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Abstract: A proinflammatory role of HDACs has been implicated in the pathogenesis of atherosclero-
sis as an emerging novel epigenetic diagnostic biomarker. However, its association with the clinical
and cardiovascular function in coronary artery disease is largely unknown. The study aimed to profile
the gene expression of HDAC1–11 in human peripheral blood mononuclear cells and to evaluate
their influence on hematological, biochemical, and two-dimensional echocardiographic indices in
CAD. The HDAC gene expression profiles were assessed in 62 angioproven CAD patients and com-
pared with 62 healthy controls. Among the HDACs, upregulated HDACs 1,2, 4, 6, 8, 9, and 11 were
upregulated, and HDAC3 was downregulated, which was significantly (p ≤ 0.05) linked with the
hematological (basophils, lymphocytes, monocytes, and neutrophils), biochemical (LDL, HDL, and
TGL), and echocardiographic parameters (cardiac function: biplane LVEF, GLS, MV E/A, IVRT, and
PV S/D) in CAD. Furthermore, our constructed diagnostic model with the crucial HDACs establishes
the most crucial HDACs in the classification of CAD from control with an excellent accuracy of 88.6%.
Conclusively, our study has provided a novel perspective on the HDAC gene expression underlying
cardiac function that is useful in developing molecular methods for CAD diagnosis.

Keywords: HDAC profiling; atherosclerosis; epigenetic biomarkers; coronary artery disease; left
ventricular structural indices

1. Introduction

Coronary artery disease (CAD) continues to be a leading cause of mortality glob-
ally [1]. CAD is caused by atherosclerosis. Plaque formation and progression result from
the intricate interaction of cellular molecules, exacerbated by traditional risk factors such
as diabetes, smoking, hypertension, and obesity. These traditional risk factors significantly
impact the endothelium and increase the disease burden, resulting in significant compli-
cations [2]. Clinical symptoms, an electrocardiogram (ECG) [3,4], stress testing, cardiac
computed tomography (CT), and molecular markers [5] are used to diagnose coronary
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artery disease. Despite these diagnostic methods, there is no effective early detection
procedure for CAD. Consequently, a diagnostic method that can screen for and predict
CAD with high sensitivity and specificity is still desired.

Recent discoveries on epigenetic regulation implicate them as predictive markers in
clinical contexts for cancer, neurodegenerative disorders, cardiovascular diseases, metabolic
syndrome, inflammation, and immune disorders [6]. Several epigenetic modifications,
such as histone protein modification, DNA methylation, microRNA expression, and long
noncoding RNAs, influence transcription machinery, resulting in cellular and molecular
changes [7]. Histone deacetylase (HDAC) is essential in modulating cellular gene expres-
sion and contributing to physiological changes in the cardiovascular system [8]. Several
animal and cell model experiments implicate HDACs in endothelial and inflammatory
processes associated with the pathogenesis of CAD [9]. However, the effect of HDACs on
the structure and function of the myocardium is largely unknown. Establishing the HDAC
mechanisms associated with cardiac physiology may aid in developing a biomarker for
diagnosing CAD.

This study aimed to profile the HDAC gene expression in human peripheral blood
mononuclear cells (PBMCs) to correlate with the hemodynamic status of the heart based
on the hematological, biochemical, and two-dimensional echocardiographic indices in
participants with CAD. The assessment of hemodynamic status reveals a substantial epi-
genetic connection between HDACs and cardiovascular function. Further, the developed
diagnostic model with logistic regression provides evidence to rationalize specific HDACs
as a possible diagnostic marker for CAD.

2. Materials and Methods
2.1. Clinical Specimens

The institutional human ethics committee of the Chettinad Academy of Research
and Education (IHEC/10-17/Proposal No. 372) was obtained for this study. All partic-
ipantssigned informed consent before the initiation of the investigation process. Study
participants were recruited at Chettinad Super Specialty Hospital between August 2019 and
December 2019 and underwent a coronary angiogram with angina symptoms. Each study
participant’s demographic and clinical histories were recorded based on a questionnaire
approved by the institution’s institutional review board. By the inclusion and exclusion
criteria, 124 participants were recruited for the study. The inclusion criteria for the study
participants include the following:(1) Participants belonging to South Indian ancestry of
both genders. (2) Physiological status was diagnosed or classified by a qualified senior
consultant cardiologist based on the coronary angiogram (for CAD, a lesion greater than
30% in the primary coronary artery or main branches, and participants without CAD,
lesions below 30%). The exclusion criteria include the following: 1. previous history of
myocardial infarction (MI); 2. heart failure; 3. arterial revascularization; 4. rheumatic
disease; 5. cardiomyopathies; 6. pericardial diseases; 7. a severe systemic inflammatory
disorder; and 8. acute or chronic respiratory diseases.

2.2. Human Anthropometric and Biochemical Evaluation

Standardized methodologies were used to measure anthropometric measurements
such as height (m2) and weight (kg) to yield the body mass index (BMI). A mercury
sphygmomanometer was used to measure systolic blood pressure (BP) and diastolic BP
for the participants. The biochemical indices such as glycated hemoglobin (HbA1c) (ure-
ase method), fasting (FBS) and postprandial blood glucose (PPBS) (hexokinase method),
total cholesterol (T. cholesterol) (CHOD/POD end method), serum triglycerides (TGL)
(GPO POD method), high-density lipoprotein (HDL) (direct method), low-density lipopro-
tein (LDL) (Friedewald formula), and complete blood count including, total leukocyte
count (TLC), red blood cell count (RBC), hemoglobin (HB), packed cell volume (PCV),
mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpus-
cular hemoglobin concentration (MCHC), red cell distribution width (RDW), platelets,
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basophils, eosinophils, lymphocytes, monocytes, and neutrophils were assessed using
Coulter LH 780 Hematology Analyzer (Beckman Coulter, Brea, CA, USA).

2.3. Gene Expression Profiling of HDAC

Peripheral blood (5 mL) was collected from the study participants (62 CAD and
62 control) in the K2EDTA BD Vacutainer (BD Vacutainer®) at Cath ICU, Department
of Cardiology, Chettinad Super Specialty Hospital. Following the manufacturer’s pro-
tocol, histopaque (Cat#1077, Sigma-Aldrich, St. Louis, MO, USA) was used to isolate
the PBMCs from the collected whole blood. Total RNA was extracted from PBMCs
(1.30 × 106 cells/mL) using Trizol reagent (cat#15596026, Invitrogen, Waltham, MA, USA).
The Nanodrop 2000 Spectrophotometer (Thermo Scientific, Waltham, MA, USA) was used
to quantify the collected RNA. The reverse transcription was carried out for cDNA synthe-
sis using a SuperScript III First-Strand (Life Technologies, Carlsbad, CA, USA). The gene
expression was performed using ABI-7000 (Applied Biosystems, Waltham, MA, USA) with
SYBR green master mix (Takara, Kusatsu, Japan) and gene-specific primers for HDACs
(Table 1). The HDAC gene expressions were normalized with the housekeeping gene
(GAPDH), and the expression was calculated by the ∆∆Ct method.

Table 1. List of primers used in our study.

S.No Gene FORWARD 5′<-----Sequence----->3′ REVERSE 5′<-----Sequence----->3′

1 HDAC1 GAGATGACCAAGTACCACAGC TGACAGAACTCAAACAGGCC
2 HDAC2 TGACAAACCAGAACACTCCAG TGACAAACCAGAACACTCCAG
3 HDAC3 GGACTTCTACCAACCCACG CAGCACGAGTAGAGGGATATTG
4 HDAC4 ACAAGGAGAAGGGCAAAGAG GCGTTTTCCCGTACCAGTAG
5 HDAC5 TCACCGCAAAACTCCTACAG AGTTCCCGTTGTCATAGCG
6 HDAC6 TTCAACTCTGTGGCTGTGG GGGACACATATAGCACACTGG
7 HDAC7 GCAGATCATTCAACAGCCATG TTGGTAGAAGGTTTGCTGGG
8 HDAC8 AATTAACTGGTCTGGAGGGTG TGCAGATCCAAATCCACGTAG
9 HDAC9 ACACATTACCAGGAGCACAAG CAACATTTCCATCCTTCCGC
10 HDAC10 GTCCTTTACTTCTCCTGGCAC GTAGTCAGCGTTTCCCATCC
11 HDAC11 GTTTCTGTTTGAGCGTGTGG GGTAGATGTGGCGGTTGTAG
12 GAPDH TGTCATCAACGGAAAGGC GCATCAGCAGAAGGAGCA

2.4. Echocardiography Imaging

Transthoracic 2D echocardiography was performed using Esaote (MyLabTM25Gold)
according to the guidelines of the American Society of Echocardiography [10,11]. Left
ventricular structural indices such as left ventricular interventricular septal, posterior
wall thickness, left ventricular end-systolic dimension, and left ventricular end-diastolic
dimension were measured using M-mode echocardiography at the chordae tendineae level
to determine left ventricular ejection fraction (biplane LVEF). Further, the mass index of
the left ventricle (LVMI) was calculated using the Devereux 1987 method. The biplane
Simpson’s technique and global longitudinal strain (GLS) were utilized to determine the
left ventricle’s systolic functions. Furthermore, pulsed wave transmitral flow and tissue
Doppler velocity were implemented to determine the left ventricular diastolic functions
based on early and late transmitral flow velocity, mitral inflow E/A ratio (MV E/A), mitral
peak lateral (L E/e′) and septal myocardial early diastolic velocity (S E/e′), isovolumetric
relaxation time (IVRT), pulmonary vein AR duration (PV AR), and pulmonary venous
systolic velocity/diastolic velocity ratio (PV S/D).

2.5. Diagnostic Model Using Binary Logistic Regression

To assess the diagnostic value of the HDACs related to anthropometric, biochemical,
and imaging parameters, the diagnostic model was constructed by fitting the expression
value of the significant HDACs into a binary logistic regression model (glm2 package
version 1.2.1, R package). Youden’s J index was used to find the optimal threshold. All
124 participants were classified into training (70%) and test set (30%). The training cohort
was utilized for constructing the model, while the testing cohort was employed to assess
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the model’s performance. Then, the receiver operating characteristic (ROC) curves were
utilized to evaluate the model’s efficacy.

2.6. Statistical Examination

The characteristics of participants, such as anthropometric, biochemical, molecular,
and imaging parameters, were represented as the mean ± standard deviation. The dif-
ference between the CAD and control was determined using a student t-test for each
characteristic except gender data. The categorical data (gender) were assessed throughthe
Chi-square test. The Pearson correlation was implemented to assess the association be-
tween the characteristics. All statistical analyses were performed using SPSS (version 21),
and significance was determined if the p-value was less than 0.05.

3. Results
3.1. Evaluation of Anthropometric, Hematological, and Biochemical Features

In anthropometric measurements, systolic BP and diastolic BP were significantly
elevated in CAD. Similarly, lipid parameters such as T. cholesterol (p < 0.05), TGL (p < 0.001),
and LDL (p < 0.001) were significantly elevated in CAD compared to the control group.
In contrast, HDL (p < 0.001) decreased in CAD compared to the controls. Similarly, the
complete blood count parameters, including TLC (p < 0.001), HB (p < 0.001), RBC (p < 0.001),
PCV (p < 0.001), basophils (p < 0.05), lymphocytes (p < 0.05), monocytes (p < 0.001), and
neutrophils (p < 0.001) were significantly altered. In contrast, there were no statistically
significant differences between CAD and the control for age, BMI, FBS, PPBS, MCV, MCH,
MCHC, RDW, platelets, eosinophils, and HbA1c levels (Table 2).

Table 2. Characteristics of the study population in anthropometric, hematological, and biochemical
features.

Parameters Control
(Mean ± Standard Deviation)

CAD
(Mean ± Standard Deviation) p-Value

Age (years) 44.90 ± 8.96 48.23 ± 9.34 0.096
Gender (male/female) 38/24 33/29 0.360

BMI (kg/m2) 23.76 ± 2.98 25.02 ± 1.19 0.081
Systolic BP (mmHg) 103.44 ± 18.43 118.65 ± 18.64 <0.001
Diastolic BP (mmHg) 69.62 ± 8.87 78.60 ± 14.02 <0.001

FBS (mg/dL) 99 ± 16.59 107.55 ± 12.18 <0.071
PPBS (mg/dL) 109.62 ± 38.86 105.34 ± 26.84 <0.065

TLC (cmm) 7034.88 ± 1700.96 9783.72 ± 4165.04 <0.001
RBC (cmm) 5.14 ± 0.65 4.62 ± 0.58 <0.001
HB (g/dL) 14.57 ± 1.62 13.18 ± 1.60 <0.001
PCV (%) 44.48 ± 4.96 40.05 ± 4.87 <0.001
MCV (fl) 87.23 ± 7.86 86.57 ± 7.11 0.686

MCH (pg) 28.66 ± 2.86 28.69 ± 2.84 0.955
MCHC (g/dL) 32.82 ± 0.68 33.12 ± 0.95 0.096

RDW (%) 14.25 ± 1.50 14.41 ± 1.54 0.631
Platelet (cmm) 2.83 ± 0.68 2.81 ± 0.73 0.926
Basophil (%) 0.57 ± 0.44 0.83 ± 0.49 0.015

Eosinophil (%) 3.66 ± 3.24 3.9 ± 3.62 0.750
Lymphocyte (%) 29.69 ± 8.79 36.03 ± 12.23 0.007

Monocyte (%) 4.18 ± 1.80 7.12 ± 2.86 <0.001
Neutrophil (%) 54.83 ± 8.77 66.46 ± 12.76 <0.001
HDL (mg/dL) 38.11 ± 7.00 28.81 ± 7.50 <0.001
LDL (mg/dL) 115.86 ± 27.92 165.83 ± 46.59 <0.001
TGL (mg/dL) 118.90 ± 65.48 189.90 ± 43.70 <0.001

Total Cholesterol (mg/dL) 182.302 ± 33.94 211.93 ± 52.79 0.003
HbA1c (%) 5.05 ± 0.43 5.35 ± 0.16 0.831

p < 0.05, statistical p-value < 0.05 considered as significant.

3.2. Gene Expression Profiling of HDACs in PBMCs

The gene expression of HDACs was evaluated in PBMCs and compared between
CAD and control groups. As shown in Table 3, CAD exhibited a significant increase in
HDAC1, HDAC2, HDAC4, HDAC6, HDAC8, HDAC9, and HDAC11 expression, while
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HDAC3 expression decreased compared to the control. In contrast, HDAC5, HDAC7, and
HDAC10 failed to reach the minimal significance level between groups.

Table 3. HDAC gene expression of study participants.

HDACs Control
(Mean ± Standard Deviation)

CAD
(Mean ± Standard Deviation) p-Value

HDAC1 2.33 ± 1.21 2.91 ± 1.48 0.030
HDAC2 4.35 ± 1.69 5.51 ± 1.52 0.014
HDAC3 3.82 ± 0.73 2.28 ± 0.59 0.044
HDAC4 3.43 ± 0.98 4.52 ± 1.01 0.032
HDAC5 1.91 ± 0.37 3.48 ± 1.75 0.202
HDAC6 2.26 ± 0.70 2.52 ± 0.71 0.042
HDAC7 0.95 ± 0.17 1.58 ± 0.92 0.130
HDAC8 3.80 ± 2.36 5.21 ± 3.02 0.004
HDAC9 3.54 ± 1.99 6.25 ± 1.16 <0.001

HDAC10 0.84 ± 0.52 1.34 ± 0.55 0.184
HDAC11 3.36 ± 0.21 4.93 ± 2.19 <0.001

p-value < 0.05 considered as significant.

3.3. Assessment of 2D Echocardiographic Imaging

Using echocardiography, the structure and functional behavior of the heart were
evaluated in 124 participants. Table 4 displays the outcome of echocardiographic indices.
In CAD, the echocardiographic indices of LVMI, PV S/D, and IVRT were significantly
increased. In contrast, the ratios of MV E/A, S E/e′, L E/e, PV AR, biplane LVEF, and
GLS weredecreased compared to the control. Consequently, the statistical analysis of
echocardiographic indices confirms the left ventricular dysfunction in CAD relative to
healthy individuals.

Table 4. Characteristics of the study population in echocardiographic parameters.

Echo Parameters Control
(Mean ± Standard Deviation)

CAD
(Mean ± Standard Deviation) p-Value

Biplane LVEF (%) 58.66 ± 1.77 48.51 ± 5.62 <0.001
LVMI (g/m2) 69.95 ± 25.91 83.97 ± 18.74 0.004

MV E/A (m/s) 1.13 ± 0.30 0.59 ± 0.56 <0.001
S E/e′ (m/s) 8.69 ± 0.97 7.08 ± 1.48 <0.001
L E/e′ (m/s) 10.20 ± 0.98 7.99 ± 1.05 <0.001

IVRT (ms) 69.54 ± 11.62 99.46 ± 16.33 <0.001
PV AR (m/s) 33.37 ± 7.88 28.14 ± 5.79 <0.001
PV S/D (m/s) 0.59 ± 0.19 0.96 ± 0.33 <0.001

GLS (%) −15.91 ±0.20 −14.58 ±1.01 <0.001

p-value < 0.05 considered as significant.

3.4. Correlation of Significantly Altered Hematological and Biochemical Features Characteristics
with HDACs

The association between HDACs and anthropometric and biochemical characteristics
was evaluated using Pearson correlation analyses. HDAC2 shows a positive correlation
with basophils (r = 0.59, p = 0.026), lymphocytes (r = 0.782, p < 0.001), monocytes (r = 0.677,
p = 0.008), neutrophils (r = 0.703, p = 0.005), LDL (r = 0.883, p = <0.001), TGL (r = 0.643,
p = 0.003), and negatively correlated with HDL (r = −0.773, p = 0.001). Further, HDAC9
showed a positive correlation with TLC (r = 0.925, p < 0.001), basophils (r = 0.728, p = 0.017),
monocytes (r = 0.778, p = 0.008), neutrophils (r = 0.753, p = 0.012), and LDL (r = 0.752,
p = 0.012), and a negative association with lymphocyte (r = −0.685, p = 0.029). Likewise,
Pearson correlation analysis revealed a significant relationship between HDAC1, HDAC3,
HDAC6, HDAC8, and HDAC11, along with anthropometric and biochemical characteristics



Biomedicines 2023, 11, 2952 6 of 12

(Figure 1). In contrast, HDAC4 has no significant relationship with anthropometric or
biochemical parameters.
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Figure 1. Correlation analysis of significantly altered hematological and biochemical features with
HDACs (1–4, 6, 8, 9, and 11) in CAD participants. The yellow color represents an insignificant
association between the analyzed features, and the red color indicates a significant association. Of
those, the mathematical sign + and − represent positive and negative correlation, respectively.

3.5. Correlation between HDAC Levels and 2D Echocardiographic Parameters

In correlation analysis of HDACs with echocardiographic indices, HDAC2 showed a
positive correlation with LVMI (r = 0.634, p = 0.015) and GLS (r = 0.709, p = 0.004) and a
negative association with biplane LVEF (r =−0.701, p = 0.005), S E/e’ (r =−0.811, p < 0.001),
and L E/e’ (r = −0.773, p < 0.001). Similarly, HDAC9 expression confirmed the negative
correlation with biplane LVEF (r = −0.8436, p = 0.003) and MV E/A (r = −0.837, p = 0.003)
and the positive association of GLS (r = 0.793, p = 0.006), IVRT (r = 0.748, p = 0.013), and
PV S/D (r = 0.697, p = 0.025). Likewise, a significant association was noticed for other
HDACs with echocardiographic indices (Figure 2), presenting the involvement of HDACs
with heart structure and functional indices.
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Figure 2. Correlation analysis of significantly altered echocardiographic indices with HDACs (1–4, 6,
8, 9, and 11) in CAD participants. The yellow color represents an insignificant association between
the analyzed features, and the red color indicates a significant association. Of those, the mathematical
sign + and − represent positive and negative correlation, respectively.

3.6. Diagnostic Model with Crucial HADCs for CAD Classification

A logistic regression analysis was performed after the screening of HDACs based on
the correlation significance with hematological, biochemical, and echocardiographic indices.
The diagnostic model was created using the R-package version 3.2.0, incorporating the
variables HDAC1, HDAC2, HDAC3, HDAC4, HDAC6, HDAC8, HDAC9, and HDAC11. The
model utilizes a training set including 70% of the randomly selected 124 people and a test
set consisting of the remaining 30%. The diagnostic regression equation was constructed
as logit (P) = −16.937 + 0.763 × HDAC11 + 1.595 × HDAC9 + 0.298 × HDAC8 + 1.652 ×
HDAC4 − 0.676 × HDAC3. The diagnostic capabilities of this equation were evaluated
using ROC analysis, as shown in the figures. The training set yielded an accuracy of 88.6%
with a 0.94 area under the curve (AUC), a specificity of 86.4%, and a sensitivity of 90.9%
(Figure 3A). Similarly, the test set demonstrated an accuracy of 83.3% with a 0.95 AUC, a
specificity of 72.2%, and a sensitivity of 94.4% (Figure 3B). These results provide evidence
that these HDACs possess strong predictive capabilities of CAD.
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4. Discussion

The emphasis of our research has been to observe the types of epigenetic alterations
in patients presenting with angina pectoris that are further grouped as angioproven CAD
and healthy controls. The scientific application of this perception can immensely support
the development of effective diagnostic biomarkers for CAD. Earlier clinical studies on
animals and human atherosclerotic tissues have demonstrated the epigenetic modification
that plays a predominant role in the regulatory network of inflammation, oxidative stress,
and vascular smooth muscle cell proliferation, contributing to vascular diseases such as
atherosclerosis and restenosis [12]. Evidence of HDAC modification in atherosclerosis
has been well-established as a valid target for novel therapeutic approaches [13]. Yet, the
increased understanding of HDAC regulatory activity in atherosclerosis as a diagnostic
biomarker associated with echo imaging, biochemical, and hematological analysis is un-
seen. Hence, to our knowledge, the present study is the first report demonstrating HDAC
profiling and altered gene expression in the PBMCs of patients with CAD and healthy con-
trols. Our study demonstrated the significant variation in HDACs 1–11 activity between the
angioproven CAD and control individuals. Regarding HDAC profiling, our t-test analysis
identified certain HDACs as the exclusive significant factor. Further, using the Pearson
correlation, the significant HDACs and biochemical, hematological, and echocardiographic
parameters were analyzed and proven to be possible diagnostic markers for CAD.

Histone modification profiling in human PBMCs was performed between angioproven
CAD and healthy participants to discover a novel selective diagnostic marker for CAD.
Interestingly, by profiling HDACs 1–11, we observed changes in the HDAC gene expression
and their statistical significance in the PBMCs between CAD and healthy participants.
Several animal, cell, and human model studies have highlighted that class I HDAC is
predominant in mediating proinflammatory molecules, inflammation, and endothelial dys-
function and regulating VSMC proliferation, thrombus formation, and atherosclerosis [14].
In our study, Class I HDACs (1-3, and 8) were solely significant and dysregulated in the
study group. Studies by Manea et al. revealed that HDAC1 and 2 were upregulated in
human atherosclerotic aorta/carotid arteries, and ApoE¯/¯ mice thereby witnessed the
dominant role of HDAC1 and 2 in the development of atherosclerotic plaque [15]. Yao et al.
have reported that the levels of class I HDAC3 were downregulated, which legalizes the
cyclic strain and promotes the migration and proliferation of VSMCs in the development
of atherosclerosis [16]. Another study by Kee et al. demonstrated that the inhibition of
HDAC8 in a mouse model lowers blood pressure, reduces the aortic wall thickness, and
increases vascular relaxation, resulting in the inhibition of inflammation that leads to
atherosclerosis [17]. In our present study, we observed statistically significant upregulation
of HDAC1, 2, and 8 and downregulation of HDAC3 in CAD participants.

Furthermore, Class II HDACs (4, 5, 6, 7, 9, and 10) were analyzed, resulting in upreg-
ulated expressions of histone acetylation, of which HDACs 4, 6, and 9 were statistically
significant among the study participants. Numerous studies [18–21] have proved that
HDAC4 promotes VSMC proliferation, migration, and atherosclerotic plaque formation.
In addition, HDAC4 was involved in VSMC proliferation, which plays a crucial role in
vascular calcification [22] and the inflammatory response [23]. Likewise, increasing evi-
dence has supported our study results that HDAC6 plays a decisive role in endothelial
dysfunction [24], oxidative stress [25], and inflammation [26] and has a protective role
in promoting vascular homeostasis [27]. Among all the classical HDACs, HDAC9 is the
most well-studied individual subtype for its association with atherosclerosis in animal and
human models. It has been reported that an increase in HDAC9 gene expression in human
internal carotid [28], plasma/coronary artery disease [29,30], the blood of patients with
large atherosclerotic lesions [31], and plaque vulnerability [32] results in plaque formation
and the development of atherosclerosis that further causes severe cardiac events. However,
our study was in line with other studies in which the levels of HDAC were upregulated
and highly significant among our CAD participants. Although the HDACs (5, 7, and 10)
showed dysregulation in CAD, they were not statistically significant. Of note, HDAC11 is
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the only member of Class IV that has been least explored and analyzed in the development
of atherosclerosis in humans and animals. Our study showed that Class IV (HDAC11)
levels were significantly upregulated among CAD participants. In contrast to our inves-
tigation, Zhang and Ge et al. and Yanginler and Logie et al. [33,34] demonstrated that
HDAC11 potentially treats atherosclerosis. Hence, these findings determine the dysfunction
of HDAC11 in the pathogenesis of atherosclerosis and CAD, which must be further studied
in detail.

In addition to HDAC gene expression profiling, we have also analyzed the association
of significantly altered HDACs (1–4, 6, 8, 9, and 11) with the hematological and biochemical
parameters that play a vital role in the cascade of events that leads to atherosclerosis. De-
spite all these studies, the association between HDAC levels and hematological/biochemical
parameters related to CAD has not been explored. In our present investigation, our data
showed that dysregulated levels of HDACs such as HDAC2 (basophils, lymphocytes,
monocytes, neutrophils, HDL, and LDL), HDAC3 (HB, PCV, neutrophils, HDL, and LDL),
HDAC9 (TLC, basophils, lymphocytes, monocytes, neutrophils, HDL, and LDL), HDAC1
(basophils and neutrophils), HDAC6 (SBP, DBP, basophils, monocytes, and T. cholesterol),
HDAC8 (HDL and LDL), and less known HDAC11 was correlated with the hematolog-
ical/biochemical parameters (TLC and monocytes) of CAD patients. Studies such as
Dorneles et al. and Chi et al. provided good evidence for our data by demonstrating an im-
balance of HDAC2 expression levels in obese patients [35] and the role of HDAC6 in cardiac
dysfunction regulated by angiotensin II [36]. Hence, the present experimental association
of dysregulated HDACs with the hematological and lipid profiles of CAD indicates the
crucial pathological role of HDACs in atherosclerosis [37], which can potentially serve as a
diagnostic biomarker for CAD with clinical benefits.

To address whether dysregulated HDAC gene expression distresses the left ventricular
mass diastolic and systolic function, we validated the statistically significant profiled
HDACs with 2D transthoracic echocardiographic imaging. Left ventricular mass index
is recognized as one marker of cardiovascular risk in patients without CAD. Abdi-Ali
et al. [38] and Kee et al. [39] ruled out the significant association of LVMI with cardiac
hypertrophy and future cascades of cardiac events. Our data found a similar association
between dysregulated HDACs 1, 2, and 6 and LVMI in the CAD group, demonstrating the
regulatory mechanism of HDAC activity in LV mass hypertrophy. Further, the assessment
of LV function showed a significant association of dysregulated HDACs 1–4, 6, 8, 9, and
11 with systolic and diastolic function. Several studies in CAD patients have elucidated
that subclinical LV systolic and LV diastolic impairments are independent markers for
predicting CAD. Our data results were in line with a few studies performed on both
animal and human models by Kimbrough et al., Chen et al., and Jeong et al. [40–42] that
illustrate that dysregulated HDACs promote endothelial dysfunction and contribute to the
pathological process that leads to CAD and mediated cardiac events. Altogether with prior
research, alterations in HDAC mRNA expression are detected in numerous CAD-associated
cells, including endothelial cells, smooth muscle cells, and cardiomyocytes. Comparable
patterns of gene expression were identified in peripheral blood mononuclear cells (PBMCs)
that correlate with cardiac function in CAD. Considering the CAD association of these
HDACs, we constructed a diagnostic model with significant HDACs that showed accuracy
greater than 83% in both training and testing sets, which showed that our model had a
strong clinical application value. To our knowledge, no existing study has developed a
diagnostic model utilizing HDAC gene expression. Therefore, this diagnostic model holds
significant novelty and potential for application in laboratory settings. Overall, this study
has demonstrated that the process of histone deacetylation has the potential to function as
a diagnostic biomarker for coronary artery disease.

5. Conclusions

In conclusion, our study evaluated the gene expression levels of various classes of
HDACs in the human peripheral mononuclear cells in patients with CAD and compared
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them with the healthy control group. It was observed that significant alterations in HDACs
1-4, 6, 8, 9, and 11 were associated with the critical hematological, biochemical, and cardiac
indicators of CAD. Further utilizing the HDACs, the diagnostic model was generated,
which showed significant accuracy in classifying CAD from healthy normal.
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