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Abstract
Purpose  An automated computerized approach can aid radiologists in the early diagnosis of breast cancer. In this study, a 
novel method is proposed for classifying breast tumors into benign and malignant, based on the ultrasound images through 
a Graph Neural Network (GNN) model utilizing clinically significant features.
Method  Ten informative features are extracted from the region of interest (ROI), based on the radiologists’ diagnosis mark-
ers. The significance of the features is evaluated using density plot and T test statistical analysis method. A feature table is 
generated where each row represents individual image, considered as node, and the edges between the nodes are denoted 
by calculating the Spearman correlation coefficient. A graph dataset is generated and fed into the GNN model. The model 
is configured through ablation study and Bayesian optimization. The optimized model is then evaluated with different cor-
relation thresholds for getting the highest performance with a shallow graph. The performance consistency is validated with 
k-fold cross validation. The impact of utilizing ROIs and handcrafted features for breast tumor classification is evaluated 
by comparing the model’s performance with Histogram of Oriented Gradients (HOG) descriptor features from the entire 
ultrasound image. Lastly, a clustering-based analysis is performed to generate a new filtered graph, considering weak and 
strong relationships of the nodes, based on the similarities.
Results  The results indicate that with a threshold value of 0.95, the GNN model achieves the highest test accuracy of 99.48%, 
precision and recall of 100%, and F1 score of 99.28%, reducing the number of edges by 85.5%. The GNN model’s perfor-
mance is 86.91%, considering no threshold value for the graph generated from HOG descriptor features. Different threshold 
values for the Spearman’s correlation score are experimented with and the performance is compared. No significant differ-
ences are observed between the previous graph and the filtered graph.
Conclusion  The proposed approach might aid the radiologists in effective diagnosing and learning tumor pattern of breast 
cancer.
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Introduction

Breast cancer, a major worldwide health concern, ranks as 
the second leading cause of cancer-related fatalities among 
women (Brunetti et al. 2023; Gedik 2016). In women, it 
accounts for approximately 23% of all cancer types (Sayed 
et al. 2016). Early detection and effective treatment can 
greatly improve the survival rate of female patients with 
breast cancer (Kriti et al. 2020). Biopsy is currently the 
gold standard for determining whether a tumor is benign 
or malignant, however it is invasive (Liu et  al. 2010). 
Different imaging modalities are used for breast cancer 
diagnosis at an early stage as early diagnosis increases 
the chances of recovery and survival (Liu et al. 2020). 
Because of its painless and convenient operation, absence 
of radiation exposure as well as effective real-time per-
formance, ultrasonography has become a highly utilized 
modality in the clinical screening and diagnosis of breast 
cancer (Chen et al. 2023). However, because of their high 
sensitivity, ultrasonic instruments are susceptible to the 
effects of various tissues and the environment. This results 
in a significant amount of speckle noise, which can affect 
the accuracy of medical diagnosis. The likelihood of mis-
diagnoses ranges from 10 to 30% (Zhuang et al. 2021). 
Moreover, the increased number of cases causes a bur-
den for radiologists which might contribute to incorrect 
interpretation and treatment. In this regard, an automated 
computer aided diagnosis (CAD) system may assist clini-
cal specialists in diagnosing breast cancer effectively with 
less effort. Clinically significant features which radiolo-
gists analyze to diagnose breast cancer should be consid-
ered for developing a reliable automated method. An 
automated diagnosis based on the clinical markers that 
can be more effective and precise. Graph-based models 
have shown promising outcomes in several computer 
vision applications where nodes and relationships among 
nodes are incorporated. In this study, a novel approach 
is presented, proposing a graph-based model graph neu-
ral network (GNN) for categorizing breast tumors from 
ultrasound images into benign and malignant. This strat-
egy can result in improved performance as along with the 
significant features, the relationship among them is also 
incorporated and the model is trained accordingly (Aswiga 
et al. 2021). Ten informative features are extracted from 
the region of interest (ROI) of breast ultrasound images: 
circularity (Daoud et al. 2020; Sellami et al. 2015; Ahila 
et al. 2022), solidity (Daoud et al. 2020; Ahila et al. 2022), 
Shannon entropy, GLCM (Gray-Level Co-occurrence 
Matrix) entropy (Berbar 2018), correlation (Ahila et al. 
2022; Huang et al. 2020), dissimilarity (Ahila et al. 2022; 
Huang et al. 2020), contrast (Berbar 2018; Huang et al. 
2020), energy (Berbar 2018; Huang et al. 2020), eclipse 

ratio (Daoud et al. 2020), and brightness (Sellami et al. 
2015). A T test is conducted to evaluate the significance 
and potential relevance or discriminatory power of the 
features for the classification task. In addition, a density 
plot-based analysis is presented to evaluate the feature pat-
tern for each class. A feature table is generated, where 
each row represents a single image and the columns rep-
resent the ten features. From the feature table, a graph is 
generated where the nodes are denoted by the rows of the 
feature table. The relationship among the nodes is calcu-
lated using the Spearman correlation coefficient method 
and the coefficient score is denoted as graph edge. Utiliz-
ing the nodes and edges, a graph is generated and fed into 
the GNN model for the classification. The proposed GNN 
model is implemented using Keras platform and optimized 
performing an ablation study where nine hyperparameters 
are tuned including hidden layer, learning rate, batch size, 
dropout rate, activation function, optimizer, combination 
type, convolutional layers and number of epochs. Bayesian 
optimization is further assessed for an automatic hyperpa-
rameter tuning considering quantitative parameters such 
as hidden layer, learning rate, batch size and dropout rate. 
The ablation study and Bayesian optimization results the 
final optimized GNN model. The optimized GNN model is 
further evaluated with different correlation thresholds, 0.7, 
0.8, 0.95, 0.99 and 1.00, to investigate whether a higher 
accuracy can be achieved with a lower number of edges 
or a shallower graph. K-fold cross-validation is applied to 
assess the model’s performance consistency and the occur-
rence of overfitting issues. The significance of employing 
ROIs and handcrafted features based on the radiologist’s 
markers in the context of breast tumor classification is 
assessed through a comparative analysis. This compari-
son involves the evaluation of proposed model’s perfor-
mance, considering handcrafted features extracted from 
tumor region specific ROIs and Histogram of Oriented 
Gradients (HOG) descriptor features extracted from the 
entire breast ultrasound image without selecting the region 
of prior tumor, as done in (Shia et al. 2021). A compari-
son is employed between the proposed study and the prior 
studies. Further experiments are conducted to assess the 
robustness of the model by eliminating the edges having 
weak connections among the similar classes and strong 
connections among the distinct classes. These connections 
might be regarded as edge anomalies, as they can have a 
detrimental effect on the model’s performance. A Spear-
man correlation score of less than 0.4 is considered as 
weak connection and a Spearman’s correlation score equal 
or greater than 0.7 is considered a strong connection. After 
filtering the edges based on these values, the initial graph 
and the filtered graph are compared with different thresh-
old values for the Spearman correlation score. The perfor-
mance of the model using the two graphs is compared to 
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evaluate how the model performs with a filtered graph and 
a graph having edge anomalies. The major contributions 
of this work can be summarized as follows:

•	 A novel method to classify breast tumors using GNN 
model, optimized through ablation study and Bayesian 
optimization, with clinically significant handcrafted fea-
tures extracted from the ROI is proposed.

•	 Feature importance analysis employing density plotting 
and T test is done.

•	 A graph is generated, considering each image as node 
and the relationship between images as edges.

•	 The performance of the model is improved through sev-
eral thresholding experiments according to the Spearman 
correlation score.

•	 Edge anomalies based on the weak and strong connec-
tions of the same classes and distinct classes respectively 
are identified and filtered out.

•	 The robustness of the proposed approach is assessed 
experimenting the GNN model with two graphs: (i) graph 
without edge anomalies and (ii) graph with edge anoma-
lies.

Literature review

A number of studies have been conducted to classify breast 
cancer using ultrasound images through an automated 
approach. Singh et al. (2020) proposed the use of deep con-
volutional neural networks (DCNNs) for the classification 
of breast tumors using ultrasound images. The authors used 
transfer learning models to extract deep features. In order to 
improve the quality of the images, a despeckling preprocess-
ing step was incorporated. The results of the study showed 
that the fine-tuned Inception-v3 model achieved the high-
est accuracy of 92.5%. Zhou et al. (2013) developed a new 
technique, based on the texture feature descriptors and the 
Shearlet transform, to increase the accuracy of breast tumor 
detection in ultrasound images. Liu et al. (2020) introduced 
an algorithm for extracting features from breast ultrasound 
images, which combines edge-based features and morpho-
logical feature information. The results demonstrated that 
the proposed algorithm outperformed traditional morpho-
logical feature methods in terms of classification accuracy 
(82.71%). Yu et al. (2021) presented a method analyzing the 
diagnostic contribution of various discriminative regions in 
the image. The study found that fusing deep features from 
different regions with the original image features signifi-
cantly improved the accuracy of diagnosis from 80.8 to 85%. 
Aswiga et al. (2021) proposed a two-level framework for 
breast cancer classification based on the transfer learning 
techniques. The study utilized knowledge gained from non-
medical and mammography datasets as well. The proposed 

framework achieved an area under the receiver operating 
characteristic (ROC) curve of 0.89. Sellami et al. (2015) 
focused on extracting Breast Imaging Reporting and Data 
System (BI-RADS) features from a sequence of ultrasound 
images for the characterization of breast lesions. The results 
showed that the shape of the lesion changed depending on 
the slice, and that there were variations in the values of 
morphological and textural features. Moon et al. (2011) 
presented a computer-aided diagnostic (CAD) system for 
classifying breast masses in automated whole breast ultra-
sound (ABUS) images. The system used 3D automatic seg-
mentation to extract texture and morphological features and 
achieved an accuracy of 85%. It was found that combining 
ellipsoid fitting features and shape features provided the 
best performance, with an AUC of 0.9466. Liu et al. (2010) 
proposed a fully automated classification method for breast 
ultrasound images involving two steps: ROI generation and 
ROI classification, using a supervised texture classification 
approach. The paper presented experimental results of the 
proposed method using a cross-validation approach and the 
proposed method achieved a high accuracy in classifying 
breast tumors. Daoud et al. (2020) proposed a method to 
classify breast ultrasound images using a combination of 
deep features extracted from a pretrained CNN model and 
conventional handcrafted features. The study indicated that 
the best combination of deep features is obtained with a 
feature set that includes convolution features extracted from 
all convolution blocks of the VGG19 model. In the study of 
Shia et al. (2021), a machine learning method was proposed 
for the classification of benign and malignant breast tumors 
in ultrasound images without requiring a priori tumor region 
selection. The proposed method had a high classification 
performance, achieving a sensitivity of 81.6%. Telagarapu 
and Poonguzhali (2018) proposed an algorithm for detecting 
breast cancer in ultrasound images, utilizing filtering and 
feature extraction techniques. The results showed that the 
support vector machine (SVM) classifier outperformed the 
Fuzzy K-nearest neighbor (KNN) classifier with an accu-
racy of 87.3%, for the texture features extracted using the 
Tetrolet transform. Shia and Chen (2021) proposed a trans-
fer learning method for classifying benign and malignant 
breast tumors using breast ultrasound images. The method 
involved a pretrained deep residual network model for image 
feature extraction and a linear SVM model for classifica-
tion. The proposed approach achieved a sensitivity of 94.3%. 
Zhuang et al. (2021) presented a breast ultrasound classi-
fication using image decomposition and fusion techniques 
with adaptive spatial feature fusion technology. The pro-
posed method had the best performance, with an accuracy 
of 95.48%. Cao et al. (2019) evaluated the effectiveness of 
different deep learning architectures for the classification 
of breast lesions in ultrasound images. For the classifica-
tion task, DenseNet was identified as the most suitable deep 
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learning architecture. Ahila et al. (2022) presented a CAD 
system, based on a wavelet neural network and the grey wolf 
optimization algorithm, to detect abnormalities in breast 
ultrasound images. The proposed system achieved a high 
classification accuracy, of 97.4%, in distinguishing malig-
nant and benign breast lesions using ultrasound images. 
Mohammed et al. (2018) proposed a computerized system 
for breast cancer characterization using multifractal dimen-
sions and back propagation neural networks on ultrasound 
images. The proposed system achieved a precision of 82%, 
a sensitivity of 79.3%, and a specificity of 84.7%. Table 1 
shows the dataset, method, result, contribution, and limita-
tion of the prior works.

Within the domain of breast tumor classification, the 
proposed method introduces an intriguing and distinctive 
approach characterized by its notable strengths. While the 
literature has explored various techniques, each approach 
carries its own set of advantages and limitations. For 
instance, (Yu et al. 2021) enhanced accuracy by fusing deep 
features from specific regions of breast ultrasound images, 
although their focus was on selecting regions limited com-
prehensive image analysis. Similarly, (Daoud et al. 2020) 
integrated deep features with conventional handcrafted ones, 
yet considerations of feature relevance and redundancy were 
lacking. Meanwhile, (Shia and Chen 2021) harnessed deep 
learning effectively but faced challenges aligning extracted 
malignant features with clinical standards. Significantly, 
the proposed method utilizes GNN to capitalize on clini-
cally significant features extracted from the ROI in ultra-
sound images. This approach exhibits strength through 
rigorous feature selection, statistical evaluation of feature 
significance, and a comprehensive understanding of image 
relationships via a graph-based representation. The GNN 
model's ability is optimized through correlation threshold 
tuning, results in remarkable accuracy, precision, recall, and 
F1 score. Unlike previous research, which frequently suffers 
from limitations such as restrictive feature selection, redun-
dancy, greater computational complexity or a lack of diverse 
datasets, this GNN-based technique presents a viable avenue 
for robust breast tumor classification, with the potential to 
improve early diagnosis and clinical decision making.

Materials and methods

Dataset description

This study uses a publicly available breast ultrasound data-
set of 780 PNG images (Al-Dhabyani et al. 2020). The 
images are of female patients with an age in the range of 
25–75 years. The dataset has an average image resolution 
of 500 × 500 pixels and is categorized into normal, benign, 
and malignant classes with 266, 467, and 210 images, 

respectively. The ultrasound images are generated using 
high-end imaging instruments. The ground truth for the 
benign and malignant classes is provided. Only the benign 
and malignant classes are used in this study to analyze the 
tumor pattern of breast cancer, as the normal class does not 
contain any tumors. Therefore, in this research, 647 images 
are used. Sample images are shown in Fig. 1.

Proposed methodology

This study presents an automated approach to classify 
benign and malignant tumors based on a graph of clinical 
features, using a GNN model. An overview of the methodol-
ogy is presented in Fig. 2.

In this study, a breast cancer ultrasound dataset is used and 
the experiments are carried out using benign and malignant 
classes. The ROI is extracted from the images using a bit-
wise AND operation between the raw images and the image 
ground truths. Ten informative and clinically relevant features 
are extracted from the ROI and a feature table is created, based 
on these features. A density plot is utilized to demonstrate how 
particular features influence distinguishing classes. The fea-
tures are evaluated using the T test statistical analysis method. 
A graph is generated from the feature table, where the node 
table dimensions are 647 × 12 and edge table dimensions are 
208,981 × 3. In this graph, the nodes are denoted by the images 
with their corresponding features. Hence, the node table has 
647 rows, where each row represents a particular image. The 
10 columns of the feature table represent the ten features for 
each image, in addition to a unique ID for each image and a 
class label. The edges are determined by deriving the node-to-
node relationship for each node, using the Spearman correla-
tion coefficient method. A GNN model is proposed to imple-
ment the classification task using the node and edge table. The 
GNN model is optimized through an ablation study, finetun-
ing nine hyperparameters. Further, a Bayesian optimization is 
employed for an automatic quantitative hyperparameter tuning 
which validates the outcome of the ablation study and results 
the optimized GNN model. The performance of the optimized 
model is analyzed with the generated graph, using different 
thresholds for the Spearman correlation score to evaluated 
whether the number of edges can be reduced and a higher 
accuracy can be achieved with lower complexity. The perfor-
mance of the model is analyzed using several performance 
metrics. To understand the importance of evaluating ROIs for 
the classification task, a comparison is conducted between the 
performance of proposed model based on the handcrafted fea-
tures, extracted from tumor ROIs and HOG descriptor features 
extracted from full image of breast ultrasound. Comparison 
with the previous studies is also carried out with the proposed 
study. Lastly, to assess the robustness of the model, a cluster-
ing analysis is performed on the graph where the weak connec-
tions among the similar classes and strong connections among 
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the distinct classes are removed. Correlations less than 0.4 are 
considered weak and correlations equal or greater than 0.7 are 
considered strong. After filtering out edges based on these two 
criteria, the first graph and the filtered graph are applied with 
several thresholds based on the Spearman correlation score.

Feature extraction

In the diagnosis of breast cancer, clinically significant fea-
tures play a crucial role. Benign and malignant tumors exhibit 
differences in several characteristics such as their structure, 
shape and border (He et al. 2023). In this paper, we propose 
a set of features, listed in Table 2, that can be used to distin-
guish benign and malignant masses and considered clinically 
relevant.

Morphological features

Morphological features describe the shape and texture of 
tumors and can be highly effective in differentiating between 
benign and malignant tumors. Malignant tumors typically 
exhibit irregular shapes, spiculated margins, and a hetero-
geneous internal texture (Meng et al. 2023), whereas benign 
tumors tend to have more regular shapes, smooth margins, and 
a homogeneous texture (Zhang et al. 2023).

Circularity

Circularity is a measure for the degree of similarity of a shape 
to a perfect circle and is often used as an indication of the 
regularity of a tumor’s shape (Sellami et al. 2015). Malig-
nant tumors typically have low values for circularity, whereas 
benign tumors have higher values for circularity (Daoud et al. 
2020). Equation (1) estimates circularity by taking the tumor 
area ( aT ) and the major axis length ( dmax ) of the equivalent 
tumor ellipse, which is defined by the region of interest's major 
and minor axis lengths (Sellami et al. 2015).

Solidity

Solidity is a measure of the compactness of the tumor shape 
and is calculated as the ratio of the object’s area to the num-
ber of pixels in its convex hull as in Eq. (2), see Fig. 3 (Tri-
yani et al. 2023). Benign tumors generally have a higher 
solidity compared to malignant tumors because malignant 
tumors often have an irregular and branching shape, result-
ing in a lower solidity value (Liu et al. 2022).

(1)Circularity =
4 × aT

� × dmax
2
.
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Fig. 1   Sample image of benign class and malignant class with their corresponding ground truths

Fig. 2   The proposed framework for the breast cancer classification

Table 2   Description of the 
features

Features Description

Morphological features Circularity Geometrical property-based feature
Solidity Geometrical property-based feature
Eclipse ratio Geometrical property-based feature
Brightness Intensity-based feature

GLCM features GLCM entropy Texture-based feature
Correlation Texture-based feature
Dissimilarity Texture-based feature
Contrast Texture-based feature
Energy Texture-based feature
Shannon entropy Texture-based feature
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Eclipse ratio

The ratio of the ellipse perimeter is another morphologi-
cal feature that can be used to differentiate between benign 
and malignant tumors. The eclipse is drawn covering the 
outer points of the tumor edge. This feature is calculated by 
considering the ratio of the area of eclipse and the area of 
the tumor. Because of their irregular boundaries, malignant 
tumors have a higher eclipse ratio than to benign tumors 
(Daoud et al. 2020). Figure 4 illustrates the differences in 
area between the eclipse and tumor.

Brightness

Brightness is an intensity-based feature affected by the contrast 
between different regions in an image, which can affect the 
measurement of texture features. In breast lesion images, the 
boundary can either have an abrupt interface or an echogenic 

(2)Solidity =
Tumor� sarea

Convex hull
.

halo. An abrupt interface is marked by a distinct echogenic 
line, while an echogenic halo does not show a clear boundary 
between the lesion and the surrounding tissue (Boulenger et al. 
2023). To evaluate the sharpness of the boundary or bright-
ness, a distance map can be used to distinguish the outer part 
of the lesion from the surrounding tissue. Equation (5) defines 
the brightness with the number of grey level pixels, g(p) in the 
surrounding tissue Stissue and the number of pixels in the outer 
part of the lesion Nout (Sellami et al. 2015).

(3)avgtissue =

∑k
distance(p) = 1g(p)

Stissue
,

(4)avgout =

∑k
distance(p) = 1g(p)

Nout
,

(5)Brightness = ||avgtissue − avgout
||.

Fig. 3   Solidity feature for 
Benign and Malignant tumors

Fig. 4   Eclipse ratio feature for 
Benign and Malignant tumors
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GLCM features

The GLCM features capture the texture patterns and spatial 
relationships between pixels. Benign and malignant tumors 
can be visually categorized by analyzing the lesion, texture, 
intensity, and complexity of the tumors (Mendelson et al. 
n.d.). Malignant tumors typically exhibit a higher distribu-
tion of black and grey pixels, whereas benign tumors tend 
to be more solid and exhibit a regular shape with a dense 
visualization of the tumor. In Fig. 5, we can see that the 
malignant tumor has highly irregular boundaries, a hetero-
geneous internal texture, and internal echoes, compared to 
benign tumor, see Fig. 5.

Shannon entropy

Shannon entropy is a measure of uncertainty in the texture of 
an image, which can reflect the complexity and presence of 
information of a tumor (Rafid et al. 2022). Malignant tumors 
usually have more complex and irregular textures, resulting 
in higher Shannon entropy values than benign tumors.

GLCM entropy

The GLCM is a technique used in texture analysis to quan-
tify the relationship between two pixels with gray levels x 
and y that are separated by a distance D in direction z within 
an image. The gray-level co-occurrence matrix records the 
number of times the pair of gray levels (x, y) appears at 
a distance D apart in the subimage, with the result being 
stored in the entry (x, y) of the matrix. To scale the values 
in the image into G levels, they are converted into integers 
between 1 and G. The size of the gray-level co-occurrence 

matrix, which is G × G, is determined by the G numbers of 
gray levels. GLCM is applied with varying directions z {0, 
π/4, π/2, 3π/4} and distance D, resulting in a set number of D 
GLCMs each of size G × G for each given z (Berbar 2018).

Correlation

In the context of breast cancer detection, correlation is used 
to assess the similarity of pixel values between the tumor 
and the surrounding tissue. By analyzing the GLCM, cor-
relation in Eq. (6) can be used to distinguish between benign 
and malignant lesions (Berbar 2018). Malignant tumors typi-
cally exhibit a higher degree of correlation (Fig. 6) between 
pixels, while benign tumors have lower correlation values.

Dissimilarity

Dissimilarity measures the degree of dissimilarity between 
two images or regions of interest. It can be used to identify 
differences in tissue structures. These differences may indi-
cate irregularities in shape or texture, which can be indica-
tive of cancerous growths. Dissimilarity, see Eq. (7), is based 
on the GLCM, which is a second-order histogram used to 
describe image textures. The matrix can be represented as an 
asymmetric matrix that quantifies the pairwise distribution 
of pixels (Berbar 2018).

Contrast

Tumors or abnormal growths often exhibit different contrast 
values compared to healthy tissue, making contrast a use-
ful tool in identifying anomalies (Berbar 2018). Ultrasound 

(6)Cor =

l−1∑

i,j=0

rij
(
i − mg

)(
j − mg

)
.

(7)D =

l−1∑

i,j=0

rij|i − j|.

Fig. 5   Visualization the textures of benign and malignant tumor
Fig. 6   The tumors correlation with the surroundings. a Benign; b 
Malignant
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images can also benefit from contrast features for the dif-
ferentiation, as malignant lesions tend to have a more var-
ied echogenicity and irregular shape compared to benign 
lesions. The contrast feature in Eq. (8) quantifies the joint 
distribution of the pairwise pixels in an image (Huang et al. 
2020).

Energy

Energy is a measure of the uniformity in the pixel intensities 
of an image. Ultrasound imaging measures the backscatter 
of sound waves from tissue. The amount of backscatter is 
related to the tissue's acoustic properties, including its den-
sity, composition, and structure (Berbar 2018). Malignant 
tissues often have a more disordered structure than benign 
tissues, leading to increased backscatter and higher energy 
levels in the ultrasound image. Energy (see Eq. 10) is based 
on the gray histogram that explains how the image's gray 
scale is distributed. In Eq. (9), q(i) denotes the number of 
pixels in the ith grayscale, n denotes the total number of 
pixels, and l denotes the gray level (Huang et al. 2020).

Feature analysis

A set of 10 informative features are extracted from the ROI 
of breast ultrasound image. To evaluate the significance of 
the features, the density plot is utilized to evaluate how the 
influence of particular features in distinguishing classes.

Density plot for feature visualization

In Fig. 7, the orange curve represents the feature values of 
class benign and the blue curve represents the feature values 
of class malignant. The distribution of the values for malig-
nant tumors appears to be much wider than that of benign 
tumors. For Circularity, the threshold range for malignant 
tumors is from 0.3 to 0.81 whereas the threshold range for 
benign tumors is 0.75 to 0.8. Similarly for solidity, threshold 
range for malignant tumor is 0.68 to 0.97 and for benign 
0.86 to 0.99. For Shannon entropy, the threshold range for 
malignant tumors is 0.03 to 4.95 and for benign 0.046 to 
4.68 where most values are between 0.046 and 1.5. For 

(8)Co =

l−1∑

i,j=0

rij(i − j)2.

(9)r(i) =
q(i)

n
, i = 0, 1,… , l − 1,

(10)E =

l−1∑

i=0

[r(i)]2.

correlation, values of the benign class range from 0.97 to 
0.99, whereas the threshold range for classifying a tumor as 
malignant is 0.9 to 0.99. The rest of the features are also dis-
tinct enough to assign values to a particular class. Based on 
the visualization, it can be inferred that the feature values for 
benign tumors exhibit a consistent pattern and show regular-
ity, whereas the malignant tumors demonstrate significant 
deviations from this pattern and a nonuniform distribution.

Feature testing

The T test is a statistical analysis method which is employed 
in this study to evaluate the features. To assess whether there 
are significant differences between the two groups, the p 
values are calculated (Effrosynidis and Arampatzis 2021). 
Table 3 lists the T test results for the features.

A low p value indicates that the feature is a strong dis-
criminator between the classes (Lim and Kim 2021). The p 
values associated with our feature set f{..} are much smaller 
than the threshold of 0.05 (p_value(f{..}) <  < 0.05). This 
indicates that this is a robust discriminative feature set to 
accurately classify breast cancer.

Graph construction

To generate the graph, first a feature table is created with 647 
rows and 12 columns. The 12 columns include 10 features, 
a unique ID for the rows and the target class. Considering 
each row as an individual node ( v), the node numbers of the 
malignant images fall within the range of 1 to 210 and the 
node numbers of the benign images are within the range 
of 211 to 647. An edge (E) table is constructed calculating 
the Spearman correlation coefficient between the rows. This 
quantifies the relationships between the images, based on the 
features of each image. The connection is derived by calcu-
lating the coefficient scores of each row for example node 
1 to node 2, node 1 to node 3,… node 1 to node 647 and 
node 2 to node 3, node 2 to node 4,… node 2 to node 647. 
The Spearman correlation coefficient between two nodes is 
calculated each time and the connection of a particular node 
with all the other nodes is found. The resultant edge table 
consists of 208,981 rows and 3 columns. The Spearman cor-
relation coefficient (S) is calculated as follows.

Here dv denotes the differences between the nodes and n 
represent the number of nodes. The correlation patterns 
between the nodes are outlined in the edge table, see Table 4.

Table 4 shows how an edge between two nodes is denoted, 
based on a correlation score. “Source” stands for the source 
node, “Target” denotes the target node, and “correlation”, 

(11)S = 1 −
6
∑

d2
v

n
�
n2 − 1

� .
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the Spearman correlation value between the target and 
source nodes.

With the set of nodes ( vn) and edges ( em) , a graph 
G = (V, E) is generated where vn ∈ V and en ∈ E, n, m 
denote the number of nodes and edges respectively. In a 
graph, the edges are constructed as eij = ( vi, vj) , represent-
ing the relationship between node vi andvj . An adjacency 
matrix (A) is also generated from the graph (G) with n × n 
dimensions. If Aij = 1, there is an edge between two nodes 

( eij ∈ E) and Aij = 0 if eij ∉ E. Excluding the unique feature 
ids and target classes, the 10 features form the feature vec-
tors X of the graph where Xv represents the feature vector 
of a particular node (v) (Wu et al. 2021).

As the graph is generated based on the image-to-image 
relationships, the resultant graph is complex and large. A 
small portion of the graph with 198 nodes and 300 edges 
is shown in Fig. 8.

Fig. 7   Density plots to differentiate the change in feature distribution pattens for benign and malignant tumors
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Model

The proposed GNN model can be adapted to diverse 
domains by capturing internode connections to perform a 
wide range of tasks (Asif et al. 2021; Grattarola and Alippi 
2021).

Feed forward network (FFN) block

An optimized FFN is utilized for more effective learning of 
the node representation. It is an off-the-shelf classifier (Gay-
athri et al. 2022) where the layers are densely connected. This 
facilitates the learning of complex patterns and relationships 
within the data. It is a type of one directional network, consist-
ing an input layer, hidden layers and an output layer, where the 
information flow starts from the input layer and is transformed 
through a series of hidden layers. Each layer applies a set of 
weights and biases to the output of the previous layer (Truong 
et al. 2020) and with these three types of layers a FFN block 
is constructed. Optimized FFN blocks help to learn complex 
nonlinear transformations of node representations through a 

GNN model, increasing the ability to capture intricate patterns 
in the graph data.

Our proposed FFN block consists of three fully connected 
hidden layers, including the batch normalization layer, a drop-
out layer with the dropout rate of 0.2, and a dense layer with 
[64, 64] dimensions and an Exponential Linear Unit (ELU) 
activation function. These layers form a fully connected net-
work for each block. The proposed GNN model has nine FFN 
blocks, each block containing corresponding skip connections. 
A skip connection allows information to be passed directly 
from one block to another without being transformed. The 
input layer takes the 10 features as input feature which are then 
forwarded to FFN block 1. The FFN blocks work in such a way 
that the output of the previous FFN block is passed through 
a skip connection to the next FFN block. The final output is 
passed through a Softmax activation function to produce a 
probability distribution for the possible node labels. Figure 9 
shows the architecture of the FFN block connections.

The Fig. 9 depicts the architecture of the FFN blocks with 
a connection that is optimized for this study. The FFN consists 
of an input layer that takes the input features and feeds them 
through a sequence of 9 FFN blocks, each comprising of nine 
skip connections and three fully connected layers.

Proposed GNN model

The GNN model learns the representation of a graph by aggre-
gating the feature vectors of a node's neighboring nodes by 
capturing the neighborhood information, which is used to 
generate an updated node embedding. This process is called 
message passing. Each node of the graph gets a unique embed-
ding, generated from its neighborhood information. Message 
passing is done through the convolutional operation of the 
GCN layer. The equations for the message passing process 
are Eqs. (12), (13), and (14) (“The Graph Neural Network 
Model,” n.d.):

hi
u
 denotes ith hidden embedding for node u. Its previous node 

embedding is hi−1
u

 . Wn , WNei and b represent the message 
passing parameters at iteration i while elementwise nonlin-
earity is represented by � . 

∑
v�N(i) h

i−1
v

 is the embedding vec-
tor neighboring node of u ( N(u)) . Equations (12) and (13) 
describe the updating process the node embedding or mes-
sage passing. m(i)

N(u)
 is the message that is aggregated from 

(12)hi
u
= �

(
Wi

n
hi−1
u

+Wi
Nei

∑

v�N(u)

hi−1
v

+ bi

)
,

(13)h(i+1)u = Update(i)
(

h(i)u , AGGREGATE(i)({h(i)u ,∀u ∈ N(u)
}))

,

(14)= Updatei
(
hi
u
,m

(i)

N(u)

)
,

Table 3   Feature robustness analysis through T test

Feature t value p value

Circularity − 35.064039 1.467754e-151
Solidity − 34.372150 6.399186e-148
Shannon entropy 11.420615 1.219706e-27
GLCM entropy 11.169152 1.330398e-26
Correlation 6.112874 1.694358e-09
Dissimilarity 9.664385 1.000733e-20
Contrast 6.319524 4.894419e-10
Energy − 10.674455 1.319478e-24
Eclipse ratio − 23.557379 5.206523e-89
Brightness 7.810727 2.311481e-14

Table 4   Edge table for the graph

Number of edges Source Target Correlation value

0 1 2 0.835165
1 1 3 0.604396
2 1 4 0.862637
3 1 5 0.818681
4 1 6 0.670330
… … … …
208,976 644 646 0.917582
208,977 644 647 0.434066
208,978 645 646 0.945055
208,979 645 647 0.714286
208,980 646 647 0.554945
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Fig. 8   A visualization of a small 
portion of the graph

Fig. 9   The optimized FFN block connections used for the GNN model
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the neighbor N(u). The previous hidden embedding will be 
updated from h(i)

u
 to h(i+1)

u
 (updated embedding). The updated 

node embeddings are normalized to get a more informative 
node feature vector. After getting the final nonlinear node 
embeddings as output of GCN layer, they are fed into the 
densely connected FFN. The FFN then applies nonlinear 
transformations to the inputs for the final prediction task. 
The hidden units of the dense layers use an ELU activation 
function, which allows the model to learn complex, nonlin-
ear relationships between the input features. The output of 
the GNN model can be represented as follows (Asif et al. 
2021),

where O is the output or the predicted label done by the 
FFN. The function F(hu, fu ) represents the feed-forward net-
work where huandfu are the node embeddings and feature 
vectors for each node u respectively. Figure 10 shows the 
proposed GNN model framework.

In the proposed GNN model, the node feature vectors and 
adjacency matrix of the graph connection are passed to the 
FFN blocks which process the nodes and feed them into the 
GCN layers. The model consists of three GCN layers with 
activation function ELU using the message passing mecha-
nism. The updated embeddings of the GCN layer are passed 
to the FFN blocks outputting the final node embedding as 
logit value. This logit value is then converted into a prob-
ability using the Softmax layer, which maps the output to a 
value between 0 and 1. The model has a combination of Con-
vLSTM1D with [64, 64] hidden units. The dropout rate is 
set to 0.3, the learning rate is 0.01, the optimizer Nadam and 
the batch size 128. The model is trained for 100 epochs with 

(15)O = F
(
hu, fu

)
,

the loss function Sparse Categorical Cross entropy. These 
configurations are determined based on the ablation study 
and Bayesian optimization. The result of ablation study and 
Bayesian optimization, done for the proposed GNN model’s 
optimization is shown in the “Ablation study” and “Bayesian 
optimization” section, can be found in “Experiments and 
results”. For the implementation of the proposed model, we 
used Intel Core i3-1005G1 processor, 8 GB of memory, and 
256 DDR4 SSD storage.

HOG feature extraction

HOG is a shape descriptor which is widely used for shape 
feature analysis (Ranjbarzadeh et al. 2022; Cruz-Ramos 
et al. 2023). The shape pattern characteristics are calculated 
based on the gradient and edge pixel’s orientation. In terms 
of breast tumor's shape feature analysis, the HOG is par-
ticularly valuable as it can emphasize the mass structures 
(Sajid et al. 2023). HOG divides the images into smaller 
portion and calculates the gradient along with its orienta-
tion for each section. Then, for each region of the image, 
a histogram is generated based on the gradients and their 
orientations. The entire process is known as Histogram of 
Oriented Gradients, which is a powerful technique for object 
detection and shape analysis in computer vision. To extract 
the shape features from raw breast ultrasound images, we 
have passed 224 × 224 sized image into the HOG feature 
descriptor. Then, the HOG divides the image into several 
smaller portion where each portion contains 16 × 16 cells 
and each cells contain 2 × 2 blocks. After executing the HOG 
feature descriptor, a feature table is generated with dimen-
sions of 647 × 6084. A graph dataset is generated utilizing 
the same process shown in “Graph construction” section 

Fig. 10   Proposed GNN model architecture
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and fed into the optimized GNN model. The result of this 
experiment is shown in “Performance comparison between 
proposed features and HOG descriptor features”, can be 
found in “Experiments and results” section.

Experiments and results

The performance and robustness of the proposed GNN 
model is assessed through several methods including evalu-
ation of performance matrices and statistical analysis. A 
confusion matrix is generated to calculate the performance 
matrices. The loss and accuracy curves are shown and k-fold 
cross validation is conducted to confirm the absence of over-
fitting issues and performance consistency of the model. In 
addition, the robustness of the proposed model is assessed 
using a clustering-based thresholding approach.

Ablation study

To enhance the performance of the GNN model, an ablation 
study is conducted changing the hyperparameters. The abla-
tion study comprises nine experiments and for each experi-
ment, the optimal hyperparameter is selected based on the 
highest accuracy. Table 5 shows the results of nine experi-
ments done for the hyperparameter tuning.

The first experiment of Table 5 is done altering the hid-
den units, where with the hidden unit size of [64, 64], the 
highest accuracy of 95.83% is achieved in 49 s (s). Then, 
for the learning rate 0.01 and batch size 128, the model per-
forms higher with an accuracy of 96.35%. The two subse-
quent experiments are focused on altering the dropout rates 
and activation functions, yielding an accuracy of 96.86% for 
dropout rate 0.3, and activation function ELU. A reduced 
time complexity of 33s is obtained with the dropout layer 
of 0.3 and the complexity remains same for the activation 
functions. The optimizer Nadam improves the accuracy from 
96.86 to 97.38%. The ConvLSTM1D combination performs 
better than the combination type concat and the accuracy 
improves to 98.44%. The highest accuracy of 99.48% is 
obtained for three convolutional layers. In the whole process, 
the epoch number was set to 100. The last experiment is 
done altering the number of epochs to 50, 100 and 200. It is 
observed that, for epoch 50 the performance is not substan-
tial, for 100 and 200 the accuracy remains same at 99.48%, 
but the time complexity is almost double when the epoch 
is 200. So, the optimal hyperparameters for the proposed 
model are: [64, 64] hidden layer, 0.01 learning rate, batch 
size of 128, dropout rate 0.3, activation function ELU, opti-
mizer Nadam, combination type ConvLSTM1D, three con-
volutional layers and 100 epochs and the time complexity 
for the model’s execution is 33 s.

Bayesian optimization for hyperparameter tuning

Bayesian Optimization is considered to be a powerful algo-
rithm for automating the fine tuning of hyperparameters for 
complex machine learning, deep learning and other mod-
els that require optimization. It is a prominent approach for 
enhancing the performance of black-box functions that are 
expensive to evaluate (Dhillon et al. 2023). In the ablation 
study, we have systematically modified the hyperparameters 
for gaining the model’s optimal performance. In this section, 
an automatic approach for tuning the quantitative hyperpa-
rameters such as hidden layer, learning rate, batch size, and 
dropout rate is introduced. Table 6 shows the range of hyper-
parameters used in the experiment of Bayesian Optimization.

The Bayesian Optimization is implemented employ-
ing the Gaussian Process model as a surrogate model. 
The model employs an Upper Confidence Bound (UCB) 
acquisition function to select evaluation points and balance 
between exploration and exploitation while searching for 
promising parameter values (Dhillon, et al. 2023). In this 
experiment, Bayesian optimization yields optimal hyperpa-
rameters: a batch size of 128, a dropout rate of 0.3, hidden 
units of approximately 64, and a learning rate of 0.01. These 
hyperparameters led to a remarkable validation accuracy of 
approximately 99.5%. The automatically selected hyperpa-
rameters matches with the hyperparameters obtained from 
the ablation study which validates the effectiveness of this 
intelligent optimization technique in enhancing the model’s 
performance.

GNN model’s performance analysis

The relational edge table comprises a large number of con-
nections (edges) between the nodes. The presence of such 
numerous edges can introduce noise, redundancy, and 
potentially irrelevant information and a higher complex-
ity (Abadal et al. 2022) into the model. An experiment is 
conducted with several correlation threshold values of node 
connections to decrease the number of edges and enhance 
the model’s robustness. In order to find the optimal output 
with the minimal number of edges, an experiment is carried 
out which is detailed in Table 7.

Table 7 lists the threshold for the Spearman correla-
tion score and the number of edges for a specific thresh-
old where “Nan” means no threshold is considered. It 
can be observed that with increasing the threshold val-
ues, the number of edges decreases and the performance 
improves. For large threshold values, a high correlation 
between the nodes exists which improves the accuracy. 
While utilizing all the edges (208,981), a test accuracy of 
95.83% is achieved. The highest test accuracy of 99.48% 
is obtained for a threshold value of 0.95 which means 
that only the edges for which the Spearman correlation 
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Table 5   The results of ablation study

The bold column values of each subsection indicate the highest test accuracy achieved within that specific subsection

Hidden units

No. Hidden units Test accuracy (%) Average time per step (s)

1 64,64 95.83 49
2 32,32 94.79 45

Learning rates

No. Learning rate Test accuracy (%) Average time per step (s)

1 0.0001 95.83 49
2 0.001 94.24 49
3 0.01 96.35 49

Batch size

No. Batch size Test accuracy (%) Average time per step (s)

1 32 93.75 91
2 64 95.29 67
3 128 96.35 49

Dropout rate

No. Dropout Test accuracy (%) Average time per step (s)

1 0.3 96.86 33
2 0.5 96.34 34
3 0.7 95.29 49

Activation function

No. Activation function Test accuracy (%) Average tme per step (s)

1 ELU 96.86 33
2 ReLU 95.29 33
3 Tanh 92.67 33

Optimizer

No. Optimizer Test accuracy (%) Average time per step (s)

1 Adam 96.86 33
2 Adamax 95.81 33
3 Nadam 97.38 33
4 SGD 92.71 33

Combination type

No. Combination type Test accuracy (%) Average time per step (s)

1 concat 97.38 33
2 ConvLSTM1D 98.44 33

Convolutional layer

No. No. of layers Test accuracy (%) Average time per step (s)

1 2 98.44 25
2 3 99.48 33
3 4 98.57 52

Epoch number

No. No. of epochs Test accuracy (%) Average time per step (s)

1 50 91.10 26
2 100 99.48 33
3 200 99.48 57
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score is equal or greater than 0.95 are considered. This 
results in an optimized model and reduces the number of 
edges significantly, from 208,981 to 30,310.

Performance analysis of the optimized GNN model

The optimized model performs with the highest test accu-
racy of 99.48% with 30,310 edges. To further analyze the 
performance, several performance metrics are derived 
from the confusion matrix of the proposed model, see 
Fig. 11.

The column values of the confusion matrix in Fig. 11 
represent the predicted labels while the rows represent 
the actual labels. The diagonal values of the confusion 
matrix indicate the number of accurately predicted test 
data (Khan et al. 2022). Our findings demonstrate that 
the model does not exhibit superior predictions for any 
particular class over others. The evaluation incorporates 
a diverse range of metrics, including Precision, Recall, 
F1 score, Specificity, Sensitivity, Negative Predictive 
Value (NPV), False Positive Rate (FPR), False Discov-
ery Rate (FDR), False Negative Rate (FNR), Matthews 
Correlation Coefficient (MCC), and overall Accuracy. 
The results are calculated using the true positive, true 

negative, false positive and false negative scores of con-
fusion matrix. Table 8 represents the results.

It can be seen from Table 8 that along with a test 
accuracy of 99.48%, the model achieves an F1 score of 
98.28%, while precision, recall and specificity are all 
100%. The train, validation and test accuracies are very 
close, showing no signs of overfitting. The sensitivity 
of the model is 98.57% and both FPR and FDR records 
a score of 0%. The NPV score for the proposed model 
is 99.19% and the FNR and MCC are 1.4%, and 98.88% 
respectively. The model’s loss and accuracy curves are 
shown in Fig. 12.

The loss curve and accuracy curve for each epoch exhibit 
a consistent pattern, with no significant variation. This vali-
dates the model’s robustness (Montaha et al. 2021), indicat-
ing no occurrence of overfitting.

K‑fold cross‑validation

The performance of the proposed model is evaluated using 
a k-fold cross-validation strategy with fivefolds, where the 
dataset is separated into five distinct subsets for training 
and evaluation purposes. The scatter plot in Fig. 13 illus-
trates the fold-wise accuracy scores, with error bars repre-
senting the standard deviation. The red dashed line repre-
sents the mean accuracy of 98.05%. The accuracy scores 
obtained for the individual folds are 97.75%, 98.90%, 
98.46%, 98.82%, and 98.20% respectively, reflecting a con-
sistent performance of the model across each subset. The 
mean accuracy across all folds is 98.05%. These findings 
highlight the robustness and consistent performance of the 
proposed GNN model.

Performance comparison with prior studies

Table 9 provides a comparative overview of prior studies 
aligned with our proposed methodology. These studies are 
done employing the same dataset as we have used. A com-
parison is carried out based on the test accuracy achieved in 
the classification of breast cancer using the BUSI dataset. 
The following table includes the information of authors, 
dataset, model, and result.

From the Table 9, it is observed that, most of the studies 
are done based on the dataset BUSI, resulting accuracies of 
81% to 98% approximately (Zhuang et al. 2021; Moon et al. 

Table 6   Hyperparameters 
setting

Hyperparameter Range

Hidden layer 32–64
Learning rate 0.001–0.01
Batch size 64–128
Dropout rate 0.3–0.7

Table 7   Performance with different threshold values

SI. No. Threshold Number of edges GNN 
accuracy 
(%)

1 Nan 208,981 95.83
2  ≥ 0.7 154,593 96.35
3  ≥ 0.8 113,272 99.07
4  ≥ 0.9 49,167 98.96
5  ≥ 0.95 30,310 99.48
6  ≥ 0.99 4740 97.92
7  = 1.0 1136 97.40
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2020; Sirjani et al. 2023) introduced deep learning and trans-
fer learning-based classifiers for multiple datasets, result-
ing an accuracy of 95.48%, 94.62% and 81% respectively. 
In addition, the time complexity for these models is much 
higher than our proposed model. (Özcan 2023) introduced a 
BUS−CAD system that includes global and textural-based 
feature statistics, feature selection and machine learn-
ing classification, achieved an accuracy of 97.81%. When 
compared with the test accuracies of the prior studies, it is 
evident that our proposed model has obtained the highest 
accuracy of 99.48%. The overall comparison with prior stud-
ies validates the efficiency of our model in predicting breast 

cancer at lower time complexity with higher classification 
accuracy.

Performance comparison between proposed 
features and HOG descriptor features

In this section, the GNN model’s performance based on the 
ten features extracted from breast ROI is compared with the 
performance of GNN for the HOG descriptor features. The 
objective of this experiment is to assess the performance 
of the proposed GNN model using raw ultrasound images, 
without any prior selection of tumor regions. Table 10 shows 
the performance comparison.

Table 10 demonstrates a significant performance differ-
ence between the two processes. The GNN model’s perfor-
mance for HOG descriptor features is approximately 12.57% 
lower. But the best performance of the proposed GNN model 
is gained considering strong relationships (threshold ≥ 0.95) 
between the images based on their feature values. Consider-
ing no threshold values for the relationships between nodes, 
the GNN model obtains 95.83% with the medically signifi-
cant handcrafted features which is still 8.92% higher than 
the HOG descriptor features. The performance of sensitivity, 
specificity, precision and f1 score for the GNN classifica-
tion is also remarkably lower with HOG descriptor features 

Fig. 11   Confusion matrix of the 
GNN model

Table 8   Performance evaluation of the proposed GNN model

Performance 
metrics

Results (%) Performance 
metrics

Results (%)

Train accuracy 98.55 NPV 99.19
Test accuracy 99.48 FPR 0.00
Validation accuracy 99.78 FDR 0.00
Sensitivity 98.57 FNR 1.4
Precision 100 F1 Score 99.28
Specificity 100 MCC 98.88
Recall 100
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compared to the other two methods. The noteworthy per-
formance difference is occurred for several reasons. Firstly, 
the raw breast ultrasound images contain high amount of 
speckle noise which results poor visualization and tumor tis-
sue boundary minimization (Ayana et al. 2022). Therefore, 
the raw image may contain redundant features which can 
mislead the classification model extensively. To address the 
issue, substantial preprocessing may be required to obtain a 
noise-free image. However, the introduction of such preproc-
essing techniques and large number of features for the clas-
sification can significantly raise the computational demands 

constraining overall efficiency. Therefore, the utilization of 
specific region can reduce unwanted redundant features and 
noise effectively without requiring any specific preprocess-
ing techniques. In addition, the importance of handcrafted 
features based on radiologist’s markers in identifying critical 
areas of breast tumor is remarkable as they focus only the 
key areas.

Our proposed model not only gives higher perfor-
mance at lower computational complexity but also does 
not require any processing of the images. This validates 
the importance of extracting features from a selective yet 

Fig. 12   The loss curve and accuracy curve for the proposed GNN model

Fig. 13   K-fold cross validation 
on the GNN model
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significant portion of image that will minimize the pres-
ence of noisy and redundant regions. In term of breast 
tumor classification task, it is evident from the Table 10 
that, a relational graph, generated based on selective fea-
tures of ROIs outperforms the concept of automatic fea-
ture extraction by HOG descriptor from full ultrasound 
image without selecting any ROI. Moreover, this study 
ensures the most relevant feature through feature selec-
tion which boosts the classification more effectively by 
mitigating the risk of irrelevant feature application and 
model’s overfitting.

Robustness analysis of the proposed model

Usually, a graph with optimal connections among the 
nodes results in a high accuracy. In our generated graph, 
it has been observed that certain nodes belonging to dis-
tinct classes (benign to malignant) exhibit a strong correla-
tion. Likewise, certain nodes belonging to the same classes 
(benign to benign or malignant to malignant) exhibit weak 
correlation. This might have an adverse effect on the per-
formance of the model (Jabeen et al. 2022).

Table 9   Comparison with previous literatures

Authors Dataset Model Result (test accuracy)

Deb and Jha (2023) BUSI Fuzzy rank-based ensemble learner based on four base learners: VGG-Net, 
DenseNet, Inception Net, and Xception Network

85.23%

Zhuang et al. (2021) 1. BUSI Bilateral filtering for image processing, VGG19 model for deep feature 
extraction, Adaptive spatial feature fusion for classification

95.48%
2. OMI
3. Dataset B
4. Hospital

Moon et al. (2020) 1. Seoul National 
University Hos-
pital (SNUH) 
dataset

VGGNet, ResNet, and DenseNet 94.62%

2. BUSI
Byra (2021) BUSI A transfer learning technique based on deep representation scaling (DRS) 

layers
91.5%

Mishra et al. (2021) BUSI Random forest classifier, gradient boosting classifier, AdaBoost classifier 
(ABC), support vector machine classifier, decision tree classifier, and logis-
tic regression

97.4%
(for ABC)

Umer et al. (2022) 1. BUSI A multiscale CNN classification model comprising 21 layers for classifica-
tion, an autoencoder-based u-shaped DDA-Net segmentation model

97.89%
2. UDIAT

Özcan (2023) BUSI BUS − CAD. Hybrid feature representation with global and local texture sta-
tistics, feature selection. Highest classification accuracy with random forest 
(RF) classifier

97.81%

Sirjani et al. (2023) 1. BUSI Deep neural network architecture based on Inception-V3 81%
2. BUS
3. A public dataset 

of 86 breast can-
cer ultrasound 
images

Our proposed model BUSI Feature extraction, feature selection, graph generation, and classification with 
GNN

99.48%

Table 10   GNN model’s performance comparison with handcrafted features and HOG descriptor features

GNN performance on features Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 score (%)

Ten handcrafted features 99.48 (Threshold ≥ 0.95) 98.57 100 100 99.28
95.83 (No threshold) 95.71 95.90 93.06 94.37

HOG descriptor features 86.91 (No threshold) 83.33 88.8 79.71 81.48
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Clustering based on the correlation 
between the nodes

Anomaly relationships among the nodes, such as (i) a strong 
correlation among the nodes of distinct classes and (ii) a 
weak relation among the nodes of the same classes might 
hamper the model performance. The entire graph is first 
clustered based on these two possible occurrences. Table 11 
presents the clustering range for the graph.

Correlations below 0.4 (cluster 1) indicate weak relation-
ships between the target and source columns. 2075 connec-
tions between the nodes are found in this range. Similarly, 
correlations greater or equal to 0.7 (cluster 2) represent a 
strong relationship between the target and source columns, 
and 154,593 connections between the nodes are found in 
this range. The edges of the graphs are filtered, eliminating 
strong correlations among distinct classes and weak correla-
tions among the same classes.

In this filtering process, first the strong relationships 
among the distinct classes are eliminated. With the result-
ant edges, we move to the second process of removing weak 
relationships among the same classes. After completion of 
the filtering process, a graph is created without strong rela-
tionships between different classes and weak relationships 
between similar classes. This results a filtered graph without 
anomalies for the edges. For a better understanding, a flow 
chart of the filtering technique is depicted in Fig. 14.

It is found that 154,593 of the 208,981 edges are above 
the threshold (≥ 0.7). These include both edges between the 
same and between different classes. 51,885 edges are found 
for which strong relationship exist for distinct classes and 
these are removed. The remaining strong edges are added to 
the edges with values below the threshold (≥ 0.7), resulting 
in a total of 157,096 edges. The next step is to check which 
of these edges have a weak relationship (< 0.4). It is found 
that 2075 edges are below this threshold. Of these, 174 edges 
represent a weak relationship for the same classes. These are 
removed. The final number of edges (Ef) is calculated by 
adding the 1901 remaining weak edges to the 155,021 edges 
above the threshold of 0.4. In these final 156,922 edges, 
there are no edges with strong connections among distinct 
classes or weak connections among the same classes. Thus, 
a filtered graph (V, Ef) is generated with an updated number 
of edges.

Table 11   Clustering based on the correlations between source and 
target nodes

Correlation range Relationship Cluster Number of con-
nections in each 
cluster

 < 0.4 Weak 1 2075
 ≥ 0.7 Strong 2 154,593

Fig. 14   Flow chart of filtering process of the edges
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Performance comparison of the GNN model 
with filtered graphs

The filtered graph has a total number of 156,922 edges. We 
now have two graphs: (i) the first graph before filtering (with 
anomalies in the edges) and (ii) the second graph after fil-
tering (without anomalies). The proposed model is trained 
with both graphs and six threshold values for performance 
comparison. Figure 15 depicts the outcomes.

It can be observed from Fig. 15 that in all the cases, a 
test accuracy above 97% is achieved for the filtered graph 
with a highest accuracy of 99.48% for a threshold value of 
0.95. Using the first graph with edge anomalies, test accu-
racy above 95% is achieved across all cases where the high-
est accuracy, of 99.48%, is acquired while using a thresh-
old value of 0.95. For this threshold, the accuracy and the 
number of edges are the same for both cases since no edge 
anomalies are observed at the higher thresholds ( ≥ 0.95 ) that 
need to be eliminated for the graph filtering, indicating the 
effectiveness of the features in distinguishing the classes at 
higher correlation thresholds.

Compared to the initial graph, an accuracy improved by 
2.61% is achieved with the filtered graph when no threshold 
is considered. While using a threshold of 0.7, the difference 
in accuracy is approximately 3%. The filtered graph does not 
contain the 51,885 edge anomalies. At a threshold of 0.8, 

an improvement in accuracy of 0.41% is observed for the 
filtered graph. With a threshold of 0.9, the accuracy for the 
filtered graph increases merely by 0.11%. For both 0.8 and 
0.9 thresholds, in the filtered graph, a substantial amount of 
anomaly edges are removed. For both of the graphs, the test 
accuracies are very close for these two thresholds, validating 
that the proposed model is robust enough even with edge 
anomalies.

Limitations

Even though the study has achieved a promising result with 
a GNN-based approach, together with feature extraction and 
manual graph filtering to classify breast cancer, there are still 
a certain number of concerns which can be improved in fur-
ther studies. First of all, the BUSI dataset used in this study 
is quite small and may not encapsulate the broader amount of 
characteristic a tumor holds in ultrasonic imaging. The mod-
el’s robustness may be enhanced more with a larger data-
set that provides diverse patient breast tumor’s ultrasound 
reports. The performance of the model can be assessed fur-
ther with a real-world dataset. By doing so, the compatibility 
of the proposed study can be learnt better as the real-world 
images contain several challenges. Using other dataset, some 
other classes of breast cancer can be explored as well. In 
addition, we aim to analyze the progression of breast cancer 

Fig. 15   Performance for graph datasets with different thresholds
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in future researches through automated approach. Despite of 
these limitations, the proposed approach has demonstrated 
its potential for GNN-based breast cancer classification, 
offering an effective foundation for future research that aims 
for optimizing diagnostic accuracy and clinical utility.

Conclusion

The diagnosis of breast cancer is a major healthcare con-
cern that requires accurate and efficient methods to ensure 
early detection and proper treatment. This study proposes a 
novel automated approach for classifying breast cancer into 
as either benign and or malignant using ultrasound images. 
Ten informative handcrafted features are extracted from the 
ROI of breast ultrasound images and a GNN model opti-
mized employing ablation study and Bayesian Optimization, 
is utilized. The significance of these features is assessed by 
two statistical analysis methods: density plot and T test. 
The outcomes demonstrate that the features are suitable to 
distinguish benign and malignant breast tumors. The GNN 
model is trained with a graph generated from the features 
where each image is denoted as node and relationship among 
the nodes is based on the Spearman correlation coefficient. 
Several thresholds for the Spearman correlation score are 
tried with the model and the highest test accuracy of 99.48% 
is achieved for a threshold value of 0.95 with 30,310 edges. 
By comparing the model's performance with HOG descrip-
tor features extracted from the full ultrasound image and 
the handcrafted features extracted from tumor ROI, the sig-
nificance of ROIs and medically relevant features for breast 
tumor classification is assessed. The robustness of the pro-
posed approach is further validated with a clustering analysis 
where weak relationships between similar classes and strong 
relationships between dissimilar classes are eliminated. The 
performance of the model with the previous main graph and 
the filtered graph, without edge anomalies, is compared. For 
high threshold values, no significant difference is observed. 
This validates the robustness of the model and the feature 
set, as the model can achieve optimal performance even with 
the presence of edge anomalies. The study demonstrates that 
a graph generated with a set of robust features can play a 
crucial role in the classification with GNN. The proposed 
approach might aid the radiologists to diagnose tumors and 
learn more about tumor pattern based on numerical features.
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