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Machine Learning (ML) and Deep Learning (DL) have already brought unprecedented success in the detection of 
various diseases of plant leaves, fruits, buds, flowers, etc. Besides, computer science and related field researchers 
are widely trying to use specific ML and DL methods to classify images and get better results in the field of 
agriculture and technology. Considering these, Deep Convolutional Neural Networks (DCNN) have been applied 
in this research. We first applied the Gaussian filter and the Median filter separately on the main dataset and 
saved the filtered images into two separate directories. We then applied two color models (HSI and CMYK) 
separately to the images in each directory. Thus, we pre-processed the images in four different ways with the 
main objective of finding the best combination of the filtering methods and the color models. We then applied 
our selected DCNN models to each output obtained from the pre-processing steps and finally chose the best 
methodology based on the accuracy. At last, we have found the highest accuracies (98.27% in Vgg-19, 94.98% 
in MobileNet-V2, and 99.53% in the ResNet-50) by using the Gaussian Blur and the Gaussian Noise filters with 
the RGB to CMYK color conversion method.
1. Introduction

The growth of agriculture has been intimately tied to the advance-

ment of science and computer technology and also artificial intelli-

gence (AI) has emerged as a viable technique to enhance agricultural 
outcomes by offering insightful advice and recommendations regard-

ing crops. Besides, agricultural crops or vegetables are used in al-

most every country in the world and meet our needs in many ways. 
Tomato (Solanum Lycopersicum L.) [1] is one of the most popular, 
the second most important fruit or vegetable crop next to potato 
(Solanum tuberosum L.) [2]. Tomatoes are loved all over the world as 
a vegetable, as a sauce, as a salad, and even as a natural skin care prod-

uct. However, many diseases in the leaves of tomatoes greatly reduce 
the fruit of the tomato and sometimes even kill the plant. Some com-

mon diseases are Septoria Leaf Spot, Early Blight, Late Blight, Tomato 
Yellow Leaf Curl Virus, etc. These diseases can be detected manually or 
using technology, and it is possible to multiply the yield of tomatoes 
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and meet the needs of the world better.

However, due to issues like ignorance, expensive expenses, or a lack 
of understanding of the advantages of cutting-edge technologies, con-

ventional farming practices are still widely used in many nations. This 
ignorance causes issues and heightens the difficulties farmers already 
face. Moreover, it takes a lot of time to diagnose the disease and take ap-

propriate action against it manually. That is why researchers are trying 
to apply different branches of AI such as ML, DL, Computer Vision (CV), 
various Neural Networks (NN), etc., in the fields of agriculture. There-

fore, three common diseases (Septoria Leaf Spot, Early Blight, Tomato 
Yellow Leaf Curl Virus) of tomatoes have been identified in this re-

search. By applying this, we can help farmers to take major steps to 
increase tomato production around the world.

In our work, we prioritized DCNN over other DL methods for our 
tomato leaf disease detection system to achieve higher accuracy and 
improved efficiency. Because DCNN provides many additional advan-
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tages in image feature detection than other methods. First of all, DCNN 
is built in such a way that it can automatically capture image features. 
It also performs well in edge detection and low-level feature detection 
and combines them to generate more accurate results. Another impor-

tant feature of DCNN is that it does not perform position-based image 
detection. This is very important because the leaf disease symptoms are 
located in different places on each leaf, which is somewhat challenging 
to detect with other methods. Additionally, DCNN facilitates transfer 
learning methods as it is built with pre-trained on very large data (Ima-

geNet). By using this feature, it can work very easily and smoothly on a 
dataset like our tomato leaf disease dataset. Moreover, one of the most 
important features of DCNN is its ability to operate on different varia-

tions of input data such as different color variations of the image data, 
different noise associated with the image, and environmental variations 
which are very common in real-world data.

The main novelty of this research is the approaches and the way we 
have found the best performance to detect the selected tomato leaf dis-

eases despite the presence of noises, color variations, and environmental 
differences. We have combined the color models and the filtering meth-

ods in many ways and applied them to our dataset to make our images 
more noise-free and more smooth so that the feature extraction becomes 
better for our DCNN models. Finally, we have fitted the outputs which 
have been obtained from our pre-processing steps to our selected DCNN 
models and showed the final results in the form of classification reports 
and confusion matrices for each outcome.

It was John McCarthy who introduced “Artificial Intelligence” to ev-

eryone in the world at the 1955 Dartmouth Conference [3]. Since then, 
scientists have been trying to figure out how to apply it in almost all 
sectors of the world.

The application of AI with the expert system in agriculture was first at-

tempted [4] by McKinion and Lemmon in 1985 [5]. Both McKinion and 
Lemmon later did more important research on the application of AI to 
agriculture. In 1986, Lemmon proposed an expert system called COMAX 
(Cotton Management Expert). Later on, he also developed a computer 
model called GOSSYM. And for the very first time, the progress of cotton 
crops was effectively simulated using an expert system (COMAX) that 
was successfully combined with a computerized model (GOSSYM) [6].

Since then, the use of this technology in agriculture has progres-

sively increased, and the development of new computational methods 
has sped up this process. In spite of the limited number of case studies, 
algorithms like CNN (Convolutional Neural Networks) and DBN (Deep 
Belief Networks) show promise for processing vast amounts of complex 
data in the future [7].

After that, a considerable amount of work has already been done 
by applying CNN to diagnose tomato leaves. One of the most recent 
works is Kibriya et al. [8] which was published in IEEE in 2021. In their 
proposed method, two different transfer learning models, i.e., VGG16 
and GoogleNet are trained. Then the deep feature vector is supplied to 
other classifiers like Cubic SVM, Ensemble Bagged Tree, Fine KNN, and 
Medium Gaussian SVM. They work with three types of tomato leaf dis-

eases such as Bacterial Spot, Late Blight, and Early Blight. Methods of 
pre-processing images are not in detail in their work. Also, The classi-

fication of the images and the segmentation methods are not clear in 
their paper. The comparison of different types of methods needs to be 
more realistic and informative along with the performance evaluation 
of the CNN models.

In 2020 Jiang et al. [9] proposed a Resnet-50 residual model to 
detect several leaf diseases of Tomatoes. They trained the model effi-

ciently and predicted the result with reasonable accuracy. Their model’s 
train accuracy is 98.3% and the test accuracy is 98%. For extracting the 
feature, they use a 7x7 convolution kernel size in the initial stages. 
After that, they use an 11x11 convolution kernel which gives them 
2.3% increased accuracy in comparison with the first kernel. They also 
use the Leaky-ReLU activation function for generating and comparing 
the result. For preventing overfitting issues, they have applied random 
2

data augmentation to their model. 3000 images have been used in that 
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Fig. 1. Images of our selected 3 leaf diseases of tomatoes.

model. The images were expanded further by Gaussian noise and Affine 
transformation which sums up a total of 6794 images. There is a lack of 
a relatively complete and high-quality crop disease database, the classi-

fication of some rare diseases or species in their paper.

Also in 2020, Asok et al. [10] proposed a CNN model to detect four 
types of tomato leaf conditions such as Healthy, Phoma Rot, Leaf Miner, 
and Target Spot. In the preprocessing steps, they applied the Gaussian 
filter to reduce the noise of the images. DWT (Discrete Wavelet Trans-

form) and GLCM (Gray Level Co-occurrence Matrix) are applied in fea-

ture extraction steps. DWT is used to improve the enhancement of the 
images which can take the discrete wavelength transform of the images 
and give equal precision. GCLM is used to classify the images into differ-

ent luminous levels. Their proposed CNN model gives 98.12% accuracy.

Tm et al. [11] have experimented with several standard deep learn-

ing architectures like AlexNet, GoogleNet, and LeNet. They found the 
best result with LeNet as LeNet is a type of CNN model that is a combi-

nation of convolution, activation, pooling, and fully connected layers. 
They also use an additional layer in their proposed LeNet model than 
the original LeNet model. They have used a minimum number of layers 
to detect the diseases, not the deep layers. Also lack of different learning 
rates and optimizations that could be used in future work.

Kumar et al. [12] trained the DCNN models with all 14,903 images 
of the 9 classes from the “Plant Village”. LeNet, VGG16, Xception, and 
Resnet50 have been trained in their research. Softmax classifiers have 
been used for the fully connected layers. Data augmentation, regular-

ization, and dropout (to avoid overfitting problems) have been used in 
their models.

The remaining sections are arranged as follows: Section 2 will be 
used to describe the Materials and Methodology. The Result and Dis-

cussion and finally the Conclusion will be described in sections 3 and 4
respectively.

2. Materials and methodology

2.1. Materials:- data source and description

Machine learning and datasets are inextricably linked. In order to 
train and test a machine or system using an artificial neural model, the 
need for a highly accurate, efficient, and relatable dataset comes first. 
In our research, we have used a very effective and enriched dataset 
from Kaggle called “Plant Village Dataset” [13] where different types 
of tomato leaf images with many types of diseases are present. From 
those, we have chosen Early Blight, Septoria Leaf Spot, and Yellow Leaf 
Curl Virus diseases for our research. We have used around 7,000 images 
of these diseases to train our models. Some images of our dataset are 

given in Fig. 1.
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Fig. 2. Overall Methodology of our research.

2.2. Methodology

In most cases, when dealing with image processing using DCNN, we 
use different deep-learning models to make it happen. We have also 
done this. Fig. 2 describes all the processes of our research in brief.

Below are the sections that describe all the steps in detail.

2.3. Filtering in pre-processing steps

We have applied the Gaussian Noise along with the Gaussian Blur 
filter and the Median filter separately to our dataset for making a clear 
distinction between their performances on our dataset as they can ex-

tract valuable characteristics by the knowledge of artificial neural net-

works.

2.3.1. Gaussian blur

The Gaussian blur filter [14], also called the Gaussian filter, is a 
widely used image-blurring filter in image processing that helps to de-

crease noise and details in an image.

The equation for the Gaussian blur filter can be given as:

𝐺(𝑥, 𝑦) = 1
2𝜋𝜎2

𝑒
− 𝑥2+𝑦2

2𝜎2 (1)

where, 𝑥 and 𝑦 are the pixel coordinates, 𝜎 is the standard deviation 
of the Gaussian distribution and 𝐺(𝑥, 𝑦) is the Gaussian kernel at pixel 
(𝑥, 𝑦).

2.3.2. Gaussian noise

Gaussian noise [15] is a type of image noise that is generated from 
a Gaussian distribution. It can be added to an image to simulate camera 
noise or other types of natural noise. The equation of the Gaussian noise 
is:

𝐼𝑛𝑜𝑖𝑠𝑦(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) + 𝜖(𝑥, 𝑦) (2)

where 𝐼(𝑥, 𝑦) represents the original picture, 𝐼𝑛𝑜𝑖𝑠𝑦(𝑥, 𝑦) represents the 
noisy image, and 𝜖(𝑥, 𝑦) represents the Gaussian noise, which has a mean 
of zero and a standard deviation of 𝜎.

2.3.3. Median filter

Median filter or Median blur [16] is used to reduce the noise in 
3

images. Each pixel’s value is changed to reflect the median value of the 
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pixels around it. Unlike other blurring methods, median blur keeps the 
image’s edges while reducing noise.

The median blur equation can be written as follows:

𝐼𝑜𝑢𝑡(𝑥, 𝑦) = 𝑡𝑒𝑠𝑡𝑚𝑒𝑑𝑖𝑎𝑛(𝐼𝑖𝑛(𝑥− 𝑘 ∶ 𝑥+ 𝑘, 𝑦− 𝑘 ∶ 𝑦+ 𝑘)), (3)

where 𝑘 is the radius of the median filter kernel, 𝐼𝑖𝑛 is the input image, 
𝐼𝑜𝑢𝑡 is the output image following median filtering, 𝑥 and 𝑦 are the 
coordinates of the processed pixel and 𝑡𝑒𝑠𝑡𝑚𝑒𝑑𝑖𝑎𝑛() is the median function 
that determines the median value of the surrounding pixels.

2.4. Split data into train, validation, and test sets

In machine learning and data science, dividing data into train, vali-

dation, and test sets is a standard approach to assessing and comparing 
the performance of various models. The key justifications for breaking 
up the data into such sets are model selection, overfitting prevention, 
and model evaluation. We split our data into three sets; one for training 
our model, one for validation, and another for evaluation and testing 
purposes. We randomly split all our images into three files, one file 
with 70% of the main data as a training set, 20% in the validation set, 
and 10% in the test set.

2.5. Color model

The color models RGB (Red, Green, Blue), CMYK (Cyan, Magenta, 
Yellow, Key/Black), HSL (Hue, Saturation, Lightness), HSI (Hue, Sat-

uration, Intensity), and others are used in image processing. We have 
applied HSI and CMYK color models along with the filters that are de-

scribed above to find our best model in terms of performance. The two 
color models are described below.

2.5.1. HSI color model

We have applied the HSI color model [17] for this research. The 
HSI color model is frequently employed in image processing applica-

tions including image augmentation, contrast adjustment, and image 
segmentation. The formulas are:

𝐻𝑢𝑒(𝐻) = arccos

(
0.5 ∗ ((𝑅−𝐺) + (𝑅−𝐵))√
(𝑅−𝐺)2 + (𝑅−𝐵) ∗ (𝐺 −𝐵)

)
(4)

𝑆𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑆) = 1 − 3min(𝑅,𝐺,𝐵)
𝑅+𝐺 +𝐵

(5)

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝐼) = 𝑅+𝐺 +𝐵

3
(6)

where the processed pixel’s red, green, and blue values are 𝑅, 𝐺, and 
𝐵.

2.5.2. CMYK color model

In contrast to the RGB model, which adds light to produce colors, 
the CMYK model [17] subtracts light from white to produce colors. The 
equation for converting RGB to CMYK color model is:

CMYK = (𝐶 ′,𝑀 ′, 𝑌 ′,𝐾) (7)

where,

𝐶 ′ = 𝐶 −𝐾

1 −𝐾 + 10−8
(8)

𝑀 ′ = 𝑀 −𝐾

1 −𝐾 + 10−8
(9)

𝑌 ′ = 𝑌 −𝐾

1 −𝐾 + 10−8
(10)

And

𝐾 =min(min(𝐶,𝑀), 𝑌 ) (11)

𝐶 = 1 −𝑅 (12)
𝑀 = 1 −𝐺 (13)
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Fig. 3. Architecture of Proposed Deep Convolutional Neural Network models.
𝑌 = 1 −𝐵 (14)

2.6. Generating image data

We have generated image data by Image Data Generator so that 
the machine can detect all the pixels by numerical values (between 
0 to 1) and can differentiate one image’s features from another and 
can generate a better result. We have used a variety of techniques for 
enhancing and modifying our images. We have used rotation, zooming, 
shifting, horizontal flipping, and shear range to generate data from our 
images.

2.7. Architecture of proposed deep convolutional neural network models

We have constructed three DCNN models for our research such as 
Vgg-19 [18], MobileNet-V2 [19], and ResNet-50 [20]. The architectures 
4

of the DCNN models are given in Fig. 3.
2.8. Activation: ReLU

Rectified Linear Unit (ReLU) is one of the most commonly used ac-

tivation functions in DCNN. Here, we have used the flattening layer to 
convert the previous layer’s output into a one-dimensional tensor first. 
Then we created a fully connected layer with 256 neurons that take the 
flattened output as an input. Finally, we applied the ReLU activation 
function to the previous layer’s output. The equation [21] is:

𝑓 (𝑥) = max(0, 𝑥) (15)

where 𝑥 is the input to the function.

2.9. Activation: softmax

We have used Softmax [22] as an activation function, which is fre-

quently used in machine learning, especially for classification problems. 
The Softmax function’s output values range from 0 to 1, making it 
suitable for situations involving several classes of classification. The 

softmax function is applied as follows:
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sof tmax(𝑥𝑖) =
exp(𝑥𝑖)∑𝑛

𝑗=1 exp(𝑥𝑗 )
(16)

where 𝑥𝑖 is the 𝑖-th element of the input vector and 𝑛 is the length of 
the input vector.

2.10. Optimizer: Adam

A CNN can employ a variety of optimizers. In this research, We have 
used the Adam Optimizer [23]. Because it has been demonstrated to 
perform well in a variety of networks with deep learning. The following 
are the mathematical formulas for the parameter update rule for the 
Adam optimizer:

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (17)

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔2𝑡 (18)

�̂�𝑡 =
𝑚𝑡

1 − 𝛽𝑡1
(19)

�̂�𝑡 =
𝑣𝑡

1 − 𝛽𝑡2
(20)

𝜃𝑡 = 𝜃𝑡− 1 − 𝛼
�̂�𝑡√
�̂�𝑡 + 𝜖

(21)

Here,

• The first and second moments of the gradient at time step 𝑡 are 
represented in this equation by 𝑚𝑡 and 𝑣𝑡, respectively.

• The decay rates for the first and second moments are 𝛽1 and 𝛽2, 
correspondingly.

• The bias-corrected estimates of the first and second moments are 
�̂�𝑡 and �̂�𝑡, respectively.

• The current estimate of the model’s parameters at time step 𝑡 is 𝜃𝑡.
• The learning rate is denoted by 𝛼, and a tiny constant called 𝜖 is 

used to prevent division by zero.

• The exponentiation, not the index, is shown by the superscripts on 
𝛽1 and 𝛽2.

2.11. Loss function: sparse categorical cross-entrophy

The Sparse Categorical Cross-entropy loss function [24], [25] also 
known as Sparse Softmax Cross-entropy works with integer labels as 
opposed to categorical cross-entropy, which needs the target labels to be 
in one-hot encoding format. The following is the mathematical formula 
for the Sparse Categorical Cross-entropy.

𝐿(𝑦𝑡𝑟𝑢𝑒, 𝑦𝑝𝑟𝑒𝑑 ) = −
𝐶∑
𝑖=1

𝑦𝑡𝑟𝑢𝑒,𝑖 log(𝑦𝑝𝑟𝑒𝑑,𝑖) (22)

where,

• 𝐶 is the number of classes

• 𝑦true is the true label vector in integer format

• 𝑦pred is the predicted probability distribution vector over 𝐶 classes

2.12. Callback [early stopping]

We have used Callback [Early Stopping] [26] to prevent overfitting 
issues for our models. It is used during the training of our models.

The equation is:

EarlyStopping = argmin𝑖{Loss𝑖 + 𝜆 ⋅𝐶(𝑖)} (23)

where 𝐿𝑜𝑠𝑠𝑖 is the loss at epoch i, C(i) denotes a function that computes 
the cost depending on the epoch number, and 𝜆 denotes a parameter of 
regularization that regulates the severity of the cost to prevent overfit-
5

ting.
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Fig. 4. Gaussian Blur and the Gaussian Noise filter with RGB to CMYK color 
conversion in VGG-19.

2.13. Confusion matrix

We have used confusion metrics [[27], [28], [29]] to show the per-

formance of our proposed models. Several metrics are calculated includ-

ing accuracy (in eq. (24)), precision (in eq. (25)), recall (in eq. (26)), 
and F1 score (in eq. (27)) which offers a complete perspective of our 
selected model’s performance.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(24)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛= 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(25)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(26)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒= 2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗𝑅𝑒𝑐𝑎𝑙𝑙)
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

(27)

where, 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 , and 𝐹𝑁 represent true positives, true negatives, 
false positives, and false negatives respectively.

3. Result and performance discussion

We will describe the result and performance in 4 different ways that 
we have applied separately by the combination of the Gaussian Blur 
and the Gaussian Noise filter, and the Median filter along with the HSI 
and CMYK color models such as:

1) Gaussian Blur and the Gaussian Noise filter with RGB to CMYK 
color conversion

2) Gaussian Blur and the Gaussian Noise filter with RGB to HSI color 
conversion

3) Median filter with RGB to CMYK color conversion

4) Median filter with RGB to HSI color conversion

Finally, We have chosen our best methodology based on the perfor-

mance of the three DCNN models.

The performances of all the methodologies are given below:

3.1. Gaussian Blur and the Gaussian Noise filter with RGB to CMYK color 
conversion

3.1.1. VGG-19

Fig. 4(a) is showing the training and validation accuracy of the 

Gaussian Blur and the Gaussian Noise filter with the RGB to CMYK 
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Fig. 5. Gaussian Blur and the Gaussian Noise filter with RGB to CMYK color 
conversion in MobileNet-V2.

color conversion method. From the graph, it is clear that, in Vgg-19, 
we have achieved 100% training accuracy and 98.07% validation accu-

racy. Besides Fig. 4(b), it is showing zero training loss and a very lower 
validation loss. All these data sum up that our model is well-trained 
and predicts the results well. In this case, the classification report con-

taining the precision, recall, f1-score, support, macro average, weighted 
average, and final accuracy of the model is shown in Fig. 4(c). The con-

fusion matrix, which represents the true and predicted levels, is given in 
Fig. 4(d). The final accuracy of the Vgg-19 model regarding this method 
is 98.27%.

3.1.2. MobileNet-V2

In MobileNet-V2, the training accuracy and the validation accuracy 
in Fig. 5(a) are 98.58% and 95.02% respectively. Whereas Fig. 5(b) 
which represents the training and validation losses, shows a training 
loss of 4.00% and a validation loss of 13.94%. Fig. 5(c) represents the 
classification report and Fig. 5(d) represents the Confusion Matrix of 
Gaussian Blur and the Gaussian Noise filter with RGB to CMYK color 
conversion methods applied in MobileNet-V2. The final accuracy of our 
MobileNet-V2 model is 94.98%.

3.1.3. ResNet-50

ResNet-50 has shown 100% training accuracy and 99.28% valida-

tion accuracy (shown in Fig. 6(a)). Fig. 6(b) shows the training and 
validation loss. It is clear that the training loss is also zero with this 
method. Classification metrics for the ResNet-50 model are given in 
Fig. 6(c) for every tomato leaf disease class (Early Blight, Septoria Leaf 
Spot, and Yellow Leaf Curl Virus). The confusion matrix is given in 
Fig. 6(d) for this methodology. For this method, ResNet-50 has shown a 
test accuracy of 99.53% which is the highest accuracy among all of our 
selected models.

3.2. Gaussian Blur and the Gaussian Noise filter with RGB to HSI color 
conversion

3.2.1. VGG-19

The training and validation accuracy of Gaussian Blur and Gaussian 
Noise filters with the RGB to CMYK color conversion method are il-
lustrated in Fig. 7(a). The graph clearly demonstrates that our Vgg-19 
model achieves 100% training accuracy and 97.19% validation accu-

racy. Additionally, Fig. 7(b) displays zero training loss and 21.03% 
6

validation loss. These results provide strong evidence that our model 
Smart Agricultural Technology 5 (2023) 100301

Fig. 6. Gaussian Blur and the Gaussian Noise filter with RGB to CMYK color 
conversion in ResNet-50.

Fig. 7. Gaussian Blur and the Gaussian Noise filter with RGB to HSI color con-

version in VGG-19.

is well-trained and proficient in predicting the outcomes. Furthermore, 
Fig. 7(c) presents the classification report, and the corresponding con-

fusion matrix, for the true and predicted levels, is depicted in Fig. 7(d). 
Based on this method, our Vgg-19 model achieves a final accuracy of 
98.12%.

3.2.2. MobileNet-V2

The training accuracy and validation accuracy for MobileNet-V2 are 
shown in Fig. 8(a) as 98.44% and 95.98%. Fig. 8(b), which illustrates 
the training and validation losses, is similar to our prior model (Vgg-19), 
with a training loss of 4.46% and a validation loss of 13.16%. Fig. 8(c) 
displays the classification report. Besides, Fig. 8(d) displays the confu-

sion matrix for the Gaussian Blur and Gaussian Noise filters with RGB 
to CMYK color conversion methods in MobileNet-V2. Our MobileNet 
model’s ultimate accuracy for this approach is 95.13%.

3.2.3. ResNet-50

Fig. 9 illustrates all the performance of ResNet-50, which demon-
strated 100% training accuracy and 99.52% validation accuracy (shown 
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Fig. 8. Gaussian Blur and the Gaussian Noise filter with RGB to HSI color con-

version in MobileNet-v2.

Fig. 9. Gaussian Blur and the Gaussian Noise filter with RGB to HSI color con-

version in ResNet-50.

in Fig. 9(a)). Fig. 9(b) displays the training and validation losses. The 
training loss in this manner is zero and the validation loss is 1.53%. For 
each tomato leaf disease class, classification metrics for the ResNet-50 
model are given in Fig. 9(c) and Fig. 9(d) provides the confusion ma-

trix, which depicts the actual levels and predictive levels. ResNet-50 has 
achieved an impressive 99.37% test accuracy in this section.

3.3. Median filter with RGB to CMYK color conversion

3.3.1. VGG-19

Fig. 10(a) shows the training and validation accuracy of the Me-

dian filter with RGB to CMYK color conversion in Vgg-19. The graph 
shows Vgg-19 has achieved 99.98% training accuracy and 96.93% vali-

dation accuracy, which is quite satisfactory. Whereas, Fig. 10(b) shows 
a training loss of zero and a validation loss of 29.66% for this model. 
In this case, the classification report is shown in Fig. 10(c) with all 
performance measures that are mentioned above. The confusion ma-

trix is depicted in Fig. 10(d). The final accuracy of the Vgg-19 model is 
7

98.16%.
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Fig. 10. Median filter with RGB to CMYK color conversion in VGG-19.

Fig. 11. Median filter with RGB to CMYK color conversion in MobileNet-V2.

3.3.2. MobileNet-V2

In MobileNet-V2, the training accuracy and the validation accuracy 
in Fig. 11(a) are 98.66% and 94.78% respectively. Whereas Fig. 11(b), 
which represents the training and validation losses, shows a training 
loss of 4.23% and a validation loss of 17.86%. Fig. 11(c) represents the 
classification report and Fig. 11(d) represents the Confusion Matrix of 
the Median filter with RGB to CMYK color conversion method applied 
in MobileNet-V2. The final accuracy of our MobileNet model for this 
method is 94.93%.

3.3.3. ResNet-50

ResNet-50 has shown 100% training accuracy and 99.31% valida-

tion accuracy, as shown in Fig. 12(a). Fig. 12(b) shows the training and 
validation losses. It is clear that the training loss is also zero with this 
method and the validation loss is 1.47%. Classification metrics for the 
ResNet-50 model are given in Fig. 12(c). Moreover, the confusion ma-

trix is given in Fig. 12(d) for this methodology. Here ResNet-50 has 

shown a test accuracy of 98.92%.



M.I. Hossain, S. Jahan, M.R. Al Asif et al.

Fig. 12. Median filter with RGB to CMYK color conversion in ResNet-50.

Fig. 13. Median filter with RGB to HSI color conversion in VGG-19.

3.4. Median filter with RGB to HSI color conversion

3.4.1. VGG-19

The training and validation accuracy of the Median filter with RGB 
to HSI color conversion in VGG-19 is illustrated in Fig. 13(a). The graph 
clearly indicates that our Vgg-19 model achieves 99.45% training accu-

racy and 96.09% validation accuracy. Additionally, Fig. 13(b) displays 
6.87% training loss and 60.26% validation loss. Furthermore, Fig. 13(c) 
presents the classification report and the corresponding confusion ma-

trix which is presented in Fig. 13(d). In this case, our Vgg-19 model 
achieves a final accuracy of 95.08%.

3.4.2. MobileNet-V2

For MobileNet-V2, the training accuracy is 98.37%, and the valida-

tion accuracy is 92.48% that are given in Fig. 14(a). Now, Fig. 14(b) 
represents a training loss of 4.28% and a validation loss of 19.13%. 
Fig. 14(c) represents the classification report, and Fig. 14(d) represents 
the Confusion Matrix of the median filter with RGB to HSI color con-

version in MobileNet-V2. The final accuracy of our MobileNet-V2 model 
8

for this method is 94.93%.
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Fig. 14. Median filter with RGB to HSI color conversion in MobileNet-V2.

Fig. 15. Median filter with RGB to HSI color conversion in ResNet-50.

3.4.3. ResNet-50

Fig. 15(a) demonstrated 100% training accuracy and 99.54% val-

idation accuracy. Fig. 15(b) displays that the training loss also is zero 
here and the validation loss is 1.18%. For each tomato leaf disease class, 
classification metrics for the ResNet-50 model are given in Fig. 15(c), 
and Fig. 15(d) provides the confusion matrix, which depicts the actual 
levels and predictive levels while predicting the result. ResNet-50 has 
achieved a satisfactory 99.23% test accuracy here.

3.5. Choosing the best model

All the results of the proposed methodologies along with the models 
that we have tried in this research are given in Table 1.

Table 1 clearly shows that all of our models give over 94% accu-

racy in every methodology. ResNet-50 performs very well as it gives 
over 98% accuracy for all the methods. But it gives the best results of 
99.53% in Gaussian Blur and the Gaussian Noise filter with the RGB 
to CMYK color conversion method in the Resnet-50 model. Besides, 
Vgg-19 gives over 98% accuracy in every method, and MobileNet-V2 

performs slightly less in comparison with our other two models in ev-
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Table 1

Overall Performance Table.

Methods Model and Accuracy

Gaussian Blur and Gaussian Noise 
filters with CMYK color model

Vgg19 98.27%

MobileNet-V2 94.98%

Resnet-50 99.53%

Gaussian Blur and Gaussian Noise 
filters with HSI color model

Vgg19 98.12%

MobileNet-V2 95.13%

Resnet-50 99.37%

Median Filter with CMYK color 
model

Vgg-19 98.16%

MobileNet-V2 94.93%

Resnet-50 98.92%

Median Filter with HSI color 
model

Vgg-19 95.08%

MobileNet-V2 94.93%

Resnet-50 99.23%

Table 2

Comparison with some of the existing works.

Reference Proposed Model and Accuracy

Jiang et al. [9] Resnet50 - 98%

Kibria et al. [8] Googlenet - 99.23%

VGG16 - 98%

Brahimi et al. [30] CNN - 99.18%

Ashok, Kishore et al. [10] CNN - 98.12%

Kumar et al. [12] VGG16 - 99.25%,

LeNet, ResNet50, and Xception

(between 91% to 98.65%)

Proposed best methodology Vgg19 98.27% MobileNet-V2 
94.98% Resnet-50 99.53%

ery methodology. From Table 1, by comparing the overall performance 
of our selected three models in every method, we can declare the Gaus-

sian Blur and the Gaussian Noise filters with the RGB to CMYK color 
conversion model as our best methodology as it provides the best result 
rather than the others. It shows 98.27% accuracy in Vgg-19, 94.98% in 
MobileNet-V2, and 99.53% in the ResNet-50 model.

3.6. Comparing our selected model with some existing works

Many works are available on tomato leaf disease detection which is 
done by using neural networks. Table 2 shows the performance of some 
existing works that have been published in recent years.

Jiang et al. [9] have used Resnet-50 as their basic model and then 
applied 11x11 convolution kernel to improve the result. They also 
used the Leaky-ReLU activation function at last to generate the best 
result. Finally, they gained 98% test accuracy using the Resnet-50 
model. Whereas, Kibria et al. [8] have acquired 99.23% accuracy in 
Googlenet and 98% accuracy in VGG16 transfer learning methods. Be-

sides, Brahimi et al. [30] applied Convolutional Neural Network in 
order to find out a good result in their methods. They have got 99.18% 
accuracy applying CNN. Another remarkable work using CNN is done 
by Ashok, Kishore et al. [10] who got 98.12% accuracy during the test 
process. Kumar et al. [12] also worked with neural networks to detect 
the leaf disease of tomatoes. They have applied LeNet, Rasnet-50, VGG-

16, and Xception models in their research. They have got quite high 
accuracy in VGG-16 which is 99.25% and LeNet, ResNet50, and Xcep-

tion all are between 91% to 98.65% respectively.

Now by comparing Tables 1 and 2, we can clearly say that our mod-

els are well-fitted for providing better accuracy. Also, we can conclude 
that the methodology which we have selected as our best provides the 
highest result in comparison with the other methodologies that are pre-
9

sented in Tables 2.
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4. Conclusion

The triumph of computer and information technology continues to 
shine in many sectors of the world including agriculture. But most of 
the developing and underdeveloped countries still use ancient and un-

derdeveloped methods for doing most of the work in the agricultural 
sector. Yet most people follow the manual method of diagnosing leaf 
disease, which is both time-dependent and somewhat complex. Once 
this method is applied to a physical device or in software, people will 
be benefited immediately regarding the detection of mentioned leaf dis-

eases of tomatoes.

Due to the simplicity of our environmental set-up (i.e., hardware, soft-

ware, etc.), we did our research on a few images. We might have gotten 
better results if we had trained the models with 8 to 10 times more im-

ages than this. In the future, we will try to work with a much larger 
dataset and also there will be various real images of various tomato leaf 
diseases captured from our surroundings. Moreover, we will work on 
building hybrid models, which means, we will try to combine decision 
tree, SVM, etc. machine learning models with CNN models, which may 
bring more accuracy and speed to our “Tomato Leaf Disease” detection 
system.
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