
Computers in Biology and Medicine 155 (2023) 106646

Available online 10 February 2023
0010-4825/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

High-precision multiclass classification of lung disease through customized 
MobileNetV2 from chest X-ray images 

FM Javed Mehedi Shamrat a, Sami Azam b,**, Asif Karim b,*, Kawsar Ahmed c,d, Francis M. Bui c, 
Friso De Boer b 

a Department of Software Engineering, Daffodil International University, Birulia, 1216, Dhaka, Bangladesh 
b Faculty of Science and Technology, Charles Darwin University, Casuarina, NT 0909, Australia 
c Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada 
d Group of Bio-photomatiχ, Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Tangail, 1902, 
Bangladesh   

A R T I C L E  I N F O   

Keywords: 
MobileLungNetV2 
MobileNetV2 
CNN 
Lung disease 
Deep learning 
Multiclass classification 

A B S T R A C T   

In this study, multiple lung diseases are diagnosed with the help of the Neural Network algorithm. Specifically, 
Emphysema, Infiltration, Mass, Pleural Thickening, Pneumonia, Pneumothorax, Atelectasis, Edema, Effusion, 
Hernia, Cardiomegaly, Pulmonary Fibrosis, Nodule, and Consolidation, are studied from the ChestX-ray14 
dataset. A proposed fine-tuned MobileLungNetV2 model is employed for analysis. Initially, pre-processing is 
done on the X-ray images from the dataset using CLAHE to increase image contrast. Additionally, a Gaussian 
Filter, to denoise images, and data augmentation methods are used. The pre-processed images are fed into several 
transfer learning models; such as InceptionV3, AlexNet, DenseNet121, VGG19, and MobileNetV2. Among these 
models, MobileNetV2 performed with the highest accuracy of 91.6% in overall classifying lesions on Chest X-ray 
Images. This model is then fine-tuned to optimise the MobileLungNetV2 model. On the pre-processed data, the 
fine-tuned model, MobileLungNetV2, achieves an extraordinary classification accuracy of 96.97%. Using a 
confusion matrix for all the classes, it is determined that the model has an overall high precision, recall, and 
specificity scores of 96.71%, 96.83% and 99.78% respectively. The study employs the Grad-cam output to 
determine the heatmap of disease detection. The proposed model shows promising results in classifying multiple 
lesions on Chest X-ray images.   

1. Introduction 

Lung disease affects a lot of people in various ways and is one of the 
major causes of death around the world. It has been demonstrated that 
prior lung diseases, such as emphysema, chronic bronchitis, pulmonary 
fibrosis, and pneumonia, are associated with an increased risk of lung 
cancer, even in non-smokers [1,2]. The probability of contracting lung 
disease is quite high, particularly in developing and low-middle income 
regions, where millions of people endure poverty and air pollution. 
According to the WHO, approximately 4 million early deaths occur 
yearly due to domestic air pollution-related illnesses, such as asthma and 
pneumonia [3]. Accordingly, it is essential to employ an efficient diag-
nostic method to assist with the early detection of lung lesions [4,5]. 

As early lung disease identification and treatment are crucial to 

optimal outcomes, early examination and diagnosis may reduce the life- 
threatening aspect of lung diseases and enrich the quality of life for 
individuals already afflicted. Chest X-rays (CXRs) are a common method 
used to identify lung diseases, evaluate the severity, and detect possible 
complications [10]. Several recent studies [11–14] demonstrate the 
effectiveness of lung segmentation approaches for automatic CXR image 
processing. Chest X-rays [15–17] may show several concurrent anom-
alies. Capturing anomalies from a complicated thoracic background 
with just the human eye is very time-consuming, and the procedure is 
sensitive, as well as susceptible to user bias. Manual labelling by radi-
ologists, requires major healthcare resources. Therefore, computer 
technologies may be employed to analyze chest radiographs as effec-
tively as radiologists, in order to enhance workflow prioritization and 
clinical decision support, in large-scale projects and worldwide 
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population health initiatives. Machine learning and deep learning can 
play a significant role in accurate clinical diagnosis [34–37]. 

Deep learning-based algorithms have achieved satisfactory perfor-
mance in a number computer vision tasks [7–9], including image clas-
sification [18], medical diagnosis [19], scene identification [20], disease 
prediction [21], and healthcare analysis [22]. The rapid improvement of 
deep learning techniques has been facilitated by the creation of several 
annotated image datasets [23–26]. Characteristics indicated by these 
annotations have been crucial in overcoming obstacles in a variety of 
medical image analysis areas, including the identification of anatomical 
and pathological aspects in radiological scans. Deep learning approaches 
have been used for the detection and classification of a variety of dis-
eases, such as lymph nodes, interstitial lung disease [27,28], cerebral 
microbleed detection [29], colon cancer classification [30], spinal 
radiological score prediction [31], automated pancreas segmentation 
[32], and pulmonary nodule detection [33]. 

Developing countries experience a shortage of skilled radiologists, 
particularly in rural regions. Additionally, detecting and classifying lung 
disease utilizing chest X-ray imaging is a difficult task for radiologists. 
Therefore, it is in the interest of researchers to create automated lung 
disease detection tools [78–80]. In these scenarios, a computer-aided 
diagnostic (CAD) system can be used to do large scale diagnosis of 
lung disease through examining CXR pictures. Significant improvements 
in computing power, as along with the availability of extremely large 
datasets labeled with chest X-rays, contributed to the accuracy of image 
classification. Several recent strategies have been presented to auto-
matically diagnosis lung diseases in CXR images. In 2017, Wang et al. 
[81] presented the biggest publicly accessible chest X-ray dataset, titled 
"Chest X-ray 14," which included 14 of the most prevalent lung diseases. 

Numerous studies [82–85] are conducted on this massive dataset. Wang 
et al. [86] suggested a unified weakly-supervised multi-label classifica-
tion framework by taking into consideration multiple multi-label DCNN 
loss functions and distinct pooling algorithms. Since one chest radio-
graph may have many abnormal patterns, Yao et al. [87] created a 
method that further utilizes the statistical label correlations, resulting in 
enhanced performance. Likewise, Kumar et al. [88] used multi-label 
learning approaches and studied possible label dependencies. Rajpur-
kar et al. [89] constructed a deep learning model called CheXNet and 
made its optimization tractable by using batch normalization [90] and 
dense connections [91]. 

This research paper may help medical practitioners, as well as re-
searchers, identify lung lesions using deep learning methodology. In this 
study, we implemented several pre-trained CNN models to classify lung 
lesions in Chest X-ray images. Of these models, we determine the 
model’s highest performance for modification to achieve the proposed 
fine-tuned MobileLungNetV2 model with superior classification accu-
racy. To improve the performance of computer-aided diagnostic systems 
(CADs), we classify lung lesions in chest X-ray images using the proposed 
model. The primary contributions of this study are as follows.  

• The proposed fine-tuned MobileLungNetV2 model is based on 
MobileNetV2, but with certain modifications made to achieve higher 
disease classification accuracy compared to pre-trained models.  

• The proposed model has been developed to better extract image 
features and identify lung abnormalities.  

• The proposed model outperformed both prior researches done on 
classification of lungs disease using deep learning models and the 

Fig. 1. Overview of the approach for multiclass lung lesion classification.  
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implemented pre-trained models of the current study as demon-
strated in Table 6. 

To achieve and highlight the obtained result, we followed the pro-
cesses summarized as follows.  

• The raw chest X-ray images utilized in the investigation are obtained 
from the dataset ChestX-ray14. The images are pre-processed to 
improve the consistency of the data and reduce noise.  

• A Gaussian Filter is employed to denoise the noisy images.  
• CLAHE is applied to the dataset to achieve clear contrast images.  
• Augmentation is performed to increase the number of data in lacking 

classes of the dataset.  
• Five transfer-learning models: InceptionV3, AlexNet, DenseNet121, 

VGG19, and MobileNetV2, are assessed to identify the most accurate 
model. 

• MobileNetV2 is modified in order to develop the proposed Mobile-
LungNetV2 model.  

• To evaluate performance, a confusion matrix is generated to compute 
accuracy, recall, precision, specificity, false positive rate, false 
negative rate as well as f1-score.  

• Grad-CAM is produced for visual depiction of the classification 
outputs.  

• To further evaluate the results, a performance comparison with prior 
research on the same dataset is provided. 

The remainder of the paper is arranged as follows: The literature 
study is described in Section 2 to use deep learning to diagnose lung 
diseases. Section 3 gives the dataset description of the study. The pro-
posed methodology and result analysis are presented in Sections 4 and 5, 
respectively. Consequently, Sections 6 and 7 provide the discussion and 
conclusion of the study, respectively. An overview of the study is shown 
in Fig. 1. 

2. Literature review 

Machine learning and deep learning techniques are widely used in 
CADs. The diagnosis of lung disease has been the focus of numerous 
studies in the past. It is clear from analyzing those research articles that 
the majority of researchers have utilized machine learning and deep 
learning algorithms on X-ray images to predict the disease with high 
accuracy and efficiency so that they can create an appropriate diagnostic 
system. For instance, a two-stream collaborative network with lung 
segmentation, (TSCN) has been used by Chen et al. to categorize mul-
tilabel CXR images with 0.823 mean Area Under Curve (AUC) value 
[40]. The authors used U-Net to train an efficient lung segmentation 
tool. They then aggregated the contextual information using a feature 
fusion approach. Another study [41] proposed DualCheXNet, a unique 
twofold asymmetric features extraction network for multi-class pulmo-
nary disease classification in CXRs. The proposed technique supports 
two distinct feature fusion processes, namely feature-level fusion (FLF) 
and decision-level fusion (DLF) which correspond to the complimentary 
feature learning of DualCheXNet. The study achieves 0.823 AUC values 
as well. 

Pan et al. [42] aimed to analyze and evaluate the usefulness of 
optimal CNN for abnormality diagnosis in chest radiographs. DenseNet 
& MobileNetV2 CNN algorithm were applied for classifying chest Xrays 
as normal or abnormal, as well as for predicting the occurrence of 14 
distinct pathological abnormalities. MobileNetV2 outperformed Dense-
Net in the study with 0.900 and 0.893 AUC values, respectively. Other 
authors [43] attempted to combine the effectiveness of CNN for 
extracting visual features from the dataset with the effectiveness of task 
transformation approaches for multiple label classification, utilizing 
problem transformation approaches such as Binary Relevance, Label 
Powersets, and Classifier Chains that gains 0.804, 0.811 and 0.794 AUC 
values, respectively. Another approach [44] is of the integration of 

multiple features. Two distinct techniques were employed: a localization 
approach that focuses on pathological areas utilizing pre-trained Den-
seNet-121, and a classification strategy that integrates four types of 
features generated with Generalized Search Tree (GIST), Scale-Invariant 
Feature Transform (SIFT), Histograms of Oriented Gradient (HOG) and 
Local Binary Pattern (LBP), as well as convolutional network features. 
The study classifies the multiple diseases with average AUC value of 
0.8097. 

Gong et al. [45] used a deformable Gabor convolution (DGConv) 
which improves the interpretability of deep networks and allows com-
plex spatial variations. To increase robustness for complex objects, the 
features are trained at deformable sampling points using adaptive Gabor 
convolutions. The DGConv layer replaces conventional convolutional 
layers and is readily taught with end-to-end and gains 0.8501 AUC 
value. Wang et al. [46] present an adaptive sampling strategy that 
continuously analyzes the model’s performance while training and 
automatically increases the weight of classes with low performance. 
Data augmentation is done by arbitrarily repeating its data samples and 
the resulting dataset is shuffled and divided into batches of equal size 
which are input into the model. The model was tuned using a stochastic 
gradient descent (SGD) technique. The model’s performance has shown 
an average AUC value of 0.082. ResNet34 and DenseNet121 were two of 
the network topologies evaluated in Ref. [47]. The study evaluated 
image dimensions varying from 32 × 32 to 600 × 600 pixels. 80% of the 
samples were utilized for training and 20% for validation. The study 
shows the AUC ratio of 86.7% ± 1.2 and 80.7%± 1.5 for thoracic mass 
and pulmonary nodule detection respectively. 

Baltruschat et al. [48] investigated the ResNet-50 architecture in 
order to get a better understanding of the various techniques and their 
applicability to chest X-ray categorization. Through a systematic eval-
uation, they obtained an AUC value of around 0.800 utilizing 5-fold 
resampling and a multi-label loss function. Ho and Gwak [49] used a 
multi-task deep learning model to support visualizations used in saliency 
maps of the disease areas as well as for multiclass classification. A 
framework for self-training knowledge distillation (KD) was demon-
strated to outperform both the well-established baseline training tech-
nique and conventional KD. 

Albahli et al. [50] proposed a strategy for supplementing three deep 
CNN models with synthetic data to identify fourteen lung-related pa-
thologies. The algorithms utilized were DenseNet121, ResNet152V2, 
and InceptionResNetV2. The proposed models were trained and tested 
for multiple class classification in order to detect anomalies in chest 
X-ray images. The Rozenber et al. study [51] was based on a unique loss 
function that is a continuous relaxation of a discrete conception of weak 
supervised learning. Additionally, the paper proposes a neural network 
design that compensates for both the patch dependency and shift 
invariance by applying Conditional Random Field layers and 
anti-aliasing filters. Bharati et al. [52] present a novel hybrid framework 
for deep learning termed VGG Data STN associated with CNN, VDSNet. 
This system combines CNN with VGG, and applied data augmentation, 
with a spatial transformer network (STN). In addition, Vanilla Gray, 
Hybrid CNN + VGG, Vanilla RGB and a reconfigured Capsule Network 
were used. The validation accuracy of the proposed VDSNet model was 
73%. 

The literature studied for the research successfully classify multiple 
lung lesions from the chestX-ray14 dataset. However, the sample used to 
train the dataset not large enough to create a strong model. Further-
more, the dataset is significantly unbalanced. As a result, the model is 
trained excessively for one class and insufficiently for another. Conse-
quently, despite the fact that the models could detect multiple lung le-
sions successfully, their performance was ultimately inadequate when 
applied more broadly. In the proposed study, the models are trained and 
tested using 15 classes from the chestX-ray14 dataset. Data augmenta-
tion techniques are employed on the dataset to increase the number of 
data in underrepresented classes and reduced data from the over-
represented classes. Thus, the implemented models were trained to 
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achieve improved performance and increased robustness over existing 
models. 

3. Dataset 

The ChestX-ray14 dataset is one of the largest collections of anterior- 
view pulmonary X-ray scan data. For this research a total of 112,120 
bilateral thoracic X-ray data were obtained from the dataset [53]. Wang 
et al. [38] released the first standard for identification and localization 
using a weakly supervised CNN architecture the ChestX-ray-8 dataset. 
Using Wang’s published large data set ChestX-Ray14, Rajpurkar et al. 
[39] constructed the 121-layer CheXNet model and identified 14 distinct 
chest disorders. The ChestX-ray14 dataset contains data of 14 disease 
classes and a normal class from 30805 unique patients. These disease 
classes are Emphysema, Infiltration, Mass, Pleural Thickening, Pneu-
monia, Pneumothorax, Atelectasis, Edema, Effusion, Hernia, Car-
diomegaly, Pulmonary Fibrosis, Nodule, and Consolidation. The normal 
class is labeled as “No finding”. The datasets were labeled using Natural 

Language Processing on the radiological reports of the associated data. 
From the data labels, it is observed that the dataset contains images with 
multiple diseases (multi-disease) in a single X-ray image as well as im-
ages with a single-disease. Fig. 2 depicts the dispersion of data through 
all classes in the employed dataset. The dataset images are in a Portable 
Network Graph (PNG) format with the size of 1024 × 1024 pixels. The 
age variation of the patients is from 1 year to 95 years with both male 

Fig. 2. Data distribution of all classes in the ChestX-ray14 dataset.  

Table 1 
Overview of research employing deep learning techniques and their performance in classifying lung lesions.  

Ref Dataset Class Imaging Type Model Performance 

Chen et al. [40] JSRT, Montgomery County, ChestX-ray14 2 CXR TSCN AUC = 0.823 
Chen et al. [41] ChestX-ray14 14 CXR DualCheXNet AUC = 0.823 
Pan et al. [42] ChestX-ray14, RIH-CXR 14 CXR DenseNet AUC = 0.893 

MobileNetV2 AUC = 0.900 
Allaouzi et al. [43] ChestX-ray14, CheXpert 14 CXR Binary Relevance AUC = 0.804 

Label Powersets AUC = 0.811 
Classifier Chains AUC = 0.794 

Ho et al. [44] ChestX-ray14 14 CXR DenseNet-121 AUC = 0.8097 
Gong et al. [45] ChestX-ray14 14 CXR DGFN AUC = 0.8501 
Wang et al. [46] ChestX-ray14 14 CXR Modified DenseNet121 AUC = 0.82 
Sabottke et al. [47] ChestX-ray14 14 CXR ResNet34 AUC = 86.7% ± 1.2 

DenseNet121 AUC = 80.7% ± 1.5 
Baltruschat et al. [48] ChestX-ray14 14 CXR ResNet-50 AUC = 0.800 
Ho and Gwak [49] ChestX-ray14 14 CXR Self-train KD AUC = 0.826 
Albahli et al. [50] ChestX-ray14 14 CXR InceptionResNetV2 AUC = 0.80 
Rozenber et al. [51] ChestX-ray14, Kaggle RSNA Pneumonia Detection Challenge Dataset 14 CXR Modified ResNet50 Accuracy = 0.58–0.95 
Bharati et al. [52] ChestX-ray14 15 CXR VDSNet Accuracy = 73%  

Table 2 
The properties of the raw dataset.  

Properties Data 

Total number of classes 15 
Total Data 112120 
Normal Data 60412 
Total Single-Disease Data 31191 
Total Multi-Disease Data 49991 
Gender (Male: Female) 56.49%: 43.51%  
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and female patients. Table 2 presents the detailed properties of the 
dataset. 

3.1. Dataset pre-processing 

Because the CNN technique employed for classification requires 
clean, improved, and balanced image data [53], image-preparation and 
image-balancing procedures are used to provide the model with a 
high-quality image. This section discusses the various image-processing 

techniques. The CLAHE approach separates the images into contextual 
portions called tiles, calculates a histogram for each, and then approx-
imates the output to a specified histogram distribution parameter. 

3.1.1. Denoising the image (Gaussian Filter) 
Gaussian blur, often referred to as Gaussian smoothing, is the 

outcome of filtering an image using a Gaussian function [61]. It is a 
frequent function in graphics software, which is often used to reduce 
visual noise. The visual result of this blurring approach is a smooth blur 

Fig. 3. The result of applying the Gaussian Filter to the images.  

Fig. 4. The outcome of implementing the CLAHE enhancement method in fifteen categories: Atelectasis, Cardiomegaly, Effusion, Infiltration, Mass, Nodule, 
Pneumonia, Pneumothorax, Consolidation, Edema, Emphysema, Pulmonary Fibrosis, Pleural Thickening, Hernia, and No Finding, with different tileGridSize and clip 
limit combinations. 
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resembling viewing the images through a transparent screen, which is 
distinguishable from the bokeh effect generated by an out-of-focus lens 
or the shadow of an object under normal light [62]. In computer vision 
methods, Gaussian smoothing is frequently employed as a 
pre-processing step to improve visual structures at various scales [63]. 
Fig. 3 displays the results of the deployment of the Gaussian Filter. 

3.1.2. Image enhancement (CLAHE) 
Contrast Limited Adaptive Histogram Equalization (CLAHE) is used 

to increase the contrast of a picture. CLAHE is a more advanced variant 
of Adaptive Histogram Equalization (AHE) [58]. CLAHE has been found 
to improve the contrast of low-contrast images [59]. CLAHE improves 
both the local contrast of medical imaging and its usability [60]. The 
CLAHE technique focuses on enhancing local contrast to overcome the 
constraints of global methods. The tile size and clip limit are critical 
hyper-parameters for this method. An incorrect choosing of 
hyper-parameters could have a big influence on the image quality. As we 
can observed from Fig. 4, several combinations such as tileGridSize (5, 
5) with the clip limit (0.5), tileGridSize (7, 7) with the clip limit (1.5) 
and tileGridSize (10, 10) and the clip limit (3) parameters are investi-
gated, and the optimal ones (tileGridSize (10, 10) and the clip limit (3)) 
are chosen. It is also observable that the features of the selected image 
are more prominent. The histogram indicates that the contrast of a 
CLAHE image is much greater than that of the initial source image. Fig. 4 

depicts the output findings after executing the CLAHE algorithm. 

3.1.3. Image augmentation 
A deep learning model needs a large number of inputs to function 

with optimal efficiency. In this work, several data augmentation ap-
proaches are used to boost the enhanced data. By adding more distinct 
samples to the training datasets, data augmentation may improve the 
performance and outcomes of machine learning algorithms. If the 
dataset employed to train the model is sufficiently broad and varied, the 
approach is more effective and precise. Through the use of image 
enhancement methods, accuracy of the results is increased. Moreover, 
data augmentation methods are an effective method for diversifying 
datasets. Generally, to provide large-capacity learners with the more 
relevant training material, data augmentation techniques have been 
used to enhance the size of training sets. Nevertheless, a new trend is 
developing in the area of deep learning research in which samples are 
reinforced utilizing the test data augmentation technique [64–67]. The 
addition of test data may increase the stability of trained models 
[68–70]. Test data augmentation can therefore be used to improve the 
prediction performance of deep neural networks and open up fascinating 
new opportunities for medical image analysis [71–73]. Mirroring, 
rotating, zooming, flipping, and cropping are the most often used ways 
of augmenting data. 

In this study, the dataset is adjusted using oversampling and 
undersampling techniques. First, a random undersampling approach is 
used to reduce the class (Infiltration, and No Finding) with excess data. 
This technique deletes data at random from the majority of classes, 
reducing the quantity of data per class to 5000. Then, the oversampling 
(data augmentation) approaches are used to increase the class with 
inadequate data (Emphysema, Infiltration, Mass, Pleural Thickening, 
Pneumonia, Pneumothorax, Atelectasis, Edema, Effusion, Hernia, Car-
diomegaly, Pulmonary Fibrosis, Nodule, and Consolidation). Several 
augmentation procedures are used in this study: Rotate 90◦ right, Rotate 
90◦ left, Rotate 45◦ Horizontal, Vertical flip, Rotate 45◦ Vertical, 
Translate (x, y (28.0, 13.0)) and Horizontal flip on image data that has 
been preprocessed. Table 3 displays the result of the data augmentation. 

Table 3 
Data distribution for each class after augmentation.  

Index Class data Index Class data 

1 Atelectasis 4316 9 Consolidation 3969 
2 Cardiomegaly 2388 10 Edema 3786 
3 Effusion 3957 11 Emphysema 3568 
4 Infiltration 5000 12 Pulmonary Fibrosis 3635 
5 Mass 2139 13 Pleural Thickening 2252 
6 Nodule 2711 14 Hernia 1980 
7 Pneumonia 2898 15 No Finding 5000 
8 Pneumothorax 4388  Total Data 51987  

Fig. 5. The architecture of MobileLungNetV2, a fine-tuned MobileNetV2 architecture.  
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4. Proposed model 

The principal purpose of this study is to employ transfer learning 
methods to obtain an appropriate classification accuracy on the NIH 
chest X-ray dataset. Five pre-trained algorithms were analyzed to find 
the optimum effective deep learning approach for the lung lesion clas-
sification task. These models are; InceptionV3 [75], AlexNet [6], Den-
seNet121 [76], VGG19 [77], and MobileNetV2 [55]. Among these 
pre-trained models MobileNetV2 showed the highest accuracy. To 
further improve to the classification results, MobileNetV2 was modified. 
The ablation study was performed to determine the different 
hyper-parameters. A custom fine-tuning transfer learning approach, 
named MobileLungNetV2, is designed and applied by adding multiple 
layers to the MobileNetV2 network to obtain the highest accuracy over 
the existing pre-trained models. This study aimed to develop a 
CNN-based method for lung lesion image classification. The presented 
system was developed in Python utilizing Keras framework [54], which 
is a TensorFlow-based platform. All tests were conducted using AMD 
Ryzen 7 (3900) CPU running at 3.90 GHz with 8 cores, 16 threads, and 
64 GB of RAM. 

The dataset includes 51,987 images categorized as; Emphysema, 
Infiltration, Mass, Pleural Thickening, Pneumonia, Pneumothorax, 
Atelectasis, Edema, Effusion, Hernia, Cardiomegaly, Pulmonary 
Fibrosis, Nodule, and Consolidation and No Finding. The dataset is split 
into 60% for training, 20% for validation, and 20% for testing. 

4.1. MobileLungNetV2 

The fine-tuned MobileNetV2 frameworks known as Mobile-
LungNetV2 outperform five pre-trained model architectures in classifi-
cation accuracy, shown in section 5. Consequently, the 
MobileLungNetV2 architecture is introduced and tested using the Na-
tional Institutes of Health’s chest X-ray dataset built on the MobileNetV2 
architecture. Additionally, hyper-parameter tuning was conducted to 
increase the architecture durability in terms of lung lesion identification. 
Fig. 5 illustrates the model structure. 

The pre-trained MobileNetV2 [55] introduces a module that includes 
an inverting residual structure. MobileNetV2 is designed from the bot-
tom up using fully convolutional layers made of filters and residual 
bottleneck layers. MobileNetV2’s structure begins with fully convolu-
tional layers made up of 32 filters and 19 residual bottlenecks. It’s split 
into two blocks, each one with 3 layers. These blocks begin and end with 
a 1 × 1 convolution layer comprising 32 filters. However, the 2nd block 
is a fully linked layer with a depth of one. The ReLU is used at several 
levels of the architecture. The distinction between the two blocks is in 
stride length, with block one having a stride length of 1 and block two 
having a stride length of 2. 

Fig. 5 shows MobileLungNetV2 is constructed by linking layers 
following the 16 blocks of pre-trained MobileNetV2. The layers consist 
of convolutional layers, an AveragePooling2D layer, a dropout layer, 
and a flatten layer that is linked to a dense layer. The network’s default 
input layer requires an image with a size of 224 × 224, which is a gray 
scale image. The 16 blocks consist of 2 types of blocks in the model. One 
has a residual block stride of 1. The second is a block with a stride of 2 for 
shrinking. Each block has three layers. The first layer consists of 1 × 1 
convolution with ReLU6. The second layer is the depth-wise convolution 
layer. The third layer is also another 1 × 1 convolution without any 
linearity. Similarly, up to 16 blocks are constructed with the same 
alignment. 

After block sixteen, adding a convolution layer, an Aver-
agePooling2D layer, a dropout layer, a flatten layer and a dense layer. 
The convolutional layer has the kernel size of 3 × 3, the same padding 
and a ReLU activation function with 32 channels followed by a Aver-
agePooling2D layer with a pool size of 2 × 2. A dropout layer has been 
added with 32 channels to prevent the overfitting. A flatten layer has 
also been added, which is connected to a dense layer that generates 
output for the 15 classes. The RMSprop optimizer and SoftMax activa-
tion were employed in the final layer. Throughout the process, a fre-
quency of learning rate of 0.001 is applied. Finally, we evaluated the f1- 
score, recall, precision, specificity and accuracy. In Fig. 6, the strategy of 
fine-tuning is depicted. 

Fig. 6. The sketch map of fine-tuning strategy, transform a pre-trained MobileNetV2 to a fine-tuned MobileLungNetV2.  

Table 4 
Altering the different layers to assess the ablation experiment.  

Case Study Layer Identity V_Acc (%) V_Loss (%) Ts_Acc (%) Ts_Loss (%) Outcome 

1 AveragePooling2D 94.76 0.192 96.97 0.10 Identical Performance 
GlobalAveragePooling2D 90.73 0.32 91.65 0.29 Accuracy Dropped 
GlobalMaxPooling2D 89.84 0.38 90.76 0.30 Accuracy Dropped 
MaxPooling2D 91.25 0.29 91.98 0.28 Accuracy Dropped 

2 Dropout 94.76 0.192 96.97 0.10 Identical Performance 
Flatten 90.81 0.36 90.90 0.35 Accuracy Dropped 
MaxPooling2D 88.72 0.49 89.10 0.43 Accuracy Dropped 
GlobalMaxPooling2D 90.49 0.36 90.98 0.30 Accuracy Dropped 
GlobalAveragePooling2D 89.65 0.43 90.71 0.32 Accuracy Dropped 

3 Flatten 94.76 0.192 96.97 0.10 Identical Performance 
GlobalMaxPooling2D 88.36 0.54 89.16 0.44 Accuracy Dropped 
GlobalAveragePooling2D 87.73 0.69 88.50 0.51 Accuracy Dropped 
MaxPooling2D 90.18 0.30 90.98 0.28 Accuracy Dropped  
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4.2. Ablation study of the MobileLungNetV2 

As part of ablation research, four experiments were performed by 
changing different sections of the suggested MobileLungNetV2 archi-
tecture based on the fine-tuned MobileNetV2 framework. It is feasible to 
create a more durable architecture with improved classification accu-
racy by altering multiple aspects of the architecture. Accordingly, the 
AveragePooling2D layer, Dropout layer, Flatten layer, Loss function, 
Learning rate and Optimizer were all subjected to an ablation analysis. 

In this analysis, the validation loss is denoted by ’V_Loss,’ the vali-
dation accuracy by ’V_Acc,’ the test loss by ’Ts_Loss,’ and the test ac-
curacy by ’Ts_Acc.’ Table 4 illustrate the case study 1, 2, 3 respectively. 
Case study 1 shows that the Averagepooling2D layer archives the 
highest accuracy for the MobileLungNetV2 model with the V_Acc 
94.76% and Ts_Acc 96.97%. Furthermore, the accuracy of the Global-
AveragePooling2D, GlobalMaxPooling2D, and MaxPooling2D layers 
drops significantly, with respective V_Acc values of 90.73%, 89.84%, 
and 91.25%, and Ts_Acc values of 91.65%, 90.76%, and 91.98%. 

In case study 2, the Dropout layer has the best accuracy with V_Acc at 
94.76% and Ts_Acc at 96.97%, for the MobileLungNetV2 model. Addi-
tionally, the accuracy of the Flatten, MaxPooling2D, 

GlobalMaxPooling2D, and GlobalAveragePooling2D layers decreases 
significantly, with respective V_Acc values of 90.81%, 88.72%, 90.49%, 
and 89.65%, and Ts_Acc values of 90.90%, 89.10%, 90.98%, and 
90.71%. 

In case study 3, the Flatten layer has the highest accuracy for the 
MobileLungNetV2 model, with V_Acc at 94.76% and Ts_Acc at 96.97%. 
Additionally, the accuracy of the GlobalMaxPooling2D, Global-
AveragePooling2D, and MaxPooling2D layers decreases dramatically, 
with V_Acc values of 88.36%, 87.73%, and 90.18%, and Ts_Acc values of 
89.16%, 88.50%, and 90.98%, respectively. 

In case study 4, Table 5 depicted that the ’Adagrad’ optimizer with a 
learning rate of 0.00000001 improved model performance with Ts_Acc 
values of 94.76% and Val_Acc values 96.97%. With such a learning rate 
of 0.00000001, the ’Adagrad’ optimizer still had the lowest Ts_Loss of 
0.10. Other optimizers, such as RMSprop, SGD, and Nadam, achieved 
our model’s Ts_Acc values greater than 90%. 

5. Results analysis 

In the study, a total of 51987 chest x-ray images were used. The data 
used in each class is set out in Table 3. Each image is resized to 224 ×

Table 5 
Shifting Optimizer and Learning rate for ablation study analysis.  

Case Study Optimizer Learning Rate V_Acc (%) V_Loss (%) Ts_Acc (%) Ts_Loss (%) Outcome 

4 Adagrad 0.00000001 94.76 0.192 96.97 0.10 Identical Performance 
0.000001 90.55 0.38 90.60 0.35 Accuracy Dropped 
0.0000001 91.63 0.33 92.12 0.29 Accuracy Dropped 
0.00001 89.18 0.47 89.98 0.42 Accuracy Dropped 

RMSprop 0.00000001 92.36 0.28 92.96 0.25 Accuracy Dropped 
0.000001 89.71 0.44 90.13 0.30 Accuracy Dropped 
0.0000001 90.86 0.35 91.02 0.33 Accuracy Dropped 
0.00001 88.62 0.56 89.11 0.49 Accuracy Dropped 

SGD 0.00000001 88.16 0.69 88.96 0.64 Accuracy Dropped 
0.000001 85.76 0.80 86.15 0.78 Accuracy Dropped 
0.0000001 86.94 0.75 87.23 0.71 Accuracy Dropped 
0.00001 80.23 0.83 80.97 0.81 Accuracy Dropped 

Nadam 0.00000001 91.56 0.31 92.08 0.27 Accuracy Dropped 
0.000001 87.32 0.69 88.77 0.67 Accuracy Dropped 
0.0000001 90.44 0.35 91.16 0.30 Accuracy Dropped 
0.00001 85.61 0.79 86.24 0.74 Accuracy Dropped  

Fig. 7. Performance measures of the transfer learning models.  
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224 pixels. The dataset is divided into training, validation, and test sets 
at the ratio of 60:20:20. This study implemented five transfer learning 
models: MobileNetV2, VGG19, DenseNet121, AlexNet, and InceptionV3. 
The transfer learning models are assessed against the proposed Mobi-
leLungNetV2 model. 

5.1. Evaluation matrix 

To evaluate the transfer learning models, performance parameters 
such as Accuracy, Specificity, Recall, Precision, False Positive Rate 
(FPR), False Negative Rate (FNR) and F1-score are determined. The 
parameters are calculated using a confusion matrix generated for each 
individual model. Accuracy is calculated to determine the percentage of 

correct predictions. Precision is calculated to determine the probability 
of positive classifications. Specificity determines the percentage of 
correctly predicted negative classifications from all performance pa-
rameters. Contrasting specificity, recall determines the percentage of 
correctly predicted positive classes. The F1-score is used to determine 
the balance between specificity and recall. The performance parameters 
are expressed in the following equations (1)–(7). 

Accuracy=
TP + TN

TP + TN + FP + FN
(1)  

Precision=
TP

TP + FP
(2) 

Fig. 8. The proposed model (MoibileLungNetV2) (a) test and validation accuracy of 300 epochs, (b) test and validation loss of 300 epochs.  

Fig. 9. Confusion matrix for the MobileLungNetV2 model.  

F.J.M. Shamrat et al.                                                                                                                                                                                                                          



Computers in Biology and Medicine 155 (2023) 106646

10

Sensitivity
/

Recall =
TP

TP + FN
(3)  

Specificity=
TN

TN + FP
(4)  

F1 − Score= 2
(

Precision × Recall
Precision + Recall

)

(5)  

FPR=
FP

TN + FP
(6)  

FNR=
FN

FN + TP
(7) 

Here, True Positive (TP) is identified as lung disease where the pa-
tients actually have lung disease. True Negative (TN) is predicted as the 
absence of lung disease where there is no actual existence of lung dis-
ease. False Positive (FP) predicts the presence of a lung disease that is not 
present. Similarly, False Negative (FN) predicts no lung disease where 
lung disease is present. These elements are then used to form the 
equations to generate the values of the performance parameters. 

5.2. Performance of pre-trained transfer learning models 

Initially, five transfer learning models were trained and tested. To 
determine the performance of the models, the performance parameters 
are computed for each model using the numbered equations (1)–(7). The 
performance measures outcomes are presented in Fig. 7. Overall, the 
model MobileNetV2 shows consistent performance with 91.6% accu-
racy. It achieved a precision of 91.42% and recall, specificity and F1- 
scores are 91.06%, 91.23% and 91.23% respectively. Although Dense-
Net121 has the high specificity score of 92.87%, it lacks accuracy with 
88.9%. Similarly, the accuracy of the remaining models – VGG19, 
AlexNet, and InceptionV3 all have relatively low accuracy with 88.99%, 

82.95% and 79.11% respectively. 

5.3. Performance of proposed MobileLungNetV2 

The transfer learning MobileNetV2 model shows the most promise 
compared to the other models used to predict lung lesions. However, the 
prediction accuracy of the MobileNetV2 model is not accurate enough 
because MobileNetV2 only has an accuracy of 91.6%, which means the 
incorrect prediction rate of the model is 8.4%. To diagnose any disease 
with this level of accuracy is unsatisfactory. We aim to build a model 
with the lowest possible chance of misdiagnosis. In order to achieve this, 
the accuracy should be as close to 100% as possible without being 
overfitted. Consequently, the paper proposes the fine-tuned Mobile-
LungNetv2. The improved model is trained with 300 epochs. The 
training and validation accuracy for each epoch is recorded along with 
the loss value. From Fig. 8(a) and (b), it is observed that the accuracy of 
the model gradually increases with increasing epoch contrary to the loss 
value that gradually decreases. The final training accuracy of the model 
stands at 95.92% and the validation accuracy is at 94.76%. For the loss 
value, the lowest training loss value at 300th epoch is 0.15 and the 
lowest validation loss is 0.192. 

The confusion matrix generated for the finetuned model is illustrated 
in Fig. 9. Here the matrix is constructed for 15 classes implementing the 
test dataset. The test set consists of 10397 inputs in total. Among them 
10082 inputs were correctly classified by the model. The number of 
misclassified inputs is 310. In the matrix the vertically placed classes 
indicate the true or real value of a data and the horizontally placed 
classes indicates the prediction value of a data by the model. 

The performance measures of the proposed model is calculated by 
applying the values of the confusion matrix to equations (1)–(7). Each of 
the measures is color coded and shown in Fig. 10. The accuracy and 
specificity of the model across all the classes are very high at over 99%. 
The other measures (precision, recall and f1-score), vary greatly be-
tween classes. The highest accuracy is 99.77% from class Hernia. Class 

Fig. 10. Performance measures of each class.  
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Emphysema obtains the highest specificity, precision and f1-score with 
99.92%, 98.86%, and 98.23% respectively. The highest recall recorder 
at 98.06% is from class Pneumothorax. The lowest accuracy, precision, 
recall and f1-score are obtained from class Nodule with 99.34%, 
93.41%, 94.10% and 93.75% respectively. The lowest Specificity is 
obtained from class Edema with 99.62%. 

To determine the false rates, the False Positive Rate (FPR) and False 
Negative Rate (FNR) of the proposed model are measured for each class. 
It is observed that the highest FPR is obtained from the Atelectasis class 
and the lowest rate is obtained from the Mass class with 0.0038% and 
0.0012% respectively. Similarly, the highest FNR is 0.0659% for Nodule 
class and lowest is 0.0114% for Emphysema class. In Fig. 11, the values 
of FPR and FNR are recorded for each class. It shows that the FPR re-
mains nearly same for all the classes, however the FNR varies drastically 
among all the classes of the dataset. 

The overall performance of the model is presented in Fig. 12. The 
overall accuracy of the model is determined as 96.97%. Similary the 
precision, recall and f1-score are 96.71% 96.83% and 96.76% respec-
tively. It is notable that the model has a high specificity score of 99.78%. 

While numerous efforts have been made to enhance the applicability 
and expandability of deep learning, it is crucial to develop the 

interpretability of deep convolutional neural models in medical imaging 
applications. Selvaraju et al. [74] illustrated the working of deep 
learning using a procedure dubbed Gradient Weighted Class Activation 
Mapping (Grad-CAM). Grad-CAM is effective with any heavily associ-
ated neural network and permits the algorithm’s new information to be 
determined while executing prediction or classification operations. The 
input is a conventional X-ray image, and the suggested framework is 
applied as a detection strategy. Grad-CAM is applied to the last convo-
lution layer immediately after the proposed model’s label prediction. 
Fig. 13 demonstrates the visualization of heat maps on X-ray images 
using the proposed approach. 

6. Discussion 

The study aims to classify multiple lung lesions using convolutional 
neural networks. To achieve the best results, five transfer-learning 
models, and a fine-tuned model, MobileLungNetV2 based on the Mobi-
leNetV2 model are trained on the ChestX-ray14 dataset. Many previous 
research studies have made use of the ChestX-ray14 dataset as it is one of 
the biggest accessible datasets of this type. Therefore, previous studies 
using the ChestX-ray14 dataset have been analyzed in order to compare 
the accuracy of findings and techniques, as shown in Table 1. In the 
current study, the MobileNetV2 was chosen as the model to be adapted 
based on its higher accuracy among the five pre-trained models. To 
determine the performance of the models, several performance mea-
sures are computed and the performance of the models are determined 
class-wise for a detailed examination. In Table 6, a performance com-
parison of existing studies is considered with the proposed study on the 
same dataset. The AUC value is used as the main performance measure 
for the comparison. Here, it is observed that among the existing studies, 
the highest average AUC value is 0.850. The fine-tuned Mobile-
LungNetV2 shows a higher AUC value of 0.923 showing the higher ef-
ficiency of the proposed model in determining the classification of the 
lung lesions. 

Fig. 11. False Positive Rate (FPR) and False Negative Rate (FNR) of each class.  

Fig. 12. Overall performance of the MobileLungNetV2 model.  
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7. Conclusion 

It is understood that lung disease is a major cause of mortality 
worldwide. This paper proposed a novel approach to detect lung lesions 
from X-ray imaging. An improved classification model, that is derived 
from the transfer learning model MobileNetV2, MobileLungNetV2, is 
suggested. In this study, 14 lung lesions and normal lung X-ray images 
are examined. Following image pre-processing, five transfer learning 
models are applied to the dataset. The models, InceptionV3, AlexNet, 

DenseNet121, VGG19 and MobileNetV2 show overall classification ac-
curacies of 79.11%, 82.95%, 88.9%, 88.99% and 91.6% respectively 
over the 15 classes of the dataset. Because MobileNetV2 outperforms the 
other models in terms of accuracy, the model is selected to be modified 
further to boost performance. The improved fine-tuned Mobile-
LungNetV2 model is constructed using 16 blocks with new neural 
network layers and is trained on 300 epochs with hyper-parameters. The 
proposed model has an overall accuracy, and F1-score of 96.97% and 
96.76%, respectively and the test loss of the model is as low as 0.15, 

Fig. 13. Visualization of lung infections in X-ray images using Grad-CAM on MobileLungNetV2 model.  

Table 6 
Comparison of AUC value among the existing studies with the proposed study to determine performance using ChestX-Ray14 dataset.  

Class/Models Existing Transfer learning models Proposed 

[44] [45] [49] [56] [57] InceptionV3 AlexNet DenseNet121 VGG19 MobileNetV2 MobileLungNetV2 

Atelectasis 0.795 0.817 0.751 0.801 0.767 0.711 0.784 0.851 0.802 0.798 0.936 
Cardiomegaly 0.887 0.928 0.896 0.884 0.883 0.757 0.821 0.901 0.928 0.815 0.855 
Effusion 0.875 0.875 0.882 0.872 0.828 0.777 0.769 0.796 0.777 0.778 0.931 
Infiltration 0.703 0.745 0.705 0.702 0.709 0.783 0.698 0.844 0.741 0.864 0.912 
Mass 0.835 0.880 0.844 0.822 0.821 0.875 0.744 0.792 0.786 0.935 0.883 
Nodule 0.716 0.786 0.752 0.747 0.758 0.869 0.761 0.918 0.851 0.789 0.962 
Pneumonia 0.742 0.779 0.763 0.733 0.731 0.843 0.772 0.809 0.903 0.822 0.904 
Pneumothorax 0.863 0.893 0.878 0.865 0.846 0.893 0.879 0.756 0.798 0.919 0.967 
Consolidation 0.786 0.809 0.798 0.796 0.745 0.786 0.853 0.767 0.846 0.858 0.889 
Edema 0.892 0.892 0.870 0.891 0.835 0.801 0.827 0.73 0.811 0.914 0.958 
Emphysema 0.875 0.939 0.918 0.894 0.895 0.748 0.734 0.776 0.756 0.887 0.935 
Pulmonary Fibrosis 0.756 0.817 0.803 0.800 0.818 0.797 0.767 0.796 0.883 0.849 0.891 
Pleural Thickening 0.774 0.814 0.779 0.786 0.761 0.834 0.859 0.791 0.878 0.852 0.872 
Hernia 0.836 0.921 0.876 0.882 0.896 0.782 0.786 0.883 0.797 0.927 0.975 
No Finding – – – – – 0.908 0.897 0.877 0.792 0.941 0.989 
Average 0.809 0.850 0.826 0.820 0.807 0.811 0.796 0.819 0.823 0.863 0.923  
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demonstrating that the model performs with much improved efficiency 
over other models. The proposed model achieves a higher classification 
accuracy compared to other pre-trained models. However, the study has 
limitations as it does not take into account the time complexity of the 
classification models. The time complexity of a program is the time 
required to execute it. As time complexity decreases, execution speeds 
improve. A model is determined to be highly efficient when it provides 
high classification accuracy with a low time complexity. Furthermore, 
training neural networks requires a substantial quantity of data. Though 
the dataset used in the study had a total of 51987 samples, an even larger 
dataset would increase the robustness of the model. A model’s robust-
ness depends on the change of the model’s performance due to incor-
porating new data against training data. Additionally, the robustness of 
the model increases when the model is trained on multiple datasets. 
Some highly representative computational intelligence algorithms can 
be used for the classification task. For future work, algorithms such as 
like monarch butterfly optimization (MBO), earthworm optimization 
algorithm (EWA), elephant herding optimization (EHO), moth search 
(MS) algorithm, Slime mould algorithm (SMA), hunger games search 
(HGS), Runge Kutta optimizer (RUN), colony predation algorithm 
(CPA), and Harris Hawks optimization (HHO), can be employed for 
classification of pulmonary diseases. Additionally, the fine-tuned model 
can be applied to classify other datasets, containing different pulmonary 
diseases, as well as for other types of diseases that may be detectable 
using medical imaging. 
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