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Abstract: A mortality prediction model can be a great tool to assist physicians in decision making in
the intensive care unit (ICU) in order to ensure optimal allocation of ICU resources according to the
patient’s health conditions. The entire world witnessed a severe ICU patient capacity crisis a few years
ago during the COVID-19 pandemic. Various widely utilized machine learning (ML) models in this
research field can provide poor performance due to a lack of proper feature selection. Despite the fact
that nature-based algorithms in other sectors perform well for feature selection, no comparative study
on the performance of nature-based algorithms in feature selection has been conducted in the ICU
mortality prediction field. Therefore, in this research, a comparison of the performance of ML models
with and without feature selection was performed. In addition, explainable artificial intelligence
(AI) was used to examine the contribution of features to the decision-making process. Explainable
AI focuses on establishing transparency and traceability for statistical black-box machine learning
techniques. Explainable AI is essential in the medical industry to foster public confidence and trust in
machine learning model predictions. Three nature-based algorithms, namely the flower pollination
algorithm (FPA), particle swarm algorithm (PSO), and genetic algorithm (GA), were used in this
study. For the classification job, the most widely used and diversified classifiers from the literature
were used, including logistic regression (LR), decision tree (DT) classifier, the gradient boosting (GB)
algorithm, and the random forest (RF) algorithm. The Medical Information Mart for Intensive Care
III (MIMIC-III) dataset was used to collect data on heart failure patients. On the MIMIC-III dataset,
it was discovered that feature selection significantly improved the performance of the described ML
models. Without applying any feature selection process on the MIMIC-III heart failure patient dataset,
the accuracy of the four mentioned ML models, namely LR, DT, RF, and GB was 69.9%, 82.5%, 90.6%, and
91.0%, respectively, whereas with feature selection in combination with the FPA, the accuracy increased
to 71.6%, 84.8%, 92.8%, and 91.1%, respectively, for the same dataset. Again, the FPA showed the highest
area under the receiver operating characteristic (AUROC) value of 83.0% with the RF algorithm among
all other algorithms utilized in this study. Thus, it can be concluded that the use of feature selection
with FPA has a profound impact on the outcome of ML models. Shapley additive explanation (SHAP)
was used in this study to interpret the ML models. SHAP was used in this study because it offers
mathematical assurances for the precision and consistency of explanations. It is trustworthy and suitable
for both local and global explanations. It was found that the features that were selected by SHAP as
most important were also most common with the features selected by the FPA. Therefore, we hope that
this study will help physicians to predict ICU mortality for heart failure patients with a limited number
of features and with high accuracy.

Keywords: nature-based algorithm; explainable AI; machine learning; MIMIC-III; feature selection;
flower pollination algorithm
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1. Introduction

The intensive care unit (ICU) is a hospital department that provides critical care,
nursing, and support to patients who are severely sick [1]. When a patient’s serious health
concerns necessitate close monitoring, he or she is admitted to the ICU. The ICU is more
expensive than ordinary hospital care, since it provides additional health support and uses
expensive medical equipment. From the standpoint of Bangladesh, a crisis in the ICU exists
in comparison to the overall population, as we saw during the COVID-19 event. Mortality
prediction in the ICU might be a helpful choice for ensuring the optimum utilization of
ICU resources. This prediction model can also assist clinicians in making decisions prior to
assigning ICU services to patients. Those with more serious conditions require additional
ICU attention. Patients at low risk, on the other hand, may be discharged from the ICU
to make room for dangerously ill incoming patients. Furthermore, in the event of an ICU
crisis, the mortality prediction model can assist in identifying patients with a high chance
of survival and prioritizing them.

In this study, a mortality prediction model is proposed for use in the ICU, with a
focus on heart failure patients. Heart failure is a serious heart disorder in which the heart
is unable to efficiently pump blood around the body. According to the American Heart
Association, the number of persons diagnosed with heart failure is on the rise, with a
46 percent increase expected by 2030, resulting in over 8 million people suffering from
the disease [2]. According to a previous study, one out of every five patients with heart
failure admitted to a hospital in the United States is admitted to an ICU, a resource-intense
environment that accounts for 20–35 percent of overall hospital costs [3]. As a result, as the
number of patients with heart failure rises, proper ICU distribution among those patients
becomes increasingly crucial. The data on heart failure patients used in this study was
gathered from the Medical Information Mart for Intensive Care III (MIMIC-III) dataset [4],
which is a publicly available dataset that contains deidentified health data from thousands
of ICU admissions. The demographic information, vital signs of heart failure patients, some
laboratory variables, and comorbidities were all included in the dataset of heart failure
patients used in this study.

Background research in the field of ICU mortality prediction demonstrates that there
is still room for improvement and development by carrying out comparative studies
with feature selection using nature-based algorithms vs. no feature selection. Likewise,
research can be extended using explainable AI to determine which features predominate
in the prediction process for patients with heart failure in order to make the models
more transparent and trustworthy. We conducted our research using these points as
research gaps.

In this research, we compared the performance of machine learning (ML) models with
and without feature selection. Feature selection aids in reducing the curse of dimensionality,
as well as speeding up and simplifying the ML method. It can also improve an ML model’s
performance. Analysis of background studies [5–9] reveals that nature-based algorithms,
namely the flower pollination algorithm (FPA) [10], the Particle swarm algorithm (PSO) [11],
and the genetic algorithm (GA) [12] are three of the most effective and utilized algorithms
in selecting features. Therefore, in this study, we used certain nature-based algorithms for
feature selection. Three nature-based feature selection algorithms, namely the FPA, PSO,
and GA, were utilized in this research. Following feature selection, the classification job was
carried out using four popular ML models: logistic regression (LR) [13], gradient boosting
(GB) [14], random forest (RF) [15], and decision tree (DT) [16]. Finally, the performance of
the ML models was compared in terms of accuracy and area under the receiver operating
characteristic (AUROC) to determine whether feature selection had an impact.

Explainable AI [17] was employed to interpret the ML models’ decisions. Explainable
artificial intelligence (AI) is a set of techniques and strategies that allow humans to under-
stand and trust the results and output of ML algorithms. For the purpose of explaining ML
models, Shapley additive explanation (SHAP) was used in this study. The followings are
the contributions of this research:
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• This work broadens the field of mortality prediction in the ICU for heart failure
patients by examining the impact of several nature-based feature selection methods
on prediction;

• The role of features in the prediction process was analyzed using SHAP in this study,
providing insight into the determinant features that decide mortality in the ICU.

2. Background Studies

In this section, we review earlier research on nature-based feature selection in order to
assess how well these algorithms handle feature selection challenges. In order to identify
the research gaps, studies on mortality prediction that used scoring-based systems, ML,
and deep learning were also evaluated.

2.1. Nature-Based Algorithms in Feature Selection Used in Different Studies

Many recent studies have started using nature-based algorithms in different areas for
feature selection and to achieve higher accuracy. Some of these studies are included in
this section.

In [5], for the feature selection problem, a new hybrid model based on the idea of
opposition based learning (OBL) was provided that combines the whale optimization
algorithm (WOA) and the FPA. The result obtained from experience showed that the
proposed algorithm was more successful in terms of accuracy. The dataset used for this
experiment is from the University of California Irvine (UCI) data repository and spam
email dataset. In order to increase classification performance, the authors of [6] suggested
combining the binary flower pollination algorithm (BFPA) and improved binary particle
swarm optimization (iBPSO) with naive Bayes (NB) and K-nearest neighbor (K-NN). Results
from the experiment show that the hybrid iBPSO BFPA outperformed the current strategy
by achieving the highest accuracy of 94.43%. In [7], researchers presented an enhanced
adaptive FPA that can alter its parameter settings dynamically during the convergence
process and keep track of the optimum solution. The experimental findings showed that
the other strategies with nine benchmark functions from the literature performed better,
with a faster convergence rate. In order to reduce computational complexity, the authors
of [18] proposed a wrapper–filter combination of ant colony optimization (ACO) to which
they introduced subset evaluation using a filter approach rather than a wrapper method.
Utilizing K-NN and multilayer perceptron classifiers, their suggested strategy was tested
on several real-world datasets collected from the UCI ML repository and the NIPS2003
feature selection challenge. Comparison of the findings demonstrates unequivocally that
their method outperforms the majority of the cutting-edge feature selection algorithms.
To improve the accuracy of heart disease categorization, in [8], researchers used the fast
correlation-based feature selection (FCBF) method to filter out redundant information.
They then carried out classification using various classification algorithms, including K-
NN, support vector machine (SVM), NB, RF, and a multilayer perception artificial neural
network optimized by PSO combined with ACO approaches. Using the improved model
suggested by FCBF, PSO, and ACO, the maximum classification accuracy was 99.65%. The
purpose of [19] was to provide a thorough analysis of the nature-inspired metaheuristics
used in the feature selection field. This review-based study discovered the answers to four
research questions, including the number of metaheuristic techniques, their use, various
feature selection methods, their contributions to the field of feature selection, and the
frequency with which articles based on these techniques are published. To handle feature
selection tasks, a novel gravitational search-approach-based algorithm with evolutionary
crossover and mutation operators was proposed in [20]. K-NN and DT classifiers were
both employed as evaluators for the proposed wrapper feature selection technique. A total
of 18 well-known UCI datasets were used to evaluate the effectiveness of the suggested
methods. The thorough results and comparisons show that the proposed model greatly
outperforms previous wrapper approaches and has virtues in terms of exploration and
exploitation, tradeoffs between searching trends, and faster convergence rates compared to
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other peers on a number of feature selection tasks. The authors of [21] used RF to choose
the key characteristic for classification. Additionally, they assessed and contrasted each
classification model’s accuracy and performance, including linear discriminant analysis
(LDA), RF, SVM, and K-NN. The results of the experiments show that RF performed
better across all experimental groups. According to another review [22], RF, SVM, LR,
and k-NN are the ML algorithms most frequently employed for microbiome analysis.
This review article provided an overview of the feature selection techniques used in ML
applications for research on the human microbiome. Wrapper feature selection grey wolf
optimization and PSO were combined with a new binary variation proposed in [23]. The
best answers were discovered using the K-NN classifier with Euclidean separation matrices.
Twenty datasets were used for the tests, and statistical analyses were conducted to evaluate
the performance and efficacy of the suggested model using metrics including the ratio
of selected features, classification precision, and computing time. In contrast to other
algorithms’ accuracy levels of 81.6 and 86.8, the average accuracy was 90%. To address the
issue of feature selection, the authors of [24] also proposed a brand-new, quick conditional
mutual information feature selection algorithm. The experimental results demonstrate
the viability of the suggested feature selection technique for constructing a high-level
intelligent system to detect heart disease using a classifier SVM. In [25], binary variations
of the recently developed grasshopper optimisation algorithm (GOA) were suggested and
used to choose the best feature subset for classification in a wrapper-based framework.
The comparative results demonstrate the improved performances of the binary GOA and
binary GOA-M approaches when compared to similar techniques in the literature. The
suggested binary GOA (specifically binary GOA-M) has strengths among the present
feature selection algorithms and should be taken into consideration when tackling difficult
feature selection problems according to the results, discussions, and assessments. The
WOA, the artificial bee colony optimization (BCO) algorithm, and the PSO algorithm
were the three algorithms that the authors of [9] identified as having the highest accuracy
and having the potential to be used with their dataset to provide accurate diagnoses and
potential treatments. The authors of [26] introduced the chaotic crow search algorithm
(CCSA), a novel metaheuristic optimizer, to address the issues of low convergence rate and
entrapment in local optima. According to experimental findings, CCSA can identify an
ideal feature subset that maximizes classification performance while reducing the number
of selected features. The experimental findings demonstrate that in terms of the best and
mean fitness values, CCSA surpasses the other algorithms. The extended wrapper-based
feature selection method described in [27] is based on a parallel novel intelligent GA. The
outcomes show that the proposed model is capable of greatly generalizing the proposed
multipopulation intelligent GA for datasets with two or more classes. By lowering the
number of features from 56 to 28, 34 to 18, 279 to 135, 30 to 16, and 19 to 9 under lung cancer,
dermatology, arrhythmia, and hepatitis, respectively, the researchers were able to achieve
average classification accuracies of 95.83%, 97.62%, 99.02%, and 98.51%, respectively. In [28],
researchers compared and analyzed several nature-inspired algorithms to choose the best
traits and factors for distinguishing impacted patients from others. The experimental results
demonstrate that the binary bat algorithm beat conventional methods, with a competitive
recognition rate on the dataset of chosen features, including PSO, GA, and the modified
cuckoo search algorithm.

2.2. Scoring-Based Mortality Prediction

Predictive scoring systems are disease severity measurements that are utilized to
predict outcomes of a patient’s condition, most commonly mortality, in the ICU. Some
common scoring systems for mortality forecasting include the Acute Physiology and
Chronic Health Evaluation (APACHE) [29], the Sequential Organ Failure Assessment Score
(SOFA) [30], and the Simplified Acute Physiology Score (SAPS) [31]. Aperstein et al. [32]
developed a computational model that can predict mortality using a set of SOFA scores.
When compared to previous years’ work, they discovered that an ensemble model of linear
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and LR yields a higher AUROC. Jentzer et al. [33] assessed the performance of the Acute
Physiology and Chronic Health Evaluation (APACHE)-III, APACHE-IV, the Sequential
Organ Failure Assessment (SOFA), and the Oxford Acute Severity of Illness Score (OASIS).
In the CICU group, the assessed risk scores revealed uneven performance for mortality
risk categorization across admission diagnoses. Traditional scoring methods, on the other
hand, do not fully utilize a vast quantity of patient data and can only forecast with a limited
degree of accuracy.

2.3. Machine-Learning-Based Mortality Prediction

Lin et al. [34] utilized the RF algorithm to develop a model for predicting mortality
for acute renal patients in the ICU. They compared the model’s performance to that of
the customized simplified acute physiology score (SAPS) II model and two other ML
models. They discovered that in comparison to other models, theirs had the best accuracy
and discrimination, as evaluated by Brier score and AUROC. Li et al. [35] are a group of
researchers who proposed a novel approach using XGBoost and least absolute shrinkage
and selection operator (LASSO) regression; the researchers were able to identify indepen-
dent risk variables for in-hospital mortality in ICU-admitted heart failure patients. The
calibration of the XGBoost and LASSO regression models was also quite good. According
to this study, in a paired comparison, the XGBoost and LASSO regression models achieved
better predicted performance than the Guidelines-Heart Failure (GWTG-HF) risk score
model. Gu et al. [36] suggested a DELAK (dynamic ensembling learning algorithm based
on k-means) to predict ICU mortality. In most mortality prediction tests, DELAK outper-
formed six other fusion processes; traditional scoring systems; classical ensemble models
including AdaBoost, bagging, and RF; and dynamic ensemble selection approaches in
terms of AUROC and Area under the rust progress curve (AURPC). Rashidy et al. [37] used
different ML algorithms to present an ensemble strategy to predict ICU patient mortality.
The study’s model exceeded state-of-the-art approaches in terms of accuracy according
to the findings (94.4%). Ghorbani et al. [38] proposed a novel hybrid prediction model
based on a combination of stacking and boosting ensemble methods and a new ensemble
classifier based on the GA as a feature selection methodology. The suggested model was
compared to the APACHE and SAPS scoring systems for experimental validation, and it
outperformed the state-of-the-art models, yielding promising results. To effectively manage
COVID-19 patients admitted to a medical unit, Allenbach et al. [39] developed a method
to identify early prognostic indicators upon arrival. Using multivariable LR models, the
predictors of ICU transfer or death on day 14, as well as being released alive or in a severe
state on day 14 (remaining on ventilation or death), were investigated. Chiew et al. [40]
compared the Combined Assessment of Risk Encountered in Surgery (CARES) model with
the American Society of Anesthesiologists Physical Status (ASA-PS) in terms of predicting
30-day post-surgical mortality and the necessity for a more than 24 h ICU stay. With
AUPRCs of 0.23 and 0.38 for mortality and ICU admission outcomes, respectively, GB was
shown to be the best-performing model to develop forecasting models. Kong et al. [41]
used the LASSO, RF, and gradient boosting machine (GBM) algorithms, as well as the
standard LR method. In terms of prediction, the ML-based models developed in this study
performed well. The GBM model performed the best in terms of forecasting the chance
of in-hospital death according to this study. In a study of COVID-19 patients, Subudhi et
al. [42] evaluated the effectiveness of 18 ML methods for forecasting ICU admission and
death. Ensemble-based models outperformed other model types in predicting COVID-19
5-day ICU admission and 28-day mortality according to this study. Banoei et al. [43]
developed an ML prediction model based on COVID-19 patient demographics, clinical
factors, comorbidities, and biochemical markers. This model was able to predict COVID-19
hospital mortality with moderate predictive power, with Q2 equal 0.24 and high-accuracy
AUROC greater than 0.85 by discriminating non-survivors from survivors using training
and validation data. Raj et al. [44] utilized easy and widely scalable ML-based techniques
to forecast mortality in real time during traumatic brain injury in critical care. Based on
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only three and four significant characteristics, their basic algorithms separated survivors
from non-survivors with accuracies of up to 81 percent and 84 percent, respectively. The
research works that have utilized different ML algorithms to predict the mortality rate in
ICU are summarized in Table 1.

Table 1. Summary of ML-based research works.

Ref. Algorithm Feature Selection Interpretation Dataset Outcome

[34] RF No No MIMIC-III Accuracy: 0.73
[35] LR XGBoosting No MIMIC-III AUROC: 0.8416
[36] Ensemble Method No No MIMIC-III AUROC: 83.91
[38] Ensemble Method GA No MIMIC-III Accuracy: 82.5%
[41] GBM No No MIMIC-III AUROC: 0.845

The analysis presented in this section reveals that numerous researchers have already
employed various ML models to forecast ICU mortality. Two of the studies used feature
selection in their research. No study used explainable AI to make the models transparent.
Therefore, we believe that the field of ICU mortality prediction can be further enriched by
comparing ML models with and without feature selection. As nature-based algorithms are
successful in other fields, they can also be applied in this field in comparative studies.

2.4. Deep-Learning-Based Mortality Prediction

Deep-learning-based studies [45–47] in different areas becoming increasingly popular.
Meyer et al. [46] created an explainable long short-term memory (LSTM) model to predict
ICU mortality after 90 days. According to model interpretation, they discovered that
input qualities might interact and compensate for one another, pulling towards survival in
one direction and towards non-survival in the other direction. Using bidirectional LSTM,
Yu et al. [47] developed a new paradigm for mortality prediction. They discovered that the
deep-learning-based approach outperforms the existing SAPS-II severity assessment system.
Bidirectional extended short-term memory outperformed the other methods, owing to its
ability to capture both forward and backward temporal dependencies. Kim et al. [48] used
deep learning to create a pediatric risk of mortality prediction tool. This study obtained an
AUROC in the range of 0.89 to 0.97 for mortality prediction 6 to 60 h before death. By using
LR and the extreme GB algorithm, the first in-hospital mortality prediction nomogram was
developed. A deep multiscale convolutional neural network (CNN) architecture trained
on the MIMIC-III dataset was proposed in [49] for mortality prediction. According to this
study, the model has a AUROC of 0.8735 (0.0025), which is similar to the state of the art of
deep learning mortality models trained on MIMIC-III data while still being interpretable. In
the [5], in order to identify the most optimal lab events that contribute the most to mortality,
an algorithm based on genetics and wrapper feature selection method was demonstrated.
For experimental validation, the proposed model was compared to four popular traditional
mortality assessments, as well as state-of-the-art ML models. In terms of the AUROC, the
proposed model outperformed traditional scoring systems by 11–29% and state-of-the-art
models by up to 14%. The authors of [50] used clinical data to construct a deep learning
algorithm and a risk-score system for predicting ICU admission and in-hospital death in
COVID-19 patients. The deep learning model predicted ICU admissions and mortality with
AUROC values of 0.780 and 0.844, respectively. AUROCs of 0.728 and 0.848 were found for
the associated risk ratings.

Research works that have utilized different ML algorithms to predict the mortality
rate in the ICU are summarized below in Table 2.



Appl. Sci. 2023, 13, 6138 7 of 20

Table 2. Summary of deep-learning-based research works.

Ref. Algorithm Feature Selection Interpretation Dataset Outcome

[46] LSTM No Yes Collected AUROC: 0.88
[47] LSTM No No MIMIC-III AUROC: 0.8854
[49] CNN No Yes MIMIC-III AUROC: 0.8735
[50] Deep Learning No No Collected AUROC: 0.84

The analysis presented in this section shows that deep learning with interpretation has
been utilized in related studies. Feature selection was proposed as a potential improvement
in [49]. Therefore, we believe that this area of ICU mortality prediction can be expanded
and enhanced.

3. Materials and Methods
3.1. Workflow Diagram

Figure 1 shows the workflow diagram of this research. As previously indicated, the
dataset used for this study was obtained from the popular MIMIC-III data repository,
which is depicted in the first stage of the workflow diagram. However, because the dataset
contained null values, it was necessary to preprocess the data by filling in the blank values.

Figure 1. Workflow diagram.

Subsequently, feature selection was carried out. Three feature selection algorithms,
namely FPA, PSO, and GA, were used to select features. The selected features were then
subjected to ML models. We also observed how the ML models functioned without feature
selection. Accuracy and the AUROC curve were used to assess performance. Finally, SHAP
was used to observe the decision-making process of the ML models.

3.2. Dataset Description

A total of 1177 cases were included in the dataset utilized in this study for in-hospital
mortality prediction, with a total of 51 features. Here, the desired value of ‘0’ denotes life,
and ‘1’ denotes death. Age, gender, and BMI were the demographic factors studied. The
vital signs were heart rate, blood temperature, blood pressure, respiratory rate, saturation
pulse oxygen, and urine output. Comorbidity characteristics include hypertension, atrial
fibrillation, diabetes, depression, and hyperlipidemia. Red blood cells, white blood cells,
neutrophils, basophils, lymphocytes, potassium, sodium, anion gap, lactate, bicarbonate,
calcium, chloride, magnesium, creatinine, creatine kinase, and prothrombin time, are some
of the laboratory variables. A statistical analysis of the dataset features is shown in Table 3.
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Table 3. Statistical Analysis of dataset features.

Feature Mean Standard Deviation Min 25% 50% 75% Max

Age 74.05 13.43 19.00 65.00 77.00 85.00 99.00
BMI 30.19 9.33 13.35 24.33 28.31 33.63 104.97

Hypertensive 0.72 0.45 0.00 0.00 1.00 1.00 1.00
Atrial fibrillation 0.45 0.49 0.00 0.00 0.00 1.00 1.00
CHD with no MI 0.09 0.28 0.00 0.00 0.00 0.00 1.00

Diabetes 0.42 0.49 0.00 0.00 0.00 1.00 1.00
Deficiency anemias 0.34 0.47 0.00 0.00 0.00 1.00 1.00

Depression 0.12 0.32 0.00 0.00 0.00 0.00 1.00
Hyperlipidemia 0.38 0.48 0.00 0.00 0.00 1.00 1.00

Renal failure 0.37 0.48 0.00 0.00 0.00 1.00 1.00
COPD 0.08 0.26 0.00 0.00 0.00 0.00 1.00

Heart rate 84.58 16.01 36.00 72.37 83.61 95.90 135.70
Systolic BP 118.00 17.37 75.00 105.38 116.15 128.63 203.00
Diastolic BP 1161.00 10.68 24.73 52.17 58.46 65.46 107.00

Respiratory rate 1164.00 4.00 11.13 17.92 20.37 23.39 40.90
Temperature 1158.00 0.60 33.25 36.28 36.65 37.02 39.13

SP O2 1164.00 2.29 75.91 95.00 96.45 97.91 100.00
Urine output 1899.28 1272.36 0.00 980.00 1675.00 2500.00 8820.00
Hematocrit 31.91 5.20 20.31 28.16 30.80 35.01 55.42

RBC 3.57 0.62 2.03 3.12 3.49 3.90 6.57
MCH 29.54 2.61 18.12 28.25 29.75 31.24 40.31

MCHC 32.86 1.40 27.82 32.01 32.98 33.82 37.01
MCV 89.90 6.53 62.60 86.25 90.00 93.85 116.71
RDW 15.95 2.13 12.08 14.46 15.51 16.93 29.05

Leucocyte 10.71 5.22 0.10 7.44 9.68 12.74 64.75
Platelets 241.50 113.12 9.57 168.90 222.66 304.25 1028.20

Neutrophils 80.11 11.13 5.00 74.77 82.46 87.45 98.00
Basophils 0.41 0.46 0.10 0.20 0.30 0.50 8.80

Lymphocyte 12.23 8.63 0.96 6.65 10.47 15.46 83.50
PT 17.48 7.38 10.10 13.16 14.63 18.80 71.27

INR 1.62 0.83 0.87 1.14 1.30 1.73 8.34
NT-proBNP 11,014.13 13,148.66 50.00 2251.00 5840.00 14,968.00 118,928.00

Creatine kinase 246.77 1484.52 8.00 46.00 89.25 185.18 42,987.50
Creatinine 1.64 1.27 0.26 0.94 1.28 1.90 15.53

Urea nitrogen 36.29 21.85 5.35 20.83 30.66 45.25 161.75
Glucose 148.79 51.49 66.66 113.93 136.40 169.50 414.10

Blood potassium 4.17 0.41 3.00 3.90 4.11 4.40 6.56
Blood sodium 138.89 4.15 114.66 136.66 139.25 141.60 154.73
Blood calcium 8.50 0.57 6.70 8.14 8.50 8.86 10.95

Chloride 102.28 5.34 80.26 99.00 102.50 105.57 122.52
Anion gap 13.92 2.65 6.63 12.25 13.66 15.41 25.50

Magnesium ion 2.12 0.25 1.40 1.95 2.09 2.24 4.07
PH 7.37 0.06 7.09 7.33 7.38 7.43 7.58

Bicarbonate 26.91 5.16 12.85 23.45 26.50 29.87 47.66
Lactic acid 1.85 0.98 0.50 1.20 1.60 2.20 8.33

PCO2 45.53 12.71 18.75 37.04 43.00 50.58 98.60
EH 48.71 12.86 15.00 40.00 55.00 55.00 75.0

3.3. Data Preprocessing

We investigated whether the dataset contained any null values prior to the prepro-
cessing stage. In order to determine whether any of the data points were outliers, box
plots for the features were also analyzed. Some of the features, namely hypertensive, atrial
fibrillation, CHD with no MI, diabetes, deficiency anemias, depression, hyperlipidemia,
renal failure, and COPD, had values of 0 and 1, which is why box plots were not generated
for those features. The box plots for the rest of the features are shown in Figure 2.
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Figure 2. Box plot diagrams for the features of the MIMIC-III dataset.

The features with no outliers were removed from Figure 2. Features with outliers
were removed in the preprocessing step. Furthermore, null values were imputed, and
superfluous columns were removed in this step. In the columns of dependent variables
such as BMI, heart rate, systolic blood pressure, diastolic blood pressure, respiratory rate,
temperature, urine output, neutrophils, basophils, glucose, blood calcium, creatine kinase,
and lactic acid, there were numerous null values. There was also an independent null
value in the “Output” field. As a result, the dependent null values of float and integer
types were imputed with the mean value of the respective column. Furthermore, the null
value in the independent column “outcome” was imputed with the most frequent value
of the column. The ID field was removed from the dataset because it has no bearing on
the prediction. We also found that the dataset was imbalanced. A total of 1017 records
were found for output ‘0’ or alive, and 159 records were found for class ‘1’ or death. The
synthetic minority oversampling technique (SMOTE) was used in this study to handle
the imbalanced data. SMOTE is a statistical technique for increasing the number of cases
in a dataset in a balanced manner. The component creates new instances from existing
minority cases.

3.4. Feature Selection Algorithm

The aim of feature selection is to reduce the number of predictors while training an
ML model to speed up computations and enhance prediction accuracy. The filter method,
wrapper method, and embedding method are the three primary divisions of the feature
selection procedure. The nature-based feature selection methods used in this study follow
the wrapper feature selection method. Therefore, before going into the details of these
feature selection methods, a brief summary of the wrapper feature selection method is
presented below.

3.4.1. Wrapper Feature Selection Method

Wrapper approaches compare the performance of several models by adding or remov-
ing variables. These processes are typically developed using the idea of the greedy search
algorithm. In this method, a subset of features is first selected from the whole feature; then
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the feature set is applied to an ML algorithm. Lastly, the performance of that model is
measured. This process is repeated until an optimal feature set is found. The flow chart for
the wrapper selection process is shown in Figure 3.

Set of all features Selected features subset  Apply ML Algorithms  Measured Model Performance

Repeat until optimal set of features

Figure 3. Wrapper feature selection process.

Forward selection, backward elimination, and bidirectional elimination are the most
used techniques under wrapper feature selection. The forward selection procedure begins
with one predictor and gradually adds more. In the backward elimination process, the
process starts with all predictors, which are then iteratively eliminated one by one. The
bidirectional elimination process is the combination of forward selection and backward
elimination.

For feature selection, three nature-based algorithms, namely the FPA, GA, and PSO, were
utilized. The following are the working mechanisms of these feature selection algorithms.

3.4.2. Flower Pollination Algorithm

This FPA [10] is a nature-based, population-based optimization technique that mimics
how flowering plants pollinate one another. The pollination process can be divided into
two types:

Local Pollination/Self Pollination/Abiotic PollinationThis type of pollination occurs
within a flower itself or within two different flowers of the same tree. There is no need for
pollinators in this process. Global Pollination/Cross Pollination/Biotic Pollination: In this
process, pollination occurs by transferring pollen from one flower to another flower of two
different trees. Pollinators are needed in this pollination process.

The initial population size, switch probability, and a maximum number of generations
are set for this method at the beginning. In the following phase, the fitness function for each
population solution is assessed by computing the corresponding objective function. In the
next step, either local pollination or global pollination is evaluated until termination criteria
are satisfied. Then, each solution is reviewed and updated according to the objective values.
Finally, ranking of the solutions reveals the best one.

3.4.3. Genetic Algorithm

The GA [12], a technique for the optimization problem, was influenced by Charles
Darwin’s notion of natural evolution. The fittest individuals are picked for reproduction in
order to give rise to the next generation’s offspring, which is how natural selection works.
The initial population, fitness function, selection, crossover, and mutation are the five most
important phases of the GA.

This algorithm’s initial step is to generate a population or initial generation of potential
answers to the problem at random. The fitness function gauges an individual’s fitness
level. Each individual receives a fitness rating from the system. In the selection phase, the
fittest individuals are selected for further steps. The crucial stage of the GA is crossover. A
crossover point is picked randomly from the DNA for each set of parents to mate. Parents’
genes are exchanged among one another until the crossover point is achieved, at which
point offspring are produced. To put it simply, a mutation is a minor, haphazard change
made to a chromosome in order to produce a new outcome. It serves to preserve and
increase genetic population diversity. The algorithm typically comes to an end when the
population has reached a desirable level of fitness or the maximum number of generations
has been produced.
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3.4.4. Particle Swarm Algorithm

As a bio-inspired algorithm, the PSO [11] is straightforward in its search for the best
solution in the problem area. It is a stochastic optimization technique that is based on how
swarms move and function. Two of the most important concepts in this algorithm are
the scores of personal best and global best. Personal best is the best result of any single
particle, and global best is the best value of any particle in the swarm.

In this algorithm, first, a population of particles is initialized. Then, the fitness value is
calculated for each particle. If the fitness value is better than the personal best, the current
value is set as the personal best. Then, the particle with the best fitness value of all particles
is found. Lastly, the velocity and position of a particle are updated. This process continues
until max iteration or min error criteria are attained.

3.5. Machine Learning Algorithm

Four ML algorithms, namely LR, DT, RF, and GB, were utilized in this study. The
following are the working mechanism of these classifiers.

3.5.1. Logistic Regression Algorithm

LR [13] is a supervised machine learning algorithm used to solve classification prob-
lems based on the concept of probability. It can be used while the dependent variable is
categorical. The aim of this algorithm is to determine the best-fitting model to interpret
the relationship between the independent and dependent variables. This algorithm is
categorized into binary, multinomial, ordinal, etc., categories.

To map the predicted values to probabilities, the sigmoid function is used by this
algorithm, which maps any real value between 0 and 1. The sigmoid function is expressed
by Equation (1) [51].

f (x) = 1/(1 + e−z) (1)

In Equation (1), if the value of z increases to a positive infinity, the anticipated value
of f (x) is 1, and if it decreases to a negative infinity, f (x) is 0. The threshold value is a
notion used in LR. The threshold values aid in determining whether there is a chance of
0 or 1. For instance, a value below the threshold value tends to be 0, whereas a value
over the threshold value tends to be 1. Cross entropy, commonly known as log loss and
the difference between the actual and predicted value, is the cost function used in this
algorithm. Gradient descent, which calculates the model’s parameters or weights, is used
to reduce costs. Thus, the prediction process is done in LR.

3.5.2. Decision Tree Algorithm

A DT [16] algorithm is a supervised ML algorithm that can be used to solve both
classification and regression problems. The term itself implies that it displays the predic-
tions that come from a sequence of feature-based splits using a flow chart that resembles a
tree structure. The decision is made by the leaves at the end, which follow the root node.
Finding the attribute for the root node at each level of the DT presents a significant difficulty.
The Gini index and information gain are two common methods of attribute selection in the
DT algorithm.

Information Gain: The reduction in uncertainty for a given feature is measured by
information gain, which also determines which attribute should be chosen as a decision
node or root node.

Gini Index: The Gini Index is a potent indicator of the randomness, impurity, or
entropy of a dataset’s values. The aim of the Gini index of a DT model is to reduce
impurities from the root nodes to the leaf nodes, which implies that a lower Gini index for
an attribute should be chosen. The Gini index is determined by deducting the sum of the
squared probabilities of each class from one.
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3.5.3. Random Forest Algorithm

A supervised ML technique known as the RF [15] or random decision forest algorithm
is used for classification, regression, and other tasks using decision trees. A randomly
chosen portion of the training data is used by the RF classifier to generate a collection of
decision trees. It simply consists of a collection of decision trees from a randomly chosen
subset of the training set, which is subsequently used to decide the final prediction. The
total process is shown in Figure 4. Here, the training dataset is divided into subsets, and
from every subset of training data, a DT is made. Finally, by averaging the prediction from
every DT, the final decision is made.

Dataset

Training Dataset 3

Training Dataset 2

Training Dataset 1  Decision Tree 1

 Decision Tree 2

 Decision Tree 3

 Average voting  Final Prediction

Figure 4. RF classification.

This technique is also called an ensemble technique, as it combines multiple models.
The RF algorithm attempts to produce an uncorrelated forest of trees whose forecast by
committee is more accurate than that of any individual tree by using bagging and feature
randomness when generating each individual tree.

3.5.4. Gradient Boosting Algorithm

GB [14] is a type of boosting strategy that builds a strong model by iteratively learning
from each of the weak learners. It can be used to solve both classification and regression
problems. A GB classifier has three main components, namely a loss function, a weak
learner, and an additive model. The purpose of the loss function is to calculate how well
the model predicts, given the available data. A weak learner attempts to categorize data
but performs poorly, possibly no better than guessing at random. This method adds weak
learners one step at a time in an iterative and sequential manner, gradually approaching the
final model with each cycle. In other words, the value of the loss function should decrease
with each repetition.

4. Result Analysis
4.1. Comparison of Performance

The performances of four ML models were examined in this experiment. Three nature-
based algorithms—FPA, PSO, and GA—were employed for feature selection. Performance
was measured in terms of accuracy. The accuracy score was determined by dividing the
number of accurate forecasts by the total number of predictions.

In this study, a fivefold cross-validation process was used for training and testing. The
final accuracy was determined by averaging the accuracy results from each fold. Results of
the experiment with and without feature selection are displayed in Table 4:

Table 4. Comparison of the performance (accuracy) of different ML Models with and without
feature selection.

Model Name No Feature Selection With Feature Selection

FPA PSO GA

LR 69.9% 71.6% 57.3% 69.0%

DT 82.50% 84.8% 81.8% 75.1%

RF 90.9% 92.8% 90.6% 92.4%

GB 91.0% 91.1% 83.9% 81.3%
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Table 4 shows that accuracy of the ML models is relatively high when features are
selected with the FPA. Therefore, this feature selection process can help physicians to make
decisions while considering fewer features. Table 5 shows the features selected by different
nature-based algorithms.

Table 5. Features selected by different algorithms.

Algorithm Number of
Selected Features Feature Names

FPA 21

Age, BMI, hypertensive, atrial fibrillation, depression,
Renal failure, COPD, heart rate, SP O2, hematocrit,
RBC, MCV, MCHC, platelets, blood sodium, creatine
kinase, creatinine, urea nitrogen, blood calcium,
chloride, and magnesium ion

PSO 17

Hypertensive, atrial fibrillation, depression, COPD,
heart rate, systolic blood pressure, temperature,
hematocrit, MCH, RDW, lymphocyte, urea nitrogen,
anion gap, PH, bicarbonate, lactic acid, and PCO2

GA 12
Age, BMI, systolic blood pressure, diastolic blood
pressure, respiratory rate, hematocrit, MCH, MCHC,
neutrophils, PT, blood sodium, and lactic acid.

Because the FPA outperformed all others method in this study in terms of accuracy, the
features chosen by this algorithm can be considered important. Common features selected
by at least two of the nature-based algorithms are age, BMI, hypertensive, atrial fibrillation,
depression, COPD, heart rate, hematocrit, Blood Sodium, Urea nitrogen, systolic blood
pressure, MCH, MCHC, and lactic acid.

4.2. AUROC Curve Analysis

The true-positive and false-positive rates were plotted against each other at different
threshold settings on an AUROC probability curve, revealing how well the model differs
across classes. The model is more accurate in classifying 0 classes as 0 and classifying
1 classes as 1 with higher AUROC values.

The AUROC curves for ML models without feature selection and with feature selection
via FPA, PSO, and GA are shown in Figure 5.

According to the results, ML models using the FPA feature selection algorithm also
perform well in terms of AUROC values.

4.3. Statistical Test Results

To solve the problem of selecting the best model, statistical significance tests were
used. The Friedman test was used in this study to compare machine learning classifiers.
The Friedman test results are shown in Tables 6 and 7. These result indicate that the p-value
is 0.0112. The null hypothesis is rejected because the p-value for classifier accuracy data is
less than the significance level of 0.05, indicating that the classifiers perform differently.

Table 6. Friedman test results.

Friedman Test Degrees of Freedom Chi-Square p-Value

3 11.1 0.0112
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(a)

(b) (c)

(d)
Figure 5. AUROC curves for ML models (a) without feature selection, (b) with feature selection via
FPA, (c) with feature selection via PSO, and (d) with feature selection via GA.

Table 7. Additional information from Friedman test results.

Rank Feature Selection with the Classifiers Rank Sum

1 FPA 16

2 No feature selection 11

3 GA 7

4 PSO 6

4.4. Proposed Model vs. Literature Studies

In this section, we present a comparison between our suggested model and models
proposed in the literature in terms of accuracy, AUROC score, and the number of features. It
should be noted that different MIMIC-III datasets were used in the several studies described
here. However, all of the studies analyzed here were conducted for the purpose of mortality
prediction in the ICU. The AUROC scores of our model and those proposed in other studies
are presented in Table 8. The RF model utilized in this study with the FPA feature selection
algorithm achieved an 83.0% AUROC score with only 21 features. Our proposed model is
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compared with those proposed in other studies in literature in term of accuracy in Table 9.
The RF algorithm with FPA feature selection achieved the highest accuracy of 92.80% with
only 21 features.

Table 8. Comparison of performance ( AUROC) of different ML models proposed in the literature.

Study Year Dataset Sample Algorithm Number of Features AUROC
Score

[52] 2021 MIMIC-III 25,659 XGBoost 66 82%

[53] 2022 MIMIC-III 6699 Ensemble 20 82.55%

[36] 2021 MIMIC-III 58,976 Dynamic Ensemble 28 83.91%

[41] 2020 MIMIC-III 16,688 GB 86 84%

RF + PSO 2023 MIMIC-III 1177 RF + FPA 21 83.0%

Table 9. Comparison of the performance (accuracy) of different ML models proposed in the literature.

Study Year Dataset Sample Algorithm Number of Features Accuracy

[54] 2019 MIMIC-III 5037 Logistic Model Trees 79 85.12%

[35] 2021 MIMIC-III 1177 XGBoost 20 76%

[34] 2019 MIMIC-III 19,044 RF 15 72.8%

LR + FPA 2023 MIMIC-III 1177 RF + FPA 21 92.80%

5. Interpretation of Results with SHAP

A game theoretic technique called SHAP can be used to explain the output of any ML
model. Estimating the contribution of each feature in a dataset to the prediction made by
the model is possible with feature importance. It is possible to determine which features
have the greatest influence on a model’s decision making by executing feature importance
tests. This allows us to eliminate features that have little bearing on the model’s predictions
and concentrate on enhancing the more important features.

In this research, SHAP was used to explain the model both globally and locally.
Figure 6 shows the 20 most important features that influence the prediction process. This
list shows the most important features in descending order. The SHAP value is shown on
the x-axis of the graph, while all the features are shown on the y-axis. One SHAP value for
a prediction and a feature is represented by each point on the graph. Red indicates higher
feature values, whereas blue denotes lower feature values. The directionality influence of
the characteristics can be generalized based on the distribution of the red and blue dots.

The features selected by SHAP matched the features selected by the FPA. Eleven
features were common in both of the processes. The common features selected by the FPA
and SHAP are blood sodium, heart rate, age, blood calcium, renal failure, platelets, urea nitrogen,
MCV, creatinine, chloride, and BMI. Figure 6 shows that higher lymphocyte values increase
the likelihood of survival, while lower lymphocyte values increase the chance of mortality.
Higher age values lead to death, whereas lower age values lead to survival. The impact of
other features on the prediction can be analyzed in the same manner.

The local interpretability of SHAP made the ML models more transparent by explain-
ing why a case receives its prediction and the contributions of the features to the forecast.
Below, we analyze some instances using SHAP to observe the prediction process of the
ML model. Features that make a prediction of a positive outcome or death more likely are
displayed in red, while those that make a prediction of a negative outcome or survival
more likely are displayed in blue.
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Figure 6. Feature importance with SHAP.

In interpretation 1 shown in Figure 7, the features that were crucial to predicting an
instance are depicted in red and blue, with red denoting features that increased the model
score and blue denoting features that decreased the score. The closer the feature is to the
line separating red from blue, the more of an impact it had on the score, and the size of
the bars indicates the extent of the impact. The features blood sodium, RDW, and chloride
push the predictions toward a positive outcome, whereas deficiency anemias, age, platelet,
heart rate, renal failure, BMI, and blood calcium push the predictions toward a negative
outcome. Here, the real prediction made by the model is negative.

Figure 7. SHAP interpretation 1 (right interpretation).

In interpretation 2 shown in Figure 8, the features deficiency anemias, lactic acid,
chloride, blood calcium, and PH push the prediction to a positive outcome, whereas heart
rate, and blood sodium push the outcome toward a negative outcome. Here, the real
prediction made by the model is positive.
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Figure 8. SHAP interpretation 2 (right interpretation).

In interpretation 3 shown in Figure 9, the features of urine output, RDW, leukocyte,
PH, and lactic acid push the prediction toward a positive outcome, whereas age, platelets,
urine nitrogen, blood sodium, and MCV push the prediction toward a negative outcome.
Here, the real prediction made by the model is negative.

Figure 9. SHAP interpretation 3 (right interpretation).

In these three cases, the ML model makes predictions based on the most important
selected features. Therefore, the less important features can be removed to increase the
speed and ease of the prediction process. This process can be helpful for physicians to
make a decision considering fewer features.

6. Conclusions

The aim of this research was to compare the performance of prediction models with
and without feature selection using a nature-based algorithm for mortality prediction in
the ICU for heart failure patients. We found that FPA, a nature-based feature selection
algorithm, had a considerable impact on the performance of the ML models. With only
21 features selected by the FPA, the RF model showed the highest accuracy of 92.8%, as
well as the highest AUROC value of 83.0%. When the performance of the model proposed
in this study was compared to that of models proposed in the literature, we discovered
that models with fewer features chosen by the FPA achieve the best performance. The
model’s decision-making process was also explained by SHAP. We found that the features
selected by SHAP and the FPA were the most common. We hope that this prediction model
can assist physicians in the decision-making process by considering fewer features for the
optimal use of ICU resources.
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