

Elsevier has created a Monkeypox Information Center in response to the

declared public health emergency of international concern, with free

information in English on the monkeypox virus. The Monkeypox Information

Center is hosted on Elsevier Connect, the company's public news and

information website.

Elsevier hereby grants permission to make all its monkeypox related

research that is available on the Monkeypox Information Center - including

this research content - immediately available in publicly funded

repositories, with rights for unrestricted research re-use and analyses in

any form or by any means with acknowledgement of the original source.

These permissions are granted for free by Elsevier for as long as the

Monkeypox Information Center remains active.

https://www.elsevier.com/connect/monkeypox-information-center

Expert Systems With Applications 216 (2023) 119483

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Deep transfer learning approaches for Monkeypox disease diagnosis
Md Manjurul Ahsan a,∗, Muhammad Ramiz Uddin b, Md Shahin Ali c, Md Khairul Islam c,
Mithila Farjana b, Ahmed Nazmus Sakib d, Khondhaker Al Momin e, Shahana Akter Luna f

a Industrial and Systems Engineering, University of Oklahoma, Norman, OK 73019, USA
b Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
c Department of Biomedical Engineering, Islamic University, Kushtia 7003, Bangladesh
d Department of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK, 73019, USA
e Department of Civil Engineering, Daffodil International University, Dhaka, 1341, Bangladesh
f Medicine & Surgery, Dhaka Medical College & Hospital, Dhaka, 1000, Bangladesh

A R T I C L E I N F O

Keywords:
Deep learning
Disease diagnosis
Image processing
Monkeypox virus
Machine learning

A B S T R A C T

Monkeypox has become a significant global challenge as the number of cases increases daily. Those infected
with the disease often display various skin symptoms and can spread the infection through contamination.
Recently, Machine Learning (ML) has shown potential in image-based diagnoses, such as detecting cancer,
identifying tumor cells, and identifying coronavirus disease (COVID)-19 patients. Thus, ML could potentially
be used to diagnose Monkeypox as well. In this study, we developed a Monkeypox diagnosis model using
Generalization and Regularization-based Transfer Learning approaches (GRA-TLA) for binary and multiclass
classification. We tested our proposed approach on ten different convolutional Neural Network (CNN) models
in three separate studies. The preliminary computational results showed that our proposed approach, combined
with Extreme Inception (Xception), was able to distinguish between individuals with and without Monkeypox
with an accuracy ranging from 77% to 88% in Studies One and Two, while Residual Network (ResNet)-
101 had the best performance for multiclass classification in Study Three, with an accuracy ranging from
84% to 99%. In addition, we found that our proposed approach was computationally efficient compared to
existing TL approaches in terms of the number of parameters (NP) and Floating-Point Operations per Second
(FLOPs) required. We also used Local Interpretable Model-Agnostic Explanations (LIME) to explain our model’s
predictions and feature extractions, providing a deeper understanding of the specific features that may indicate
the onset of Monkeypox.
1. Introduction

Monkeypox is an infectious disease caused by the Zoonotic Or-
thopoxvirus, which is closely related to both cowpox and smallpox be-
longs to the poxviridae family (a member of the genus Orthopoxvirus)
(McCollum & Damon, 2014). It is mostly transmitted by monkeys and
rodents; nevertheless, the human-to-human spread is also extremely
prevalent (Alakunle, Moens, Nchinda, & Okeke, 2020). The virus was
first identified in a monkey’s body in 1958 in a laboratory in Copen-
hagen, Denmark (Moore & Zahra, 2022). In 1970, the Democratic
Republic of the Congo recorded the first human case of Monkey-
pox during an intensified effort to eradicate smallpox (Nolen et al.,
2016). Monkeypox is usually exposed in the central and western part
of Africa and affects many individuals who reside near the tropical

∗ Corresponding author.
E-mail addresses: ahsan@ou.edu (M.M. Ahsan), muhammadramizuddin@gmail.com (M.R. Uddin), shahinbme.iu@gmail.com (M.S. Ali),

khairul.ice06@gmail.com (M.K. Islam), mithilafarjana@ou.edu (M. Farjana), nazmus.sakib@ou.edu (A.N. Sakib), momin.ce@diu.edu.bd (K.A. Momin),
shahanaakterluna123@gmail.com (S.A. Luna).

rainforests (Khodakevich, Ježek, & Messinger, 1988). The virus itself
contaminates when a person comes in close contact with another
infected person, animal, or material. It is transmitted through direct
body contact, animal bites, respiratory droplets, or mucous of the eye,
nose, or mouth (Nguyen, Ajisegiri, Costantino, Chughtai, & MacIntyre,
2021). Some early-stage symptoms of patients infected with Monkey-
pox include fever, body aches, and fatigue, wherein the long-term effect
has a red bump on the skin (CDC, 2022c).

Although Monkeypox is not significantly contagious compared to
Coronavirus Disease (COVID)-19 reported so far, the cases continue
to rise. There were only 50 Monkeypox cases in 1990 in West and
Central Africa (Doucleff, 2022). However, the cases rose to 5000 in
2020. Monkeypox is claimed to occur only in Africa in the past,
vailable online 5 January 2023
957-4174/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.eswa.2022.119483
Received 28 August 2022; Received in revised form 24 December 2022; Accepted 2
7 December 2022

https://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:ahsan@ou.edu
mailto:muhammadramizuddin@gmail.com
mailto:shahinbme.iu@gmail.com
mailto:khairul.ice06@gmail.com
mailto:mithilafarjana@ou.edu
mailto:nazmus.sakib@ou.edu
mailto:momin.ce@diu.edu.bd
mailto:shahanaakterluna123@gmail.com
https://doi.org/10.1016/j.eswa.2022.119483
https://doi.org/10.1016/j.eswa.2022.119483
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.119483&domain=pdf

Expert Systems With Applications 216 (2023) 119483M.M. Ahsan et al.

b
M
i
w
e

a
m
h
p
u

m
K
t
A
v

i
w
r

d
G
B
t
a
n
d

V
t
s
a
a
F
A .
H
t
i
w
h

d
p
1
w
t
2

wherein in 2022, the identification of the individuals infected by the
virus is reported by several other non-African countries in Europe and
the United States (WHO, 2022). According to the Centers for Disease
Control and Prevention (CDC), in 2022, Monkeypox cases are reported
by 94 nations, and the number of total patients is around 83,424 as
of December 21, 2022 (CDC, 2022a). As an effect, tremendous anxiety
and fear among the people are slowly growing, often reflected through
the individual’s opinion on social media (Bragazzi, Khamisy-Farah,
Tsigalou, Mahroum, & Converti, 2022).

Currently, there is no appropriate treatment for the Monkeypox
virus, according to the guidelines provided by the CDC (CDC, 2022b).
Nevertheless, to cope up with the urgent need, the CDC approved two
oral drugs, Brincidofovir and Tecovirimat, which have mainly been
used to treat the smallpox virus, have now been used to treat the Mon-
keypox virus (Adler et al., 2022). Vaccination is the ultimate solution
to the Monkeypox virus. Despite the availability of Food and Drug
Administration (FDA)-approved vaccines for the Monkeypox virus, they
have not yet been administered to humans in the United States. In
other countries, the vaccines for the smallpox virus are used to treat
the Monkeypox virus (Park, 2022).

The diagnosis procedure of the Monkeypox disease includes ini-
tial observations of the unusual characteristics of skin lesions present
and the existing history of exposure. However, the definitive way to
diagnose the virus is to test skin lesions using electron microscopy.
In addition, the Monkeypox virus can be confirmed using Polymerase
Chain Reaction (PCR) (ISU, 2022), which is currently being used exten-
sively in diagnosing the COVID-19 patients (Ahsan et al., 2021; Ahsan,
Alam, Trafalis and Huebner, 2020; Ahsan et al., 2020; Ahsan, Nazim,
Siddique and Huebner, 2021).

Transfer learning (TL) is an emerging branch of Machine Learning
(ML) domains with demonstrated potential in various medical imaging
and diagnosis fields. For instance, Dey et al. (2021) use deep Convolu-
tional Neural Network (CNN)-based approaches to detect the malaria
parasites in the blood cell images automatically (Dey, Nath, Biswas,
Nath, & Ganguly, 2021). Vijayalakshmi et al. (2020) proposed a combi-
nation of Visual Geometry Group(VGG)-19 and Support Vector Machine
(SVM)-based models to detect malaria from microscopic images. Their
proposed model accurately detected malaria-infected images 93.1% of
the time (Vijayalakshmi et al., 2020). Gao et al. (2018) proposed a
shallow-deep CNN-based model to improve the performance of the CNN
model on breast cancer diagnosis; their proposed methods achieved an
accuracy of 85% (Gao et al., 2018). Wang et al. (2020) constructed
a modified inception-based model using 453 Computed Tomography
(CT) scan images and attained an accuracy of 73.1% (Wang, Lin, &
Wong, 2020). Sandeep et al. (2022) proposed a low complex CNN to
detect skin diseases such as Psoriasis, Melanoma, Lupus, and Chick-
enpox. They show that using exiting VGGNet; it is possible to detect
skin disease 71% accurately using image analysis (Sandeep, Vishal,
Shamanth, & Chethan, 2022). In comparison, their proposed solution
demonstrates the best results by achieving an accuracy of around
78%. Velasco et al. (2019) proposed a smartphone-based skin disease
identification utilizing MobileNet and reported around 94.4% accuracy
in detecting patients with Chickenpox symptoms (Velasco et al., 2019).
Roy et al. (2019) utilized different segmentation approaches to detect
skin diseases such as acne, candidiasis, cellulitis, chickenpox, etc. (Roy
et al., 2019).

Over the years, DL has exhibited remarkable success and profoundly
influenced the conceptual foundations of ML and Artificial Intelligence
(AI). The application of DL-based approaches shows promising re-
sults in many industrial domains where it can overcome traditional
approaches, which are often costly, time-consuming, and unsuitable
for large-scale operations. For instance, Banan et al. (2020) applied
DL-based feature extraction to develop automated carp species identifi-
cations in the fishery industry. The proposed method achieved around
100% accuracy in identifying four carp species that do not require
2

s

expert opinion and can be performed in real-time (Banan, Nasiri, &
Taheri-Garavand, 2020).

Fan et al. (2020) introduced Karhunen-Loève (KL) decomposition,
the multilayer perceptron (MLP), and the Long Short-Term Memory
(LSTM) network, named KL-MLP-LSTM for estimating the temperature
distributions during the thermal process. That application can be ap-
plied to a parabolic distributed parameter with feedback input signals
in any field that deals with nonlinear systems. The author claimed
that the proposed method could be used in hydrology, reducing the
computational cost and, therefore, cheaper to run (Fan, Xu, Wu, Zheng,
& Tao, 2020).

Lin et al. (2022) proposed DL-based models to forecast the mean
monthly groundwater level using data from 33 different monitoring
piezometers. These models include three different layers of Gated Re-
current Unit (GRU) structures and a hybrid of Variational Mode Decom-
position (VMD)-GRU. The GRU2 × model is chosen as the best model
ased on performance evaluation metrics, with an R2 of 0.86, a Root
eans Square Error (RMSE) of 0.18 m, and a Total Grade (TG) of 6.21

n the validation stage. The hybrid VMD–GRU model also performed
ell, with an RMSE of 0.16 m, an R2 of 0.92, and a TG of 3.34 (Lin
t al., 2022).

Due to the over-fitting prone of DL to train data, the expressive
nd trainable hypothesis spaces are not always guaranteed true perfor-
ance of DL models. This leads to the study of generalization, which
elps to identify the model’s ability to adapt appropriately to new,
reviously unseen data drawn from the same distribution as the one
sed to create the model (Zhang, Ballas and Pineau, 2018).

In clinical diagnosis, generalization is required to validate the
odel’s compatibility and ability to use in the real world. For instance,
ermany et al. (2018) introduced explainable AI approaches to provide

heir model’s generalization and interpretation. The author tested their
I-based pneumonia detection models and used expert opinion to
alidate their findings (Kermany et al., 2018).

However, their study also addresses that rapid radio-logic image
nterpretation is not always possible due to the low-resource settings,
hich can be easily observed during the onset of COVID-19 and the

ecent outbreak of Monkeypox disease.
There have been very few studies that considered TL approaches for

etecting Monkeypox disease. For example, Abdelhamid et al.’s (2022)
oogleNet deep network classifies Monkeypox images using the Al-
iruni Earth Radius Optimization algorithm. The author claimed that
heir proposed models achieved around 98.8% accuracy. However, the
uthor did not use any model interpretation techniques, which are
ecessary to understand the behavior of the model’s predictions (Ab-
elhamid et al., 2022).

Sitaula and Shahi (2022) used different TL approaches such as
isual Geometry Groups (VGG)-M, Residual Network(ResNet), Incep-

ion, MobileNet, DenseNet, etc. Their preliminary computational re-
ult shows that the best performance was observed for the ensemble
pproaches instead of a single model. The author reported 87.13%
ccuracy, 85.44% precision, 85.47% recall, and an 85.40% F1-score.
or model interpretation, the author used Local Interpretable Model-
gnostic Explanations (LIME)-based approaches (Sitaula & Shahi, 2022)
owever, one of the main limitations of their proposed study is that

he author did not provide any explanation as to whether their model
s computationally expensive or not. Other than that, the experiment
as performed using a single dataset. Therefore, it is hard to interpret
ow their proposed model might perform on different datasets.

Akin et al. (2022) used CNN-based approaches to develop auxiliary
ecision support systems for Monkeypox disease diagnosis. Their pro-
osed models achieved around 98.25% accuracy, 96.55% sensitivity,
00% specificity, and a 98.25% F1-score. The author uses the Gradient-
eighted Class Activation Mapping (GradCAM) approach to identify

he potentially infected regions (Akin, Gurkan, Budak, & Karataş,
022). However, the higher accuracy was reported only for the training

et, and there were no indications of how their proposed model will

Expert Systems With Applications 216 (2023) 119483M.M. Ahsan et al.

T
c
S
d
o

3

n
s
e

3

r
c
C
b
e
A
d
f
a
t
a
u
w
d
g
s

perform on the testing set. The performance of the TL model is more
challenging on the test or unseen data compared to the training sample
itself. Moreover, the author applied those approaches only to binary
classification.

Celaya Padilla et al. (2022) used MiniGoogleNet-based TL ap-
proaches and acquired an accuracy of around 97.08%. The experiment
was carried out on a single dataset and only for binary classifica-
tion. Furthermore, no explainable AI approaches are used to provide
enough explanations of the proposed models’ predictions (Celaya-
Padilla, Galván-Tejada, Gamboa-Rosales, & Galván-Tejada, 2022).

Table 1 presents an overview of some of the previously published lit-
erature on Monkeypox disease diagnosis using CNN-based approaches.
From Table 1, it can be observed that most of the referenced literature
does not use model interpretation techniques; therefore, it is difficult
to understand whether their proposed model can identify the infected
regions or not. Additionally, TL approaches are often computation-
ally expensive, and therefore, on many occasions, it is challenging
to implement them in real-world applications for real-time diagnosis.
Since none of the studies provided any ideas regarding their models’
time computation issues, inferring how those proposed models might
perform with various datasets is also imperative.

Due to the limitations of the multiclass Monkeypox dataset, most
of the literature considered binary classification, and as a result, it
is hard to decode how their proposed approaches might perform on
multiclass classification. In addition, the performance of the TL-based
models depends on the optimizer used during the training phase. It is
not often surprising that the same architectural model with the same
optimizer may not demonstrate promising results both on binary and
multiclass classification (Mehrotra, Ansari, Agrawal, & Anand, 2020).
Therefore, a TL-based model also needs to be evaluated with various
optimizers on different datasets in order to understand the model’s
stability as well. Most of the previous research also did not provide
any clear explanation as to whether they had used generalization and
regularization approaches (Eid et al., 2022; Haque, Islam, Islam and
Ahsan, 2022; Islam & Shin, 2022; Sahin, Oztel, & Yolcu Oztel, 2022).
Therefore, it is also not clear if their proposed model is suffering from
overfitting issues or not, even though the reported accuracy is much
higher (Akin et al., 2022; Haque, Ahmed, Nila, Islam et al., 2022).

From the above discussion and from Table 1, it can be inferred
that very limited research has been conducted on Monkeypox disease
diagnosis, where the primary concern was to develop an optimized TL-
based diagnosis model. Therefore, there is a need to develop a model
that is computationally efficient, provide enough model interpretation,
consider generalization and regularization approaches to reduce over-
fitting, and finally test the model on various datasets with different
TL-based approaches.

2. Motivation

The conventional ML-based model is effective for small datasets
since it is more interpretable and computationally inexpensive (Ahsan,
Gupta et al., 2020). Nonetheless, the conventional ML-based model
performs poorly with the larger dataset (Brown, Curtis, & Goodwin,
2021). Deep Neural Network (DNN)-based techniques have already
outperformed classic ML algorithms such as Random Forest (RF), SVM,
and Logistic Regression for high-dimensional data, including several
data types (i.e., numerical, categorical, image data) (Ahsan, Alam et al.,
2020).

In our previous research we showed that it is feasible to develop AI-
based diagnostic models using TL-based approaches that are effective
on both small and large datasets, particularly during the early stages of
the COVID-19 pandemic. Further details on this research can be found
in peer-reviewed Refs. Ahsan, Ahad et al. (2021), Ahsan, Gupta et al.
(2020) and Ahsan, Nazim et al. (2021). Our previous study requires a
more thorough examination of model overfitting and time complexity
issues. Additionally, we should have assessed the complexity of the
3

model in terms of the number of parameters and floating operations.
Furthermore, we only utilized a single interpretable technique to eval-
uate the interpretation of the model’s predictions, which limits our
ability to verify the model’s interpretation with other agnostic methods
for further validation.

Considering this opportunity, this study presents the Generaliza-
tion and Regularization based Transfer Learning Approaches (GRA-
TLA) for binary and multiclass classification. The proposed architecture
has been implemented and evaluated on a range of CNN models,
including VGG16, ResNet50, ResNet101, Xception, EfficientNetB0, Ef-
ficientNetB7, Nas Neural Architecture Search (Nas)-NetLarge, Efficient-
NetV2M, ResNet152V2, and EfficientNetV2L.

At the time of writing, very limited research study has been dis-
covered that indicates the potential of ML approaches in diagnosing
Monkeypox disease by utilizing image processing techniques.

Our technical contribution is outlined below:

1. In order to develop a Monkeypox patient detection model us-
ing image data for binary and multiclass classification, trans-
fer learning (TL) approaches were introduced and tested on
ten CNN models (VGG16, ResNet50, ResNet101, Extreme In-
ception (Xception), EfficientNetB0, EfficientNetB7, NasNetLarge,
EfficientNetV2M, ResNet 152V2, and EfficientNetV2L) during
three separate studies at the preliminary stage;

2. Implemented generalization and regularization approach to pre-
vent overfitting and present optimal TL models;

3. Provided post-image analysis explanation using Local Inter-
pretable Model-Agnostic Explanations (LIME) to validate our
findings; and

4. Finally, the predicted outcome is visualized using Grad and
Grad++ to understand the proposed model’s observation and
learning procedure.

he remaining paper is structured as follows: Section 3 provides a
oncise explanation of the experiment’s methodology, followed by
ection 4’s results. Section 5 briefly discusses our study; Section 6
iscusses study limitations and scopes, and Section 7 concludes with
verall findings and further research directions.

. Methodology

This section describes the data collection and augmentation tech-
ique, the development of the proposed DL model, the experimental
etup, and the performance assessment matrices used to conduct the
xperiment.

.1. Data collection

Many experts in the medical domain believe that AI systems could
educe the burden on clinical diagnosis with the outbreaks by pro-
essing image data (Ahsan, Gupta et al., 2020). During the onset of
OVID-19, we observed that hospitals in China and Italy deployed AI-
ased and image processing-based interpreters to improve the hospitals’
fficiency in handling COVID-19 patients (Ahsan, Alam et al., 2020;
hsan, Nazim et al., 2021; Narin, Kaya, & Pamuk, 2021). However,
uring the preliminary stage of our experimentation, we could not
ind any publicly available Monkeypox dataset that hinders taking
dvantage of deploying an AI-based approach to diagnose and prevent
he Monkeypox disease efficiently. As an effect, many researchers
nd practitioners cannot contribute to detecting Monkeypox disease
sing advanced AI techniques. Considering these limitations in this
ork, we collected patients’ images with Monkeypox symptoms and the
ataset will be regularly updated with data contributed by numerous
lobal entities. We followed the following procedure to collect the data
amples.

Expert Systems With Applications 216 (2023) 119483M.M. Ahsan et al.

t
w
n
v
t

d
d

Table 1
Referenced literature that considered CNN-based approaches in Monkeypox disease diagnosis.

Reference Contributions Algorithms Dataset Data type Performance Interpretable Generalization/ Classification
evaluation model regularization

Sahin et al. (2022) Human
Monkeypox
classification

ResNet18, GoogleNet,
EfficientNetbo,
NasnetMobile,
ShuffleNet,
MobileNetv2

Monkeypox Skin
Lesion Dataset
(MSLD) (Ali et al.,
2022)

228 images MobileNetv2
(91.11%)

× × Binary

Sitaula and Shahi (2022) Compared
different
pre-trained DL
models

VGG, ResNet,
InceptionV3,
InceptionResNet,
Xception, MobileNet,
DenseNet, EfficientNet

Monkeypox-
dataset-2022
(Ahsan, Uddin, &
Luna, 2022)

1753 images Ensemble approach
(Precision: 0.85;
Recall: 0.85; F1-score:
0.85; and Accuracy:
87.13%)

LIME × Multiclass

Akin et al. (2022) Auxiliary
decision
support
systems for
hospitals

CNN Monkeypox Skin
Images Dataset
(MSID) (Bala,
2022)

572 images MobileNetV2
(Accuracy: 98.25%,
Sensitivity: 0.96,
Specificity: 1.0 and
F1-Score: 0.98)

GradCAM × Binary

Haque, Ahmed et al. (2022) Integrate deep
TL-based
methods, and
convolutional
block attention
module
(CBAM)

VGG19, Extreme
Inception (Xception),
DenseNet121,
EfficientNetB3, and
MobileNetV2

MSID (Bala, 2022) 572 images Xception-CBAM-Dense
(accuracy: 83.89%)

× × Binary

Islam and Shin (2022) Blockchain-
based data
acquisition
incorporated
with federated
learning

ResNet18 MSLD (Ali et al.,
2022)

3192 images Accuracy: 99.81%,
Precision: 0.9981,
Recall: 0.9981, and
F1-score:0.9981

× × Binary

Celaya-Padilla et al. (2022) Diagnostic
support for
Monkeypox
detection

MiniGoogleNet MSLD (Ali et al.,
2022)

2067 images Accuracy: 97.08%,
Loss function: 0.1442

× × Binary

Irmak, Aydin, and Yağanoğlu (2022) Monkeypox
skin lesion
detection

MobileNetV2, VGGNet MSLD (Ali et al.,
2022)

770 Images MobileNetV2
(Accuracy: 91.38%,
Precision: 0.90,
Recall: 0.86 and F1
score:0.88)

× × Multiclass

Alcalá-Rmz et al. (2023) Exanthematic
disease
diagnosis using
Monkeypox
infected images

MiniGoggleNet MSLD 2067 images Accuracy: 97%, Area
Under Curve (AUC):
0.76

× × Binary
1. As there is no established shared dataset available by the autho-
rized and designated hospital, clinic, or viable source, therefore,
to establish a preliminary dataset, the Monkeypox patient data
is collected from various sources such as websites, newspapers,
and online portals and publicly shared samples. To do so, the
google search engine is used for the initial searching procedure.

2. To develop the non-Monkeypox samples, a similar procedure is
used in collecting the data sample, which contains search terms
‘‘Monkeypox’’ and ‘‘Normal image’’ (i.e., photos of both hands,
legs, and faces).

3. To increase the data sample size, additional Normal images are
collected manually from various participants with their consent
who do not have any skin disease symptoms. A consent form is
used to get approval from all the participants.

Table 2 summarizes the characteristics of the datasets developed
hroughout this study. While TL and conventional ML can perform
ell with a small number of images, deep architecture such as DL
etworks, CNN, Recurrent Neural Network (RNN), and Generative Ad-
ersarial Networks (GAN) require a significant amount of data samples
o construct a model (Jiao, Deng, Luo, & Lu, 2020).

Although the dataset contains only 1830 samples, using the tra-
itional ML and TL approach, it can be applied to develop a disease
iagnosis model, as previously demonstrated by many studies during
4

Table 2
Characteristics of the dataset that has been collected in this study.

Dataset Total sample

Monkeypox 43
Normal 33
Monkeypox augmented 587
Normal augmented 1167

Total samples 1830

the onset of COVID-19 when the data samples were very limited. For
instance, some study uses only 40–100 samples and develop DL models
to classify COVID-19 patients (Ahsan, Gupta et al., 2020; Narin et al.,
2021). However, we expect that the data size will expand over time as
we will collect more data from various open-source (i.e., data available
to use without privacy concerns, data from journals, and online).

3.2. Data augmentation

‘‘Data augmentation’’ refers to approaches used in data analysis to
expand the quantity of data by adding slightly changed copies of either
existing data or newly created synthetic data derived from existing
data (Shah, 2022). It has become one of the most prevalent techniques
for augmenting the quantity of data required to train successful ML

Expert Systems With Applications 216 (2023) 119483M.M. Ahsan et al.
Fig. 1. Sample set of images from the developed dataset including (a) Monkeypox and (b) normal images.
Table 3
Data augmentation techniques used in this study.

Generator type Facility

Width shift Up to 2%
Rotation range Randomly 0◦–45◦

Zoom range 2%
Height shift Up to 2%
Shear range 2%
Fill mode Reflective
Horizontal flip True

models. It is crucial for fields where getting high-quality data can be
challenging, such as during the onset of Monkeypox. It functions as
a regularizer and assists in preventing overfitting during ML model
training (Sagar, 2019).

Keras image processing library such as ImageDataGenerator is used
to augment the dataset. ImageDataGenerator function provides various
options such as rotation, width and height shifting, and flipping. A
details facility provided by ImageDataGenerator can be found in Ten-
sorflow (2022). In this work following parameter is used to augment
the image data as shown in Table 3. The generator type and facility
types are selected randomly as suggested in Bhattiprolu (2020).

Algorithm 1 shows the pseudocode for data augmentation tech-
niques used in this study. For instance, up to 20 iterations, the data
sample is generated, and each iteration creates 16 new samples.

Algorithm 1 Pseudo-Code of Data Augmentation
Input: read original image samples x using OpenCV.
Resize image into 128 × 128.
Store resize image as an array inside a list.
Call Image data generator function
for 𝑛 ← 1 to 20 do

Batch size = 16
Save to directory
Save format as ‘‘png’’

end for
End of Pseudo-Code.

Fig. 1 displays sample images of our datasets developed throughout
this study.

Several alternatives can be used to increase the data size apart from
traditional data augmentation techniques. Other feasible approaches
include oversampling, GAN, and neural style transfer approaches. How-
ever, each approach has its own limitations. For instance, oversampling
approaches often create samples where the major sample overlaps with
minor samples (Hu & Li, 2013). GAN-based approaches require a lot of
data and are often hard to train (Sarmad, Lee, & Kim, 2019). On the
5

other hand, neural style is computationally much more expensive than
traditional data augmentation techniques (Jing et al., 2019). Therefore,
in this work, we have used traditional data augmentation techniques,
which help to increase the data size and make it feasible to adopt
without much complexity.

3.3. Convolutional neural network

Convolutional Neural Networks (CNN) are at the forefront of DL
research, with applications including image recognition, object de-
tection, and natural language processing. Though there are various
CNN variants available, most of the CNN models presented in medical
domains follow a basic structure that includes the Convolutional (Conv)
layer, Pooling layer, Dense layer, and Softmax layer (Ahsan & Siddique,
2022). Fig. 2 shows the conventional structure of CNN models used in
medical image analysis.

The Conv layer is utilized in the process of automatically extracting
high-dimensional features of the images. This process allows the use
of convolutional operation in order to filter the noise that is present
in the initial images (refer to Section 3.4). In deep CNN, each layer
uses multiple filters to extract valuable information from the images for
further classification. The Pooling layer is used to reduce the dimension
of the images, ultimately minimizing unnecessary parameters of the
features. Max pooling and Average pooling are two of the most popular
Pooling layers that are often used interchangeably with the Conv layer
and vary from one CNN to another CNN architecture. The dense layer
is applied so that the information from the Pooling layer may be trans-
formed into 1D vectors, which then helps with the classification of the
images in the Softmax layer. In the Softmax layer, the representative
vector obtained from the Pooling layer is reshaped and mapped into
a probability distribution so that it can be classified. This takes place
throughout the classification process. Backpropagation, often known
as BP, is eventually used to train the entirety of the CNN by com-
bining it with gradient-based optimization techniques (Kukkar et al.,
2022). After training, the CNN’s parameters are tweaked and improved
through optimization. An ideal CNN is obtained as a consequence of
this process, and it can subsequently be used for either classification or
prediction (Simonyan & Zisserman, 2014).

There are several alternative approaches to CNN that are commonly
used in the field of ML, such as:

• RNN: generally used to process sequential data, such as time
series or natural language (Wang, Li, Li, Sun, & Wang, 2022).

• Autoencoders: these are trained to reconstruct their inputs by
learning an efficient representation of the data (He et al., 2022).

• GAN: are used to generate new data samples similar to a given
training set (Goodfellow et al., 2020).

• LSTM networks: suitable for sequential data (Abbasimehr, Sha-
bani, & Yousefi, 2020).

Expert Systems With Applications 216 (2023) 119483M.M. Ahsan et al.
Fig. 2. The fundamental architecture of CNN for the classification of images.
• Attention mechanisms: allow a neural network to focus on certain
parts of its input when processing the data (Li, Xiao, Zhang, &
Fan, 2021).

However, in this work, we have used traditional CNN-based approaches
as they are less complicated and demonstrate better performance than
other approaches.

3.4. Feature extraction

In CNN architecture, feature extraction is one of the most important
parts (Varshni, Thakral, Agarwal, Nijhawan, & Mittal, 2019). Feature
extraction is a technique for reducing the dimension of vast amounts of
data to analyze and improve the efficiency of DL models. The CNN’s DL
model comprises numerous layers that recognize and extract features
from data. To obtain the input of local feature 𝑎1, the CNN heavily
relies on various weighted kernel 𝑊 𝑙 for each layer 𝑙 (Popescu & Sasu,
2014) :

𝑜𝑙 = 𝑊 𝑙𝑇 𝑎(𝑙−1) + 𝑏𝑙 (1)

where
𝑜𝑙 = Output feature map
𝑏𝑙 = Bias of the layer
The pooling layer is used to extract the maximum feature values as

follows:

𝑃 𝑙
𝑚 = 𝑚𝑎𝑥(𝑝,𝑞)𝑜

𝑙 (2)

where (𝑚, 𝑛) denotes the side of the window
𝑃 𝑙
𝑚 = pooling layer

The last layer is also known as linked layer. If we consider 𝑙 − 1 is
a linked layer where layer 𝑙 get the input 𝑝(𝑙−1)1 as a feature maps with
a size of 𝑝(𝑙−1)2 × 𝑝(𝑙−1)3 , then the final link layer could be define as:

𝐾 (𝑙)
𝑖 = 𝑓 (𝑍(𝑙)

𝑖) (3)

𝑍(𝑙)
𝑖 =

𝑝(𝑙−1)1
∑

𝑗=1

𝑝(𝑙−1)2
∑

𝑟=1

𝑝(𝑙−1)3
∑

𝑠=1
𝑤(𝑙)

𝑖,𝑗,𝑟,𝑠(𝐾
(𝑙−1)
𝑗)𝑟,𝑠 (4)

where 𝑤(𝑙)
𝑖,𝑗,𝑟,𝑠 specifies the weights used to describe the 𝑖th unit’s loca-

tion (𝑟, 𝑠) to the 𝑗th feature map in layer (𝑙 − 1).
6

3.5. Generalization

Let 𝑥 ∈ 𝑋 be an input and 𝑦 ∈ 𝑌 be a target. Let L be a loss
function. Let 𝑅[𝑓] be the expected risk of a function 𝑓 , 𝑓,𝑅[𝑓] =
𝐸(𝑥,𝑦∽𝑃 (𝑥,𝑦))[𝐿(𝑓 (𝑥), 𝑦)], where 𝑃 (𝑋, 𝑌) is the true distribution. Then,

Generalization gap = 𝑅[𝑓𝐴(𝑆)] − 𝑅𝑆[𝑓𝐴(𝑆)] where 𝑅[𝑓𝐴(𝑆)] =
Expected risk

𝑅𝑆[𝑓𝐴(𝑆)] = Empirical risk
We typically aim to minimize the non-computable expected risk

by reducing the computable empirical risk (Kawaguchi, Kaelbling, &
Bengio, 2017).

3.6. Regularization

Regularization is a supplementary technique that aims at making
the model generalize better, i.e., producing better results on the test
set. This may include various properties of the loss function, the loss
optimization algorithm, and other techniques. A classical regularizer is
weight decay (Zhang, Wang, Xu and Grosse, 2018):

𝑅(𝜔) = 𝜆1
2
∥ 𝜔 ∥22 (5)

where
𝑅 = Regularizer
𝜆 = Weight controlling
𝜔 = Weight
During the training phase, optimization techniques are required

to develop the optimal and best model (Sutskever, Martens, Dahl,
& Hinton, 2013). Therefore, we have evaluated three standard op-
timization algorithms: adaptive learning rate optimization algorithm
(Adam) (Kingma & Ba, 2014), stochastic gradient descent (Sgd) (Zhang
et al., 2018), and root-mean-square propagation (Rmsprop) (Dauphin,
De Vries, & Bengio, 2015).

Adam uses exponential moving averages to calculate the average of
the gradients and the square gradients, using the gradients obtained
from the current mini-batch (Zhang, 2018):

𝑚𝑡 = 𝛽1𝑚(𝑡 − 1) + (1 − 𝛽1)𝑔𝑡 (6)

𝑣𝑡 = 𝛽2𝑣(𝑡 − 1) + (1 − 𝛽2)𝑔2𝑡 (7)

where 𝑚 and 𝑣 are moving averages, 𝑔 is the gradient of current
mini-batch, and 𝛽 is the hyper-parameter of the algorithm.

Expert Systems With Applications 216 (2023) 119483M.M. Ahsan et al.

𝑊

w

3

C
a
p
g
a
t
a
a
P
i
i
&

3

c
a
t
o
w
t
l
1
l
f
2

3

T
d
m
c

Sgd is an iterative procedure that identifies the minimal function
to get local minima. In this procedure, the next point is determined
by a gradient at the present position, scaled, and then subtracted from
the current position. The process can be expressed as follows (Amari,
1993):

𝑃𝑛+1 = 𝑃𝑛 − 𝜂∇𝑓 (𝑃𝑛) (8)

where
𝜂 = Learning rate
𝑃𝑛+1 = Next point
𝑃𝑛 = Current point
The smaller the learning rate, the longer it takes for Sgd to converge

or reach maximum iteration without finding the optimal points (Liu,
Papailiopoulos, & Achlioptas, 2020).

In the DL model, Rmsprop is another optimization approach uti-
lized frequently. The algorithm is designed to maintain the moving
average of the squared gradient for each weight. The gradient is then
divided by the mean’s square root. The procedure can be stated as
follows (Dauphin et al., 2015):

𝐸[𝑔2]𝑡 = 𝛽𝐸[𝑔2]𝑡−1 + (1 − 𝛽)(𝛿𝐶
𝛿𝑊

)2 (9)

𝑡 = 𝑊𝑡−1 −
𝜂

√

𝐸[𝑔2]𝑡

𝛿𝐶
𝛿𝑊

(10)

here
𝐸[𝑔] = Moving average of squared gradients
𝛿𝐶
𝛿𝑊 = Gradient of the cost function with respect to the weight
𝜂 = Learning rate
𝛽 = Moving average parameter

.7. VGG16

VGG stands for Visual Geometry Group, which proposed two deep
NN models in their work. The models are 16- and 19-layer depth
nd are named VGG16 and VGG19, respectively. They trained their
roposed models using one million samples collected from the Ima-
eNet dataset. The VGG16 model initially takes 224 × 224 size images
s input. Images are initially passed through several Conv layers con-
aining filters ranging from 64 to 512. Max pool (2 × 2 filter) is used
s the pooling layer, whereas Rectified linear unit (ReLu) is used as
n activation function with a stride size of 2. In the dense layer, the
ooling layer is converted to a 1D vector. The final step in the process
nvolves applying the Softmax activation function to the output layer
n order to categorize samples into one of 1000 categories (Simonyan

Zisserman, 2014).

.8. ResNet50

ResNet50 is an implementation of the ResNet model. It has 48
onvolution layers, one layer each of max pooling, average pooling,
nd regular pooling. In the first layer of the architecture of ResNet50,
here is a convolution with a kernel size of 7 × 7 and 64 kernels, each
f which has a stride size of 2. Following this is a max-pooling layer
ith a stride size of 2. After that, nine convolutional layers with three

ypes of kernel filters, 64, 64, and 256 for each layer, are applied. The
ast nine levels each include 512, 512, and 2048 kernel filters. Then,
000 nodes are added to an FC layer, including an average pooling
ayer. The Softmax function is used as the output layer’s activation
unction (Akiba, Suzuki, & Fukuda, 2017; He, Zhang, Ren, & Sun,
016a).

.9. ResNet101

ResNet101’s model architecture is nearly comparable to ResNet50’s.
he network accepts the 224 × 224 resolution image size. The key
istinction between ResNet50 and ResNet101 is that the ResNet101
odel has an additional three-block layer in the fourth block, which
7

omprises 256, 256, and 1024 filters (He et al., 2016a).
3.10. Xception

The Xception model is based on the concept of the Inception model.
The model is split into three main components: entry, center, and
exit. The model is constructed with separable convolutional layers,
which substantially reduces the number of trainable parameters. On the
ImageNet dataset, the model achieved roughly 94.5% accuracy for the
top five object classifications (Alam et al., 2022; Nguyen et al., 2022).

3.11. EfficientNetB0

EfficientNetB0 is a deep CNN models that uses scaling methods
to scale all the dimensions uniformly. The base of EfficientNetB0 is
based on the inverted residual blocks of MobileNetV2. The model uses
squeeze and excitation methods inside the blocks and contains around
237 layers (Sharma, Vijayeendra, Gopakumar, Patni, & Bhat, 2022).
This model’s performance on the CIFAR-100 dataset is approximately
91.7%, making it one of the most common transfer learning techniques
employed by academics (Alam et al., 2022).

3.12. EfficientNetB7

EfficientNetB7 is one of the eight versions (0–7) of the EfficientNet
model that was created utilizing compound scaling methods. The three
key parameters of EfficientNet are alpha, beta, and gamma, and each
EfficientNet is constructed with different values for these parameters.
The model achieved approximately 84.3% accuracy on the ImageNet
dataset (Tan & Le, 2019).

3.13. NasNetLarge

NasNetlarge is a Google-introduced framework for identifying the
most effective CNN architecture for a given problem set via reinforce-
ment learning strategies. The goal was to find the optimal setting of
parameters (such as filter size, output channel, stride, number of layers,
etc.) within the available search space. Using the ImageNet database,
the model was roughly 82.5% accurate (Cordoş, Mihailă, Faragó, &
Hintea, 2021; Zhang & Davison, 2020).

3.14. EfficientNetV2M

The EfficientNetV2M model is an improved and more time-efficient
version of the initial EfficientNet model. The model can be subdivided
into its seven component sections, which are then layered with their
respective modules. On average, the model was about 85.3% accurate
across the ImageNet dataset (Tan & Le, 2021).

3.15. ResNet152V2

ResNet152v2 is the modified version of Residual Network (ResNet).
The model contains more than a thousand convolutional layers. ResNet
itself also contains a huge number of layers. The major difference
between the ResNetV2 and V1 models is that the V2 model uses
batch normalization before implementing the weight layer. On the
ImageNet dataset, the models achieved around 76.6% accuracy (top 1-
accuracy) (Beyer, Hénaff, Kolesnikov, Zhai, & Oord, 2020; He, Zhang,
Ren, & Sun, 2016b).

3.16. EfficientNetV2L

The EfficientNet model versions, including EfficientNetV2L, are all
built on the same basic CNN-based framework. This model uses a
smaller kernel size (3 × 3) than the original EfficientNet, which helps
minimize the model’s memory access cost and parameters. On Ima-
geNet, the model was accurate about 85.7% of the time (Tan & Le,

2021).

Expert Systems With Applications 216 (2023) 119483M.M. Ahsan et al.
Fig. 3. The framework of the proposed modified method.
Fig. 4. Preprocessing with zero padding proposed in this work.

3.17. Proposed model

The proposed modified CNN is developed by taking advantage of
TL approaches. Fig. 3 illustrates the two components that comprise
the proposed method, which is as follows: the preprocessing of the
Monkeypox images and the detection of Monkeypox patients based on
the proposed CNN.

Recently Graph Neural Networks (GNN) and Capsule Neural Net-
works (CapsNet) have been used as an alternative to CNN-based ap-
proaches. However, many researchers raised concerns about using GNN
or CapsNet for image-based model development (Peer, Stabinger, &
Rodriguez-Sanchez, 2021). They are still ongoing research, whereas
CNN-based approaches are specifically designed to perform better
on image-based data. One potential drawback of the GNN-based ap-
proach is excessive hardware dependencies, which makes this approach
much more computationally expensive than traditional CNN-based
8

approaches. GNN can only operate on a limited number of points.
In addition, GNN-based techniques are not resilient against noisy
data, which is an additional challenge when applying them to an
image-based dataset with complex data points (Anil, 2021).

3.17.1. Preprocessing of the Monkeypox images
All-Region of Interest (ROI) patches from the Monkeypox image

datasets are firstly preprocessed to the dimension of 224 × 224 × 3
using the zero-padding method. Fig. 4 shows the flowchart of prepro-
cessing procedure for the Monkeypox image.

In the meantime, grayscale images are read in and transformed
into RGB images using OpenCV functions so that the image can be
fitted to the input layer of the proposed CNN. Apart from reducing
the computational time complexity, no further preprocessing steps are
employed for the proposed models. Algorithm 2 shows the pseudocode
for the preprocessing of the proposed models.

Algorithm 2 Pseudo-Code of data preprocessing
Input: Monkeypox or Normal images
Output: Preprocessed resize image
for 𝑥 ← 1 to n do

Label= Split label from the sample and store as matrix
for 𝑖𝑚𝑎𝑔𝑒 ← 1 to x do

Call Preprocessimage
𝑅𝑖 ← Read image
𝑅𝑠 ← Resize image in to 224 × 224
𝐶𝑖 ← Convert image in to RGB
𝐷 ← Append image data

end for
𝐶𝑑 ← convert data into matrix
𝐶𝑙 ← Convert label into categories

end for
End of Pseudo-Code.

Expert Systems With Applications 216 (2023) 119483M.M. Ahsan et al.

l
l
l
F
l

l

𝐿

w
t
p

3

m
b
&
t
t
S
t

𝜉

w
t
𝑥
k
d
𝜋
s
o

3.17.2. Proposed CNN architecture
The core model consists of three essential elements: pre-trained

architecture, an updated layer, and a prediction class (partially adapted
from Ahsan, Gupta et al. (2020)). The ImageNet dataset is chosen
as the primary domain source for the pre-trained models. ImageNet
is one of the largest visual databases, with over 14 million images
categorized into one thousand classifications. Most existing state-of-
the-art algorithms are trained or evaluated on the ImageNet dataset.
In addition, a pre-trained model on such an extensive dataset enables
the model to capture essential features, which facilitates the adoption
of DL-based models in various areas (Studer et al., 2019).

The pre-trained architecture is used to identify high-dimensional
features and is further added to the updated, modified layer. Fig. 3
illustrates the proposed CNN models. As shown in Figure, after the
initial input layer (consider 224 × 224 images only), two convolutional
ayer (containing a 3 × 3 filter) is added, followed by a Max Pooling
ayer, followed by another two convolutional and one Max Pooling
ayer until it reaches to the modified layer sections. The modified layer
lattened the architecture, followed by the three dense and one dropout
ayers.

During our experiment, for the binary classification, the following
oss function is calculated:

= −(1
𝑁

) ×
𝑁
∑

𝑖=1
[𝑦𝑖 log(𝑝𝑖 log) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑝𝑖)] (11)

where 𝑁 is the number of samples, 𝑦𝑖 is the ground truth label for the
𝑖th sample (either 0 or 1), and 𝑝𝑖 is the predicted probability of the 𝑖th
sample belonging to the positive class.

Whereas for the multi-class classification, the following loss function
is considered:

𝐿 = −(1
𝑁

) ×
𝑁
∑

𝑖=1

𝐾
∑

𝑗=1
𝑦𝑖𝑗 × log(𝑝𝑖𝑗) (12)

here 𝑁 is the number of samples, 𝐾 is the number of classes, 𝑦𝑖𝑗 is
he ground truth label for the 𝑖th sample in the 𝑗th class, and 𝑝𝑖𝑗 is the
redicted probability of the 𝑖th sample belonging to the 𝑗th class.

.18. LIME as explainable AI

LIME is one of the powerful tools that can help to analyze the
odel’s true prediction and offer the opportunity to understand the

lackbox behind any CNN model’s final predictions (Ribeiro, Singh,
Guestrin, 2016a). According to Ribeiro et al. (2016), for an in-

erpretability model to be locally faithful, it must demonstrate how
he model behaves in the predicted sample’s neighborhood (Ribeiro,
ingh, & Guestrin, 2016b). Using LIME, the following formula is used
o develop the optimization model:

(𝑥) = argmin
𝑔∈𝐺

(𝑓, 𝑔, 𝜋𝑥) + 𝜔(𝑔) (13)

here 𝐺 is the instance of explanation models, 𝐿 is the loss function
hat ensures that 𝑔 is fitted to f in a local neighborhood around 𝑥.

is identified by the weighted kernel 𝜋𝑥, which is an exponential
ernel of the distance function. In this study, we have used Euclidian
istance, with a fixed bandwidth 𝜎, which can be further explained as
𝑥 = 𝑒𝑥𝑝(−|𝑥∗ − 𝑥|∕𝜎). Note that 𝛴(𝑔) is a penalty term, and in this
tudy, we have used 𝑙1 as the regularization loss, which helps to prevent
verfitting and reduces the complexity of 𝑔 (Ghalebikesabi, 2022)

LIME’s impressive performance in describing the complexities of
image classification has led to its extensive application in recent years
(Cian, van Gemert, & Lengyel, 2020). In the case of image classification,
LIME uses superpixel. When an image is over-segmented, superpixels
are produced. Superpixels stores much data and help to identify es-
sential features of the images during the primary prediction (Ahsan,
Gupta et al., 2020). Table 4 represents the LIME parameters that have
9

been used in this study to calculate the superpixel values. Different
Table 4
Parameter used to identify superpixels.

Function Value Optimal value

Maximum distance 100, 150, 200 200
Kernel size 2, 4, 6 4
Ratio 0.2, 0.3, 0.4 0.2

superpixel sizes can affect the accuracy and interpretability of the
LIME explanations. Larger superpixels are usually more accurate in
approximating the behavior of the model, as they cover a larger area
of the input space and are less affected by noise (Garreau & Mardaoui,
2021).

Therefore, the choice of superpixel size needs to be determined
based on the research objectives and goals. Therefore, in our research,
we used different superpixel values, and the best interpretable value
was used for the model’s final interpretations.

Note that the parameters are proven to be useful in many image
prediction analyses, as referred by many existing literatures (Ahsan,
Gupta et al., 2020; Pan et al., 2020).

Apart from LIME, other alternative model agnostic approaches
are available, and SHapley Additive exPlanations (SHAP) is one of
them Lundberg and Lee (2017). However, our choice of LIME over
SHAP was influenced by some of the following factors (Okte & Al-Qadi,
2021; Ribeiro et al., 2016a):

• LIME is generally easier to implement and can be applied to
any black-box model. At the same time, SHAP requires more
computational resources and may only be suitable for some large
or complex models.

• LIME explanations are often more concise and easier to under-
stand, as they only focus on the essential features for a given
prediction. SHAP explanations can be more detailed but more
challenging to interpret due to the more significant number of
features and combinations considered.

Ultimately, the choice between LIME and SHAP will depend on the
specific goals and constraints of the model. Both methods have their
own strengths and limitations, and it may be worthwhile to compare
their results and consider using both approaches in combination.

3.19. Experiment setup

The experiment was conducted using a traditional laptop within
the specification of Windows 10, 16 GB RAM, and Intel Core I7. The
overall experiment was run five times, and the final result is presented
by averaging all the five computational outcomes.

Table 5 provides a summary of the dataset utilized for this study.
In this work, we have considered three separate studies. In Studies
One and Two, binary classification was investigated, whereas multiclass
classification was examined in Study Three. For Studies One and Two,
we analyzed our developed ‘‘Monkeypox2022’’ dataset, whereas for
Study Three, data is obtained from the Kaggle dataset. We used 80%
of the sample data for training and the remaining 20% for testing the
model, which is standard in ML domains (Menzies, Greenwald, & Frank,
2006; Mohanty, Hughes, & Salathé, 2016; Stolfo, Fan, Lee, Prodromidis,
& Chan, 2000).

In this work, early stopping is used to avoid overfitting and data
leakage and to provide the actual model’s performance. It is one of the
most commonly used regularization techniques in DL. Early stopping
helps to evaluate the validation loss less frequently and saves the
trained model periodically (Corneanu, Madadi, Escalera, & Martinez,
2020).

https://www.kaggle.com/datasets/dipuiucse/monkeypoxskinimagedataset

Expert Systems With Applications 216 (2023) 119483M.M. Ahsan et al.

U
m

N

F
m

N

A

N

F
m

N

A

N

o
e
c

3

t
r
t

i
s
M
(
s
d

t
c

𝐴

P
p

𝑃

R
a

𝑅

S
t

𝑆

S
c

𝑆

F
T
p

𝐹

𝐹

𝐹

Table 5
Assignment of data employed to train and test the proposed modified deep transfer
learning models.

Study Label Train set Test set Total Classification

One Monkeypox 34 9 43
BinaryNormal 26 7 33

Total 60 16 76

Two Monkeypox 470 117 587
BinaryOthers 933 234 1167

Total 1403 351 1754

Three

Chickenpox 80 20 100

Multiclass
Measles 64 16 80
Monkeypox 211 53 264
Normal 172 43 215

Total 527 132 659

3.20. Hyperparameters

The batch size, number of epochs, and learning rate are initially
examined during parameter tuning to maximize the performance of the
proposed model. The following experiment parameters are selected at
the beginning of Study One (inspired by Ahsan, Ahad et al. (2021) and
Bergstra and Bengio (2012)):

Batch size = [5, 10, 15, 20]
Learning rate = [0.1, 0.01, 0.001]

Number of Epochs = [30, 35, 40, 45, 50]

sing the grid search method following parameters are identified as the
ost optimal ones:

Batch size = 10
Learning rate = 0.001
umber of Epochs = 30

or Study Two following parameters are used to develop the optimal
odel:

Batch size = [30, 40, 45, 50]
Learning rate = [0.1, 0.01, 0.001]
umber of Epochs = [30, 40, 50, 70]

nd the best result was achieved with:
Batch size = 45

Learning rate = 0.01
umber of Epochs = 30

or Study Three following parameters are used to develop the optimal
odel:

Batch size = [30, 40, 50]
Learning rate = [0.1, 0.01, 0.001]

umber of Epochs = [30, 40, 50]

nd the best result was achieved with:
Batch size = 40

Learning rate = 0.1
umber of Epochs = 30

Table 6 summarizes some of the combinations of multiple iterations
f hyperparameters that have been utilized to find the optimal param-
ters for three studies. The optimal combination of hyperparameters is
hosen once the highest average accuracy is achieved.

.21. Performance evaluation

The overall experimental outcome is measured and presented using
he most widely used statistical approaches such as accuracy, precision,
ecall, F1-score, sensitivity, and specificity. Due to the limited samples,
10

he overall statistical results are represented with a 95% confidence 𝐹
nterval followed by previously reported literature that also used a
mall dataset (Narin et al., 2021; Wang et al., 2020). In our dataset,
onkeypox might be classified as true positive (𝑇𝑝) or true negative

𝑇𝑛) if individuals have distinguished accurately, and it might be clas-
ified into false positive (𝐹𝑝) or false negative (𝐹𝑛) if misdiagnosed. The
esignated statistical metrics are explained in detail below.
Accuracy: The accuracy is the overall number of successfully iden-

ified instances across all cases. Using the following formulas, accuracy
an be determined:

𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑝 + 𝑇𝑛

𝑇𝑝 + 𝑇𝑛 + 𝐹𝑝 + 𝐹𝑛
(14)

recision: Precision is assessed as the ratio of accurately predicted
ositive outcomes out of all expected positive outcomes.

𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝
(15)

ecall: Recall refers to the ratio of relevant outcomes that the algorithm
ccurately identifies.

𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑛 + 𝐹𝑝
(16)

ensitivity: Sensitivity refers to the only accurate positive metric rela-
ive to the total number of occurrences and can be measured as follows:

𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑛
(17)

pecificity: It identifies the number of accurately identified and cal-
ulated true negatives and can be found using the following formula:

𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑛

𝑇𝑛 + 𝐹𝑝
(18)

1-score: The F1-score is the harmonic mean of precision and recall.
he maximum possible F score is 1, which indicates perfect recall and
recision.

1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × Precision × Recall
Precision + Recall (19)

Computational complexity: To understand the model’s complexity,
we have measured the Floating-Point Operations per Second (FLOPs).
FLOPs is the number of floating-point operations that a computing en-
tity can accomplish in one second. In a CNN model, the total number of
floating-point operations required for a single forward pass is measured
in FLOPs (Jin & Finkel, 2020). Lets consider a CNN models where

𝐹𝑝 = FLOPS
𝑐 = Convolutional layer
𝐹𝑐 = Fully connected layers
𝑃𝑙 = Pooling layers
𝐼𝑠 = Input size
𝐾𝑛 = Number of kernel
𝐾𝑠 = Kernel shape
𝑂𝑠 = Output Shape
𝐻 = Height of the image
𝐷 = Depth of the image
𝑤 = Width of the image
Then 𝐹𝑝 can be calculated as follows Hobbhahn (2021):

𝑝 = 𝑐 + 2 ×𝐾𝑛 ×𝐾𝑠 × 𝑂𝑠 (20)

𝑝 = 𝐹𝑐 + 2 × 𝐼𝑠 × 𝑂𝑠 (21)

= 𝑃 +𝐻 ×𝐷 ×𝑊 (22)
𝑝 𝑙

Expert Systems With Applications 216 (2023) 119483M.M. Ahsan et al.

𝑆

Table 6
Optimal parameter searching using grid search methods incorporated with various parameters. 𝑀𝑡𝑠–mean test score, 𝐵𝑠–batch size, 𝐸–epochs, 𝐿𝑟–learning rate.

Study one Study two Study three

𝑀𝑡𝑠 𝐵𝑠 𝐸 𝐿𝑟 𝑀𝑠 𝐵𝑠 𝐸 𝐿𝑟 𝑀𝑡𝑠 𝐵𝑠 𝐸 𝐿𝑟

0.7333 (0.0623) 5 30 0.001 0.6072 (0.0099) 30 30 0.001 0.6337 (0.0316) 30 30 0.001
0.7500 (0.0408) 5 30 0.01 0.5865 (0.0195) 30 30 0.01 0.5920 (0.0107) 30 30 0.01
0.7666 (0.0471) 5 30 0.1 0.6001 (0.0215) 30 30 0.1 0.6034 (0.0089) 30 30 0.1
0.7500 (0.0408) 5 45 0.01 0.5773 (0.0249) 30 40 0.001 0.6394 (0.0149) 40 30 0.1
0.7833 (0.0235) 5 50 0.001 0.5744 (0.0087) 30 40 0.01 0.6261 (0.0153) 50 50 0.001
0.8333 (0.0235) 10 30 0.001 0.5659 (0.0216) 30 40 0.1 0.6109 (0.0104) 50 50 0.01
0.7666 (0.0235) 10 30 0.01 0.6022 (0.0128) 30 50 0.001 0.6110 (0.0023) 50 50 0.1
0.7333 (0.0471) 15 30 0.1 0.6222 (0.0158) 45 30 0.01 0.5862 (0.0246) 30 50 0.1
Table 7
Model’s performance using Adam optimizer for Study One, along with confidence interval (𝛼 = 0.05). 𝐴𝑐–accuracy, 𝑃𝑟–precision, 𝑅𝑒–recall, 𝐹𝑠–F1-score, 𝑆𝑛–sensitivity,
𝑆𝑝–specificity.

Algorithm Training set Testing set

𝐴𝑐 𝑃𝑟 𝑅𝑒 𝐹𝑠 𝑆𝑛 𝑆𝑝 𝐴𝑐 𝑃𝑟 𝑅𝑒 𝐹𝑠 𝑆𝑛 𝑆𝑝

VGG16 98% ± 1.6 0.98 ± 0.016 0.98 ± 0.016 0.98 ± 0.016 1 0.96 ± 0.023 88% ± 7.59 0.9 ± 0.069 0.88 ± 0.076 0.87 ± 0.079 1 0.71 ± 0.118
ResNet50 57% ± 7.420 0.32 ± 0.093 0.57 ± 0.074 0.41 ± 0.087 1 0 56% ± 14.53 0.32 ± 0.181 0.56 ± 0.145 0.4 ± 0.170 1 0
ResNet101 57% ± 7.420 0.32 ± 0.093 0.57 ± 0.074 0.41 ± 0.087 1 0 56% ± 14.53 0.32 ± 0.181 0.56 ± 0.145 0.4 ± 0.170 1 0
Xception 67% ± 6.50 0.71 ± 0.061 0.67 ± 0.065 0.62 ± 0.070 0.94 ± 0.028 0.3077 ± 0.094 69% ± 12.2 0.8 ± 0.098 0.69 ± 0.122 0.63 ± 0.133 1 0.2857 ± 0.185
EfficientNetB0 57% ± 7.420 0.32 ± 0.093 0.57 ± 0.074 0.41 ± 0.087 1 0 56% ± 14.53 0.32 ± 0.181 0.56 ± 0.145 0.4 ± 0.170 1 0
EfficientNetB7 57% ± 7.420 0.32 ± 0.093 0.57 ± 0.074 0.41 ± 0.087 1 0 56% ± 14.53 0.32 ± 0.181 0.56 ± 0.145 0.4 ± 0.170 1 0
NasNetLarge 100% 1 1 1 1 1 88 ± 7.759 0.9 ± 0.069 0.88 ± 0.076 0.87 ± 0.079 1 0.7143 ± 0.117
EfficientNetV2M 57% ± 7.420 0.32 ± 0.093 0.57 ± 0.074 0.41 ± 0.087 1 0 56% ± 14.53 0.32 ± 0.181 0.56 ± 0.145 0.4 ± 0.170 1 0
ResNet152V2 100% 1 1 1 1 1 88% ± 7.59 0.9 ± 0.069 0.88 ± 0.076 0.87 ± 0.079 1 0.7143 ± 0.117
EfficientNetV2L 57% ± 7.420 0.32 ± 0.093 0.57 ± 0.074 0.41 ± 0.087 1 0 56% ± 14.53 0.32 ± 0.181 0.56 ± 0.145 0.4 ± 0.170 1 0
Table 8
Model’s performance using Sgd optimizer for Study One, along with confidence interval (𝛼 = 0.05). 𝐴𝑐–accuracy, 𝑃𝑟–precision, 𝑅𝑒–recall, 𝐹𝑠–F1-score, 𝑆𝑛–sensitivity,
𝑝–specificity.
Algorithm Training set Testing set

𝐴𝑐 𝑃𝑟 𝑅𝑒 𝐹𝑠 𝑆𝑛 𝑆𝑝 𝐴𝑐 𝑃𝑟 𝑅𝑒 𝐹𝑠 𝑆𝑛 𝑆𝑝

VGG16 98%± 1.6 0.98 ± 0.016 0.98 ± 0.016 0.98 ± 0.016 1 0.96 ± 0.023 88% ± 7.59 0.9 ± 0.069 0.88 ± 0.076 0.87 ± 0.079 1 0.71 ± 0.118
ResNet50 57% ± 7.420 0.32 ± 0.093 0.57 ± 0.074 0.41 ± 0.087 1 0 56% ± 14.53 0.32 ± 0.181 0.56 ± 0.145 0.4 ± 0.170 1 0
ResNet101 60% ± 7.157 0.79 ± 0.052 0.54 ± 0.077 0.44 ± 0.085 1 0.076 ± 0.109 56% ± 14.536 0.28 ± 0.186 0.5 ± 0.155 0.36 ± 0.175 1 0
Xception 100% 1 1 1 1 1 88% ± 7.59 0.90 ± 0.069 0.88 ± 0.076 0.87 ± 0.079 1 0.71 ± 0.118
EfficientNetB0 57% ± 7.420 0.32 ± 0.093 0.57 ± 0.074 0.41 ± 0.087 1 0 56% ± 14.53 0.32 ± 0.181 0.56 ± 0.145 0.4 ± 0.170 1 0
EfficientNetB7 57% ± 7.420 0.32 ± 0.093 0.57 ± 0.074 0.41 ± 0.087 1 0 56% ± 14.53 0.32 ± 0.181 0.56 ± 0.145 0.4 ± 0.170 1 0
NasNetLarge 100% 1 1 1 1 1 81% ± 9.56 0.81 ± 0.096 0.81 ± 0.096 0.81 ± 0.096 0.88 ± 0.076 0.7143 ± 0.117
EfficientNetV2M 57% ± 7.420 0.32 ± 0.093 0.57 ± 0.074 0.41 ± 0.087 1 0 56% ± 14.53 0.32 ± 0.181 0.56 ± 0.145 0.4 ± 0.170 1 0
ResNet152V2 100% 1 1 1 1 1 81%± 9.55 0.86 ± 0.082 0.81 ± 0.096 0.8 ± 0.098 1 0.5714 ± 0.143
EfficientNetV2L 50% ± 8.001 0.60 ± 0.072 0.50 ± 0.080 0.40 ± 0.088 0.21 ± 0.101 0.88 ± 0.039 50% ± 15.49 0.58 ± 0.142 0.5 ± 0.155 0.45 ± 0.163 0.22 ± 0.194 0.85 ± 0.085
4. Results

During this experiment, the statistical performance was measured in
terms of accuracy, precision, recall, F1-score, sensitivity, and specificity
for ten different DL—VGG16, ResNet50, ResNet101, Xception, Effi-
cientNetB0, EfficientNetB7, NasNetLarge, EfficientNetV2M, ResNet152
-V2, EfficientNetV2L—approaches in three separate studies with three
optimizers, ‘‘Adam’’, ‘‘Sgd’’, and ‘‘Rmsprop’’, using Eqs. (14)–(19)
for both the training and testing sets. Here, the best performance is
highlighted using bold font during each study.

4.1. Study one

The performance of ten DL-based models on the training and test
sets with Adam’s optimizer is summarized in Table 7. NasNetLarge and
ResNet152V2 displayed the best performance among all models, ob-
taining 100% accuracy on the training set and 88%±7.59% accuracy on
the testing set, as shown in the Table 7. The models trained with VGG16
had the second-best performance, achieving approximately 98% ± 1.6%
and 88% ± 7.59% accuracy on the training and testing sets, respec-
tively. Apart from these three models, the performance of the other
seven DL-based models with the Adam optimizer was unsatisfactory,
as shown in Table 7. The best experimental outcome for NasNet-
Large, ResNet152V2, and VGG16 remains constant for other statistical
measures such as precision, recall, F1-score, sensitivity, and specificity.

For Study One, Xception models trained with Sgd displayed the
best performance, while EfficientNetV2L demonstrated the worst per-
formance across all measures, as shown in Table 8.

Table 9 displays the performance of each model with the Rmsprop
11

optimizer on both the training and testing sets, as well as confidence
intervals of 95%. Across all measures, the Xception model shows the
highest performance, while ResNet50, EfficientNetB0, EfficientNetB7,
EfficientNetV2M, and EfficientNetV2L exhibit the worst performance.

4.2. Study two

The performance of ten DL-based models for the second dataset is
presented in Study Two for all three optimizers. Table 10 shows that the
Xception model performs better with the Adam optimizer compared to
other DL-based models used in this study. At the same time, ResNet50,
ResNet101, EfficientNetB0, EfficientNetB7, EfficientNetV2M, and Effi-
cientNetV2L displayed the worst performance considering all statistical
measurements.

For Study Two, Xception models trained with Sgd displayed the
best performance, while ResNet50, ResNet101, EfficientNetB0, Effi-
cientNetB7, EfficientNetV2M, and EfficientNetV2L demonstrated the
worst performance among all of the models, as shown in Table 11 (see
Table 12).

Table 13 displays the performance of each model with the Rmsprop
optimizer on both the training and testing sets, as well as confidence
intervals of 95%. Across all measures, the Xception model shows the
highest performance, while ResNet50, ResNet101 EfficientNetB0, Ef-
ficientNetB7, EfficientNetV2M, and EfficientNetV2L exhibit the worst
performance.

4.3. Study three

Table 14 displays the performance of each model with the Adam
optimizer on both the training and testing sets for Study Three. From

the table, it can be inferred that the best performance was observed for

Expert Systems With Applications 216 (2023) 119483M.M. Ahsan et al.

𝑆

Table 9
Model’s performance using Rmsprop optimizer for Study One, along with confidence interval (𝛼 = 0.05). 𝐴𝑐–accuracy, 𝑃𝑟–precision, 𝑅𝑒–recall, 𝐹𝑠–F1-score, 𝑆𝑛–sensitivity,
𝑆𝑝–specificity.

Algorithm Training set Testing set

𝐴𝑐 𝑃𝑟 𝑅𝑒 𝐹𝑠 𝑆𝑛 𝑆𝑝 𝐴𝑐 𝑃𝑟 𝑅𝑒 𝐹𝑠 𝑆𝑛 𝑆𝑝

VGG16 100% 1 1 1 1 1 88% ± 7.591 0.90 ± 0.069 0.88 ± 0.076 0.87 ± 0.079 1 0.7143 ± 0.117
ResNet50 57% ± 7.420 0.32 ± 0.093 0.57 ± 0.074 0.41 ± 0.087 1 0 56% ± 14.53 0.32 ± 0.181 0.56 ± 0.145 0.4 ± 0.170 1 0
ResNet101 62% ± 6.976 0.80 ± 0.051 0.56 ± 0.075 0.48 ± 0.082 1 0.12 ± 0.106 56% ± 14.536 0.28 ± 0.186 0.5 ± 0.155 0.36 ± 0.175 1 0
Xception 100% 1 1 1 1 1 94%± 5.36 0.94 ± 0.054 0.94 ± 0.054 0.94 ± 0.054 1 0.8571 ± 0.083
EfficientNetB0 57% ± 7.420 0.32 ± 0.093 0.57 ± 0.074 0.41 ± 0.087 1 0 56% ± 14.53 0.32 ± 0.181 0.56 ± 0.145 0.4 ± 0.170 1 0
EfficientNetB7 57% ± 7.420 0.32 ± 0.093 0.57 ± 0.074 0.41 ± 0.087 1 0 56% ± 14.53 0.32 ± 0.181 0.56 ± 0.145 0.4 ± 0.170 1 0
NasNetLarge 100% 1 1 1 1 1 81% ± 9.56 0.81 ± 0.096 0.81 ± 0.096 0.81 ± 0.096 0.88 ± 0.076 0.7143 ± 0.117
EfficientNetV2M 57% ± 7.420 0.32 ± 0.093 0.57 ± 0.074 0.41 ± 0.087 1 0 56% ± 14.53 0.32 ± 0.181 0.56 ± 0.145 0.4 ± 0.170 1 0
ResNet152V2 100% 1 1 1 1 1 81%± 9.55 0.86 ± 0.082 0.81 ± 0.096 0.8 ± 0.098 1 0.5714 ± 0.143
EfficientNetV2L 57% ± 7.420 0.32 ± 0.093 0.57 ± 0.074 0.41 ± 0.087 1 0 56% ± 14.53 0.32 ± 0.181 0.56 ± 0.145 0.4 ± 0.170 1 0
Table 10
Model’s performance using Adam optimizer for Study Two, along with confidence interval (𝛼 = 0.05). 𝐴𝑐–accuracy, 𝑃𝑟–precision, 𝑅𝑒–recall, 𝐹𝑠–F1-score, 𝑆𝑛–sensitivity,
𝑝–specificity.
Algorithm Training set Testing set

𝐴𝑐 𝑃𝑟 𝑅𝑒 𝐹𝑠 𝑆𝑛 𝑆𝑝 𝐴𝑐 𝑃𝑟 𝑅𝑒 𝐹𝑠 𝑆𝑛 𝑆𝑝

VGG16 84% ± 0.93 0.84 ± 0.009 0.84 ± 0.009 0.84 ± 0.009 0.73 ± 0.012 0.89 ± 0.008 76% ± 2.3 0.76 ± 0.023 0.76 ± 0.023 0.76 ± 0.023 0.55 ± 0.031 0.86 ± 0.018
ResNet50 67% ± 1.344 0.44 ± 0.018 0.67 ± 0.013 0.53 ± 0.016 0 1 67% ± 2.7 0.44 ± 0.035 0.67 ± 0.027 0.53 ± 0.032 0 1
ResNet101 67% ± 1.344 0.44 ± 0.018 0.67 ± 0.013 0.53 ± 0.016 0 1 67% ± 2.7 0.44 ± 0.035 0.67 ± 0.027 0.53 ± 0.032 0 1
Xception 87% ± 0.843 0.88 ± 0.008 0.87 ± 0.008 0.86 ± 0.009 0.65 ± 0.014 0.97 ± 0.004 80% ± 2.1 0.80 ± 0.021 0.80 ± 0.021 0.79 ± 0.021 0.53 ± 0.032 0.93 ± 0.012
EfficientNetB0 67% ± 1.344 0.44 ± 0.018 0.67 ± 0.013 0.53 ± 0.016 0 1 67% ± 2.7 0.44 ± 0.035 0.67 ± 0.027 0.53 ± 0.032 0 1
EfficientNetB7 67% ± 1.344 0.44 ± 0.018 0.67 ± 0.013 0.53 ± 0.016 0 1 67% ± 2.7 0.44 ± 0.035 0.67 ± 0.027 0.53 ± 0.032 0 1
NasNetLarge 100% 1 1 1 0.99 ± 0.002 0.99 ± 0.002 67% ± 2.7 0.78 ± 0.022 0.67 ± 0.027 0.55 ± 0.031 0.019 ± 0.046 1
EfficientNetV2M 67% ± 1.34 0.44 ± 0.018 0.67 ± 0.013 0.53 ± 0.016 0 1 67% ± 2.7 0.78 ± 0.022 0.67 ± 0.027 0.55 ± 0.031 0.019 ± 0.046 1
ResNet15V2 75% ± 1.17 0.82 ± 0.010 0.75 ± 0.012 0.7 ± 0.013 0.26 ± 0.020 0.99 ± 0.002 75% ± 2.3 0.82 ± 0.020 0.75 ± 0.023 0.7 ± 0.026 0.26 ± 0.040 0.99 ± 0.005
EfficientNetV2L 67% ± 1.34 0.44 ± 0.018 0.67 ± 0.013 0.53 ± 0.016 0 1 67% ± 2.7 0.44 ± 0.035 0.67 ± 0.027 0.53 ± 0.032 0 1
Table 11
Model’s performance using Sgd optimizer for Study Two, along with confidence interval (𝛼 = 0.05). 𝐴𝑐–accuracy, 𝑃𝑟–precision, 𝑅𝑒–recall, 𝐹𝑠–F1-score, 𝑆𝑛–sensitivity,
𝑆𝑝–specificity.

Algorithm Training set Testing set

𝐴𝑐 𝑃𝑟 𝑅𝑒 𝐹𝑠 𝑆𝑛 𝑆𝑝 𝐴𝑐 𝑃𝑟 𝑅𝑒 𝐹𝑠 𝑆𝑛 𝑆𝑝

VGG16 84% ± 0.93 0.84 ± 0.009 0.84 ± 0.009 0.84 ± 0.009 0.73 ± 0.012 0.89 ± 0.008 76% ± 2.292 0.76 ± 0.023 0.76 ± 0.023 0.76 ± 0.023 0.55 ± 0.031 0.86 ± 0.018
ResNet50 67% ± 1.344 0.44 ± 0.018 0.67 ± 0.013 0.53 ± 0.016 0 1 67% ± 2.7 0.44 ± 0.035 0.67 ± 0.027 0.53 ± 0.032 0 1
ResNet101 67% ± 1.344 0.44 ± 0.018 0.67 ± 0.013 0.53 ± 0.016 0 1 67% ± 2.7 0.44 ± 0.035 0.67 ± 0.027 0.53 ± 0.032 0 1
Xception 100% 1 1 1 1 1 80% ± 2.1 0.80 ± 0.021 0.80 ± 0.021 0.80 ± 0.021 0.63 ± 0.028 0.88 ± 0.016
EfficientNetB0 67% ± 1.34 0.44 ± 0.018 0.67 ± 0.013 0.53 ± 0.016 0 1 67% ± 2.68 0.33 ± 0.038 0.50 ± 0.033 0.4 ± 0.036 0 1
EfficientNetB7 67% ± 1.34 0.44 ± 0.018 0.67 ± 0.013 0.53 ± 0.016 0 1 67% ± 2.68 0.33 ± 0.038 0.50 ± 0.033 0.4 ± 0.036 0 1
NasNetLarge 100% 1 1 1 0.99 ± 0.002 0.99 ± 0.002 79% ± 2.10 0.79 ± 0.021 0.79 ± 0.021 0.79 ± 0.021 0.62 ± 0.029 0.88 ± 0.016
EfficientNetV2M 67% ± 1.34 0.44 ± 0.018 0.67 ± 0.013 0.53 ± 0.016 0 1 67% ± 2.68 0.33 ± 0.038 0.50 ± 0.033 0.4 ± 0.036 0 1
ResNet152V2 100% 1 1 1 0.99 ± 0.002 0.99 ± 0.002 79% ± 2.1 0.78 ± 0.022 0.79 ± 0.021 0.78 ± 0.022 0.55 ± 0.031 0.91 ± 0.014
EfficientNetV2L 67% ± 1.34 0.44 ± 0.018 0.67 ± 0.013 0.53 ± 0.016 0 1 67% ± 2.68 0.33 ± 0.038 0.50 ± 0.033 0.4 ± 0.036 0 1
Table 12
Model’s performance using Sgd optimizer for Study Two, along with confidence interval (𝛼 = 0.05). 𝐴𝑐–accuracy, 𝑃𝑟–precision, 𝑅𝑒–recall, 𝐹𝑠–F1-score, 𝑆𝑛–sensitivity,
𝑆𝑝–specificity.

Algorithm Trainset Testset

𝐴𝑐 𝑃𝑟 𝑅𝑒 𝐹𝑠 𝑆𝑛 𝑆𝑝 𝐴𝑐 𝑃𝑟 𝑅𝑒 𝐹𝑠 𝑆𝑛 𝑆𝑝

VGG16 84% ± 0.93 0.84 ± 0.009 0.84 ± 0.009 0.84 ± 0.009 0.73 ± 0.012 0.89 ± 0.008 76% ± 2.292 0.76 ± 0.023 0.76 ± 0.023 0.76 ± 0.023 0.55 ± 0.031 0.86 ± 0.018
ResNet50 67% ± 1.344 0.44 ± 0.018 0.67 ± 0.013 0.53 ± 0.016 0 1 67% ± 2.7 0.44 ± 0.035 0.67 ± 0.027 0.53 ± 0.032 0 1
ResNet101 67% ± 1.344 0.44 ± 0.018 0.67 ± 0.013 0.53 ± 0.016 0 1 67% ± 2.7 0.44 ± 0.035 0.67 ± 0.027 0.53 ± 0.032 0 1
Xception 100% 1 1 1 1 1 0.8 ± 0.021 80% ± 2.1 0.80 ± 0.021 0.80 ± 0.021 0.63 ± 0.028 0.88 ± 0.016
EfficientNetB0 67% ± 1.34 0.44 ± 0.018 0.67 ± 0.013 0.53 ± 0.016 0 1 67% ± 2.68 0.33 ± 0.038 0.50 ± 0.033 0.4 ± 0.036 0 1
EfficientNetB7 67% ± 1.34 0.44 ± 0.018 0.67 ± 0.013 0.53 ± 0.016 0 1 67% ± 2.68 0.33 ± 0.038 0.50 ± 0.033 0.4 ± 0.036 0 1
NasNetLarge 100% 1 1 1 0.99 ± 0.002 0.99 ± 0.002 0.79 ± 0.021 79% ± 2.1 0.79 ± 0.021 0.79 ± 0.021 0.62 ± 0.029 0.88 ± 0.016
EfficientNetV2M 67% ± 1.34 0.44 ± 0.018 0.67 ± 0.013 0.53 ± 0.016 0 1 67% ± 2.68 0.33 ± 0.038 0.50 ± 0.033 0.4 ± 0.036 0 1
ResNet152V2 100% 1 1 1 0.99 ± 0.002 0.99 ± 0.002 0.79 ± 0.021 0.78 ± 0.022 0.79 ± 0.021 0.78 ± 0.022 0.55 ± 0.031 0.91 ± 0.014
EfficientNetV2L 67% ± 1.34 0.44 ± 0.018 0.67 ± 0.013 0.53 ± 0.016 0 1 67% ± 2.68 0.33 ± 0.038 0.50 ± 0.033 0.4 ± 0.036 0 1
Table 13
Model’s performance using Rmsprop optimizer for Study Two, along with confidence interval (𝛼 = 0.05). 𝐴𝑐–accuracy, 𝑃𝑟–precision, 𝑅𝑒–recall, 𝐹𝑠–F1-score, 𝑆𝑛–sensitivity,
𝑆𝑝–specificity.

Algorithm Training set Testing set

𝐴𝑐 𝑃𝑟 𝑅𝑒 𝐹𝑠 𝑆𝑛 𝑆𝑝 𝐴𝑐 𝑃𝑟 𝑅𝑒 𝐹𝑠 𝑆𝑛 𝑆𝑝

VGG16 87% ± 0.844 0.87 ± 0.008 0.87 ± 0.008 0.87 ± 0.008 0.82 ± 0.010 0.89 ± 0.008 77% ± 2.244 0.77 ± 0.022 0.77 ± 0.022 0.77 ± 0.022 0.62 ± 0.029 0.85 ± 0.018
ResNet50 67% ± 1.344 0.44 ± 0.018 0.67 ± 0.013 0.53 ± 0.016 0 1 67% ± 2.7 0.44 ± 0.035 0.67 ± 0.027 0.53 ± 0.032 0 1
ResNet101 67% ± 1.344 0.44 ± 0.018 0.67 ± 0.013 0.53 ± 0.016 0 1 67% ± 2.7 0.44 ± 0.035 0.67 ± 0.027 0.53 ± 0.032 0 1
Xception 94% ± 0.57 .94 ± 0.006 .94 ± 0.006 .94 ± 0.006 0.95 ± 0.005 0.92 ± 0.007 75% ± 2.3 0.75 ± 0.023 0.75 ± 0.023 0.75 ± 0.023 0.58 ± 0.030 0.84 ± 0.019
EfficientNetB0 67% ± 1.344 0.44 ± 0.018 0.67 ± 0.013 0.53 ± 0.016 0 1 67% ± 2.7 0.44 ± 0.035 0.67 ± 0.027 0.53 ± 0.032 0 1
EfficientNetB7 67% ± 1.344 0.44 ± 0.018 0.67 ± 0.013 0.53 ± 0.016 0 1 67% ± 2.7 0.44 ± 0.035 0.67 ± 0.027 0.53 ± 0.032 0 1
NasNetLarge 91% ± 0.7 0.91 ± 0.007 0.91 ± 0.007 0.91 ± 0.007 0.93 ± 0.006 0.9 ± 0.007 75% ± 2.3 0.75 ± 0.023 0.75 ± 0.023 0.75 ± 0.023 0.58 ± 0.030 0.84 ± 0.019
EfficientNetV2M 67% ± 1.3 0.44 ± 0.018 0.67 ± 0.013 0.53 ± 0.016 0 1 75% ± 2.3 0.75 ± 0.023 0.75 ± 0.023 0.75 ± 0.023 0.58 ± 0.030 0.84 ± 0.019
ResNet152V2 90% ± 0.7 0.90 ± 0.007 0.9 ± 0.007 0.9 ± 0.007 0.93 ± 0.006 0.88 ± 0.008 77% ± 2.2 0.78 ± 0.022 0.77 ± 0.022 0.78 ± 0.022 0.73 ± 0.024 0.79 ± 0.021
EfficientNetV2L 90% ± 0.7 0.91 ± 0.007 0.9 ± 0.007 0.9 ± 0.007 0.93 ± 0.006 0.88 ± 0.008 67% ± 2.7 0.44 ± 0.035 0.67 ± 0.027 0.53 ± 0.032 0 1
ResNet101, while the worst performance was found for ResNet152V2.
Note that even though some of the DL models, such as VGG16 and
ResNet50, demonstrate almost perfect accuracy on the training set, that
performance is significantly lower on the testing set. In contrast, the
performance of ResNet101 remains consistent for both the training and
testing sets.
12
Table 15 presents the overall accuracy, precision, recall, F1 score,
sensitivity, and specificity scores derived from the preliminary compu-
tations performed on the train and test set for ten different models using
Sgd optimizer. Across all measures, the EfficientNetB7 and Efficient-
NetV2M models show the best performance. while ResNet50, Xception,
NasNetLarge, and ResNet152V2 exhibit the worst performance.

Expert Systems With Applications 216 (2023) 119483M.M. Ahsan et al.

𝑆

𝑆

R
s
m

a
t
s
d
h
w
m

f
t
t
t
m

f
t
t
7
s

c
r

Table 14
Model’s performance using Adam optimizer for Study Three, along with confidence interval (𝛼 = 0.05). 𝐴𝑐–accuracy, 𝑃𝑟–precision, 𝑅𝑒–recall, 𝐹𝑠–F1-score, 𝑆𝑛–sensitivity,
𝑝–specificity.
Algorithm Training set Testing set

𝐴𝑐 𝑃𝑟 𝑅𝑒 𝐹𝑠 𝑆𝑛 𝑆𝑝 𝐴𝑐 𝑃𝑟 𝑅𝑒 𝐹𝑠 𝑆𝑛 𝑆𝑝

VGG16 100% 1 1 1 0.99 ± 0.004 0.99 ± 0.004 83% ± 3.1 0.82 ± 0.032 0.83 ± 0.031 0.81 ± 0.033 0.92 ± 0.022 0.73 ± 0.040
ResNet50 100% 1 1 1 1 .99 ± 0.004 86% ± 2.9 0.86 ± 0.029 0.86 ± 0.029 0.84 ± 0.031 0.94 ± 0.019 0.77 ± 0.037
ResNet101 99% ± 0.381 0.99 ± 0.004 0.99 ± 0.004 0.99 ± 0.004 0.99 ± 0.004 0.98 ± 0.005 99% ± 0.8 0.99 ± 0.008 0.99 ± 0.008 0.99 ± 0.008 0.99 ± 0.008 0.98 ± 0.011
Xception 40% ± 2.95 0.49 ± 0.027 0.4 ± 0.030 0.23 ± 0.034 0.75 ± 0.019 0.25 ± 0.033 40% ± 5.9 0.16 ± 0.070 0.4 ± 0.059 0.23 ± 0.067 0.75 ± 0.038 0.25 ± 0.066
EfficientNetB0 100% 1 1 1 0.99 ± 0.004 0.99 ± 0.004 86% ± 2.9 0.87 ± 0.028 0.86 ± 0.029 0.86 ± 0.029 0.95 ± 0.017 0.8 ± 0.034
EfficientNetB7 100% 1 1 1 0.99 ± 0.004 0.99 ± 0.004 86% ± 2.9 0.87 ± 0.028 0.86 ± 0.029 0.86 ± 0.029 0.95 ± 0.017 0.8 ± 0.034
NASNetLarge 61% ± 2.38 0.46 ± 0.028 0.61 ± 0.024 0.52 ± 0.026 0.84 ± 0.015 0.42 ± 0.029 58% ± 4.9 0.43 ± 0.058 0.58 ± 0.049 0.49 ± 0.054 0.8 ± 0.034 0.39 ± 0.060
EfficientNetV2M 100% 1 1 1 1 1 86% ± 2.9 0.87 ± 0.028 0.86 ± 0.029 0.87 ± 0.028 0.95 ± 0.017 0.82 ± 0.032
ResNet152V2 40% ± 2.95 0.16 ± 0.035 0.4 ± 0.030 0.23 ± 0.034 0.75 ± 0.019 0.25 ± 0.033 40% ± 5.9 0.16 ± 0.070 0.4 ± 0.059 0.23 ± 0.067 0.75 ± 0.038 0.25 ± 0.066
EfficientNetV2L 100% 1 1 1 1 1 85% ± 0.030 0.85 ± 0.030 0.85 ± 0.030 0.85 ± 0.030 0.95 ± 0.017 0.82 ± 0.032
Table 15
Model’s performance using Sgd optimizer for Study Three, along with confidence interval (𝛼 = 0.05). 𝐴𝑐–accuracy, 𝑃𝑟–precision, 𝑅𝑒–recall, 𝐹𝑠–F1-score, 𝑆𝑛–sensitivity,
𝑝–specificity.
Algorithm Training set Testing set

𝐴𝑐 𝑃𝑟 𝑅𝑒 𝐹𝑠 𝑆𝑛 𝑆𝑝 𝐴𝑐 𝑃𝑟 𝑅𝑒 𝐹𝑠 𝑆𝑛 𝑆𝑝

VGG16 96% ± 0.8 0.96 ± 0.008 0.96 ± 0.008 0.96 ± 0.008 0.98 ± 0.005 0.94 ± 0.009 84% ± 3.10 0.85 ± 0.030 0.84 ± 0.031 0.83 ± 0.031 0.94 ± 0.019 0.75 ± 0.038
ResNet50 40% ± 3.0 0.16 ± 0.035 0.4 ± 0.030 0.23 ± 0.034 0.75 ± 0.019 0.25 ± 0.033 86% ± 2.9 0.85 ± 0.030 0.86 ± 0.029 0.85 ± 0.030 0.94 ± 0.019 0.78 ± 0.036
ResNet101 100% 1 1 1 0.99 ± 0.004 0.99 ± 0.004 84% ± 3.1 0.83 ± 0.031 0.84 ± 0.031 0.83 ± 0.031 0.94 ± 0.019 0.76 ± 0.037
Xception 40% ± 3.0 0.16 ± 0.035 0.4 ± 0.030 0.23 ± 0.034 0.75 ± 0.019 0.25 ± 0.033 40% ± 5.9 0.16 ± 0.070 0.4 ± 0.059 0.23 ± 0.067 0.75 ± 0.038 0.25 ± 0.066
EfficientNetB0 100% 1 1 1 1 1 88% ± 2.6 0.88 ± 0.026 0.88 ± 0.026 0.88 ± 0.026 0.95 ± 0.017 0.825 ± 0.032
EfficientNetB7 100% 1 1 1 1 1 89% ± 2.5 0.88 ± 0.026 0.89 ± 0.025 0.88 ± 0.026 0.95 ± 0.017 0.85 ± 0.030
NASNetLarge 40% ± 0.030 0.28 ± 0.032 0.4 ± 0.030 0.24 ± 0.033 0.75 ± 0.019 0.25 ± 0.033 40% ± 5.9 0.16 ± 0.070 0.4 ± 0.059 0.23 ± 0.067 0.75 ± 0.038 0.25 ± 0.066
EfficientNetV2M 100% 1 1 1 1 1 89% ± 2.5 0.88 ± 0.026 0.89 ± 0.025 0.88 ± 0.026 0.95 ± 0.017 0.85 ± 0.030
ResNet152V2 40% ± 3.0 0.16 ± 0.035 0.4 ± 0.030 0.23 ± 0.034 0.75 ± 0.019 0.25 ± 0.033 40% ± 5.9 0.16 ± 0.070 0.4 ± 0.059 0.23 ± 0.067 0.75 ± 0.038 0.25 ± 0.066
EfficientNetV2L 100% 1 1 1 0.99 ± 0.004 0.99 ± 0.004 86% ± 2.90 0.86 ± 0.029 0.86 ± 0.029 0.86 ± 0.029 0.94 ± 0.019 0.83 ± 0.031
Table 16
Model’s performance using Rmsprop optimizer for Study Three, along with confidence interval (𝛼 = 0.05). 𝐴𝑐–accuracy, 𝑃𝑟–precision, 𝑅𝑒–recall, 𝐹𝑠–F1-score, 𝑆𝑛–sensitivity,
𝑆𝑝–specificity.

Algorithm Training set Testing set

𝐴𝑐 𝑃𝑟 𝑅𝑒 𝐹𝑠 𝑆𝑛 𝑆𝑝 𝐴𝑐 𝑃𝑟 𝑅𝑒 𝐹𝑠 𝑆𝑛 𝑆𝑝

VGG16 100% 1 1 1 0.99 ± 0.004 0.99 ± 0.004 83% ± 3.1 0.83 ± 0.031 0.83 ± 0.031 0.82 ± 0.032 0.93 ± 0.020 0.73 ± 0.040
ResNet50 100% 1 1 1 0.99 ± 0.004 0.99 ± 0.004 86% ± 2.9 0.85 ± 0.030 0.86 ± 0.029 0.84 ± 0.031 0.94 ± 0.019 0.78 ± 0.036
ResNet101 99% ± 0.381 0.99 ± 0.004 0.99 ± 0.004 0.99 ± 0.004 0.99 ± 0.004 0.98 ± 0.005 83% ± 3.1 0.82 ± 0.032 0.83 ± 0.031 0.82 ± 0.032 0.94 ± 0.019 0.74 ± 0.039
Xception 52% ± 2.6 0.49 ± 0.027 0.52 ± 0.026 0.42 ± 0.029 0.79 ± 0.017 0.34 ± 0.031 52% ± 5.30 0.51 ± 0.053 0.52 ± 0.053 0.42 ± 0.058 0.79 ± 0.035 0.33 ± 0.062
EfficientNetB0 100% 1 1 1 0.97 ± 0.007 0.97 ± 0.007 89% ± 2.50 0.88 ± 0.026 0.89 ± 0.025 0.88 ± 0.026 0.96 ± 0.015 0.83 ± 0.031
EfficientNetB7 99% ± 0.381 0.99 ± 0.004 0.99 ± 0.004 0.99 ± 0.004 0.99 ± 0.004 0.98 ± 0.005 86% ± 2.9 0.88 ± 0.026 0.86 ± 0.029 0.86 ± 0.029 0.95 ± 0.017 0.86 ± 0.029
NasNetLarge 62% ± 2.4 0.59 ± 0.024 0.62 ± 0.024 0.56 ± 0.025 0.86 ± 0.014 0.45 ± 0.028 61% ± 4.8 0.6 ± 0.048 0.61 ± 0.048 0.53 ± 0.052 0.84 ± 0.031 0.41 ± 0.059
EfficientNetV2M 100% 1 1 1 1 1 86% ± 2.9 0.86 ± 0.029 0.86 ± 0.029 0.86 ± 0.029 0.94 ± 0.019 0.83 ± 0.03
ResNet15V2 40% ± 3.0 0.16 ± 0.035 0.4 ± 0.030 0.23 ± 0.034 0.75 ± 0.019 0.25 ± 0.033 40% ± 5.9 0.16 ± 0.070 0.4 ± 0.059 0.23 ± 0.067 0.75 ± 0.038 0.25 ± 0.066
EfficientNetV2L 99% ± 0.4 0.99 ± 0.004 0.99 ± 0.004 0.99 ± 0.004 0.99 ± 0.004 0.98 ± 0.005 85% ± 3.0 0.84 ± 0.031 0.85 ± 0.030 0.84 ± 0.031 0.94 ± 0.019 0.81 ± 0.033
In Table 16, for Study Three, EfficientNetB0 models trained with
msprop displayed the best performance, while ResNet152V2 demon-
trated the worst performance among all of the models across all
easures.

Fig. 5 depicts some of the DL model’s performance on the training
nd testing sets during each Study. Based on Fig. 5, it can be inferred
hat the Xception model with Sgd, the ResNet152V2 model with Rm-
prop, and the EfficientNetB7 model with Adam all performed well and
id not show signs of overfitting during the training phase. On the other
and, the EfficientNetV2L model with Sgd, the EfficientNetV2M model
ith Rmsprop, and the NasNetLarge model with Adam all showed
inimal performance.

Fig. 6 presents some of the DL model’s performance using a con-
usion matrix for the train set. From the figure, it can be observed
hat in Study One, VGG16 trained with Adam misclassified only one
rain sample. In Study Two, Xception trained with Sgd classified all of
he training samples correctly, whereas in Study Three, EfficientNetB0
isclassified one sample.

Fig. 7 presents some of the DL model’s performance using a con-
usion matrix for the training set. From the figure, it can be observed
hat in Study One, VGG16 trained with Adam misclassified only one
rain sample. In Study Two, Xception trained with Sgd misclassified
0 samples, whereas in Study Three, EfficientNetB0 misclassified 15
ample.

In Fig. 8, the Area Under the Receiver Operating Characteristic
urve(AUC-ROC) is plotted as a curve on a graph with the true positive
ate (TPR) on the 𝑦-axis and the false positive rate (FPR) on the 𝑥-

axis. AUC-ROC ranges from 0 to 1, with higher values indicating better
13

performance. In Fig. 8(a) and (b), the AUC-ROC curve is plotted for
binary classification, whereas in Fig. 8(c), the AUC-ROC curve is plotted
for multiclass classification.

4.4. Missclassification

The total number of false positives and negatives predicted by each
DL-based model for both the training set and testing set is measured
in Table 17. Here, the algorithm with the lowest misclassification
rate is emphasized in bold red fonts and is the primary concern that
will assist in determining the true potential of the DL-based models’
performance across three independent studies. In Study One, Xception
models trained with Rmsprop performed the best (as shown in the
table), incorrectly identifying a total of merely one test sample. In
Study Two, Xception models trained with Sgd demonstrated promising
performance by misclassifying seventy test samples, whereas in Study
Three, EfficeintNetV2M misclassified fifteen test samples and displayed
the best outcomes once trained with the Sgd optimizer.

4.5. Complexity of the model

In Table 18, we measured various models’ complexity using FLOps.
The table shows that DL models with our proposed architecture reduced
the number of parameters (NP) and the number of FLOPs. For instance,
with our proposed TL approaches, we reduced the VGG16 model’s
NP almost nine times, and the FLOPs were reduced up to 200M. The
optimal FLOPs were calculated for NasNetLarge models, where the

FLOPs value was reduced up to 86%.

Expert Systems With Applications 216 (2023) 119483

14

M.M. Ahsan et al.

Fig. 5. Accuracy and loss visualization per each epoch of some DL-based models used in this study. For Study One, (a) the Xception trained with Sgd; for Study Two, (b)
ResNet152V2 trained with Rmsprop; and (c) EfficientNetB7 trained with Adam for Study Three shows no overfitting. On the other hand, (d) EfficientNetV2L trained with Sgd
during Study One, (e) EfficientNetV2M trained with Rmsprop during Study Two, and (f) NasNetLarge trained with Adam shows minimal performance for Study Three.

Fig. 6. Confusion matrices of some of the DL-based models considering the training set: in Study One, the performance was observed for (a) VGG16 using Adam; in Study Two,
(b) Xception using Sgd; and in Study Three, (c) EfficientNetB0 using the Rmsprop optimizer. 𝑀𝑥–Monkeypox, 𝐶𝑥–Chickenpox, 𝑀𝑠–Measles, 𝑁𝑙–Normal.

Fig. 7. Confusion matrices of some of the DL-based models considering the testing set: in Study One, the performance was observed for (a) VGG16 using Adam; in Study Two,
(b) Xception using Sgd; and in Study Three, (c) EfficientNetB0 using the Rmsprop optimizer. 𝐶𝑥–Chickenpox, 𝑀𝑠–Measles, 𝑁𝑙–Normal.

Expert Systems With Applications 216 (2023) 119483M.M. Ahsan et al.
Fig. 8. AUC-ROC score of some of the DL-based models: in Study One, the performance was observed for (a) VGG16 using Adam; in Study Two, (b) Xception using Sgd; and in
Study Three, (c) EfficientNetB0 using the Rmsprop optimizer. TPR—true positive rate, FPR—false positive rate.
Table 17
Misclassification of different transfer learning models used in three separate study. 𝑇𝑟–train set, 𝑇𝑠–test set.

Study Optimizer Misclassification = False positive (𝐹𝑝) + False negative (𝐹𝑛)

Vgg16 ResNet50 ResNet101 Xception EfficientNetB0 EfficientNetB7 NASNetLarge EfficientNetV2M ResNet152V2 EfficientNetV2L

𝑇𝑟 𝑇𝑠 𝑇𝑟 𝑇𝑠 𝑇𝑟 𝑇𝑠 𝑇𝑟 𝑇𝑠 𝑇𝑟 𝑇𝑠 𝑇𝑟 𝑇𝑠 𝑇𝑟 𝑇𝑠 𝑇𝑟 𝑇𝑠 𝑇𝑟 𝑇𝑠 𝑇𝑟 𝑇𝑠

One
Adam 1 1 26 7 26 7 20 5 26 7 26 7 0 2 0 7 0 2 26 7
Sgd 1 2 26 7 26 7 0 2 26 7 26 7 0 3 26 7 0 3 30 8
Rmsprop 0 2 26 7 26 7 0 1 26 7 26 7 0 3 26 7 0 32 6 7

Two
Adam 224 84 470 117 470 117 186 70 470 117 470 117 461 115 470 117 345 101 470 117
Sgd 224 84 470 117 470 117 0 70 470 117 470 117 4 73 470 117 6 74 470 117
Rmsprop 182 80 470 117 470 117 70 86 470 117 470 117 123 81 470 117 140 79 470 117

Three
Adam 2 23 1 18 5 21 315 79 0 18 2 19 204 55 0 18 316 79 0 20
Sgd 20 21 1 19 1 21 316 79 0 16 0 15 314 79 0 15 316 79 1 18
Rmsprop 2 22 1 19 4 22 253 63 1 15 4 19 198 52 0 18 316 80 5 20
Table 18
Computational complexity of the transfer learning model used in this study. FLOPS–floating-point operations per second, NP–number of
parameters.

Algorithm Regular parameters Optimized parameters

FLOPS (Millions) NP FLOPS (Millions) NP

VGG16 30 960M 138M 30 713.53M 15M
ResNet50 7751M 23.58M 7753M 24.76M
ResNet101 15 195M 42.65M 15 196.89M 43.83M
Xceptions 16 773.72M 22.91M 9136.42M 22.04M
EfficientNetB0 803.20M 5.33M 802M 4.78M
EfficientNetB7 76 868.53M 66.65M 10 528.44M 65.57M
NasNetLarge 47 801.95 M 88.94M 20 667.92M 87.23M
EfficientNetV2M 49 574.083M 54.43M 10 813.16M 53.88M
ResNet15V2 21 879.78 904M 60.38M 21 878.02M 59.51M
EficientNetV2L 11 2877.75M 119.02M 24 619.02M 118.48M
In Table 19, we have outlined the overall process time for each
module deployed during the course of this study. An early stop mech-
anism is utilized during training to prevent data leaks and overfitting
issues. The patience level was set to 3, indicating that if the validation
loss performance does not change after three iterations, the model
will halt training to prevent further overfitting and computational
difficulties. We compute process time per epoch due to the fact that
each algorithm and optimizer stops at a separate epoch. VGG16 and
Xception demonstrate the most promising outcomes in terms of total
processing times, as indicated by the bold and red fonts, as shown in
Table 19.

We ran additional experiments on the ResNet50 and Xception mod-
els using five more optimizers,1 including Adadelta, Adagrad, Adamax,
Follow the Regularized Leader (Ftrl), and Nesterov-accelerated Adap-
tive Moment Estimation (Nadam), to comprehend the proposed models’
performance on different optimizers as shown in Table 20. The val-
idation accuracy and loss were calculated for epochs 1, 5, and 10,

1 Adadelta, Adagrad, and Adamax are all variants of stochastic gradient
descent (SGD) (Dogo, Afolabi, Nwulu, Twala, & Aigbavboa, 2018).
15
respectively. We discovered that there is no major performance differ-
ence among optimizers for ResNet50. However, for the Xception model,
we discovered that the validation accuracy of Adam, Rmsprop, and Sgd
is considerably more promising, as shown in Table 20 (highlighted with
bold font).

5. Discussions

There are currently limited publications that suggest a CNN-based
Monkeypox disease diagnosis; as an effect, direct comparison of our
findings with previous studies on a broad scale is limited, but a higher-
level assessment of the provided performance indicators is still possible.
Table 21 compares the performance of several TL algorithms presented
in recent research for Monkeypox disease diagnosis. For example, Islam
et al. (2022) used ShuffleNet-V2 to attain a maximum F-measure of
0.67 and a precision of 0.79 (Islam, Hussain, Chowdhury, & Islam,
2022). Using ResNet50, Ali et al. (2022) achieve a maximum precision
of 0.85 and recall of 0.83 (Ali et al., 2022). Our investigation in Studies
One and Two showed that Xception models performed the best and had
similar results when trained with Sgd and Rmsprop optimizers. In Study

Expert Systems With Applications 216 (2023) 119483M.M. Ahsan et al.

T
t

r
w
w
1
m
a
T
w
B
o
a
E

t
t
f
o
p

p
a
t
1
s
o

Table 19
Overall process time for each modules used in this study. 𝐸𝑠𝑝–early stops/epochs, 𝑃𝑡𝑠–process time/seconds, 𝑃 𝑡𝑒𝑠–process time/epochs(seconds).

Algorithm Study one Study two Study three

Adam Sgd Rmsprop Adam Sgd Rmsprop Adam Sgd Rmsprop

𝐸𝑠𝑝 𝑃𝑡𝑠 𝑃 𝑡𝑒𝑠 𝐸𝑠𝑝 𝑃𝑡𝑠 𝑃 𝑡𝑒𝑠 𝐸𝑠𝑝 𝑃𝑡𝑠 𝑃 𝑡𝑒𝑠 𝐸𝑠𝑝 𝑃𝑡𝑠 𝑃 𝑡𝑒𝑠 𝐸𝑠𝑝 𝑃𝑡𝑠 𝑃 𝑡𝑒𝑠 𝐸𝑠𝑝 𝑃𝑡𝑠 𝑃 𝑡𝑒𝑠 𝐸𝑠𝑝 𝑃𝑡𝑠 𝑃 𝑡𝑒𝑠 𝐸𝑠𝑝 𝑃𝑡𝑠 𝑃 𝑡𝑒𝑠 𝐸𝑠𝑝 𝑃𝑡𝑠 𝑃 𝑡𝑒𝑠

VGG16 50 44.51 0.89 7 7.01 1.001 14 13.35 0.953 54 875.63 16.22 11 194.69 17.69 24 389.43 16.23 22 12.83 0.58 24 13.36 0.56 19 10.81 0.59
ResNet50 18 21.17 1.17 6 10.09 1.68 12 15.42 1.285 34 529.22 15.57 10 157.74 15.77 12 191.66 15.97 19 15.004 0.789 26 15.87 0.61 23 14.93 0.65
ResNet101 17 25.95 1.53 29 45.52 1.57 16 25.29 1.58 16 277.22 17.32 12 211.89 17.65 9 158.83 17.64 12 16.95 1.42 23 24.51 1.06 15 19.91 1.33
Xception 11 10.41 0.946 24 13.25 0.55 11 7.81 0.71 27 135.37 5.01 50 247.77 4.96 35 165.21 4.72 11 13.57 1.23 30 21.63 0.72 6 6.23 1.03
EfficientNetB0 11 10.41 0.94 12 10.26 0.85 50 20.15 0.403 14 84.10 6 8 53.60 6.7 9 60.49 6.72 28 22.64 0.81 19 17.09 0.89 19 15.26 0.803
EfficientNetB7 50 79.55 1.591 9 32.13 3.57 50 78.34 1.56 8 162.62 20.33 18 331.84 18.44 15 289.05 19.27 17 106.37 6.25 28 151.64 5.41 20 113.62 5.68
NasNetLarge 10 33.61 3.361 22 47.72 2.17 19 45.58 2.39 6 142.43 23.74 41 630.23 15.37 16 353.74 22.11 10 71.58 7.16 30 160.54 5.35 16 93.43 5.84
EfficientNetV2M 50 57.57 1.15 6 25.57 4.26 8 27.45 3.43 7 118.91 16.98 11 186.42 16.94 10 174.93 17.49 10 45.97 4.59 23 78.74 3.42 21 71.92 3.42
ResNet152V2 12 19.02 1.58 18 23.19 1.28 9 16.62 1.84 13 143.89 11.06 30 333.22 11.107 19 217.28 11.44 30 42.93 1.43 30 38.35 1.28 30 39.65 1.32
EfficientNetV2L 50 97.24 1.94 6 36.08 6.013 5 34.29 6.85 7 184.24 26.32 13 297.89 22.91 10 264.48 26.44 21 151.30 7.2 22 151.91 6.91 12 96.23 8.01
Table 20
ResNet50 and Xception model performance with different optimizer. 𝑉𝑎–validation accuracy, 𝑉𝑙–validation loss.

Algorithm Optimizer Epoch1 Epoch5 Epoch10 Total time

𝑉𝑎 𝑉𝑙 𝑉𝑎 𝑉𝑙 𝑉𝑎 𝑉𝑙

ResNet50

Adadelta 0.437 0.965 0.437 0.909 0.437 0.864 6.856
Adagrad 0.562 0.690 0.562 0.687 0.562 0.691 6.520
Adamax 0.562 0.992 0.562 0.698 0.562 0.690 6.277
Ftrl 0.562 0.690 0.562 0.689 0.562 0.688 6.821
Nadam 0.562 0.686 0.562 0.693 0.562 0.692 6.634
Adam 0.437 0.846 0.562 0.693 0.562 0.697 6.86
SGD 0.562 0.702 0.562 0.692 0.562 0.692 6.369
RMSprop 0.562 0.693 0.562 0.692 0.562 0.691 6.898

Xception

Adadelta 0.375 0.866 0.375 0.851 0.375 0.833 9.499
Adagrad 0.812 0.626 0.875 0.424 0.937 0.343 6.104
Adamax 0.750 0.587 0.8125 0.4119 0.812 0.364 6.127
Ftrl 0.562 0.692 0.562 0.692 0.562 0.691 6.21
Nadam 0.875 0.414 0.875 0.372 0.812 0.622 6.456
Adam 0.750 0.630 0.875 0.342 0.937 0.415 6.189
SGD 0.750 0.573 0.875 0.320 0.875 0.293 6.119
RMSprop 0.625 0.915 0.875 0.398 0.875 0.643 6.261
Table 21
Comparison of the proposed DL-based model with existing literature that considered the Monkeypox disease diagnosis model.

Reference Method Dataset size Accuracy Precision Recall F-measure

(Islam et al., 2022) ResNet50 117 Monkeypox, 687 others 72 0.59 0.51 0.55
Inception-V3 71 0.71 0.53 0.61
ShuffleNet-V2 79% 0.79 0.58 0.67

(Ali et al., 2022) VGG16 102 Monkeypox, 126 others 81.48 ± 6.87 0.85 ± 0.08 0.81 ± 0.05 0.83 ± 0.06
ResNet50 82.96 ± 4.57 0.87 ± 0.07 0.83 ± 0.02 0.84 ± 0.03
InceptionV3 74.07 ± 3.78 0.74 ± 0.02 0.81 ± 0.07 0.78 ± 0.04
Ensemble 79.26 ± 1.05 0.84 ± 0.05 0.79 ± 0.07 0.81 ± 0.02

(Irmak et al., 2022) MobileNetV2 770 images 91.38% 0.905 0.86 0.88

Our best model (Test set)
Study one Xception 43 Monkeypox, 33 others 94% ± 7.591 0.94 ± 0.054 0.94 ± 0.054 0.94 ± 0.054
Study two 587 Monkeypox, 1167 others 80% ± 0.021 0.80 ± 0.021 0.80 ± 0.021 0.80 ± 0.021
Study three ResNet101 264 Monkeypox, 395 others 99% ± 0.80 0.99 ± 0.008 0.99 ± 0.008 0.99 ± 0.008
F
p
p
p

w
0
t

hree, we discovered that ResNet101 had the best performance on the
raining and testing sets when trained with the Adam.

Most of the previous studies did not provide enough explanation
egarding their higher accuracy results. Therefore, it is difficult to infer
hat factors play an essential role in their TL approaches. In our work,
e found that without early stopping, the accuracy reaches almost
00% for most of the dataset, and also, during the training phase, the
odel started to overfit. An overfitting model produces biased results

nd is not a good option for model deployments in real-world diagnosis.
o overcome such limitations, we have used early stopping in our
ork, which helps our model stop before it enters the overfitting phase.
ecause we employed early stopping approaches, our model’s accuracy
nly indicates the performance prior to overfitting. During Studies One
nd Two, we noticed that some TL models, such as ResNet50 and
fficientNetV2M, had a lower performance.

One potential reason could be that the model’s performance on the
raining data may not represent its true ability, as it has not been fully
rained due to early stopping. In order to provide more justification
or this issue, it may be helpful to perform additional experiments
r analyses to assess the impact of early stopping on the model’s
erformance.

To understand the performance of our model, we used LIME and
resented the results for some of the DL-based models in Fig. 9. For ex-
mple, in Fig. 9 (a,d) the minimum parameter settings for interpreting
he Monkeypox-infected image using LIME are a maximum distance of
00, a kernel size of 2, and a ratio of 0.2. The maximum parameter
ettings are a maximum distance of 200, a kernel size of 6, and a ratio
f 0.4 as shown in Fig. 9 (b,e). The optimal performance was observed
16

a

ig. 9. Using LIME, the top four features that aid the proposed model in identifying
otentially infected regions with the (a) minimum, (b) maximum, and (c) optimal
arameters for VGG16, as well as (d) minimum, (e) maximum, and (f) optimal
arameters for Xception, have been identified.

ith a maximum distance of 200, a kernel size of 4, and a ratio of
.2 (Fig. 9 (c,f)). These results show that the proposed model was able
o identify the top features that are important for making predictions
bout infected regions when using optimal parameter settings.

Expert Systems With Applications 216 (2023) 119483M.M. Ahsan et al.
Fig. 10. Visualizing the SHAP value for test image.
Fig. 11. Visual explanation of proposed models predictions using Grad-CAM and
Grad-CAM++.

In Addition, we have used another agnostic-based interpretable ap-
proaches, SHAP, to interpret our proposed model’s performance as well.
Fig. 10, we have used the Chickenpox images, which were predicted
using the ResNet50 model, and finally, SHAP is used to interpret the
model’s predictions. In Fig. 10, the color of each pixel in the image
plot indicates that pixel’s importance to the model’s prediction. Pixels
that are colored blue have a low importance, while pixels that are
colored red have a high importance, and that information can be used
to identify the essential features in the input image. From Fig. 10,
we can understand what specific features play an essential role in the
ResNet50 model to identify chickenpox-infected images correctly.

We further analyze the model performance using GradCAM (Sel-
varaju et al., 2016) and GradCAM++ (Chattopadhay, Sarkar, Howlader,
& Balasubramanian, 2018). Based on our overall analysis, we found
that, the top features identified by the LIME class activation function
align with the region of GradCAM and GradCAM++. As an effect,
our findings provide clearer explanations of our proposed models’
predictions and their stability (see Fig. 11).

During the initial phase of the experiment, the majority of CNN
models reached an accuracy of nearly 100%. Using early stopping
approaches and testing many CNN models with various optimizers, we
discovered that the model’s actual accuracy is far lower compared to
the initial findings. Using ResNet50, Ali et al. (2022) were able to attain
a much superior performance result (Ali et al., 2022). Nevertheless, our
research demonstrates that the performance of ResNet50 with different
optimizers is dramatically reduced when the appropriate generalization
and regularization techniques are applied throughout the investigation.

Before we began our study, there was no single image-based Mon-
keypox dataset. Therefore, it was difficult for the researcher and practi-
tioners to develop and deploy an ML-based Monkeypox disease diagno-
sis model. Therefore, we develop a new dataset that can be used to train
and develop ML models to classify the Monkeypox disease using image
17
analysis techniques. In addition, a TL-based CNN model is developed,
and its ability to differentiate between patients with and without Mon-
keypox disease is evaluated in three separate studies. A recent report
presented by World Health Organization (WHO) encouraged any ML
model needs to provide proper interpretation before being applied to
a clinical trial (Organization et al., 2021). Considering this necessity,
in this work, we have explained and overlooked our post-prediction
analysis using one of the popular explainable AI techniques, LIME.
Using LIME, we demonstrate that our models are capable of learning
from the infected regions and localizing those areas.

It can be assumed that our new dataset will provide an immense
opportunity for researchers and practitioners to practice and develop
image-based analysis tools for the pilot test or analyzing Monkeypox
disease diagnosis.

6. Limitations of the study and future works

During the onset of the Monkeypox disease, we came across several
limitations that were beyond the scope of this research at the time.
We provide the following as shortcomings of our study, which can be
addressed in our future works in terms of tool and method selection:

1. At the time of this writing, the dataset and reference literature
availability is minimal, making it difficult to assess the perfor-
mance of our models confidently. The privacy issue is one of the
primary reasons for this limited data availability. As Monkeypox
often affects the entire body, it is frequently challenging to
obtain and use images of infected faces, particularly for children.
Nonetheless, there are a number of open repositories that are
constantly gathering new data in order to increase the quantity
of data. Therefore, data scarcity difficulties may diminish in the
near future, and these datasets could be considered in future
research to determine the nature of the performance of the
proposed models.

2. Using early stopping techniques, it is frequently challenging to
adequately compare the performance of several models, as the
models may not have been trained to their full capacity. In
the near future, an additional experiment will be considered
to compare the model’s performance with and without early
stopping or to study the model’s performance on various subsets
of the training data to determine how it changes over time.

3. We could not conduct a pilot test in a clinical setting because
we needed permission and enough facilities. However, in future
work, we plan to conduct the pilot test in Bangladesh, where we
expect it to be much easier to get permission.

4. A DL-based model trained on a dataset that combines all the
patient’s information, such as age, gender, and other physical
symptoms, in conjunction with Monkeypox skin disease, will
help to design a more convincing and accurate model on a
large scale. However, during the data collection process, it was

Expert Systems With Applications 216 (2023) 119483M.M. Ahsan et al.

V
t

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

B

B

B

B

B

B

B

C

C

C

C

almost impossible to find any patient’s detailed information
along with their infected body images that could be used for
research purposes. We hope that, over time, various hospitals
and clinical institutions will release such information to assist
future researchers and practitioners in developing more complex
models.

7. Conclusions

The study aims to develop a transfer learning (TL) model to dis-
tinguish between Monkeypox and normal individuals. Due to the data
scarcity, we first develop a Monkeypox dataset. We conducted three
separate studies considering binary classification (Study One and Two)
and multiclass classification (Study Three) wherein the TL approach is
used and tested with ten popular CNN models. Our findings suggest
that, on one hand, using TL approaches, the proposed modified Xcep-
tion models can distinguish patients with Monkeypox symptoms from
others in both Study One and Two with accuracy ranging from 75% to
88%. On the other hand, ResNet101 demonstrated the best performance
for multiclass classification (in Study Three), with accuracy ranging
from 84% to 99%. By implementing Generalization and Regularization
Approaches (GRA), we demonstrate that the TL-based model requires
fewer trainable parameters and is computationally efficient in terms
of performance. Finally, we have used LIME to present the proper
explanation of the reason behind our model’s prediction, which is one
of the current demands in deploying ML models for clinical trials.
We intend to emphasize the possibilities of artificial intelligence-based
approaches, which might play an essential role in diagnosing and
preventing the contamination of the onset of the Monkeypox virus.

We hope our publicly available dataset will play an important role
and provide the opportunity to the ML researcher who cannot develop
an AI-based model and is unable to conduct the experiment due to
data scarcity. As our proposed model is supported by many previously
published literature that uses the TL approach in developing an AI-
based diagnosis model, it will also encourage future researchers and
practitioners to take advantage of the TL approach to develop and
deploy AI-based Monkeypox disease diagnosis in real world settings. As
discussed in Section 6 of our work, a few limitations can be addressed
by continuously adding new images of Monkeypox-infected patients to
the dataset, testing the proposed model on highly imbalanced data, and
developing a mobile-based diagnosis tool using our proposed model.

CRediT authorship contribution statement

Md Manjurul Ahsan: Conceptualization, Methodology, Software,
alidation, Formal analysis, Writing – original draft, Visualiza-

ion. Muhammad Ramiz Uddin: Conceptualization, Investigation,
Resources, Data curation. Md Shahin Ali: Software, Investigation,
Resources, Data curation. Md Khairul Islam: Investigation, Writing
– review & editing. Mithila Farjana: Resources, Writing – review
& editing. Ahmed Nazmus Sakib: Writing – review & editing.
Khondhaker Al Momin: Writing – review & editing. Shahana
Akter Luna: Writing – review & editing, Investigation.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The dataset associated with this study is now publicly available and
can be obtained from the following URL: https://github.com/mahsan2/
Monkeypox-dataset-2022
18
References

Abbasimehr, H., Shabani, M., & Yousefi, M. (2020). An optimized model using LSTM
network for demand forecasting. Computers & Industrial Engineering, 143, Article
106435.

bdelhamid, A. A., El-Kenawy, E.-S. M., Khodadadi, N., Mirjalili, S., Khafaga, D. S.,
Alharbi, A. H., et al. (2022). Classification of monkeypox images based on transfer
learning and the Al-Biruni Earth Radius Optimization algorithm. Mathematics,
10(19), 3614.

dler, H., Gould, S., Hine, P., Snell, L. B., Wong, W., Houlihan, C. F., et al.
(2022). Clinical features and management of human monkeypox: a retrospective
observational study in the UK. The Lancet Infectious Diseases.

hsan, M. M., Ahad, M. T., Soma, F. A., Paul, S., Chowdhury, A., Luna, S. A., et al.
(2021). Detecting SARS-CoV-2 from chest X-Ray using artificial intelligence. Ieee
Access, 9, 35501–35513.

hsan, M. M., Alam, T. E., Trafalis, T., & Huebner, P. (2020). Deep MLP-CNN model
using mixed-data to distinguish between COVID-19 and Non-COVID-19 patients.
Symmetry, 12(9), 1526.

hsan, M. M., Gupta, K. D., Islam, M. M., Sen, S., Rahman, M., Shakhawat Hossain, M.,
et al. (2020). Covid-19 symptoms detection based on nasnetmobile with explainable
ai using various imaging modalities. Machine Learning and Knowledge Extraction,
2(4), 490–504.

hsan, M. M., Nazim, R., Siddique, Z., & Huebner, P. (2021). Detection of COVID-19
patients from CT scan and chest X-ray data using modified MobileNetV2 and LIME.
In Healthcare, Vol. 9 (p. 1099). Multidisciplinary Digital Publishing Institute.

hsan, M. M., & Siddique, Z. (2022). Machine learning-based heart disease diagnosis:
A systematic literature review. Artificial Intelligence in Medicine, Article 102289.

hsan, M. M., Uddin, M. R., & Luna, S. A. (2022). Monkeypox image data collection.
arXiv preprint arXiv:2206.01774.

kiba, T., Suzuki, S., & Fukuda, K. (2017). Extremely large minibatch sgd: Training
resnet-50 on imagenet in 15 minutes. arXiv preprint arXiv:1711.04325.

kin, K. D., Gurkan, C., Budak, A., & Karataş, H. (2022). Classification of monkeypox
skin lesion using the explainable artificial intelligence assisted convolutional neural
networks. Avrupa Bilim ve Teknoloji Dergisi, (40), 106–110.

lakunle, E., Moens, U., Nchinda, G., & Okeke, M. I. (2020). Monkeypox virus in
Nigeria: infection biology, epidemiology, and evolution. Viruses, 12(11), 1257.

lam, M. S., Rashid, M. M., Roy, R., Faizabadi, A. R., Gupta, K. D., & Ahsan, M. M.
(2022). Empirical study of autism spectrum disorder diagnosis using facial images
by improved transfer learning approach. Bioengineering, 9(11), 710.

lcalá-Rmz, V., Villagrana-Bañuelos, K. E., Celaya-Padilla, J. M., Galván-Tejada, J. I.,
Gamboa-Rosales, H., & Galván-Tejada, C. E. (2023). Convolutional neural network
for monkeypox detection. In International conference on ubiquitous computing and
ambient intelligence (pp. 89–100). Springer.

li, S. N., Ahmed, M., Paul, J., Jahan, T., Sani, S., Noor, N., et al. (2022). Monkeypox
skin lesion detection using deep learning models: A feasibility study. arXiv preprint
arXiv:2207.03342.

mari, S.-i. (1993). Backpropagation and stochastic gradient descent method.
Neurocomputing, 5(4–5), 185–196.

nil (2021). Limitations of graph neural networks. (accessed on November
20, 2022). https://wandb.ai/syllogismos/machine-learning-with-graphs/reports/
18-Limitations-of-Graph-Neural-Networks--VmlldzozODUxMzQ.

ala, D. (2022). Monkeypox skin images dataset. (accessed on November 22, 2022).
https://www.kaggle.com/datasets/dipuiucse/monkeypoxskinimagedataset.

anan, A., Nasiri, A., & Taheri-Garavand, A. (2020). Deep learning-based appear-
ance features extraction for automated carp species identification. Aquacultural
Engineering, 89, Article 102053.

ergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13(2).

eyer, L., Hénaff, O. J., Kolesnikov, A., Zhai, X., & Oord, A. v. d. (2020). Are we done
with imagenet? arXiv preprint arXiv:2006.07159.

hattiprolu, S. (2020). Data augmentation. (accessed on may 10, 2022). https://github.
com/bnsreenu.

ragazzi, N. L., Khamisy-Farah, R., Tsigalou, C., Mahroum, N., & Converti, M. (2022).
Attaching a stigma to the LGBTQI+ community should be avoided during the
monkeypox epidemic. Journal of Medical Virology.

rown, O., Curtis, A., & Goodwin, J. (2021). Principles for evaluation of AI/ML model
performance and robustness. arXiv preprint arXiv:2107.02868.

DC (2022a). 2022 Monkeypox and orthopoxvirus outbreak global map. accessed on
June 10, 2022. https://www.cdc.gov/poxvirus/monkeypox/response/2022/world-
map.html.

DC (2022b). Monkeypox and smallpox vaccine. (accessed on May 30, 2022). https:
//www.cdc.gov/poxvirus/monkeypox/clinicians/treatment.html.

DC (2022c). Monkeypox signs and symptoms. (accessed on May 30, 2022). https:
//www.cdc.gov/poxvirus/monkeypox/symptoms.html.

elaya-Padilla, J. M., Galván-Tejada, J. I., Gamboa-Rosales, H., & Galván-Tejada, C.
E. (2022). Convolutional neural network for monkeypox detection. In Proceedings
of the international conference on ubiquitous computing & ambient intelligence (UCAmI
2022), Vol. 594 (p. 89). Springer Nature.

https://github.com/mahsan2/Monkeypox-dataset-2022
https://github.com/mahsan2/Monkeypox-dataset-2022
https://github.com/mahsan2/Monkeypox-dataset-2022
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb1
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb1
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb1
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb1
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb1
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb2
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb2
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb2
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb2
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb2
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb2
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb2
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb3
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb3
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb3
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb3
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb3
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb4
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb4
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb4
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb4
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb4
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb5
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb5
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb5
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb5
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb5
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb6
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb6
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb6
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb6
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb6
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb6
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb6
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb7
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb7
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb7
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb7
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb7
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb8
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb8
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb8
http://arxiv.org/abs/2206.01774
http://arxiv.org/abs/1711.04325
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb11
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb11
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb11
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb11
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb11
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb12
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb12
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb12
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb13
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb13
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb13
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb13
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb13
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb14
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb14
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb14
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb14
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb14
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb14
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb14
http://arxiv.org/abs/2207.03342
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb16
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb16
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb16
https://wandb.ai/syllogismos/machine-learning-with-graphs/reports/18-Limitations-of-Graph-Neural-Networks--VmlldzozODUxMzQ
https://wandb.ai/syllogismos/machine-learning-with-graphs/reports/18-Limitations-of-Graph-Neural-Networks--VmlldzozODUxMzQ
https://wandb.ai/syllogismos/machine-learning-with-graphs/reports/18-Limitations-of-Graph-Neural-Networks--VmlldzozODUxMzQ
https://www.kaggle.com/datasets/dipuiucse/monkeypoxskinimagedataset
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb19
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb19
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb19
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb19
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb19
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb20
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb20
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb20
http://arxiv.org/abs/2006.07159
https://github.com/bnsreenu
https://github.com/bnsreenu
https://github.com/bnsreenu
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb23
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb23
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb23
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb23
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb23
http://arxiv.org/abs/2107.02868
https://www.cdc.gov/poxvirus/monkeypox/response/2022/world-map.html
https://www.cdc.gov/poxvirus/monkeypox/response/2022/world-map.html
https://www.cdc.gov/poxvirus/monkeypox/response/2022/world-map.html
https://www.cdc.gov/poxvirus/monkeypox/clinicians/treatment.html
https://www.cdc.gov/poxvirus/monkeypox/clinicians/treatment.html
https://www.cdc.gov/poxvirus/monkeypox/clinicians/treatment.html
https://www.cdc.gov/poxvirus/monkeypox/symptoms.html
https://www.cdc.gov/poxvirus/monkeypox/symptoms.html
https://www.cdc.gov/poxvirus/monkeypox/symptoms.html
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb28
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb28
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb28
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb28
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb28
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb28
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb28

Expert Systems With Applications 216 (2023) 119483M.M. Ahsan et al.

C

C

C

F

G

G

G

P

P

P

R

R

R

S

Chattopadhay, A., Sarkar, A., Howlader, P., & Balasubramanian, V. N. (2018). Grad-
cam++: Generalized gradient-based visual explanations for deep convolutional
networks. In 2018 IEEE winter conference on applications of computer vision WACV,
(pp. 839–847). IEEE.

ian, D., van Gemert, J., & Lengyel, A. (2020). Evaluating the performance of the LIME
and grad-CAM explanation methods on a LEGO multi-label image classification task.
arXiv preprint arXiv:2008.01584.

ordoş, C., Mihailă, L., Faragó, P., & Hintea, S. (2021). ECG signal classification using
convolutional neural networks for biometric identification. In 2021 44th interna-
tional conference on telecommunications and signal processing (TSP) (pp. 167–170).
IEEE.

orneanu, C., Madadi, M., Escalera, S., & Martinez, A. (2020). Explainable early
stopping for action unit recognition. In 2020 15th IEEE international conference on
automatic face and gesture recognition (FG 2020) (pp. 693–699). IEEE.

Dauphin, Y., De Vries, H., & Bengio, Y. (2015). Equilibrated adaptive learning rates
for non-convex optimization. Advances in Neural Information Processing Systems, 28.

Dey, S., Nath, P., Biswas, S., Nath, S., & Ganguly, A. (2021). Malaria detection through
digital microscopic imaging using deep greedy network with transfer learning.
Journal of Medical Imaging, 8(5), Article 054502.

Dogo, E., Afolabi, O., Nwulu, N., Twala, B., & Aigbavboa, C. (2018). A comparative
analysis of gradient descent-based optimization algorithms on convolutional neural
networks. In 2018 international conference on computational techniques, electronics
and mechanical systems CTEMS, (pp. 92–99). IEEE.

Doucleff, M. (2022). Scientists warned us about monkeypox in 1988. Here’s why
they were right. (accessed on May 27, 2022). https://www.npr.org/sections/
goatsandsoda/2022/05/27/1101751627/scientists-warned-us-about-monkeypox-
in-1988-heres-why-they-were-right.

Eid, M. M., El-Kenawy, E.-S. M., Khodadadi, N., Mirjalili, S., Khodadadi, E., Abo-
taleb, M., et al. (2022). Meta-heuristic optimization of LSTM-based deep network
for boosting the prediction of monkeypox cases. Mathematics, 10(20), 3845.

an, Y., Xu, K., Wu, H., Zheng, Y., & Tao, B. (2020). Spatiotemporal modeling for
nonlinear distributed thermal processes based on KL decomposition, MLP and LSTM
network. IEEE Access, 8, 25111–25121.

ao, F., Wu, T., Li, J., Zheng, B., Ruan, L., Shang, D., et al. (2018). SD-CNN: A shallow-
deep CNN for improved breast cancer diagnosis. Computerized Medical Imaging and
Graphics, 70, 53–62.

Garreau, D., & Mardaoui, D. (2021). What does LIME really see in images? In
International conference on machine learning (pp. 3620–3629). PMLR.

halebikesabi, S. (2022). Model-agnostic local explanation models from a statistical
viewpoint. accessed on June 02, 2022. https://towardsdatascience.com/model-
agnostic-local-explanation-models-from-a-statistical-viewpoint-i-bd04039c7040.

oodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et
al. (2020). Generative adversarial networks. Communications of the ACM, 63(11),
139–144.

Haque, M., Ahmed, M., Nila, R. S., Islam, S., et al. (2022). Classification of human
monkeypox disease using deep learning models and attention mechanisms. arXiv
preprint arXiv:2211.15459.

Haque, R., Islam, N., Islam, M., & Ahsan, M. M. (2022). A comparative analysis on
suicidal ideation detection using NLP, machine, and deep learning. Technologies,
10(3), 57.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., & Girshick, R. (2022). Masked autoencoders
are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition (pp. 16000–16009).

He, K., Zhang, X., Ren, S., & Sun, J. (2016a). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 770–778).

He, K., Zhang, X., Ren, S., & Sun, J. (2016b). Identity mappings in deep residual
networks. In European conference on computer vision (pp. 630–645). Springer.

Hobbhahn, M. (2021). How to measure FLOP/s for neural networks empiri-
cally? (accessed on November 22, 2022). https://www.lesswrong.com/posts/
jJApGWG95495pYM7C/how-to-measure-flop-s-for-neural-networks-empirically.

Hu, F., & Li, H. (2013). A novel boundary oversampling algorithm based on neighbor-
hood rough set model: NRSBoundary-SMOTE. Mathematical Problems in Engineering,
2013.

Irmak, M. C., Aydin, T., & Yağanoğlu, M. (2022). Monkeypox skin lesion detection with
MobileNetV2 and VGGNet models. In 2022 medical technologies congress TIPTEKNO,
(pp. 1–4). IEEE.

Islam, T., Hussain, M. A., Chowdhury, F. U. H., & Islam, B. R. (2022). Can artificial
intelligence detect monkeypox from digital skin images? BioRxiv.

Islam, A., & Shin, S. Y. (2022). A blockchain-based privacy sensitive data acquisition
scheme during pandemic through the facilitation of federated learning. In 2022
13th international conference on information and communication technology convergence
ICTC, (pp. 83–87). IEEE.

ISU (2022). Diagnostic tests. (accessed on may 30, 2022). https://www.nj.gov/
agriculture/divisions/ah/diseases/monkeypox.html.

Jiao, Y., Deng, Y., Luo, Y., & Lu, B.-L. (2020). Driver sleepiness detection from EEG
and EOG signals using GAN and LSTM networks. Neurocomputing, 408, 100–111.

Jin, Z., & Finkel, H. (2020). Analyzing deep learning model inferences for image
classification using OpenVINO. In 2020 IEEE international parallel and distributed
processing symposium workshops IPDPSW, (pp. 908–911). IEEE.
19
Jing, Y., Yang, Y., Feng, Z., Ye, J., Yu, Y., & Song, M. (2019). Neural style
transfer: A review. IEEE Transactions on Visualization and Computer Graphics, 26(11),
3365–3385.

Kawaguchi, K., Kaelbling, L. P., & Bengio, Y. (2017). Generalization in deep learning.
arXiv preprint arXiv:1710.05468.

Kermany, D. S., Goldbaum, M., Cai, W., Valentim, C. C., Liang, H., Baxter, S. L., et al.
(2018). Identifying medical diagnoses and treatable diseases by image-based deep
learning. Cell, 172(5), 1122–1131.

Khodakevich, L., Ježek, Z., & Messinger, D. (1988). Monkeypox virus: ecology and
public health significance. Bulletin of the World Health Organization, 66(6), 747.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Kukkar, A., Gupta, D., Beram, S. M., Soni, M., Singh, N. K., Sharma, A., et al.
(2022). Optimizing deep learning model parameters using socially implemented
IoMT systems for diabetic retinopathy classification problem. IEEE Transactions on
Computational Social Systems.

Li, A., Xiao, F., Zhang, C., & Fan, C. (2021). Attention-based interpretable neural
network for building cooling load prediction. Applied Energy, 299, Article 117238.

Lin, H., Gharehbaghi, A., Zhang, Q., Band, S. S., Pai, H. T., Chau, K.-W., et al. (2022).
Time series-based groundwater level forecasting using gated recurrent unit deep
neural networks. Engineering Applications of Computational Fluid Mechanics, 16(1),
1655–1672.

Liu, S., Papailiopoulos, D., & Achlioptas, D. (2020). Bad global minima exist and sgd
can reach them. Advances in Neural Information Processing Systems, 33, 8543–8552.

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model
predictions. Advances in Neural Information Processing Systems, 30.

McCollum, A. M., & Damon, I. K. (2014). Human monkeypox. Clinical Infectious Diseases,
58(2), 260–267.

Mehrotra, R., Ansari, M., Agrawal, R., & Anand, R. (2020). A transfer learning approach
for AI-based classification of brain tumors. Machine Learning with Applications, 2,
Article 100003.

Menzies, T., Greenwald, J., & Frank, A. (2006). Data mining static code attributes to
learn defect predictors. IEEE Transactions on Software Engineering, 33(1), 2–13.

Mohanty, S. P., Hughes, D. P., & Salathé, M. (2016). Using deep learning for
image-based plant disease detection. Frontiers in Plant Science, 7, 1419.

Moore, M., & Zahra, F. (2022). Monkeypox. (accessed on May 22, 2022). https:
//www.ncbi.nlm.nih.gov/books/NBK574519/.

Narin, A., Kaya, C., & Pamuk, Z. (2021). Automatic detection of coronavirus disease
(covid-19) using x-ray images and deep convolutional neural networks. Pattern
Analysis and Applications, 24(3), 1207–1220.

Nguyen, P.-Y., Ajisegiri, W. S., Costantino, V., Chughtai, A. A., & MacIntyre, C. R.
(2021). Reemergence of human monkeypox and declining population immunity in
the context of urbanization, Nigeria, 2017–2020. Emerging Infectious Diseases, 27(4),
1007.

Nguyen, H.-P., Luu, T.-N., Le, N.-B., Vo, V.-T., Huynh, N.-T., Phan, Q.-H., et al.
(2022). Combined mueller matrix imaging and artificial intelligence classification
framework for Hepatitis B detection. Journal of Biomedical Optics, 27(7), Article
075002.

Nolen, L. D., Osadebe, L., Katomba, J., Likofata, J., Mukadi, D., Monroe, B., et al.
(2016). Extended human-to-human transmission during a monkeypox outbreak in
the Democratic Republic of the Congo. Emerging Infectious Diseases, 22(6), 1014.

Okte, E., & Al-Qadi, I. L. (2021). Prediction of flexible pavement 3-D finite ele-
ment responses using Bayesian neural networks. International Journal of Pavement
Engineering, 1–11.

Organization, W. H., et al. (2021). Ethics and governance of artificial intelligence for health:
WHO guidance. Who.

Pan, P., Li, Y., Xiao, Y., Han, B., Su, L., Su, M., et al. (2020). Prognostic assessment
of COVID-19 in the intensive care unit by machine learning methods: model
development and validation. Journal of Medical Internet Research, 22(11), Article
e23128.

ark, A. (2022). There’s already a monkeypox vaccine. But not everyone may need it.
(accessed on May 27, 2022). https://time.com/6179429/monkeypox-vaccine/.

eer, D., Stabinger, S., & Rodriguez-Sanchez, A. (2021). Limitation of capsule networks.
Pattern Recognition Letters, 144, 68–74.

opescu, M. C., & Sasu, L. M. (2014). Feature extraction, feature selection and machine
learning for image classification: A case study. In 2014 international conference on
optimization of electrical and electronic equipment OPTIM, (pp. 968–973). IEEE.

ibeiro, M. T., Singh, S., & Guestrin, C. (2016a). " Why should i trust you?"
Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining (pp. 1135–1144).

ibeiro, M. T., Singh, S., & Guestrin, C. (2016b). Model-agnostic interpretability of
machine learning. arXiv preprint arXiv:1606.05386.

oy, K., Chaudhuri, S. S., Ghosh, S., Dutta, S. K., Chakraborty, P., & Sarkar, R.
(2019). Skin disease detection based on different segmentation techniques. In 2019
international conference on opto-electronics and applied optics (Optronix) (pp. 1–5).
IEEE.

agar, A. (2019). 5 techniques to prevent overfitting in neural networks. (accessed
on Nov 20, 2022). https://www.kdnuggets.com/2019/12/5-techniques-prevent-
overfitting-neural-networks.html.

http://refhub.elsevier.com/S0957-4174(22)02502-7/sb29
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb29
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb29
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb29
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb29
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb29
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb29
http://arxiv.org/abs/2008.01584
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb31
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb31
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb31
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb31
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb31
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb31
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb31
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb32
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb32
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb32
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb32
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb32
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb33
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb33
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb33
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb34
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb34
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb34
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb34
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb34
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb35
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb35
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb35
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb35
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb35
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb35
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb35
https://www.npr.org/sections/goatsandsoda/2022/05/27/1101751627/scientists-warned-us-about-monkeypox-in-1988-heres-why-they-were-right
https://www.npr.org/sections/goatsandsoda/2022/05/27/1101751627/scientists-warned-us-about-monkeypox-in-1988-heres-why-they-were-right
https://www.npr.org/sections/goatsandsoda/2022/05/27/1101751627/scientists-warned-us-about-monkeypox-in-1988-heres-why-they-were-right
https://www.npr.org/sections/goatsandsoda/2022/05/27/1101751627/scientists-warned-us-about-monkeypox-in-1988-heres-why-they-were-right
https://www.npr.org/sections/goatsandsoda/2022/05/27/1101751627/scientists-warned-us-about-monkeypox-in-1988-heres-why-they-were-right
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb37
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb37
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb37
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb37
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb37
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb38
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb38
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb38
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb38
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb38
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb39
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb39
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb39
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb39
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb39
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb40
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb40
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb40
https://towardsdatascience.com/model-agnostic-local-explanation-models-from-a-statistical-viewpoint-i-bd04039c7040
https://towardsdatascience.com/model-agnostic-local-explanation-models-from-a-statistical-viewpoint-i-bd04039c7040
https://towardsdatascience.com/model-agnostic-local-explanation-models-from-a-statistical-viewpoint-i-bd04039c7040
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb42
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb42
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb42
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb42
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb42
http://arxiv.org/abs/2211.15459
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb44
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb44
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb44
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb44
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb44
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb45
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb45
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb45
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb45
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb45
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb46
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb46
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb46
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb46
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb46
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb47
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb47
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb47
https://www.lesswrong.com/posts/jJApGWG95495pYM7C/how-to-measure-flop-s-for-neural-networks-empirically
https://www.lesswrong.com/posts/jJApGWG95495pYM7C/how-to-measure-flop-s-for-neural-networks-empirically
https://www.lesswrong.com/posts/jJApGWG95495pYM7C/how-to-measure-flop-s-for-neural-networks-empirically
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb49
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb49
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb49
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb49
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb49
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb50
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb50
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb50
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb50
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb50
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb51
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb51
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb51
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb52
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb52
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb52
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb52
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb52
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb52
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb52
https://www.nj.gov/agriculture/divisions/ah/diseases/monkeypox.html
https://www.nj.gov/agriculture/divisions/ah/diseases/monkeypox.html
https://www.nj.gov/agriculture/divisions/ah/diseases/monkeypox.html
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb54
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb54
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb54
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb55
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb55
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb55
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb55
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb55
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb56
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb56
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb56
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb56
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb56
http://arxiv.org/abs/1710.05468
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb58
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb58
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb58
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb58
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb58
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb59
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb59
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb59
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb61
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb61
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb61
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb61
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb61
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb61
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb61
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb62
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb62
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb62
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb63
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb63
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb63
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb63
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb63
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb63
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb63
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb64
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb64
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb64
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb65
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb65
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb65
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb66
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb66
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb66
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb67
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb67
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb67
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb67
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb67
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb68
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb68
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb68
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb69
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb69
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb69
https://www.ncbi.nlm.nih.gov/books/NBK574519/
https://www.ncbi.nlm.nih.gov/books/NBK574519/
https://www.ncbi.nlm.nih.gov/books/NBK574519/
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb71
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb71
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb71
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb71
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb71
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb72
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb72
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb72
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb72
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb72
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb72
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb72
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb73
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb73
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb73
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb73
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb73
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb73
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb73
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb74
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb74
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb74
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb74
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb74
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb75
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb75
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb75
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb75
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb75
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb76
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb76
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb76
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb77
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb77
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb77
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb77
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb77
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb77
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb77
https://time.com/6179429/monkeypox-vaccine/
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb79
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb79
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb79
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb80
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb80
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb80
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb80
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb80
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb81
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb81
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb81
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb81
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb81
http://arxiv.org/abs/1606.05386
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb83
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb83
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb83
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb83
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb83
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb83
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb83
https://www.kdnuggets.com/2019/12/5-techniques-prevent-overfitting-neural-networks.html
https://www.kdnuggets.com/2019/12/5-techniques-prevent-overfitting-neural-networks.html
https://www.kdnuggets.com/2019/12/5-techniques-prevent-overfitting-neural-networks.html

Expert Systems With Applications 216 (2023) 119483M.M. Ahsan et al.
Sahin, V. H., Oztel, I., & Yolcu Oztel, G. (2022). Human monkeypox classification from
skin lesion images with deep pre-trained network using mobile application. Journal
of Medical Systems, 46(11), 1–10.

Sandeep, R., Vishal, K., Shamanth, M., & Chethan, K. (2022). Diagnosis of visible
diseases using CNNs. In Proceedings of international conference on communication
and artificial intelligence (pp. 459–468). Springer.

Sarmad, M., Lee, H. J., & Kim, Y. M. (2019). Rl-gan-net: A reinforcement learning agent
controlled gan network for real-time point cloud shape completion. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition (pp. 5898–5907).

Selvaraju, R. R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., & Batra, D. (2016).
Grad-CAM: Why did you say that? arXiv preprint arXiv:1611.07450.

Shah, D. (2022). The essential guide to data augmentation in deep learning. (accessed
on Nov 20, 2022). https://www.kdnuggets.com/2019/12/5-techniques-prevent-
overfitting-neural-networks.html.

Sharma, N., Vijayeendra, A., Gopakumar, V., Patni, P., & Bhat, A. (2022). Automatic
identification of bird species using audio/video processing. In 2022 international
conference for advancement in technology ICONAT, (pp. 1–6). IEEE.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

Sitaula, C., & Shahi, T. B. (2022). Monkeypox virus detection using pre-trained deep
learning-based approaches. Journal of Medical Systems, 46(11), 1–9.

Stolfo, S. J., Fan, W., Lee, W., Prodromidis, A., & Chan, P. K. (2000). Cost-based
modeling for fraud and intrusion detection: Results from the JAM project. In
Proceedings DARPA information survivability conference and exposition. DISCEX’00,
Vol. 2 (pp. 130–144). IEEE.

Studer, L., Alberti, M., Pondenkandath, V., Goktepe, P., Kolonko, T., Fischer, A., et al.
(2019). A comprehensive study of imagenet pre-training for historical document
image analysis. In 2019 international conference on document analysis and recognition
ICDAR, (pp. 720–725). IEEE.

Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of
initialization and momentum in deep learning. In International conference on machine
learning (pp. 1139–1147). PMLR.

Tan, M., & Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional
neural networks. In International conference on machine learning (pp. 6105–6114).
PMLR.
20
Tan, M., & Le, Q. (2021). Efficientnetv2: Smaller models and faster training. In
International conference on machine learning (pp. 10096–10106). PMLR.

Tensorflow (2022). ImageDataGenerator. (accessed on may 10, 2022).
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/
ImageDataGenerator.

Varshni, D., Thakral, K., Agarwal, L., Nijhawan, R., & Mittal, A. (2019). Pneumonia
detection using CNN based feature extraction. In 2019 IEEE international conference
on electrical, computer and communication technologies ICECCT, (pp. 1–7). IEEE.

Velasco, J., Pascion, C., Alberio, J. W., Apuang, J., Cruz, J. S., Gomez, M. A., et al.
(2019). A smartphone-based skin disease classification using mobilenet cnn. arXiv
preprint arXiv:1911.07929.

Vijayalakshmi, A., et al. (2020). Deep learning approach to detect malaria from
microscopic images. Multimedia Tools and Applications, 79(21), 15297–15317.

Wang, J., Li, X., Li, J., Sun, Q., & Wang, H. (2022). Ngcu: A new rnn model for
time-series data prediction. Big Data Research, 27, Article 100296.

Wang, L., Lin, Z. Q., & Wong, A. (2020). Covid-net: A tailored deep convolutional
neural network design for detection of covid-19 cases from chest x-ray images.
Scientific Reports, 10(1), 1–12.

WHO (2022). Multi-country monkeypox outbreak in non-endemic countries. (accessed
on may 29, 2022). https://www.who.int/emergencies/disease-outbreak-news/item/
2022-DON385.

Zhang, Z. (2018). Improved adam optimizer for deep neural networks. In 2018
IEEE/ACM 26th international symposium on quality of service (IWQoS) (pp. 1–2).
Ieee.

Zhang, A., Ballas, N., & Pineau, J. (2018). A dissection of overfitting and generalization
in continuous reinforcement learning. arXiv preprint arXiv:1806.07937.

Zhang, Y., & Davison, B. D. (2020). Impact of imagenet model selection on domain
adaptation. In Proceedings of the IEEE/CVF winter conference on applications of
computer vision workshops (pp. 173–182).

Zhang, C., Liao, Q., Rakhlin, A., Miranda, B., Golowich, N., & Poggio, T. (2018).
Theory of deep learning IIb: Optimization properties of SGD. arXiv preprint arXiv:
1801.02254.

Zhang, G., Wang, C., Xu, B., & Grosse, R. (2018). Three mechanisms of weight decay
regularization. arXiv preprint arXiv:1810.12281.

http://refhub.elsevier.com/S0957-4174(22)02502-7/sb85
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb85
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb85
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb85
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb85
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb86
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb86
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb86
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb86
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb86
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb87
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb87
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb87
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb87
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb87
http://arxiv.org/abs/1611.07450
https://www.kdnuggets.com/2019/12/5-techniques-prevent-overfitting-neural-networks.html
https://www.kdnuggets.com/2019/12/5-techniques-prevent-overfitting-neural-networks.html
https://www.kdnuggets.com/2019/12/5-techniques-prevent-overfitting-neural-networks.html
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb90
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb90
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb90
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb90
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb90
http://arxiv.org/abs/1409.1556
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb92
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb92
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb92
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb93
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb93
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb93
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb93
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb93
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb93
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb93
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb94
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb94
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb94
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb94
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb94
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb94
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb94
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb95
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb95
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb95
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb95
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb95
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb96
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb96
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb96
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb96
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb96
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb97
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb97
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb97
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb99
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb99
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb99
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb99
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb99
http://arxiv.org/abs/1911.07929
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb101
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb101
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb101
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb102
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb102
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb102
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb103
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb103
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb103
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb103
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb103
https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON385
https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON385
https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON385
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb105
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb105
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb105
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb105
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb105
http://arxiv.org/abs/1806.07937
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb107
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb107
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb107
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb107
http://refhub.elsevier.com/S0957-4174(22)02502-7/sb107
http://arxiv.org/abs/1801.02254
http://arxiv.org/abs/1801.02254
http://arxiv.org/abs/1801.02254
http://arxiv.org/abs/1810.12281

	Deep transfer learning approaches for Monkeypox disease diagnosis
	Introduction
	Motivation
	Methodology
	Data collection
	Data augmentation
	Convolutional neural network
	Feature extraction
	Generalization
	Regularization
	VGG16
	ResNet50
	ResNet101
	Xception
	EfficientNetB0
	EfficientNetB7
	NasNetLarge
	EfficientNetV2M
	ResNet152V2
	EfficientNetV2L
	Proposed model
	Preprocessing of the Monkeypox images
	Proposed CNN architecture

	LIME as explainable AI
	Experiment setup
	Hyperparameters
	Performance evaluation

	Results
	Study One
	Study Two
	Study Three
	Missclassification
	Complexity of the model

	Discussions
	Limitations of the Study and Future Works
	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References

