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ABSTRACT Work-related musculoskeletal ailments are injuries or disorders of the joints, muscles, nerves,
or tendons caused by repetitive tasks and jobs that require uncomfortable postures. REBA (Rapid Entire
Body Assessment) is a widely used assessment method for examining occupational ergonomics in areas
where musculoskeletal disorders (MSDs) are common. REBA assessment necessitates the presence of a
professional evaluator who monitors workers’ motions and postures, which takes time and has limitations
in terms of real-world implementation. With the progress of deep learning-based human posture estimate
algorithms, postural risk assessment has become an important and complex research area. We present a
technique for forecasting REBA risk levels using 3D coordinates of human body position as input data in this
study. We calculated REBA risk scores for various body segments and overall risk rating for corresponding
action level for each body position using 3D keypoints from the widely renowned Human 3.6M dataset,
which is a significant contribution for future research work in this arena. Using this vast ground truth dataset,
a unique DNNmodel was created to forecast the REBA risk level for measuring the full body’s postural risk.
REBA Ground Truth dataset is highly imbalanced which coped with data augmentation for the rare classes.
To determine the optimal model configuration based on highest accuracy, ablation study is conducted by
tuning different hyper-parameters. The proposed model, post-ablation study, attained 89.07% accuracy score
on a test set of 128,046 samples from Nadam optimizer with a learning rate of 0.001 and batch size of 512.

INDEX TERMS Ergonomic risk, musculoskeletal disorders (MSDs), 3D-keypoints, posture analysis, rapid
entire body assessment (REBA) score.

I. INTRODUCTION
The measurement of workers’ postural attitudes in every
working environment is critical for assessing and pre-
venting biomechanical overload concerns in the workplace
[1]. Musculoskeletal disorders (MSDs) include injuries or
abnormalities that affect the muscles, nerves, tendons, joints,
cartilage, and spinal discs [2]. Work-related musculoskeletal
diseases (WMSD) are highly influenced by the working
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environment and job performance, and the condition can
worsen or last longer as a result of the same work conditions
[2]. Any body position that is maintained for an extended
amount of time can induce discomfort and exhaustion; for
example, standing is a natural body posture that provides
no special health risks. However, working for long periods
in a standing position can cause discomforts like sore
feet, general muscular fatigue, and low back pain [3]. The
Bureau of Labor Statistics of the Department of Labor
defines MSDs as musculoskeletal system and connective
tissue diseases and disorders when the event or exposure
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leading to the case is bodily reaction (e.g., bending, climbing,
crawling, reaching, twisting), overexertion, or repetitive
motion [4]. Employer expenditures related with WMSDs
include absenteeism, lost productivity, and increased health
care, disability, and worker’s compensation costs [5]. The
average nonfatal injury or illness is less severe than MSD
cases [2]. Around 374 million work-related MSD cases have
been documented worldwide, according to the International
Labor Organization (ILO). Workers must take an average
of four days off work owing to WMSD difficulties. Poor
workplace safety and health practises are projected to cost
around 3.94% of worldwide gross domestic product per year
[6]. Musculoskeletal disorders are common in Australia, with
over 6.9 million persons affected by WSMDs in 2014–15,
according to the Australian Institute of Health and Welfare
[7]. In 2017, 31% of Australians suffer from backpain-related
disorders, with 17% of these cases attributed to occupational
exposures and risks. According to one study, workplace
dangers account for 37% of all back pain worldwide [8].
WMSDs cost more than $24 billion in 2012-2013, according
to Safe Work Australia 2015a, and they continue to endanger
the work health and safety (WHS) system. These illnesses
accounted for 12% of Australia’s overall burden of sickness
and injury in the general population, and 23% of the non-fatal
burden [9]. MSDs are ranked second in terms of their impact
based on these numbers. WMSDs have had a significant
impact on individuals as well as the economy of the country.
Companies must deal with compensation and health-care
costs, as well as workers’ financial losses as a result of
time off or early retirement [10]. Many efficient ergonomic
evaluation approaches for analysing the work process have
been developed to prevent the incidence of WMSDs.
The risk factors for WSMDs and subsequent ergonomic
interventions in the workplace are of great consequence,
and numerous methodologies such as self-assessment, work
posture evaluation and direct measurement [11] have recently
been put into action. The process of self-assessment is
frequently less reliable and subjective. MSD data and joint
angles are typically acquired from workers using different
sensors mounted to their bodies [12] while they operate in
the direct approach. Some direct techniques necessitate 3D
position estimation utilising a depth camera, which has a
limited range [13] and is not widely available in workplaces
since it requires the configuration of wearable sensors, which
disrupts work. The observational evaluation approach has
shown to be the most practical method of evaluating postural
motions, and it is now widely employed in the industry.
It not only allows workers to be viewed immediately and
objectively while at work, but it also gives exact and reliable
results for MSD risk assessment. Researchers have recently
begun to investigate alternative sensor-based automated eval-
uation approaches, such as distributed surveillance cameras
[14], RGB-D cameras [15], reprogrammable Human–Robot
Collaboration (HRC) workstations [16], and so on. The most
often utilised procedures for measuring ergonomic risks are
the Ovako working posture analysis system (OWAS) [17],

succinct exposure index (OCRA index) [18], rapid upper limb
assessment (RULA) [19], and rapid entire body assessment
(REBA) [20]. We focused on postural risk analysis of the full
body, not only the upper limb, in this study, thus we used the
REBAmethod, which takes into account all body parts. Deep
convolutional networks were the most commonly utilised
technique for predicting joint angles and risk assessment (D-
CNNs). In this research, we employed a deep learning system
to estimate ergonomic risk using 3D human joints keypoints
as input.

A. CONTRIBUTIONS
The purpose of this study is to develop a model that reliably
forecasts the ergonomic dangers of every difficult posture in
any workplace. It is intended that by doing so, the employees’
health risks will be reduced, as well as the loss of production.
The following key points are worth mentioning:

1) The public dataset used for this study, is a compre-
hensive one, containing a massive 3.6 million human
posture data [21] and ground truth annotation for
17 body joints; we also produced a ground truth dataset
with specific body segment scores.

2) Data augmentation was done for training data because
the dataset was severely imbalanced, but no augmenta-
tion was done for data validation, and all data was taken
for testing.

3) The model is sufficiently robust, as validated and
evidenced by the necessary ablation studies providing
a deep insight into its overall performance.

II. LITERATURE REVIEW
There had been a lot of previous work in the industry using
approaches like rapid upper limb assessment (RULA) [19],
rapid entire body assessment (REBA) [20], Ovako working
posture analysis system (OWAS) [17], postural ergonomic
risk assessment (PERA) [22] and succinct exposure index
(OCRA index) [18]. During the evaluation process, all of
these strategies and their results were assessed, regardless of
their various implementation sectors. The RULA method is
used to examine the working posture and related risk levels
of the upper limb of the body in order to determine MSDs
in terms of ergonomic evaluation. Li Li et al. [23] suggested
a deep learning-based postural risk factor assessment system
based on the RULAmethodology for preventing work-related
MSD. Normal RGB photos were used to detect 2D poses
and generate RULA action levels, which were used to define
the RULA grand score category. The work employs data
augmentation techniques on a public human pose dataset
called Human 3.6. For postures during lifting duties and
ordinary activities, their proposed model had a 93% accuracy
rate. However, their proposedmethod could only look at static
postures with moderate body motions as a wrist score, and
muscle usage was expected to be uniform, although repetitive
movement frequency and muscle usage were not taken into
account. The suggested algorithm, according to the authors,
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may not deliver efficient performance in real-world on-site
applications because photos often contain noise due to poor
lighting conditions, which could lead to overfitting issues.
Other posture detectors, RULA estimator structure, and
ablation studies on CNN model should also be investigated
further to improve the algorithm’s resilience. Abobakr et
al. [24] later suggested a vision-based semi-automated
RULA system for predicting body joint angles from a
single depth image. This ergonomic assessment method
for adopted working postures uses an inverse kinematics
modelling stage to examine the articulated posture by training
a deep residual convolutional neural network (CNN). Their
proposed method was evaluated in real scenarios with an
RULA grand score prediction accuracy of 89%, which was a
reasonable agreement; nevertheless, several other evaluation
procedures, such as data augmentation and ablation study,
might have improved their assessment accuracy. Seo and
Lee [25] have suggested a computer vision-based technique
to automatically identify construction workers’ postures for
postural ergonomic risk assessment. By using classification
techniques to learn varied postures from virtual images, they
were able to minimise the need for large training-image
datasets. They used the Support Vector Machine (SVM) as
a classifier. This system attained an overall classification
accuracy of 89% for automatically analysing ergonomic
concerns, however it did not use any established evaluation
procedures, and no validation was done. Beheshti et al.
[17] proposed using the OVAKO Working posture Analysis
System (OWAS) to measure the risk of musculoskeletal
problems, and their findings indicated that various farming
chores were more risky and hazardous to health. Their
findings contrasted risk levels before and after the inter-
vention, as well as the accompanying p-values, but there
was no obvious performance measurement or validation.
Etemadinezhad et al. [26] used the OWAS approach to
investigate musculoskeletal diseases among workers. Their
research concentrated on diagnosing damage to various body
regions and suggested that there was a pressing need for
change. It did not, however, place a strong emphasis on
performance measurement or validation of their findings.
Wu et. al [11] used REBA technique to obtain a reliable target
detection model in 2020 in the form of an App software.
This assessment was done based on Mask RCNN (Region
Based Convolutional Neural Networks).The effort began
with video capture, REBA process implementation, human-
machine interaction, video-imaging transmission, and key
point extraction. They used the Microsoft COCO dataset
and selected 1,000 working photographs from the job site.
A total of 800 photos were used as network training data.
The developed target detection model was put to the test
using 200 test sets. Their model was nearly 90% accurate,
but only on a very tiny scale of real-life scenarios. There
was no validation process to confirm this assessment, nor
was there any ablation study to check the contributions of the
components to their model.

Despite the fact that these studies showed a significant
increase in terms of predicting postural risk, they were
unable to validate the effectiveness of their algorithms.
Furthermore, no previous research had conducted an ablation
study to determine the important components and the optimal
combination for getting the best results.

III. PROPOSED METHODOLOGY
For predicting ergonomic risk with REBA score estimation,
this study is proposing a model that stipulates the ergonomic
postures that cause musculoskeletal disorders without any
human intervention. The dataset used is a public human pose
dataset named ‘Human 3.6M’ for training and evaluation
and a ground truth dataset of REBA scores was prepared
from the ground-truth keypoints annotation of this public
dataset, which we named as REBA DATASET. In this
study, after collecting the dataset, the risk level is calculated
according to the REBA guide. Afterward, the dataset is
distributed based on the five risk levels and split into training,
validation and test set. Data augmentation is carried out on
the training dataset using three techniques to address the data
imbalance issue. To develop the proposed model, we have
conducted an ablation study of six cases to get the optimal
architecture configuration based on the highest accuracy. The
steps of the methodology of the proposed model are shown in
Figure 1.

A. DATASET PREPARATION
There are a number of public datasets with ground truth
annotations for human body pose. These datasets are
annotated for different key-points of human body segments,
most of the datasets cover common body segments. Mostly
differs for head and neck segments’ key-points annotation.
For our experiment, we used the Human 3.6M dataset which
is one of the largest dataset with both 2D and 3D human
pose ground truth key-points for 17 different scenarios. The
number of ground truth keypoints data is 2110396 available
from this Human3.6m dataset. In Figure 2 one sample
annotation for the 17 body keypoints is shown. This dataset
is annotated for 17 human body keypoints as follows: Pelvis,
RHip, RKnee, RAnkle, LHip, LKnee, LAnkle, Spine1,
Neck, Head, Site, LShoulder, LElbow, LWrist, RShoulder,
RElbow, RWrist

1) GROUND TRUTH (GT) DATASET
We have prepared a ground truth dataset including individual
body segments score, score A, score B, score C, Risk and
action label for overall posture for both left side and right
side of human body posture which can be useful for further
research work. The dimension of the GT data is 2110396 ×

75. A snapshot of the ground truth dataset is shown in Table 1
(We have excluded the numerical values of the human body
joint coordinates due to the copyright of the Human3.6m
dataset).
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FIGURE 1. Methodology of the proposed model.

TABLE 1. Snapshot of the ground truth dataset.

TABLE 2. Ground truth features of Human3.6m dataset.

B. REBA SCORE CALCULATION
The data that the GT dataset contains are mostly fetched from
the human3.6m dataset and the rest of them are computed
using the REBA techniques. The GT features are listed in
Table 2. All the left and right scores are calculated using
REBA [20] official guidelines. According to the REBAguide,
using the Human 3.6M dataset, we can calculate all body
segments’ risk scores except wrists which we assumed unit
value. To calculate the overall risk level for a specific body
posture, we first calculate risk for individual body segments
and then compute the final REBA score. We have used 3D
key-points annotations for REBA score calculation. For this,

1) First, we moved the pelvis key-points to origin (0,0,0)
and then transformed the rest of the key-points across
the pelvis joint (Figure 3) for the ease of calculation of
the segment angles.

2) Next, the angles of the body segments that are required
for calculating the REBA score were computed using
kinematics from the keypoints (Figure 4).

3) Risk score for each segment was deduced from
the REBA [20] guideline using the segment’s angle
information.

4) Finally, we computed the Grand REBA score using
Table C [20] and the corresponding REBA risk label
with the help of scores from Table A and Table B [20].

5) Human3.6 dataset contains only various postures not
holding any objects. We assumed Load/Force score is
zero (< 5 kg exerted). So we added Load/Force score
zero to get the final score of Table A.

6) We added Coupling score (0) with the Table B
output score. Coupling is assumed Good (0) which
is Well-fitting handle and a mid-range, power grip,
as these information can not be extracted from the
dataset.

7) Activity score can be derived by analysing continuous
video of a person. As we have used single frame for
computing REBA score, we have ignored the Activity
score from the calculation.
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FIGURE 2. The 17 human body keypoints annotation.

FIGURE 3. Ground Truth pose moved across Origin.

In this work, we only used 51 coordinates of 17 body joint
key-points and corresponding risk levels for each posture.

C. RISK AND ACTION CALCULATION
The features- Risk and Action columns are the highest value
from corresponding ‘Left Risk’ and ‘Right Risk’ and ‘Left
Action’ and ‘Right Action’ features, as we are only concerned
about the highest score for any posture. This has a huge
impact in the model since sometimes some models predict
the lower class value. In the ground truth dataset, we have

TABLE 3. Data distribution in different scenes.

1079946 samples in the train set, 186542 samples in the
validation set and 186484 samples in the test set.

D. DATA DISTRIBUTION
According to REBA guidelines [20], there are five risk levels:
Negligible, Low, Medium, High and Very High. Ground
truth dataset is prepared from Human 3.6M 3D keypoints
by calculating segments angle and REBA tables. As Human
3.6M contains daily postures, the ground truth REBA risk
levels derived from it is highly skewed. For ‘Medium’ risk
labels there are almost more than 60% of data keypoints,
where ‘Low’ and ‘High’ risk class have sufficient data about
250231 and 452564. But for ‘Negligible’ and ‘VeryHigh’ risk
classes there are only 475 and 2929 data keypoints which are
even less than 1%of the full dataset. Figure 5 explains the data
distribution of our proposed dataset in terms of Risk-level.

Along with keypoints information in Human 3.6M dataset
there are annotations for scene types. The dataset has some
specific Scene-types (e.g., eating, greeting, sitting, taking
photos etc.) and the data distribution Human 3.6M for
different scene types are shown in Table 3.

E. DATA SPLIT
As the REBA ground truth dataset is highly imbalanced
as shown in figure 5, randomly chose 300000 samples for
‘Medium’ & ‘High’ classes. A total of 853635 samples out
of 2110396 were taken for model training, validation and
testing purposes. Then the dataset is split as 70% training,
15% validation and 15% test data.

F. DATA AUGMENTATION
From figure 5, it can be noticed that in two specific classes-
‘Negligible’ and ‘Very High’, there was the least number
of samples and these classes are quite rare. As this is a
classification problem with this highly skewed data, majority
classes will suffer from overfitting while underfitting for
minority classes. To cope with this problem, we have
adopted data augmentation techniques for the two minority
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FIGURE 4. Segments’ angles were calculated using Kinematics from the 3D keypoints. Each segment angle was used to calculate corresponding REBA
risk score.

FIGURE 5. Data distribution in different risk-levels.

classes only for model training. Three types of augmentation
techniques were used, namely: Pose rotation, keypoint
translation and multiplying the pose with a certain multiplier.
In the keypoint translation technique, each joint coordinate
is translated from its previous state. In Figure 6(ii) only the
left wrist keypoint translation technique is shown. In the
third data augmentation technique we have multiplied all
keypoints with a certainmultiplier. In Figure 6(iii) augmented
pose shrunk due to multiplying with a certain multiplier.

TABLE 4. Train dataset after data augmentation.

In the pose rotation technique, the whole human pose is
rotated with respect to the right hip joint as shown in
Figure 6(iv). After applying all three types of augmentation
techniques, computed REBA score for the augmented data.
For some augmented data, REBA scores changed from their
original scores. Removed the data which changed from the
previous labels after augmentation. For model validation and
testing, no data augmentation was performed. After the Data
Augmentation, the training dataset appears as Table 3.

G. BASE MODEL
The purpose of this study is to predict REBA risk levels from
3D joint coordinates for human postures. For estimating the
REBA risk level, we made a DNN (Deep Neural Network)
model. The input to the DNN model is a 51×1 vector of the
human 17 joints key-points, and the output is a 5×1 vector
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FIGURE 6. Data augmentation techniques i) Ground truth, ii) Keypoint translation, iii) Shrunk pose, iv) Pose rotation.

TABLE 5. Reba action levels.

corresponding to the five risk levels based on the REBAgrand
score (Table 4).

Initially we trained a basemodel for 100 epochs. In the base
model, 7 dense layers used with neurons (256, 256, 128, 128,
64, 64, 32) and LeakyRelu as activation function with alpha
value 0.50 were used. In the hyperparameters batch size of
512, learning rate 0.001 and Adam optimizer were used. The
base model yielded a 0.7744 accuracy score in the test set.

H. ABLATION STUDY
Ablation study is carried out to achieve the optimal configu-
ration of the model based on the highest accuracy by altering
several components and hyperparameters [27], [28]. Results
and findings of the complete ablation study having seven
study cases are showcased in Table 5 and Table 6. Table 5
covers all the results regarding the model’s layer architecture
of different configurations and activation functions whereas
Table 6 comprises the results of tweaking several hyper-
parameters, loss function and flatten layer. Over the seven
study cases, a significant improvement in test accuracy from
80.13% to 89.39% is achieved gradually.

1) CASE STUDY 1: ALTERING THE NUMBER OF HIDDEN
LAYER
In this case study, the experimentation is carried out by
changing the number of hidden layers. To begin with, the

TABLE 6. Ablation study regarding layer configurations and activation
functions.

number of hidden layers is set to 5 which are increased
afterwards gradually to perceive the performance. It is
observed from Table 5 that the best performance is attained
from configuration 3 having 7 hidden layers with the highest
test accuracy of 81.30% in 188 epochs. Though configuration
1 took the lowest number of epochs to yield the best
performance, the test accuracy is not equitable enough
compared to configuration 3. Therefore, this configuration of
7 hidden layers is picked to proceedwith the forthcoming case
studies.
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TABLE 7. Ablation study regaring model hyper-parameters, loss function
and flatten layer.

2) CASE STUDY 2: ALTERING THE NUMBER OF NEURONS
The number of neurons in each hidden layer yields promi-
nent consequences on a model’s performance. Hence, the
proposed model has been experimented five times with five
configurations of the number of neurons. For 7 hidden layers,
the configurations are generated by decreasing the number
of neurons on each layer gradually. It is observed that for
configuration 5 (256Ã 128Ã 128Ã 128Ã 64Ã 64Ã 32) which
comprises 256, 128, 128, 128, 64, 64 and 32 neurons for
the 7 hidden layers records the utmost performance with
a test accuracy of 81.61%. Moreover, the total number
of 219 epochs was required to reach the performance
which is the second lowest among all configurations.
Therefore, we move ahead with further case studies using
configuration 5.

3) CASE STUDY 3: ALTERING ACTIVATION FUNCTION
Since different activation functions have an effect on
the overall performance, selecting an optimum activation
function based on the best performance is a significant
research consideration. In this case study, experimentation
of three activation functions named PReLU, ReLU and
Leaky ReLU, are carried out where Leaky ReLu outperforms
others acquiring the identical test accuracy of 81.61%.
This activation function is chosen for further ablation
studies.

TABLE 8. Configuration of the optimal model architecture.

4) CASE STUDY 4: CHANGING OPTIMIZERS
Testing amodel with various optimizers can positively impact
the performance and maximize testing accuracy. In this
regard, a total of three optimizers namely SGD, ADAM
and Nadam are experimented with to better configure the
proposed model. It is evident from Table 6 that changing the
optimizer from SGD to Adam and Nadam has significantly
increased the testing accuracy from 81.61% to above 88%.
However, the best performance is achieved from Nadam
optimizer with a test accuracy of 88.77% hence this optimizer
is chosen for further ablation studies.

5) CASE STUDY 5: CHANGING BATCH SIZE
The number of batch sizes during training of a deep learning
model can slightly impact the overall performance of amodel.
In order to achieve the best configuration of the proposed
model, experimentations with batch sizes 256, 512 and
1024 are conducted. In this regard, the best performance is
achieved from batch size 512 with a test accuracy of 89.07%.
Thus, this batch size is chosen for further case studies.

6) CASE STUDY 6: CHANGING LEARNING RATE
Different learning rates can impact the training phases of a
model and have an influence on the overall performance of
the model. In order to configure the model with the most
optimized learning rate, experimentation with a total of three
learning rates is conducted. Among them, the previously
employed learning rate of 0.001 outperformed the other
learning rates by maintaining a test accuracy of 89.07%. As a
result, this learning rate is chosen for the proposed model.

After the conduction of ablation study consisting of six test
cases, the configuration of the best resultant architecture is
shown in Table 7.

I. MSD ESTIMATOR
After ablation study, the MSD Estimator model is chosen.
The model architecture of the MSD Estimator is shown
in figure 7. Model has 7 Dense layers with neurons (256,
128, 128, 128, 64, 64, 32), LeakyRelu with alpha value
0.50 and initial number of epochs is set to 500. Other
hyperparameters are Nadam optimizer, batch size 512 and
learning rate 0.001. In the model, regularization techniques
are used to check overfitting like Batch Normalization after
applying each Leaky ReLU and alsoDropout with probability
20% used after the Batch Normalization of the first Dense
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FIGURE 7. Model Architecture of the MSD Estimator.

layer. We used early stopping with monitoring validation
accuracy and stop training if accuracy did not improve within
25 epochs for checking overfitting of the model. We also used
ReduceLROnPlateau to reduce the learning rate with a factor
0.7, patience 10 and minimum learning rate 0.000001 by
monitoring validation accuracy. Though the model is trained
for 378 epochs, saved the best weight for the maximum
validation accuracy using the model checkpoint parameter.

IV. RESULT
REBA ground truth dataset was prepared using a kinematics
formula and verified the REBA score computation by
manually checking and visualizing the scores for each body
segment taking large samples from each class. According to
Table 3 data distribution some scene types samples are not
relevant for this dataset. Samples from Eating, Sitting, Taking
Photo, Waiting etc have some unusal postures which were
removed by checking some segments angle. Some postures
like lying can be easily determined by the trunk angle or lower
legs angle with respect to the ground were removed. Also
we took each body segments angle distribution and removed
the samples those fall beyond our assumed thresholds. Our
model achieved 89.07% overall accuracy over a test set
of 128046 samples which is quite promising. In Table 8,
the classification report on the test dataset is shown. For
‘Medium’ class recall rate is low which is 80% whereas for
other classes at least 94% or more.

Though ‘Negligible’ and ‘Very High’ classes have a low
number of samples, the highest recall rate was achieved due
to data augmentation. Confusion matrix is shown in Table 10
wherewe can see that most of themiss classified classes are in
neighboring classes. The reason behind this is, for the slight
changes in ergonomic postural risk level changes from one

TABLE 9. Classification report.

TABLE 10. Confusion matrix.

risk class to another. Some of the detected class is not even
near the actual class. Human 3.6 million dataset has various
types of body postures. Some of the postures are not even
related to this task, suppose we do not want to measure the
MSD risk while a person is lying on the floor. For these types
of unusual body postures MSD risk score will be different as
there need some assumptions. In Human 3.6m dataset, there
are a number of unusual data which can be one reason for the
far class prediction. As this dataset is very large we could not
remove these outlier data.

V. DISCUSSION
In this study, we proposed a method to predict the ergonomic
risk of a posture. We used rapid entire body assessment
(REBA) to assess the ergonomic postures. Manually assess-
ing REBA risk level needs an expert evaluator and is also not
feasible for large product lines. Our proposedmethod uses 3D
human joints keypoints for the REBA risk assessment system.
There are some available algorithms to extract 3D human
keypoints form RGB images. These 3D human coordinates
are used as the input to our DNN model which predicts the
risk level for the posture. In multiclass classification for the
5 risk classes, our model achieved 89.07% overall accuracy
and 89% weighted average f1-score over a large test set from
the Human 3.6m public dataset. For the ‘Medium’ class,
this model got relatively low accuracy in both training and
validation dataset and most of the misclassified data are in
‘Low’ and ‘High’ classes. As a slight change in angle of
the body segments shifts the risk from one level to another
and in actual data ‘Medium’ class had more than 66% data
samples, the model yielded the lowest accuracy for this class.
According to the augmentation technique used for the rare
classes and their accuracy score, it is noticeable that data
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TABLE 11. Comparison of the prior and proposed work.

augmentation for the ‘Medium’ class would produce a good
accuracy score. This is a large scale dataset and the data is not
balanced at all. Having only few samples for the rare classes
and achieving this much accuracy was really challenging,
where most of the works showed their achievements on
limited scale custom dataset.

From the prior work described in the literature review, it is
clearly visible that using the REBA guide, no other work
showed such high performance using this massive size dataset
in their work. Table 11 can clearly illustrate this comparison.
Of the two REBA based techniques, first approach usedMask
RCNN algorithm to extract the keypoints and then using
kinematics computed the REBA score using an application.
In their study they compared their application’s REBA score
with human determined scores on a custom dataset. The other
technique used UW-IOM dataset in their study and using
multiple Variational Aligning Process predicted REBA score
with MAE 0.377 ± 0.04. In UW-IOM dataset there are not
even any data sample for Negligible class. In our study we
have used the largest dataset with all the REBA classes and
achieved competitive accuracy score using very simple DNN
architecture compared to the other studies where they used
very complex CNN architectures. Another advantage of using
this simple DNN architecture is that due to faster computation
it is suitable for real time implementation. This work is a
step-stone for future research work. As this dataset covers
all the risk classes, this work can be extended further for
practical implementation. In factories or work places where
labor intensive work is being conducted, this automatic risk
predictor can be implemented by getting data from cameras

TABLE 12. Posture Scores used in the determination of REBA Score.

present in the places which can tackle MSDs of the workers
by correcting their work postures.

VI. CONCLUSION AND FUTURE WORKS
MSDs in the workplace can cause nonfatal injuries and
illnesses such as Tendonitis, Epicondylitis, Carpal tunnel
syndrome, DeQuervain’s disease, Thoracic outlet syndrome,
Tension neck syndrome, and others. Millions of people
around the country take time off work to manage and
recuperate from work-related musculoskeletal discomfort
or disability in the lower back or upper extremities. This
methodology, which is based on the REBA method, can be
used for any workplace postural risk assessment, regardless
of the work situation. We used one of the largest datasets of
human position, which we then produced with body segment
scores for our purposes.We estimated risk for individual body
segments first, and then computed the total REBA score to
determine the overall risk level for a certain body posture. The
REBA score was calculated using 3D key-point annotations.

We have compiled a substantial ground truth dataset that
can be used in a variety of ergonomic posture analysis
studies. This dataset comprises of all the risk classes that
can be extended to implement in real life scenarios where
complex postures are involved. The ablation study assisted
us in achieving the best outcome by adjusting the model’s
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components to achieve the best result. In such a huge dataset,
the accuracy and weighted average were both satisfactory at
89.07 percent. Using comparable data augmentation for the
other classes could improve accuracy, which could be the
subject of future research. We plan to develop a vision-based
system that can detect 3D human body keypoints from a
single RGB image in the future. Our current MSD Estimator
algorithm will use these extracted keypoints as input to
predict postural risk as a REBA risk level.

APPENDIX
See Table 12.
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