
patients at the Guangzhou Women and Children’s
Medical Center.27 All CXR imaging was done as part of
the regular clinical treatment provided to patients. All
chest radiographs of pneumonia and normal images were
initially checked for quality control before being removed
from the study of the CXR pictures. The images were
graded by two qualified physicians before the diagnosis
and the image could be used to train the artificial intelli-
gence system. A third expert also reviewed the evaluation
set to make sure there were no grading mistakes. The tuber-
culosis images were collected from the National Institute of
Allergy and Infection Disease tuberculosis (TB) portal.28 A
database of chest X-ray images for TB positive cases as
well as normal images has been created by a team of
researchers from Qatar University, Doha, Qatar, and the
University of Dhaka, Bangladesh, along with their colla-
borators from Malaysia and Hamad Medical Corporation.
Currently, there are 700 TB of publicly available images in
their release. Reverse transcription polymerase chain reaction
(RT-PCR) is used for diagnosis of the COVID-19. The X-ray
machines are widely available and provide images for diag-
nosis quickly so CXR images can be very useful in early
diagnosis of COVID-19.29 RT-PCR images were collected
from this particular source. Also, some images are collected
from a GitHub source, which is approved by the University
of Montreal’s Ethics Committee #CERSES-20-058-D.30 In
Table 2 the number of images along with class is described
and Figure 2 represents the images of each class.

It can be observed from Table 2 that out of 7135 total
images, the pneumonia class contains more than half of
the images of 4273 and normal class contains 1583

Table 2. Dataset description.

Name Description

Total number of image 7135

Color grading Red Green Blue (RGB)576

COVID-19 574

Normal 1583

Tuberculosis 703

Pneumonia 4273
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images. The rest two classes comprise less than 100 images.
Therefore, this dataset can be considered as an imbalanced
dataset from where obtaining optimal classification accur-
acy might be challenging. In Figure 2, the images of four
classes are shown.

As the dataset was generated by merging four datasets of
different sources, variations based on intensity level, image
quality and pixel size may exist among the images which
might cause poor performance of the model. In order to
deal with and overcomes these variations, ablation study
and several image preprocessing techniques have been intro-
duced. In addition, the parameters of the image preprocessing
algorithms are determined through extensive experiments in
order to achieve the best outcome even with the variations
among the images. The aim is to enhance the image
quality without losing the necessary information. In ablation
study, the model is optimized by experimenting with differ-
ent layer configurations and hyperparameters.

Image preprocessing
One of the key steps to ensure that the model performance and
computation times are both optimal image preprocessing,
which is undertaken before feeding the images into the
neural network.31 This study applies several widely used
methods to perform artifact removal and image quality
improvement. The CXR pictures of this study contain several
artifacts, noise, and poor contrast. Morphological opening32

is applied for the removal of artifacts from the images. The
images are then enhanced with CLAHE33 to adjust their con-
trast and brightness. Histogram Equalization34 is then applied
to enhance the contrast of the images even further. In order
to filter out noise, FFT35 is lastly used.

Text removal

Text removal is useful for a variety of purposes and is
necessary for effectively identifying and segmenting the
significant region of a CXR image. This method uses
Optical Character Recognition to find text hidden within
images and inpainting, which fills in the blanks in parts of
an image to create a whole image. Firstly, the method

applies a mask to each bounding box to define the algorithm
that which part of the image should be inpainted. The text in
the image is then identified and the bounding box coordi-
nates of each text is then determined and finally using an
inpainting algorithm the masked areas of the image are
inpainted, resulting in a text-free image.36

Morphological opening

In this study, morphological opening is applied as a prepro-
cessing step to satisfy our main goal of eliminating small,
undesired information or noise from the image. Both mor-
phological opening and closing operations can be applied
in removing particular types of artifacts, depending on the
characteristics of the artifacts and the expected outcome.
Morphological opening is usually preferred for artifact
removal and noise reduction, due to its efficiency in elimin-
ating small, isolated artifacts. The algorithm is more effective
since it preserves object boundaries and prevents the possible
merger of nearby items. Morphological closing is more suit-
able in filling gaps or holes in objects or merging fragmented
structures. Using binary thresholding, the image is first trans-
formed into a binary representation before morphological
opening is applied.32 Using a kernel, the morphological
opening is applied to the binary image. Based on the proper-
ties of the artifacts to be removed, the size and shape of the
kernel are chosen. The process starts with an erosion step in
which a structural element is scanned over the image. The
regions or objects in the image are effectively eroded or
shrunk during this erosion process. The dilation phase is per-
formed after the erosion process. Morphological opening
removes small, isolated, and bright parts while keeping the
larger features in the image by sequentially applying
erosion and dilation. The smaller portions or artifacts are
eliminated during the erosion step, and the remaining
regions are then resized during the following dilation step.
A smoother image with less noise and isolated artifacts is
the result. The opening of an image f by a structuring
element s, denoted by ( f θs), is an erosion followed by a dila-
tion. This can be represented as equation (1).

f o s = ( f θs)⊕ s (1)

Figure 2. Images of the four classes of the dataset.
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Four kernel sizes are experimented with including 1 × 1, 3 ×
3, 5 × 5, and 8 × 8. For a smaller kernel size of 1 × 1, the
artifacts are not removed properly. On the other side,
applying a larger kernel such as 8 × 8 causes loss of
important information. Hence, 3 × 3 kernel size is
selected as an appropriate size for this particular task. In
addition, three kernel shapes are also experimented with
morph rect, morph ellipse, and morph cross. The identical
structural element is scanned over the degraded image, and
the center pixel is set to white if at least one pixel in the
neighborhood it covers is white. It is set to black if not.
The regions or objects in the image are expanded or dis-
torted during this dilation step, partially regaining their
former size and shape. In Figure 3, the outputs have
been shown after experimenting with several parameter
settings.

After experimenting with different kernel shapes and
sizes, a rectangular kernel of size 3 × 3 with kernel shape
morph rect is used since it successfully removes artifacts
while maintaining the relevant information.

CLAHE

By correcting over-amplification of contrast levels, CLAHE
is used to balance the overall contrast. Instead of working
with the entire image, the algorithm splits it into little areas
called tiles and performs operations on each tile.37,38 Two
parameters are required to apply CLAHE: cliplimit and tile-
grid size. For each tile, the maximum permitted contrast
enhancement is set by the “cliplimit” parameter. Higher “cli-
plimit” values enable more contrast enhancement, but they
also increase visibility of noise. This experiment explores
various “cliplimit” values between 1 and 5. Additionally,
we have also changed the tile grid’s dimensions. The
number of tiles used to divide the image depends on the
size of the tile grid. After experimenting with several param-
eter settings of cliplimit and tilegrid size, the optimal config-
uration is determined. This combination most likely achieved
an excellent balance between increasing contrast and main-
taining the image’s details and information. In Figure 4,
the outputs have been shown after experimenting with
several parameters.

Figure 3. Outputs of several parameters testing (a) morph rect parameter testing, (b) morph ellipse parameter testing, and (c) morph cross
parameter testing.
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After several tests on our dataset with various parameter
values, the optimum ClipLimit and TileGridSize sizes were
determined to be 5.0 and 3 × 3.

Histogram Equalization

Histogram Equalization is a technique used to enhance the
contrast of an image by redistributing the pixel intensities.
Its autonomous operation and effective presentation of all
contrast available in the image data have been demonstrated
in medical imaging.31 The algorithm works by mapping the
original intensity values to new values that spread out over
the entire dynamic range of the image.

Fast Fourier transform

The Fourier transform is frequently referred to as a general-
ization of the Fourier series. The Fourier transform helps to
extend the Fourier series to nonperiodic functions, and any
function can be regarded as a collection of simple sinu-
soids.32 The function of the Fourier transform is given
below in equation (2):

f (x) =
∫∞

−∞

F(k)e2πikx dk (2)

The whole image preprocessing procedure, from the removal
of artifacts through image enhancement, is shown below in
Figure 5, and Figure 6 demonstrates six sets of preprocessed
images where both input and output images have been
shown.

Model evaluation

Dataset split

To train the proposed model and other transfer learning
models, the dataset is split into train, validation, and test
sets with a ratio of 70:10:20, respectively. Table 3 repre-
sents the number of images in training, validation, and
test set across each class after splitting.

Base model architecture

At first a CNN baseline CNN model is developed which is
improved with an ablation study and thus the proposed
model architecture is obtained. The performance of the
model is later compared with eight transfer learning
models. CNN is a type of deep-learning neural network
architecture commonly used in image and video analysis
tasks, such as image classification, object detection, and
segmentation. It is composed of several layers, including

Figure 4. CLAHE parameter meter testing (a: ClipLimit testing and b: TileGridSize testing). CLAHE: Contrast limited adaptive histogram
equalization.
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convolutional layers, pooling layers, and fully connected
layers. The convolutional layers in a CNN are used to
extract relevant features from the input image. Each convolu-
tional layer consists of a set of learnable filters that convolve
with the input image to produce a set of output feature maps.
The filters are typically small in size and are designed to
detect specific features such as edges, corners, and textures.
The pooling layers in a CNN are used to down sample the
output feature maps produced by the convolutional layers.

This helps to reduce the spatial dimensionality of the input
image and control overfitting. The most commonly used
pooling operation is max-pooling, which takes the maximum
value within a small subregion of the input. The fully con-
nected layers in a CNN are used to classify the input image
based on the features learned by the convolutional layers.
These layers are similar to those found in a traditional feed-
forward neural network and connect all neurons in one layer
to all neurons in the next layer. Through the use of appropriate

Figure 5. Image preprocessing steps with outputs.

Figure 6. Six sets of preprocessed images where input and output images are shown.
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training data, CNNs are able to learn data-driven, highly repre-
sentative, layered hierarchical image characteristics.9

The base model consists of 15 layers: 4 convolutional, 6
max-pooling, 1 dropout layer with a dropout factor of 0.5.
A flatten layer is applied before the last dense classification
layer, and a final dense layer for classification. A 3 × 3
kernel size is used for the convolution layers, and nonlinear-
ity is introduced by including the Rectified Linear Unit
(ReLU) activation function. The first four max-pooling
layers are followed by one convolutional respectively.
After adding eight layers (4 convolutional and 4
max-pool), 2 max-pool layers are added. Then two max-
pooling layers are added followed by a concatenation
layer to concatenate the outputs of the previous max-
pooling layers. The classification is performed through a
SoftMax activation function.

Proposed model (COV-X-net19)

Deep-learning models need a lot of processing power and
training time; therefore, we work to keep the model archi-
tecture as simple as possible to cut down both factors. The

proposed CNN model is optimized through an ablation
study on base CNN architecture where an additional soft
attention layer is introduced. The attention mechanism
enables the network to concentrate on various regions of
the input image while accounting for the varied signifi-
cance of various regions in the final prediction. Each com-
ponent of the input image receives a weight from the
attention layer, indicating how significant it is to the
final prediction. The features that are collected from
the image are then combined using the weights to form a
weighted sum, which is utilized as input to the network’s
next layer. This enhances performance by enabling the
model to concentrate on the most important image ele-
ments.10 The architecture of the soft attention mechanism
is given in Figure 7.

The architecture of the proposed network is shown
below in Figure 8.

The proposed model has 16 layers, with 4 convolu-
tional layers, 6 max-pooling layers, 1 soft attention
layer, 1 dropout layer with a factor of 0.5, and a final
dense layer for classification. To improve classification
performance, soft attention technique is implemented
into the proposed CNN model and this layer is added
after concated convolution layer and max-pooling
layer. The architecture of soft attention layer is described
in Figure 7 and in Figure 8 the soft attention layer is high-
lighted by dark orange color. With the use of this soft
attention-based methodology, the model is able to
dynamically concentrate on pertinent image areas,
improving classification accuracy. Thus, the addition of
the soft attention layer was crucial in helping our pro-
posed custom CNN model to perform better in terms of
classification. Before the final classification dense layer,
a flatten layer is added. The same 3 × 3 kernel size is
used for the convolution layers, and nonlinearity is intro-
duced by including the ReLU activation function. The
ReLU activation function applies the function f (x) =

Figure 7. Soft attention mechanism.

Table 3. Number of images in each class after splitting.

Disease
name

Number of
images Train Test Validation

COVID-19 576 403 115 58

Pneumonia 4273 2991 855 427

Tuberculosis 703 492 140 71

Normal 1583 1108 316 159

Subtotal
∑

7135
∑

4994
∑

1426
∑

715
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max (0, x) element-wise to the input, effectively thresh-
olding negative values to zero and allowing the positive
values to pass through, this makes the model more effi-
cient by speeding up the training process and reducing
the likelihood of vanishing gradients.9 The activation
function for ReLU is given below in equation (3):

F(x)ReLU = max (0, x) (3)

The max-pooling layer kernel size is 2 × 2. As seen in
the Figure 8, the input layer is attached to the first
Conv2D layer, and the dimension of the input image is
224 × 224 × 3. Firstly, the Conv2D layer and max-
pooling layer transform the dimension from 224 ×
224 × 3 to 111 × 111 × 16. Then, a second Conv2D
layer and a max-pooling layer transform the dimension
from 111 × 111 × 16 to 54 × 54 × 32. The following
process was repeated two more times and the dimension
became 12 × 12 × 64. Then a soft attention layer is added
to make sure the important parts of the images are
the main emphasis. Then two max-pooling layers
are added followed by a concatenation layer to concaten-
ate where the output from the concatenation layer went
through the Activation, Dropout, and flatten layers,
respectively. Finally, it passes through the classification
dense layer which is equipped with the SoftMax activa-
tion function. The SoftMax function is used for multi-
classification models, and returns the probabilities of
each class, with a high probability for the target class.3

The following is an expression for the SoftMax function

given in equation (4):

Si = exi− xmax∑∞
j exj− xmax

(4)

Transfer learning models

As previously said, we experimented with a total of eight
models, including VGG16, VGG19, InceptionV3,
MobileNetV1, MobileNetV2, DenseNet201, EfficientNetB1,
EfficientNetB5 to compare the performance with our proposed
CNNmodel. Transfer learning is a common deep-learning tech-
nique currently used in computer vision systems especially in
the classification tasks using CXR images.39

VGG16. The VGG16 architecture consists of 16 layers,
including 13 convolutional layers, 5 max-pooling layers,
and 3 fully connected layers.34 The convolutional
layers use small 3 × 3 filters with a stride of 1 and a
padding of 1, and the max-pooling layers use 2 × 2 filters
with a stride of 2. Convolutional and fully connected
layers, that are highly connected in the model, allow for
enhanced feature extraction and the usage of max-pooling
(instead of average pooling).2,40 The network also uses a
large number of filters in each convolutional layer, which
further improves the quality of the learned features.

VGG19. VGG19 is a deep CNN architecture that is an exten-
sion of the VGG16 architecture. The VGG19 architecture

Figure 8. COV-X-net19 model architecture.

12 DIGITAL HEALTH



consists of 19 layers, including 16 convolutional layers, 5
max-pooling layers, and 3 fully connected layers.41 The
convolutional layers use small 3 × 3 filters with a stride
of 1 and a padding of 1, and the max-pooling layers use
2 × 2 filters with a stride of 2. The main difference is that
VGG19 has three additional convolutional layers compared
to VGG16, which makes it a deeper network with more
parameters.

InceptionV3. By changing previous Inception designs,
InceptionV3 aims to reduce the necessary computational
power. When compared to earlier Inception models,
InceptionV3 contains a few significant improvements,
such as label smoothing, factorized convolutional layers,
and the use of an additional classifier to send label informa-
tion down the network. By swapping out larger convolu-
tions for smaller convolutions, the InceptionV3 model
reduces training time.

MobileNetV1. In 2017, a new CNN architecture called
MobileNet was introduced. The specialty of the model is
that it is depth-wise and that its convolutions are placed
depth-wise. Convolutions are applied to each channel
rather than to the entire architecture all at once which
reduces the cost of computations.39

MobileNetV2. Using depth-wise separable convolution as
effective building blocks, MobileNetV2 is built on the prin-
ciples of MobileNetV1. But in this revision, a new layer
module known as the inverted residual with linear bottle-
neck is introduced. Achieving excellent performance with
fewer resources is made possible by applying this
compact and economical architecture.42,43

DenseNer201. The “Dense Block,” is the main component
of DenseNet-201. Each layer in a dense block has several
levels which receive input from all of the previous layers.
The network maintains and improves the flow of informa-
tion throughout the network by concatenating the feature
maps from all previous levels. Transition layers, which
carry out down sampling and cut down on the number of
feature maps to regulate the model’s complexity in
DenseNet-201, connect the Dense Blocks.44 A batch nor-
malization layer, a 1 × 1 convolutional layer, and a 2 × 2
average pooling layer make up these transition layers.
With fewer feature maps, the transition layers guarantee
that information flow is kept under control.

EfficientNetB1. By employing a compound scaling strategy,
EfficientNetB1 achieves a balance between model perform-
ance and efficiency. It simultaneously and carefully scales
the network’s depth, breadth, and resolution. In order to
identify the ideal values, a methodical grid search is used
to determine the scaling coefficients.45 The “MBConv”
block, which stands for Mobile Inverted Bottleneck

Convolution, is the main component of EfficientNetB1.
Depth-wise separable convolutions and bottleneck struc-
tures make up the MBConv block. By employing a 1 × 1
convolutional layer (bottleneck) to cut down on the
number of input channels before using a depth wise separ-
able convolution, it effectively lowers the computational
cost.

EfficientNetB5. The objective of EfficientNetB5 is to pre-
serve computational efficiency while achieving a high
level of accuracy. It adheres to the principles of compound
scaling, which entails scaling the network’s depth, width,
and resolution all at once. There are seven stages in
EfficientNetB5,46 each with a different number of
MBConv blocks. In order to get the best values, a grid
search is used to calculate the scaling coefficients for
depth, width, and resolution. In general, EfficientNetB5 is
wider and deeper than EfficientNetB1, making it a more
potent and expressive model.

Feature analysis
In this study, by identifying and extracting relevant features
from image data, we aim to find out the features from the
image, for which most images are being misclassified.
Twenty-four clinically important features are extracted
from the X-ray images which represent different perspec-
tives of the lung area. The features include (i) area, (ii) per-
imeter area (PA) ratio, (iii) solidity, (iv) circularity, (v)
equivalent diameter, (vi) convex area, (vii) extent, (viii)
filled area, (ix) major axis length, (x) minor axis length,
(xi) mean, (xii) standard deviation, (xiii) Shannon
entropy, (xiv) Gray-Level Co-occurrence Matrix (GLCM)
entropy, (xv) skewness, (xvi) kurtosis, (xvii) Local Binary
Patterns (LBP) energy, (xviii) LBP entropy, (xix) Gabor
energy, (xx) Gabor entropy, (xxi) contrast, (xxii) dissimilar-
ity, (xxiii) energy, and (xxiv) correlation. Feature selection
is a crucial part of finding out the optimal features. In pre-
vious studies, there are many state of art feature selection
techniques have been implemented. As well as, the
NB-GWOA approach, the genetic algorithm improves the
use of the whale optimization algorithm to find the best
solutions.47 Quantum-Behaved Multiverse Optimization48

views the features as particles in a multiverse, each of
which stands for a subset of the features. Another feature
selection method the Binary Ant Lion Optimizer is a
binary version of the Ant Lion Optimizer algorithm that
is used for optimization problems and49 for the selection
of voice features. Moreover, to choose the ideal feature
subset, the hybrid chaotic map and binary crow search opti-
mization (CCSO) technique might be used.50 Another
approach random forest feature ranking can be used to
rank features according to their significance or contribution
to the performance of the model, in addition to its predictive
ability.51 MRMR51 is a feature selection method that looks
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for a subset of characteristics with a high level of relevance
to the target variable while reducing redundancy among the
chosen features. For analyzing the features, we have applied
a statistical technique used to compare values between two
or more groups called ANOVA test, random forest feature
ranking, MRMR feature selection techniques.

ANOVA test

The ANOVA test is used to analyze the variation within and
between groups, and it can be used to test the null hypoth-
esis that there is no significant difference between the
means of groups. When conducting an ANOVA test,
the data is first divided into groups or categories based on
the independent variable. The test then measures the vari-
ation between the groups and the variation within the
groups to determine whether the differences between the
groups are statistically significant.52

Result
In this section we discuss the findings, and the steps made
for increasing accuracy, considering various methods for
model evaluation and outcomes of the numerous ablation
studies, to further assess the efficacy of the proposed
X-net19 model. A description of the confusion matrix,
accuracy loss curves, and performance evaluation matrix
is also presented in this part.

Evaluation matrix

To evaluate the model, we tested several matrices: preci-
sion, recall, F1-score, accuracy (ACC), sensitivity, and spe-
cificity. We generated a confusion matrix for the proposed
model. The confusion matrix shows the ways in which a
classification model is confused when it makes predic-
tions.10 From the confusion matrix, we get the following
outputs: true positive, indicates that the model correctly
categorizes the positive class; true negative, indicates that
the model correctly predicts the negative class; false posi-
tive (FP), indicates that the model incorrectly predicts the
positive class; and false negative (FN), indicates that the
model incorrectly predicts the negative class. AUC values
have also frequently been calculated. In addition, for statis-
tical analysis of the models, the FP rate, FN rate, false dis-
covery rate, mean absolute error, and root mean squared
error, are also calculated.

Results of the ablation study

Five experiments are conducted as part of ablation study in
order to enhance the performance of the proposed CNN
model. As a more robust architecture with improved classi-
fication accuracy can be achieved by changing the compo-
nents of CNN, ablation study is carried out for several

components, including batch size, flatten layer, loss func-
tion, optimizer, and learning rate.

Ablation study 1: Changing the activation function. A
neuron’s activation status is determined by an activa-
tion function. By utilizing simpler mathematical proce-
dures, it will determine whether or not the neuron’s
input to the network is significant during the prediction
process.

In this case, we evaluate five different activation func-
tions: hyperbolic tangent (tanh), Rectified Linear Unit
(ReLU), Exponential Linear Unit (elu), softsign, softplus.
It can be observed from Table 4 that the outcomes for
these activation functions are 92.34%, 95.18%, 93.42%,
88.05%, and 77.64% accordingly. The highest accuracy is
obtained from ReLU activation function.

Ablation study 2: Ablation study by changing the pooling
layers. The size of the extracted features is reduced by
pooling layers. As a result, it reduces the quantity of
network computation and the number of parameters that
must be learned. Max-pooling and average pooling are the
two types of pooling layers used in the experiments (Table 5).

In Table 5, it can be seen that from two types of pooling
layers we obtain the highest test accuracy of 95.42% using
max-pooling layer.

Ablation study 3: Ablation study by changing the optimizer.
Optimizers are techniques that modify the neural network’s
properties, such as its weights and learning rate, in order to
minimize loss. In this study, experiments are conducted

Table 5. Ablation study by changing pooling layers.

Case study Pooling layers Result Findings

2 Max 95.42% Highest accuracy

Average 84.16% Lower accuracy

Table 4. Ablation study by changing activation function.

Case study Activation Result Findings

1 tanh 92.34% Identical accuracy

RelU 95.18% Highest accuracy

elu 93.42% Identical accuracy

softsign 88.05% Accuracy increased

softplus 77.64% Accuracy dropped

14 DIGITAL HEALTH

ftplus
ftplus


with four different optimizers: Adam, Nadam, Stochastic
Gradient Descent, and Adamax.

From Table 6, it can be observed that while using opti-
mizer Nadam the highest test accuracy of 95.38% is
obtained. For additional ablation studies, the Nadam opti-
mizer is chosen.

Ablation study 4: Ablation study by changing the learning
rate. We conducted a follow-up experiment using the
Nadam optimizer by changing the learning rate (0.01,
0.006, 0.001, 0.0008). The results are shown in Table 7.

In Table 7, the highest accuracy is obtained from 0.001,
whereas the accuracy percentage decreases with the other
learning rates. Therefore, the 0.001 learning rate is selected
for further ablation research.

Ablation study 5: Ablation study by changing the loss
function. A loss function evaluates how effectively the
neural network models learn the training data by comparing
the target and predicted output values. We demonstrate five
loss functions: Binary crossentropy, categorical crossen-
tropy, mean squared error, mean absolute error, and mean
squared logarithmic error as shown in Table 8.

The study shows that the highest accuracy is achieved
from categorical crossentropy. Therefore, categorical cross-
entropy is selected.

Performance analysis of best model

After analyzing the various components in the model, the
configuration of the proposed model is finalized according
to the best performance of each component. Table 9 shows
the overview of the configuration.

These hyperparameters are selected based on the results
of our ablation studies and a grid search over a range of
values. Our goal is to maximize model performance while
minimizing overfitting and computational complexity.
The results suggest that the chosen hyperparameters were
effective for the specific classification task and dataset
used in this study.

Statistical analysis of the X-net19 model

The final X-Net19 model is created by doing ablation
studies on the base model, significantly improving classifi-
cation performance. This is accomplished by altering and
configuring the model in different ways. Table 10 displays
some evaluation criteria for the proposed X-net19 model,
along with statistical analysis.

To further evaluate the performance of the X-net19
model, the loss and accuracy curves are plotted during train-
ing and validation. The accuracy and loss curves for the
suggested model are shown in Figure 9.

As shown in Figure 9, both the training and validation
accuracy increased over the course of training, while the
loss decreased. However, the gap between the training
and validation accuracy did not appear to increase substan-
tially over time, suggesting no sign of overfitting. The loss
and accuracy curves provide additional evidence that the
proposed COV-X-net19 model is effective at classifying
the target task. Moreover, we attained a training loss of

Table 6. Ablation study by changing optimizer function.

Case study Optimizer Result Findings

3 Adam 93.48% Lower accuracy

Nadam 95.38% Highest accuracy

SGD 86.18% Lower accuracy

Adamax 94.17% Near highest accuracy

SGD: Stochastic Gradient Descent.

Table 7. Ablation study by changing learning rate.

Case
study Learning rate Result Findings

4 0.01 88.18% Lower accuracy

0.006 82.32% Lower accuracy

0.001 95.38% Highest accuracy

0.0008 93.05% Near highest
accuracy

Table 8. Ablation study by changing loss function.

Case
study Activation Result Findings

5 Binary crossentropy 92.32% Lower
accuracy

Categorical crossentropy 95.53% Highest
accuracy

Mean squared error 91.44% Lower
accuracy

Mean absolute error 89.35% Lower
accuracy

Mean squared
logarithmic error

15.32% Lowest
accuracy
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0.0619 and validation loss of 0.2141, conversely, for the
Accuracy Curve we attained a training accuracy of
0.9826, validation accuracy of 0.9518 and testing accuracy
of 0.9504.

The confusion matrix produced by the proposed model
is displayed in Figure 10.

Performance evaluation of the proposed model in
comparison to transfer learning models

The performance comparison of transfer learning models
with our proposed model. COV-X-net19 is showcased in
Table 11 and Figure 11.

Based on Table 11 and Figure 11 comparing the pro-
posed model with various transfer learning models, it is
observed that the accuracy of these models ranges from
60.21% to 82.96%, while the base CNN model achieves
an accuracy of 89.96%. The proposed X-net19 model
outperforms all the other models with an accuracy of
95.18%, which is significantly higher than any
other model. Therefore, it can be concluded that the pro-
posed X-net19 model is superior to the other transfer
learning models, and the base CNN model, in terms of
accuracy.

Comparison of accuracy of the proposed model
changing image quality and image number

In Figure 12, it is observed that the model provides an
accuracy of 89.69% with a raw image, 95.18% with pre-
processed image and 92.23% with the quality reduced
image. From these experiments, two major findings
can be stated:

1. When the performance is compared between prepro-
cessed and raw images, there is a difference, indicating
that the preprocessed image processing approaches are
beneficial.

2. Across all the experiments an accuracy above 89% is
achieved, which further validates the robustness of the
proposed model.

Three experiments are conducted where at first the model is
tested with raw images, then preprocessed image, and finally
75% quality reduced image. The outcome is illustrated in
Figure 12.

Robustness assessment

In order to assess the robustness of the proposed model
even further, the model is trained twice with more
images. The dataset is split using ratio of 70:10:20 and
60:10:30 for train, validation and test set, respectively.
While splitting the dataset using a ratio of 70:10:20, 4995
images are found in train set, 714 in validation set, and
1427 in test set. For the splitting ratio of 60:20:10, 4281,
713 and 2141 images are found in train, validation and
test set, respectively. Figure 13 showcases the confusion
matrix for the two splitting scenarios.

From Figure 13, confusion matrix (i) shows that the
model is able to obtain a test accuracy of 95.18% for
20% training images and confusion matrix; and (ii)

Table 10. The performance evaluation of the X-Net19 model using a
number of matrices.

Measure Value

Recall 93.80%

Specificity 98.27%

Precision 96.49%

F1 Score 95.28%

FPR 1.72%

FNR 6.19%

FDR 3.51%

NPV 98.76%

FDR: false discovery rate; FNR: false negative rate; FPR: false positive rate;
NPV: negative predictive value.

Table 9. Configuration of the proposed model after ablation study.

Configuration Value

Activation function Relu

Epochs 100

Loss function Categorical crossentropy

Batch size 32

Learning rate 0.001

Kernel size 3

Image size 224 × 224

Optimization function Nadam

Weight decay 0.004

Poling layer kernel size 3

Pooling layer Max-pooling
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shows that the model obtains test accuracy of 95.04% on
the test set of 30%. Moreover, in class-based perform-
ance, the model is robust enough to predict all the

classes with no bias. This experiment further validates
the performance consistency and robustness of the pro-
posed architecture.

Figure 10. Confusion matrix after ablation study, x-axis represents the predicted value from the model and y-axis represents the actual
value of each class.

Figure 9. Loss curve and accuracy curve of the model after ablation study.
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Table 11. Performance comparison of the proposed model with a
transfer learning model.

Model
Number of
params

Per
epoch
time (s)

Learning
rate Accuracy

VGG19 20,124,740 55–57 0.001 64.57%

VGG16 14,815,044 56–59 0.001 62.46%

MobileNetV2 2,508,868 161–
170

0.001 78.76%

MobileNet 3,429,572 58–60 0.0007 82.96%

InceptionV3 22,007,588 57–60 0.001 64.96%

DenseNet201 213,312 134–
140

0.001 61.58%

EfficientNetB1 2,418,349 20–30 0.001 60.21%

EfficientNetB5 3,429,572 20–30 0.001 63.78%

X-net19
(Customize
Base Model)

1,579,860 52–54 0.001 95.18%

Figure 11. Performance analysis of the proposed model with transfer learning and base CNN model, where x-axis presents the model
name and y-axis presents the performance(accuracy) of each model. CNN: convolutional neural network.

Algorithm 1. This algorithm shows the process of extracting the ROI
from the CXR images

1: START

2: Read image

3: Convert image to grayscale

4: Apply Gaussian blur to reduce noise

5: Apply thresholding to segment the image

6: Find contours in the segmented image

7: Compute contour sizes for all contours

8: Find the largest contour

9: Extract shape features from the largest contour

10: Display or use the extracted shape features as
needed

11: END
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Analysis of misclassification through feature testing

The study applies ANOVA testing to find out the reason for

misclassified images based on specific features including

area, PA ratio, solidity, circularity, equivalent diameter,

convex area, extent, filled area, major axis length, minor
axis length, mean, standard deviation; and Shanon antropy,
GLCM entropy, Skewness, Kurtosis, LBP energy, LBP
entropy, Gabor energy, Gabor entropy, Contrast,
Dissimilarity, Energy, Correlation.

Figure 12. Comparison of accuracy with images after preprocessing, reducing 75% image quality of preprocessed image and raw image
represented in x-axis where y-axis represents the accuracy obtains by the experiments.

Figure 13. Confusion matrix (i) splitting ratio: 70%(train), 20%(test), 10%(validation) and confusion matrix (ii) splitting ratio: 60%(train),
30%(test), 10%(validation).
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Table 12. Extracted features from CXR images with feature description.

No. Feature name Description

1 Area Area of the desired region54

2 Perimeter area
ratio

Perimeter area ratio determines the horizontal to vertical pixel ratio of an image54

3 Solidity Solidarity is the ratio of the contour area and the smallest convex haul which covers the area54

4 Circularity The circularity feature is utilized to determine the tumor’s degree54

5 Equivalent
Diameter

The equivalent diameter indicates the diameter of a circle with the same ROI surface area54

6 Convex area The equivalent diameter indicates the diameter of a circle with the same ROI surface area55

7 Extent The area of the segmented object is divided by the area of its convex hull denoted as the extent55

8 Filled area The filled area is the interpolated pixel value that covers all the ROI areas55

9 Major axis length Major axis length is the measurement of the pixel distance between the major axis endpoints of the object
area55

10 Minor axis length Minor axis length is the lowest length of the targeted pixel area55

11 Mean Mean is the average pixel intensity55

12 Standard
deviation

The standard deviation refers to the measurement of the variation of image gray-level intensities54

13 Shannon entropy The average amount of information contained in the area is estimated using the Shannon entropy55

14 GLCM entropy GLCM entropy calculates the texture feature contents of the segmented object55

15 Skewness The skewness is a measurement used to assess the symmetry or asymmetry data distribution in the area55

16 Kurtosis The kurtosis statistic determines whether the tails of a normal distribution of the ROI area are heavy or
light155

17 LBP energy LBP energy is a texture primitive descriptor of LBP.56

18 LBP entropy LBP entropy is a texture descriptor that combines the concept of LBP with entropy calculation56

19 Gabor energy Gabor Energy means convoluting an image with a set of Gabor filters. It’s a textual feature of GLCM55

20 Gabor entropy Gabor entropy is a texture descriptor that combines the Gabor filter response with entropy calculation55

21 Contrast Contrast is a texture feature that measures the difference in intensity between neighboring pixels within a
texture region57

22 Dissimilarity Dissimilarity is a texture feature that calculates the average absolute difference in intensity between
neighboring pixels within a texture region57

23 Energy Energy (also known as angular second moment) is a texture feature that measures the uniformity or
homogeneity of the texture pattern57

(continued)
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Table 12. Continued.

No. Feature name Description

24 Correlation Correlation is a texture feature that measures the linear dependency between neighboring pixel intensities
within a texture region\

CXR: chest X-ray; GLCM: Gray-Level Co-occurrence Matrix; LBP: Local Binary Patterns; ROI: region of interest.

Table 13. ANOVA test between four classes with corresponding F-value and P-value.

No Disease Feature F-value (classified) F-value (misclassified)

1. COVID-19, tuberculosis, normal, pneumonia Area 70.404 5.170

2. COVID-19, tuberculosis, normal, pneumonia PA ratio 1417.586 1.314

3. COVID-19, tuberculosis, normal, pneumonia Solidity 157.343 7.599

4. COVID-19, tuberculosis, normal, pneumonia Circularity 182.455 0.024

5. COVID-19, tuberculosis, normal, pneumonia Equivalent Diameter 70.209 5.176

6. COVID-19, tuberculosis, normal, pneumonia Convex area 369.199 5.091

7. COVID-19, tuberculosis, normal, pneumonia Extent 259.134 0.714

8. COVID-19, tuberculosis, normal, pneumonia Filled area 180.509 0.875

9. COVID-19, tuberculosis, normal, pneumonia Major axis length 444.809 30.992

10. COVID-19, tuberculosis, normal, pneumonia Minor axis length 88.657 0.564

11. COVID-19, tuberculosis, normal, pneumonia Mean 84.146 0.002

12. COVID-19, tuberculosis, normal, pneumonia Standard deviation 139.354 0.909

13. COVID-19, tuberculosis, normal, pneumonia Shannon_Entropy 20.598 0.001

14. COVID-19, tuberculosis, normal, pneumonia GLCM entropy 577.706 0.073

15. COVID-19, tuberculosis, normal, pneumonia Skewness 79.225 2.326

16. COVID-19, tuberculosis, normal, pneumonia kurtosis 43.426 15.807

17. COVID-19, tuberculosis, normal, pneumonia LBP energy 295.880 0.390

18. COVID-19, tuberculosis, normal, pneumonia LBP entropy 351.455 0.107

19. COVID-19, tuberculosis, normal, pneumonia Gabor energy 9.360 0.070

20. COVID-19, tuberculosis, normal, pneumonia Gabor entropy 10.063 0.030

21. COVID-19, tuberculosis, normal, pneumonia Contrast 78.385 0.0425

22. COVID-19, tuberculosis, normal, pneumonia Dissimilarity 83.254 0.0385

23. COVID-19, tuberculosis, normal, pneumonia Energy 473.517 0.0134

24 COVID-19, tuberculosis, normal, pneumonia Correlation 71.419 0.317

ANOVA: analysis of variance; LBP: Local Binary Patterns; PA: perimeter area.
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Before extracting the features, the images are first seg-
mented and then the lung regions are extracted. Anter
et al.53 proposed a novel approach to enhance the fuzzy
c-means (FCM) clustering technique for autonomous local-
ization and segmentation of liver and hepatic lesions from
CT scans. Our proposed algorithm involving segmenting
the lung regions is stated in Algorithm 1.

In this process, after reading an image, it is converted
into grayscale format. Gaussian blur is applied to reduce
noise. Using a thresholding approach, the picture is then

divided into the foreground and background areas. The seg-
mented image has contours, which are continuous curves
that depict object boundaries. The size of all the contours
is computed to find the two largest contours. Finally,
from the largest two contours (lung regions) the abovemen-
tioned handcrafted features are extracted. The extracted fea-
tures from CXR images described according its description
shown individually in Table 12.

An ANOVA test is first performed on classified images
and then repeated on misclassified images. In the ANOVA

Figure 15. ANOVA test results for normal class between classified and misclassified images. ANOVA: analysis of variance.

Figure 14. ANOVA test results for COVID-19 class between classified and misclassified images. ANOVA: analysis of variance.
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test, the higher the F-value, the larger difference among the
groups. The experimental results of the ANOVA test are
shown in Table 13.

It is observed from Table 13 that, in terms of correct clas-
sification, the F-value is higher across all the features
(around 9-1417). However, for the misclassified images,
the F-values are found to be significantly lower (around
0–30). This further demonstrates that in the correctly classi-
fied images, the imaging feature differences are relatively

higher, whereas in misclassified images; the images are
quite similar in terms of features.

Another statistical analysis is conducted to compare the
F-value between classified images and misclassified images
of each class. The ANOVA test is applied to the classified
image set and again to the misclassified images for the par-
ticular class of every feature. A higher F-value means this
feature has a huge difference compared to a classified
image feature and has no correlation with the features for

Figure 16. ANOVA test results for pneumonia class between classified and misclassified image. ANOVA: analysis of variance.

Figure 17. ANOVA test results for tuberculosis class between classified and misclassified image. ANOVA: analysis of variance.
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Figure 18. Random forest feature importance between all feature.

Figure 19. MRMR feature testing. MRMR: Minimum Redundancy Maximum Relevance.
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which an image can be classified. In Figures 14–17 the
feature “Equivalent Diameter” conveys the F-value
247,090,263.43, 2,529,159.382, 465,088,529.26, and
75,496.73 particularly. In this analysis it is found that,
“Equivalent Diameter” represents the highest F-value and
indication of misclassification.

In order to determine the value of various characteristics
throughout our investigation, we used the random forest
feature importance approach. The findings showed that
“area” and “equivalent diameter,” two specific factors, received
the lowest ranks in terms of relevance. Remarkably, the results
of an additional statistical test ANOVA confirmed similar con-
clusions. The results are shown in Figures 14–18.

Moreover, we have performed MRMR feature testing
utilizing the mutual information metrics in addition to the
previous research. By eliminating redundancy among the
chosen characteristics, the MRMR method seeks to
uncover features that demonstrate high relevance to the
target variable. It’s important to point out that the feature
“area” had a relatively low mutual information value
throughout our MRMR feature testing. This suggests that
the “area” feature may only have partial knowledge of or
limited ability to forecast the target variable. Additionally,
it suggests that the misclassification or errors in prediction
may be related to the “area” feature when taking consider-
ation of the outcomes from other testing methodologies.
The results are shown in Figure 19.

Limitations
The proposed methodology used a robust model with
impactful image preprocessing and get a good accuracy,
though there are limitations too. Working with real data is
always complex task both in preprocessing and model train-
ing. For unavailability of private data this work can’t be
tested on private data for finding out the more robustness
of the model. Additionally, optimization of the proposed
model can be another limitation of this work. This model
could be more optimized by implementing the scratch of
the model’s different layers for getting more accuracy.
However, in spite of this limitation our proposed method-
ology performs well in the particular dataset and able to
identify the features for which the model misinterpreted
the images.

Future work
In future attempts, the focus will be given to expanding the
dataset in order to improve the robustness and expansion
abilities of our model. A larger dataset gives the model
access to a wider variety of data, which enables it to dis-
cover more typical patterns and characteristics. Moreover,
the robustness of the proposed approaches can be evaluated
further using real-world medical data. The performance of
the proposed model can be validated in real-world scenarios

and its practical application can be determined by integrat-
ing actual medical images gathered from clinical settings or
medical databases. Real data can come with particular dif-
ficulties and complexity. Our future work might concentrate
on finding clinical information using handcrafted features in
addition to the model’s capacity to learn features automatically.
We strive to build pertinent characteristics that capture particu-
lar aspects of medical disorders under research by utilizing
domain-specific information and expert perspectives. This
strategy will improve the predictions of the model’s interpret-
ability and domain-specific comprehension, aiding clinical
decision making and diagnosis.

Conclusion
In this study, an attention mechanism-based CNN model is
proposed to diagnose three specific diseases: COVID-19,
pneumonia, and tuberculosis, with 95.18% accuracy.
Several image processing techniques are applied to pre-
process CXR images. A soft attention mechanism is used
to increase model accuracy. For the evaluation of the
model, an ablation study is carried out with the proposed
model. Pretrained transfer learning models are applied for
comparison with the proposed model. Furthermore, the
reasons for misclassified images are analyzed through stat-
istical evaluation. By undertaking feature analysis, 24 fea-
tures are extracted from both the classified image and the
misclassified image. Then a statistical analysis is performed
where the ANOVA test is applied. The proposed approach
is a novel method for early diagnosis of pulmonary disease
and in identifying the reasons for misclassifying images
which can significantly assist medical specialists in achiev-
ing accurate pulmonary disease classification and diagnosis.
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