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A B S T R A C T

Background: Thousands of people worldwide pass away yearly due to neurological disorders, cardiovascular ill-
nesses, cancer, metabolic disorders, and microbial infections. Additionally, a sizable population has also been
impacted by hepatotoxicity, ulcers, gastroesophageal reflux disease, and breast fissure. These ailments are like-
wise steadily increasing along with the increase in life expectancy. Finding innovative therapies to cure and con-
sequently lessen the impact of these ailments is, therefore, a global concern.
Methods and materials: All provided literature on Guaiazulene (GA) and its related compounds were searched
using various electronic databases such as PubMed, Google Scholar, Web of Science, Elsevier, Springer, ACS,
CNKI, and books via the keywords Guaiazulene, Matricaria chamomilla, GA-related compounds, and Guaiazu-
lene analogous.
Results: The FDA has approved the bicyclic sesquiterpene GA, commonly referred to as azulon or 1,4-dimethyl-7-
isopropylazulene, as a component in cosmetic colorants. The pleiotropic health advantages of GA and related
substances, especially their antioxidant and anti-inflammatory effects, attracted a lot of research. Numerous
studies have found that GA can help to manage various conditions, including bacterial infections, tumors, im-
munomodulation, expectorants, diuretics, diaphoresis, ulcers, dermatitis, proliferation, and gastritis. These con-
ditions all involve lipid peroxidation and inflammatory response. In this review, we have covered the biomedical
applications of GA. Moreover, we also emphasize the therapeutic potential of guaiazulene derivatives in pre-
clinical and clinical settings, along with their underlying mechanism(s).
Conclusion: GA and its related compounds exhibit therapeutic potential in several diseases. Still, it is necessary to
investigate their potential in animal models for various other ailments and establish their safety profile. They
might be a good candidate to advance to clinical trials.

1. Introduction

Guaiazulene (GA), a naturally occurring lipid-soluble azulene deriv-
ative used in cosmetics, baby skincare, and makeup products, is derived

from plants like Matricaria chamomilla L., Callis intratropica blue [1],
and guaiac wood oil of Guaiacum officinale oil. These plants are primar-
ily found in South America's northern coast or the Caribbean region [2,
3]. In 1949, Plattner was the first person who elucidates the chemical
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structure of GA [4]. Chemically GA (1,4-dimethyl-7-propan-2-
ylazulene) is a sesquiterpene bicyclic compound substance found as a
primary pigment in various soft corals [5]. It has a molecular formula of
C15H18 with a molecular mass of 198.3 g/mol and a melting point is
31.5 °C. Azulon, vetivazulen, azunol, guajazulene, kessazulen, and azu-
lol are some other names for GA that are frequently used. It is one of the
azulene compounds investigated for pharmacological effects in various
illnesses in the past 40 years. It has antiseptic, anti-inflammatory, an-
timicrobial, antioxidant, epithelializing, antimutagenic, immunomodu-
latory, fungicidal, expectorant [6], diuretic, diaphoretic, demulcent,
and bitter stimulant properties [7]. Additionally, it is used to cure gas-
tritis and canker sores [5,8,9]. It is a potent antioxidant that can scav-
enge hydroxyl radicals and inhibit lipid peroxidation in the rat hepatic
microsomal membrane [10]. Its therapeutic safety is ensured by the
lethal dose 50 (LD50) found in rats and mice (Table 1).

The pleiotropic effects of GA inspire curiosity about how they might
apply to various neurological, cardiovascular, and immunological con-
ditions. This review aims to draw attention to the most recent GA re-
search and its related derivatives used in various pathological diseases.
We also discussed the potential molecular mechanism(s) behind their
pharmacological effect.

2. Research methodology

The research plan started with a question, “biomedical application
of GA and its derivatives.” Subsequently, the literature was searched to
address the research plan question. In the current manuscript, different
biomedical applications of GA and its derivatives were summarized
with the fact that they might be potential candidates to treat different
pathological conditions. All the literature used in the manuscript were
searched using various electronic databases such as PubMed, Google
Scholar, Web of Science, Elsevier, Springer, ACS, CNKI, and books using
the keywords Guaiazulene, Matricaria chamomilla, GA-related com-
pounds, and Guaiazulene analogous. For each GA-related compound,
literature was searched with its name, e.g., guaiol. In the current manu-
script, only those articles containing either biomedical applications of
GA or GA-related compounds were selected.

3. Guaiazulene-related compounds (analogues)

Multiple compounds with similar moieties like GA are present and
termed as GA-related compounds or GA-analogues, which are listed in
Fig. 1. Their therapeutic potential is summarized in Fig. 2. In the further
segment of the review, we will deliberate on some of the most studied
GA-related compounds.

3.1. Sodium guaiazulene sulfonate (GAS-Na)

Human gastritis is commonly treated with GAS-Na, a water-soluble
GA analogue with wound-healing and anti-inflammatory characteris-
tics [5]. Additionally, it possesses antibacterial, antiseptic, and anti-

Table 1
LD50 of GA.
Organism Dose type Route Dose Reference

Rat LD50 Oral 1550 mg/kg [12,13]
4 g/kg

SC 520 mg/kg
IP 180 mg/kg

Mouse LD50 Oral 1220 mg/kg
3 g/kg

IP 525 mg/kg
108 mg/kg

IV 56 mg/kg
SC 145 mg/kg

SC: Subcutaneous, IP: Intraperitoneal, IV: Intravenous, LD: Lethal dose.

apoptotic properties. It prevents fMLP-induced leukocyte emigration
and histamine production from rodent peritoneal mast cells [11]. At
room temperature, GAS-Na is a relatively unstable molecule that pro-
gressively breaks down in the solid state. Removal of sulfonic acid re-
sults in the formation of stable compound GA (Fig. 3 and Table 2).
Chemically, GAS-Na is synthesized by adding sulfonic acid to GA,
which is stabilized by freeze-drying or spray-drying aqueous solutions
with polymeric additions such as polyvinyl pyrrolidone (PVP) [11].

3.2. Azulene

Azulene is a non-benzenoid or naphthalene isomer and aromatic hy-
drocarbon compound containing 10 electrons with a fused pentagon
and a heptagon ring structure [22]. Azulene has a different color from
naphthalene, it has a comparable odor (azulene; dark blue, and naph-
thalene; white). The name “azulene” is derived from the Spanish word
“azul,” which means “blue.” D. Piesse was the first who discover azu-
lene in 1863, which sparked a great deal of interest in petroleum ex-
ploitation. In addition, Plattner and a few other researchers created
azulene in 1937 using octahydronaphthalene. In 1942, when Plattner
and G. Magyar synthesized it from indane, they published a ground-
breaking overview on the production of azulene. Researchers looked
into the pharmacological potential of several azulene-based com-
pounds, which are covered in more detail in the further sections of this
review [23].

3.3. Guaiene

Guaiene is a naturally occurring terpenoid, derived from various
plants like Bulnesia sarmientoi. It has the chemical formula C15H24 [24,
25]. It has been utilized to express tastes, hot scents, and earthy under-
tones in the flavoring and fragrance industries [26]. Patchouli oil con-
tains various chemical components such as patchouli alcoholic, azu-
lene, seychellene, and guaiene [27]. Guaiene has increased the rat's
body and liver weight after being administered a dose of 3135 mg/kg
subcutaneously for 7 days [19]. Guaiene has platelet activator factor in-
hibitory activity; thus, it can provide anti-allergic and anti-
inflammatory actions [28]. Guaiene might be a possible therapeutic
choice for allergy and inflammatory diseases based on the above data.

3.4. Guaiol

It is also known as champacol. It is an alcoholic organic sesquiter-
penoid molecule found in several medicinal plants, including guaiacum
and cypress pine [29]. It shows antibacterial and antitumor properties
[30,31]. It inhibits cell growth and stimulates double-strand break
(DSB)-induced non-small-cell lung cancer (NSCLC) cell death via au-
tophagy-arbitrate breakdown of RAD51. It is still unclear what specific
mechanism underlies autophagy. But gene ontology (GO) analysis re-
vealed that it is associated with signal transduction pathways by down-
regulating soma [32]. Mammalian target of rapamycin (mTOR), a
member of the phosphatidylinositol 3-kinase-related kinase (PIKK)
family of kinases, has two functional complexes: mTORC1, composed of
mTOR, mLST8, Raptor, mSIN1, and PRAS40 [33]. Previous studies
have demonstrated that mTOR (P-S2448) and mTORC1 boosted the
PI3K/Akt signaling pathway, which in turn promotes the translation of
several crucial proteins regulating growth and the cell cycle, including
Cyclin D1 and c-Myc, via 4E-BP1 phosphorylation (Thr37,46,70, Ser65)
and p-AKT (S473) [34]. Guaiol, which has been discovered to be a more
powerful mTOR inhibitor than rapamycin, reduces NSCLC cell viability
by inhibiting mTOR signaling (Fig. 4) [35]. Guaiol reduces the phos-
phorylation (Ser2481) of mTOR, reducing AKT's activity (mTORC2 sub-
strates). It further enhances the inhibitory activity of p70 S6K or 4E-
BP1 (mTORC1 substrates) and reduces the viability of NSCLC cells [31].
In vivo study on mice, guaiol has shown anti-nociception and anti-
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Fig. 1. List of Guaiazulene derivatives.

inflammatory effects at 1, 10, and 30 mg/kg doses by oral administra-
tion against acetic acid [18].

3.5. Bentazone (BTZ)

Bentazon is a benzothiadiazine with an isopropyl group replaced at
position 3 in the structure 1H-2,1,3-benzothiadiazin-4(3H)-1,2,2-
dioxide. It is an herbicide that preferentially kills broadleaf weeds by
blocking photosynthesis. Sodium Bentazone is available commercially
[36,37] to control the herbaceous plants and shrubs in alfalfa, arugula,
cereal grains, clover, digoxin, onions, etc. [38,39]. In vivo study on mice
has confirmed that bentazone does not show any genotoxicity or impair
spermatogenesis at a low dose (30 μg/L for 100 days) [20].

3.6. Cadalene

It is a polycyclic aromatic hydrocarbon with C15H18 and a cadinene
skeleton [40]. It is a sesquiterpene terpenoid found in essential oils
[41]. Various other cadalene-like compounds, including simonellite,
retene, and ip-iHMN, have also been found in nature [42,43]. It is a
flavonoid obtained from the plant Zelkova serrata Makino. It has a wide
range of biological activities, such as anticancer [44]. However, it has a
water solubility problem. To overcome this problem, its prodrug is pre-
pared as glycosylated cadalene for cancer treatment [45]. In the in vivo
study on mice, cadalene protected lung tumorigenesis at doses (6.25,
25, and 100 mg/kg, orally for 25 weeks) via a potent antioxidative ef-

fect [46]. In vivo xenograft study on mice, cadalene has decreased by
45 % to 10 % tumor size at 100 mg/kg dose by oral administration
[45]. All these studies suggest the therapeutic potential of cadalene as a
potential anticancer candidate.

The percent yield of Guaiazulene and its derivative from M.
chamomile and other sources are summarized in Table 3.

3.7. SAR of GA and its derivatives

The modification of the chemical structure of GA could provide the
analogs with i) improved physicochemical properties, ii) improved
therapeutic efficiency, and iii) expand the therapeutic potential in vari-
ous disease conditions. For example, GaS-Na, a derivative of GA, has an
additional sulfonic group (NaO3S) that gives their hydrophilic character
with additional activities such as antibacterial, antimalarial, antiviral,
and antifungal. Adding the sulfonic group at the C-1 position enhances
the anti-ulcer activity [57]. The anticancer activity of GA increased
when the isopropyl group was added to its seven-membered ring and
the amide group was added to its five-membered ring [58]. The posi-
tioning of functional groups on guaiazulene derivatives such as 1-
isopropyl-6-methylazulen and 2-isopropyl-5-methylazulen might be as-
sociated with their tumor-specific cytotoxic action [59]. Azulene is an
isomeric compound of naphthalene that consists of two rings, i.e., cyclo-
heptatriene and cyclopentadiene, with 10π electrons. Due to structural
similarities to naphthalene, it has a strong antimicrobial activity [60].
Alcohol properties due to the hydroxyl group at the 16th position in the

3
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Fig. 2. Therapeutic potential of Guaiazulene-related compounds.

Fig. 3. Synthesis of Guaiazulene from the GAS-Na.

guaiol compound on the exocyclic section of the molecule might be re-
sponsible for the antileishmanial activity [53]. Arylamino-substituted
GA derivative has more potent anti-gastric ulcer activity than alky-
lamino-substituted GA derivative compound [57]. Aromatic rings are
also responsible for potent anti-gastric ulcer activity due to adding 1-
naphthyl amine to GA derivative compound [61]. In bentazone com-
pound, sulfonamide moiety (-SO2-NH-) at the 8th and 11th positions
are responsible for various biological activities such as potent antibac-

terial, antioxidant, anti-inflammatory, and anticancer [57]. GA and its
derivatives, such as cadalene, azulene, GAS-Na, 1-isopropyl-6-
methylazulen, and 2-isopropyl-5-methylazulen, have potent antioxi-
dant activities due to their alternate double bond with the conjugated
position that permits to scavenge free radicals easily. Their potent an-
tioxidant property also shown hepatoprotective effect (Fig. 5) [62].
There is a need to explore the effects of other modifications on GA and

4
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Table 2
Therapeutic potential of GA and GA-related compounds.
Sl.
no.

Drug Animal Dose, route, and
duration of treatment

Disease model Pharmacological actions Outcomes Reference

1. Guaiazulene Rat Single dose of
250 mg/kg,
intraperitoneally

Paracetamol-induced
hepatotoxicity

Lipid peroxidation is inhibited
via the prevention of oxidative
stress and increases the level of
glutathione

Antioxidant and hepatoprotective effects [14]

10 and 50 mg/kg,
orally for 5 days

Dextran and histamine-induced
edema

Histamine-induced edema was
inhibited

Prevent the edema [15]

Guinea
pig

100 mg/kg,
intraperitoneally 1 h.
before antigen

Antigen-induced inflammation Passive cutaneous anaphylaxis
reaction was inhibited

Anti-inflammatory effect

2. Azulene Rat 10–200 mg/kg, orally
for 3 days

Phenobarbital altered the
azulene metabolism

Metabolic enzymes CYP1A2 and
CYP2B1 were inhibited

Improved urine color and metabolism [16]

Rabbit 100 mg/kg,
intramuscularly for
5 days

Burning-induced inflammation Leukocytosis count was
increased

Decreased inflammatory edema, and
coagulation of the blood

3. Guaiol Rat 157.5 mg/kg, orally
for 3 days

– – PK values observed: half-life
(9.18 ± 3.75 h), the mean residence time
(9.07 ± 3.86 h), the maximum guaiol
concentration and time in plasma
(28.63 ± 6.82 ng/mL) and (0.50 h)

[17]

Mice 1, 10, 30 mg/k,
orally 1 h. before
acetic acid

Acetic acid-induced writhing
response

Opioid receptors and adenosine
triphosphate-sensitive K+

channels were inhibited in the
presence of guaiol

Antinociception and anti-inflammatory [18]

4. Guaiene Rat 3135 mg/kg,
subcutaneously for
7 days

Hepatectomized by surgically Excrete out the toxins from the
liver

Increased the weight of the liver and body
weight

[19]

5. Bentazone Rat/
mice

21 μg/kg/day, orally
for 100 days

̶ Changed in the timing of the
seminiferous epithelium cycle

A low dose does not impair spermatogenesis,
but stages of the seminiferous epithelium
cycle were altered

[20]

6 Cadalene Mice 6.25, 25, and
100 mg/kg for
25 weeks

n 4-(methylinitrosamino)-1-(3-
pyridyl)-1-butanone (NNK)-
induced lung cancer

Increased the expression of the
p53 protein and decreased the
level of proliferating cell
nuclear antigen (PCNA)

Inhibited the lung tumorigenesis [21]

subsequently access them for their therapeutic benefits over the GA and
already developed GA-related compounds.

3.8. Toxicity of GA and its derivatives

Bentazone, a non-toxic derivative of GA, has been proven in acute
intoxication studies on sheep. In a study for 84 days, bentazone with
sunflower oil (1:5) at doses of 175 mg/kg (1/10th of its LD50) and
97.5 mg/kg (1/12th of its LD50) negatively impacted haemoglobin,
leukocyte, and erythrocyte count [63]. In vivo study on mice, cadalene
derivative has shown antioxidant and chemopreventive effects at
100 mg/kg, orally without any other harmful toxicant effects. How-
ever, it has a major problem due to its insolubility in water [45]. Guaiol
has shown good insecticidal activity at the concentration of 70 mg/L
and good contact activity against insect larvae of Mythimna separate and
Plutella xylostella with LD50 of 0.07 and 8.9 mg/larva [64]. Guaiene has
potential contact toxicities against cigarettes, red flour beetle, and
booklouse with LD50 17.9 μg/adult [65].

3.9. Side effects of GA and its derivatives

Guaiazulene has no systemic and local side effects after locally ap-
plied on the skin in diaper dermatitis [66]. In vitro study of GA on pho-
totoxic features and cytotoxicity has shown no harmful adverse effects
[67]. However, minor side effects, such as allergic contact cheilitis,
were seen after using guaiazulene-containing toothpaste [68]. A study
on bentazone has confirmed that it is non-toxic in honeybees and bee-
tles [37]. However, it causes allergic side effects, such as skin, eyes, and
respiratory tract irritation. It also shows severe side effects such as
acute renal and respiratory failure on large doses [69]. Guaiol has no
side effects due to its non-irritating, non-toxic, and non-sensitizing

properties [70]. Guaiene has no specific side effect but increases body
weight on higher doses [19].

4. Potential biomedical applications of guaiazulene and GA-
related compounds

Researchers are looking into the potential pharmaceutical and bio-
logical uses of Guaiazulene and GA-related chemicals, including their
anti-inflammatory, ulcer-protective, anti-neoplastic, hypoglycemic, an-
tiviral, antibacterial, fungicidal, and antioxidant activity [71–73]. The
further section of the review discusses the therapeutic potential of GA
and GA-related compounds in detail.

4.1. Hepatoprotective

The tricarboxylic acid (TCA) cycle and ATP generation are two
metabolic processes dependent on mitochondria, which are prevalent
in hepatocytes and provide energy to the liver and other body parts.
Numerous studies have shown the importance of mitochondria in hepa-
tocytes as a key mediator in hepatotoxicity due to environmental pollu-
tants [74]. It was recently discovered that COVID-19-liver damage is as-
sociated with greater mortality and ICU admission rates. A recent study
with 1100 participants found that 18 % and 56 % of COVID-19 patients
with non-severe and severe disease, respectively, had high blood aspar-
tate transaminase levels (AST) [75,76]. Throughout the COVID-19 in-
fection, several therapies, including antipyretics (such as paracetamol),
antibiotics, antivirals, and other synthetic pharmaceuticals, also caused
liver damage [77]. As the prevalence of liver disease rises steadily, new
therapies must be developed to avoid the hepatotoxicity of synthetic
medications. Herbal medications are the most appropriate in this situa-
tion. In molecular coalitions, GA and GA-related molecules provide
promising new opportunities for hepatoprotective treatment.
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Fig. 4. Mechanism of Guaiol in NSCLC.

GA neutralized 2,2-diphenylpicrylhydrazyl (DPPH) and hydroxyl
radicals in the rat liver and prevented lipid peroxidation [78,79]. The
liver's CYP450 enzymes metabolize paracetamol (PCM) and transform
it into the active metabolite N-acetyl-p-benzoquinone imine (NAPQI),
which leads to GSH depletion in a dosage-dependent manner (GSH)
[80], which subsequently breaks and detoxifies NAPQI. Due to the de-
pletion of GSH, NAPQI interacts with the sulfhydryl group on proteins
to generate the protein complex 3-(cysteine-S-yl)-acetaminophen
(APAP-Cys) [81]. This adduct is linked to liver toxicity (necrosis). GA
may have a potential chain-breaking antioxidant activity that stops
lipid peroxidation and shields the liver from paracetamol's hepatotoxic
effects [11]. It guards against paracetamol toxicity, blocks the activity
of numerous CYP450s, and inhibits NAPQI-induced GSH depletion [10,

82]. These characteristics point to the possible therapeutic uses of GA in
other hepatotoxic diseases.

4.2. Ulceroprotective

A peptic ulcer is a common condition where sores form in the lining
of the stomach that affects 4 % of the population and 10 % of people at
some point in their lives [83]. The first-line therapy for treating peptic
ulcers is proton pump inhibitors (PPIs), such as omeprazole and panto-
prazole. Although PPIs are the most efficient drugs for lowering stom-
ach acid production, but they also have several side effects. Novel anti-
ulcer drugs are therefore required. In this situation, the best way to re-
duce or eliminate the negative effects of synthetic anti-ulcer medica-
tions is to use GA and GA-related chemicals as herbal medicines. Cao et
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Table 3
GA and its related compounds from M. chamomile and other sources.
Sl.
no.

Compound name Sources and
percentage
(%)

Therapeutic potential References

1. Guaiazulene (M.
chamomile)

Dried flower:
(12.42 %)

Antioxidant, Anticancer [47]

Dried flower:
(25.6 %)

Antimicrobial [48]

Guaiazulene
(Euplexaura erecta)

Whole part:
(0.2 %)

Antifungal [49]
Antibacterial

Guaiazulene
(Pachyclavularia
violacea)

Soft coral:
(0.4 %)

– [50]

2. Azulene (Matricaria
chamomile)

Dried flower:
(1–15 %)

Antioxidant, Anti-
inflammatory, anticancer,
anti-allergic, and
neuroprotective

[51,52]

3. Guaiol (Bulnesia
sarmientoi)

Bark:
(48.29 %)

Anti-leishmanial activity [53]

Guaiol (Myroxylon
peruiferum)

Bark:
(9.35 %)

Anti-leishmanial activity

4. Cadalene
(Cinnamomum
cassia)

Bark: (0.23–
0.66 %).

Antifungal activity [54,55]

Cadalene (Myrcia
sylvatica)

Leaves: (4.7–
8.2 %)

Antioxidant
Neuroprotective

[56]

Aerial parts:
(6.24 %)
Aerial parts:
(9.36 %)

al., [5] explored the ulceroprotective effect of GA derivatives in-vivo
and reported that the synthesis of guaiazulene sulfonate compounds has
a dual sulphonyl amino pattern that provides ulceroprotective effects in
the alcohol-induced gastric ulcer model [5]. Azulenes have been shown
in animal models to exhibit anti-inflammatory, antioxidant, and anti-
edema effects, as well as to enhance mucosal blood flow, decrease hista-
mine levels, and consequently secrete less stomach acid [84,85]. GA
mildly induces mucous membrane irritation after patch-checking on in-
flamed lips [86]. Guaiazulene and GA-related compounds are naphtha-
lene isomers whose chemical properties differ from naphthalene iso-

mers. Similar to GA, several related compounds have been investigated
for their pharmacological and therapeutic properties, including their
ability to block TXA2/PGH2 receptors, decrease stomach acid output,
prevent duodenal ulcers [87], improve gastric mucosal blood flow, and
inhibit TXA2/PGH2 receptors. Additionally, they were found to have
local anaesthetic, anticancer, and antiallergenic properties and to pre-
vent TXA2-induced mortality [88]. For the comparison with PPIs, more
research is necessary.

4.3. Diaper dermatitis

During nursing, guaiazulene-containing ointments are routinely
used to the breasts. In non-breastfeeding women, it is thought that ap-
plying GA to the nipple and areola area may provide benefits (increas-
ing sensitivity and suppleness, safeguarding against wear, cracking, in-
fection, and discomfort) [82]. In research with 20 patients, topical po-
made containing GA (0.05 g/100 g) produced favourable results and
prompt healing in recalcitrant diaper dermatitis in newborn babies.
When compared to standard treatment, its positive and immediate ef-
fects were noticeable on the 1st and 3rd days [89]. This local pomade
with GA stops the skin from drying out, lessens inflammation, strength-
ens the stratum corneum epithelium, and shields users from skin irri-
tants [90]. Additionally, it can treat canker sores or gastritis [91]. The
development of some cosmetic preparations and GA-based formulations
to treat various skin-related conditions should be worthwhile in light of
the aforementioned facts.

4.4. Anti-cancer

With 18 million new cases and 9 million fatalities from cancer or
other malignancies recorded globally in 2018, cancer or other malig-
nancies continue to pose a serious health risk. Despite the broad avail-
ability of anti-neoplastic drugs, cancer remains one of the leading
causes of death globally. There is a need to develop or repurpose novel
therapies to treat cancer patients as the illness burden keeps rising [92,
93]. Several natural compounds are investigated for their anti-cancer
activities [94]. The GA and its related compounds raise hopes for new
anticancer treatments as a part of molecular consortia. Chamazulene,

Fig. 5. Different modifications on Guaiazulene.
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extracted from the leaves of Artemisia arborescent and containing 63 %
GA, showed favourable apoptosis-inducing effects on cancer cells [95].
According to other studies, chamazulene is a more potent antioxidant
than ascorbic and tocopherol. GA inhibited neuronal and N2a neurob-
lastoma (N2a-NB) cell proliferation while increasing and decreasing
free radicals and antioxidant markers levels, respectively [96]. In vitro,
GA showed cytotoxicity on N2a-NB and rat neuronal cells. However,
the cytotoxicity of GA on healthy neuron cells and its poor treatment
absorption in N2a-NB cells limit its effectiveness as an anticancer
chemotherapeutic [97]. In addition to GA, other sesquiterpenes com-
pounds, such as transfarnesol, cis-nerolidol, and alpha-humulene, also
demonstrated antiproliferative effects in vitro on Caco-2 cell models.

In vitro studies demonstrated that GA has antitumor activity
against NSCLC cells, mediated by mitochondrial malfunction, oxida-
tive stress generation, and mitochondrial ATP depletion, which results
in anoikic cell death [98]. Concurrently, GA also induced autophagy
and inhibited Akt/mTOR pathway in NSCLC cells (Fig. 6). Co-
administration of GA with paclitaxel amplified its antitumor effect.
Furthermore, In vitro study demonstrated that GA treatment reduced
the level of proteins like integrin-3 and Akt phosphorylation at A549
and H1975 cells (NSCLC cell line) [99]. Alkoxyl guaiazulene-3-
carboxylates have recently been proposed as a lead molecule for the
new anticancer medicine. The anticancer action of the GA derivative
guaiazulene-3-carboxylate against oral cancer cells has been estab-
lished [58]. It's also important to investigate GA's anti-tumorigenic ef-
fects on different cancers. It might prove to be an effective anticancer
medication.

4.5. Antimicrobial

One of the biggest achievements of humanity in medicine is the dis-
covery of antibiotics, which happened about 100 years ago. Due to an
increase in bacterial resistance, antibiotics have lost some of their effec-
tiveness recently [72]. Therefore, it is necessary to investigate potential
new antibacterial and antiviral medication options. There is a lot of
promise for GA and other azulene derivatives to offer new perspectives
on overcoming resistance. They can be used in antimicrobial photody-
namic therapy because of their phototoxic properties. Xia et al. re-
ported that they could generate free radicals (singlet oxygen) after UVA
luminous excitation [100]. Damrongrungruang et al. [101] showed
azulene's effect on the viability and generation of singlet oxygen in pe-
ripheral blood mononuclear cells (PBMCs) in vitro. They discovered that
azulene at concentrations of 5–500 μM produced singlet oxygen when
triggered with a light-emitting diode at 625 nm. The proposed mecha-
nism involves ROS production that destroys intercellular components,
particularly DNA [101]. In the antimicrobial photodynamic therapy
(PACT) trial, azulene as a photosensitizer in photodynamic therapy
(PDT) reduces microbial (Streptococcus beta-haemolyticus Prevotella sp.
and Fusobacterium sp.) clearance in ligature-induced periimplantitis in
dogs similar to standard treatment.

They also discovered that azulene is useless in the absence of light
exposure, suggesting that photodynamic mechanisms are responsible
for azulene's antibacterial effects. There was no significant variation
among the treatment groups, indicating that photodynamic therapy is a
noninvasive strategy for reducing bacteria in periimplantitis [102]. In
another study, Dentin plates were contaminated by Streptococcus mu-
tans solution. The 1.5 W laser irradiation at 940 nm gave the greatest

Fig. 6. The mechanism of GA therapy in combination with autophagy suppression in NSCLC. GA leads to mitochondrial dysfunction and subsequently increases
ROS, which results in anoikis; meanwhile, it also blocks the Akt/mTOR axis and induces autophagy.
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bactericidal activity outcomes by decreasing the colony-forming unit
(CFU/ml) [103]. GA showed antibacterial activity against several
strains of M. hominis. In vitro comparative antibacterial activity of GA
was evaluated with several natural compounds such as cinnamon oil,
linoleic, carvacrol, and eugenol against the M. hominis strain and was
demonstrated to be efficient against M. hominis bacterial strain with the
lowest MIC (62.5–4000 s μg/mL) which inhibits metabolism and
growth of bacteria in 90 % of tested strains [104]. GA produced from
Euplexaura erecta demonstrated a negligible antibacterial impact on
Pseudomonas aeruginosa [105].

4.6. Anti-inflammatory

Inflammation is a natural response to stressors such as tissue dam-
age, wounds, bruises, cancer, and joint issues. However, while inflam-
mation becomes prolonged, the NSAIDs (COX inhibitor) and corticos-
teroids (immunomodulator) can damage the tissue revert. Unfortu-
nately, they have several adverse effects that necessitate developing
cutting-edge approaches to treat chronic inflammation [106]. Guaiazu-
lene and GA-related compounds containing traditional plants, includ-
ing Matricaria chamomilla L. containing camomile and Achillea mille-
folium, have demonstrated anti-inflammatory activity. A camomile ex-
tract called sulindac specifically suppressed COX-2. The study suggests
chamazulene efficiently reduces inflammation in the rat model of os-
teoarthritis produced by Freund's adjuvant [107]. GA and other
chamazulene derivatives have powerful antioxidant and anti-
inflammatory activities while being non-toxic [84,108]. In PBMC and
fibroblast (FB) cells, photodynamic treatment utilizing GA that was ex-
posed to a 635 nm red laser pointer reduced inflammation without re-
sulting in cell death [109]. GA that had been given a 4–8 J/cm2 dose of
radiation produced singlet oxygen (O2) expressed normal T cells and se-
creted RANTES and prostaglandin E2 (PGE2) [101,110]. Due to its
greater lipophilicity, GA has more cell penetration [111], which is re-
lated to its greater anti-inflammation effectiveness [112].

4.7. Mutagenic action

Guaiazulene has numerous biological effects, including cytotoxicity,
anti-spasmodic, anti-inflammatory, and antimicrobial. It caused a cyto-

toxic effect on human peripheral blood lymphocytes (PBLs) at different
concentrations (0–400 μg/ml). GA and its derivatives showed cytotoxic
activity in cell lines, including gingival fibroblast of humans, human pe-
riodontal ligament fibroblast (HPLF), pulp cell, and tumor cell lines of
the human, including submandibular gland cell line (HSG), oral squa-
mous cell line (HSC-2, HSC-3), and promyelocytic blood cancer cell line
(HL-60) [97]. GA and other derivatives are toxic to human tumors and
normal human cells. Azulene and GA showed photo mutagenic charac-
teristics in Salmonella typhi bacterial strains, possibly due to photoreac-
tivity.

In contrast, only azulene damaged DNA in Jurkat T-cells of humans.
After being exposed to UVA radiation, GA and azulene showed 4 to 5
times higher mutagenicity in S. typhimurium TA98, TA100, and TA102
[4]. However, GA and azulene are not mutagenic when tested without
light. As exposure to sunlight is unavoidable, caution must be exercised
when using Guaiazulene or azulene as ingredients in skin cosmetics
[16]. GA and azulene are photolabile in healthcare products. After be-
ing applied to the skin, GA is photo exposed and displays an immediate
toxic reaction as a result of phototoxicity [113]. Due to the phototoxic-
ity of GA, Azulene could be used in radiation therapy to kill cancerous
cells. It is hypothesised that azulene photoirradiation by UVA causes
the production of ROS and lipid peroxidation (Fig. 7).

4.8. Antioxidants

A GA derivate 3-Vinylguaiazulene had antioxidant activity mea-
sured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) [3]. GA is a naturally
occurring, non-toxic chemical with anti-ulcer and anti-inflammatory
activities. The rat liver scavenges hydroxyl radicals and DPPH and in-
hibits lipid peroxidation [14]. In in vitro research, GA efficiently in-
hibits lipids peroxidation in the membranes of microsomal cells [114].
Compared to readily accessible conventional antioxidants like
quercetin and propyl gallate, the IC50 value of GA is outstanding. GA in-
hibits membrane lipid peroxidation by scavenging the proxy1 or
alkoxyl intermediate radicals to its isopropyl group's allylic hydrogen
atom at position 7 and preventing allylic hydrogen abstraction from
lipids [86,115]. The attacking radical isolated the hydrogen atom, but
the resonant frequency could stabilize the derived GA radical with the
benzene ring moiety, which is less responsive [116]. Greater lipophilic-

Fig. 7. Possible mechanism for azulene or GA-induced lipid peroxidation and linked responses when exposed to UVA.
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ity of GA (conceptual cLogP value of 5.74) is needed to increase its ac-
cessibility, interaction, and retention with the bio-membrane, where
lipids undergo oxidative stress [117,118]. Guaiazulene exhibits protec-
tive effects on embryogenesis that are mediated by its anti-
inflammatory properties [119].

4.9. Dyspepsia and gastroesophageal reflux disease (GERD)

The most prevalent gastrointestinal disorder is dyspepsia, which oc-
curs in 20–30 % of people [120,121]. A wide variety of upper-
abdominal symptoms, including pain or discomfort, are called dyspep-
sia. Among the organic causes of dyspepsia are peptic ulcer, GERD,
esophageal or stomach cancer, biliary or pancreatic tract abnormalities,
and food or medicine intolerance [122]. Approximately 75 % of indi-
viduals have idiopathic functional dyspepsia (FD) [123]. PPIs and H2
receptor antagonists are thought to be the best GERD medications.

Nevertheless, they have significant drawbacks with regard to long-
term use, including the dangers of stomach flora overgrowth and cellu-
lar expansion resembling enterochromaffin [124]. So, looking for nat-
ural compounds to cure uninvestigated dyspepsia (UD) is necessary. In
this context, guaiazulene might be a potential candidate.

Previous studies have demonstrated that guaiazulene and dime-
thicone considerably reduce gastrointestinal symptoms and enhance
GERD patients' quality of life (QoL). Oral gel (Pepsane®), which con-
tains the active ingredients dimethicone (3 g) and guaiazulene (4 mg)
and is administered three times daily before meals, provided sympto-
matic relief for UD patients with no noticeable side effects and excellent
levels of patient satisfaction and strong compliance. The mixture has
been shown to be safe and well-tolerated [125]. Similar to GA, azulene
derivative KT1–32 enhanced gastric mucosal blood flow in sedated
male Wistar rats and showed a gastroprotective effect in an ex vivo
study [126]. The gastroprotective effect of GA-related compounds
might be due to the GIT mucosal covering property. Another research
has checked the QoL through the comparative effects of Pepsane® with
a placebo drug [127]. The Phase III trial involved 233 people with non-
erosive reflux disease (NERD) and mild GERD symptoms. These pa-
tients were given Pepsane® or a placebo postprandially at random for
28 days. The primary goal of the study, a 50 % reduction in the overall
symptom score at day 14, was achieved in 54.1 % of patients taking
Pepsane® vs. 41.1 % of patients taking a placebo. In 118 dyspeptic pa-
tients, including those with GERD, Pepsane® medication reduced the
percentage of patients suffering heartburn from 66 % to 14 % after one
month. The therapeutic effect of this combination was felt quite quickly
in 82.2 % of patients (<20 min) [128].

4.10. Lipid disorder

Guaiazulene demonstrated anti-hypercholesterolemic, anti-
hyperlipidaemic activity in atherosclerosis and atheromatous in ani-
mals and humans without causing toxicity or side effects in the tested
animals [129]. To draw any conclusion, more studies are required. Fu-
ture GA research in this area include additional investigations.

4.11. Nipple fissure or pain

The second most frequent reason for early breastfeeding termina-
tion is nipple fissures or pain [130]. It is a massive cutaneous abrasion
that has developed in the areola and nipple that can cause ulcerations,
blisters, fissures, skin damage, edema, erythema, and dark patches
[131]. Many factors, including mechanical stresses, physiological reac-
tions, and infections, are commonly responsible for nipple discomfort
and fissures. Several treatments for nipple fissures have been proposed,
including hydrogels, warm compresses, tea bags, mint sweat, enhanced
collagenase ointment, honey, dexpanthenol, breast milk, and lanolin,
but they are associated with some skin problems and adverse effects

over long-term use [132]. Therefore, it is necessary to look for natural
ingredients to alleviate the pain or nipple fissure. In this situation, the
GA might potentially relieve pain or nipple fissures.

Herbal medicine has a long history with the greatest therapeutic so-
lution in human civilization [133–135]. This review gives a common
source of GA in health care [136] with clinically available information
and evidence regarding nipple fissures and the prevention and treat-
ment of pain. According to API et al., [137] GA ointment (0.05 % w/w)
has been shown to prevent nipple fissures in 153 mothers after using
the instrument visual analog scale (VAS) to evaluate pain severity [132,
138].

4.12. Antidiabetic agent

Diabetes mellitus (DM) is a metabolic disorder brought on by pro-
longed hyperglycemia or insulin resistance. Diabetes is the seventh
largest cause of death in the United States (US). It kills approximately
85 thousand Americans each year, according to the Centers for Disease
Control and Prevention, Department of Health and Human Services of
the US. Diabetes is a major public health issue that affected 463 million
people worldwide in 2019. By 2030, this figure will reach 578 million,
and by 2045, it will reach 700 million [139,140]. Numerous research
organizations worldwide have developed innovative, more efficient,
and patient-friendly treatments for DM [73]. GA and related com-
pounds have shown possible antidiabetic potential after structure modi-
fication. In one study, a series of C-glucosides with azulene rings in the
aglycon moiety was synthesized, and the inhibitory activities toward
hSGLT1 and hSGLT2 were evaluated. They found 8e is a more potent
SGLT2 inhibitor, which displayed a strong and long-lasting antihyper-
glycemic effect on STZ type 1 diabetic rats and KK/Ay type 2 diabetic
mice following oral administration. Additionally, in vitro inhibition of
human sodium-glucose transport protein 1 (hSGLT1) and (hSGLT2) was
also assessed using Chinese hamster ovary cells (CHO). Additionally, a
mono-choline salt of 8e (YM543) compound was selected as a clinical
candidate [141]. In two separate trials, the researchers determined the
IC50 values of azulene derivative for hSGLT2 and selectivity for hSGLT
[142]. 90 % of glucose reabsorption is mediated by SGLT-2, primarily
expressed in the proximal portion of the kidney, and causes DM. By
blocking SGLT-2 transport in the kidney. By blocking SGLT-2 transport
in the kidney, GA inhibits the development of diabetes mellitus by in-
creasing the excretion of glucose in urine and lowering plasma glucose
levels (Fig. 8) [143].

Furthermore, the antihyperglycemic efficacy of GA derivatives was
confirmed in pre-clinical investigations on type 2 diabetic KK/Ay mice.
In this investigation, an azulene derivative (3 mg/kg) successfully re-
duced blood glucose levels in the vehicle by 46 %. After then, the azu-
lene derivative was further improved, leading to the development of a
new molecule. This new molecule was later found to be the most preva-
lent auspicious substance in the sequence. It was projected for use in
clinical studies as mono choline salt, also known as mono choline salt
YM543 [144].

4.13. Cardiovascular diseases

Worldwide, cardiovascular diseases (CVDs) constitute the leading
cause of death [145]. 1.7 billion people (22 % of the world's popula-
tion), it is estimated, have at least one underlying condition, such as hy-
pertension, which increases the risk of a major illness in the event of
coronavirus infection [146]. GA and other azulene derivatives have
shown positive outcomes in cardiovascular diseases [88]. Researchers
from the Medical University of Yamanashi in Japan initially created GA
and azulene derivatives with the potential to be cardioprotective. They
used the clinically effective antianginal drug nicorandil as a model to
develop novel GA and other azulene compounds with cardiovascular ef-
fects. Nicorandil is a 2-aminoethanol derivative of nicotinic acid with
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Fig. 8. GA reduces glucose levels via inhibiting the SGLT-2 co-transporter in the proximal region of the kidney and other mechanisms to prevent diabetes mellitus.
(Abbreviation: ACC; acetyl CoA carboxylase, CPT; Carnitine palmitoyl transferase-1, FFA; Free fatty acids, KB; ketone bodies).

potent cardiovascular properties. In the actual procedure for develop-
ing azulene derivatives, the structure of nicorandil was divided into
three groups: A, B, and C. Based on this structure, GA, 4,6,8-
trimethylazulene, and azulene structures were synthesized [147]. Uti-
lizing the perfused blood from a dog heart, the effects of these newly
synthesized azulene derivatives on coronary blood flow were evalu-
ated. The potency ranking was observed in the following order: Gua-
iazulene>4,6,8-trimethylazulene > azulene. In isolated rabbit aorta
strips, the azulene-1-carboxamidine derivative of HNS-321 exerts
strong vascular relaxant effects. According to SAR studies, HNS-32
shows depressor action due to the presence of a pyridine ring. On the
other hand, its antiarrhythmic and adverse chronotropic actions
strongly correlate with the guaiazulene methyl groups at the 3 and 8 lo-
cations [88].

4.14. Neurological disorders

GA and GA-related compounds were evaluated for their affinities to
monoaminergic G protein-coupled receptors, including dopaminergic,
histaminergic, serotonergic, and adrenergic receptor subtypes. CHO
cells were employed to evaluate the receptor binding properties in vitro.
One of GA's neuroleptic effects was inhibiting the stereotyped behavior
brought on by dopaminergic stimulants. FAUC3019 is an azulenyl-
methylpiperazine compound tested to cure erectile dysfunction. It is a
partial agonist for the dopamine D4 receptor [142,148]. FAUC3019
promotes a penile erection by activating the human dopamine D4 re-
ceptor and the oxytocinergic pathway in the paraventricular nucleus
(PVN) region. L-arginine is converted to NO by oxytocinergic neurons
when nNOS is activated by an increase in Ca2+ influx, which causes an
increase in NO production in the PVN portion. NO causes the oxytocin-
ergic neuronal cells to release oxytocin, which is responsible for penile
erection. These neuronal cells are located in the spinal cord and ex-
trahypothalamic regions of the brain (Fig. 9) [73,149]. Following sub-
cutaneous administration and PVN injection, the second in vivo research
of GA-related compounds was carried out on 32 male rats, and they
showed penile erection. Its effectiveness was greater than that of apo-
morphine, the conventional medication. GA and GA-related compounds
demonstrated a high degree of D4 receptor affinity, selectivity, and di-
pole moment. To compare this study's findings to popular erectile dys-

function medications, such as tadalafil and sildenafil, more research is
needed in this area [150].

Turku et al. proposed azulene compounds to synthesize orexin
(hypocretin) OX1 and OX2 receptor ligands using an in-silico approach
[151]. Since these receptors are important in the sleep cycle, orexin an-
tagonists could be used to treat insomnia. These agonists can also help
treat narcolepsy and daytime sleepiness. There were found to be seven
powerful and two weaker double agonists of the orexin receptor. The
activity was assessed by measuring the Ca2+ response in the CHO-K1
cell line expressing heterologously high quantities of human OX1 and
OX2 receptors. The orexin-A response on the OX1 receptor was boosted
by several GA-related compounds, some of which were weak orexin re-
ceptor agonists [73].

Despite brand-new synthetic GA-related compounds, plants still
contain many more GA-related compounds. Ergosterol ganotheaecolin
A, isolated by Luo et al. [152] in the fungus Ganoderma theaecolum, can
potentially treat many neurological conditions [152]. The fungus is fre-
quently used in traditional Chinese medicine to treat neurological dis-
eases [73].

4.15. Antifungal

When tested in vitro against the fungus Aspergillus niger, Matricaria
chamomilla L. oil, which contains GA and other chemical components,
was found to have strong antifungal properties. Compared to the con-
trol at ≥125 g/mL, the plant oil demonstrated a fungistatic effect
against the fungus at all concentrations [13]. The antimicrobial inquiry
used certain bacteria and fungi. It was fascinating to look at the antifun-
gal properties of azulene-organobismuth (III) carboxylates. With azu-
lene derivatives, Murafuji et al. developed several heterocyclic com-
pounds called organobismuth (III) carboxylates. In a qualitative anti-
fungal assay on Saccharomyces cerevisiae W303-1A yeast, they utilized
DMSO as a negative control. They discovered that this chemical was ex-
tremely lipophilic and demonstrated a strong level of fungal growth in-
hibition [153].

The effectiveness of GA against group G streptococci was demon-
strated when its antifungal activity was compared to that of anethole,
carvacrol, eugenol, cinnamon bark oil from Cinnamomum zeylanicum,
and thymol. Carvacrol, on the other hand, was discovered to be the
most effective substance in terms of antifungal activity, preventing
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Fig. 9. Mechanism of FAUC3018 in penile erection.

90 % of group G streptococci strains from growing at a concentration of
236.7 g ml−1 [104]. The lifetime toxicity of GA with Pleurotus fungus
species was used to test its antifungal efficacy in Drosophila
melanogaster. Female and male populations of D. melanogaster lived
shorter lives due to dose-time interaction, and GA showed antifungal ef-
ficacy. In a different study, Pleurotus sajor-caju (PSCwt) and Pleurotus os-
teratus (POwt), two edible fungi, were mixed with GA to exhibit a heal-
ing effect and increased longevity. GA's antifungal activity was con-
firmed when it reduced D. melanogaster's life span [154].

5. Clinical trials on guaiazulene and related compounds

Guaiazulene and its related compounds have been shown to have
anti-inflammatory effects in several clinical studies. A cosmetic con-
taining GA (0.02 %) has shown an anti-inflammatory effect in atopic
dermatitis patients and relieves itching [155]. In a clinical study on
breastfeeding women, GA (0.05 %) ointment preparation has shown an
anti-inflammatory effect by preventing sore and cracked nipples [137].
Another study on oral mucositis patients has shown that mucosa-
adhesive water-soluble polymer film (AD film) containing GA has anti-
inflammatory and antibiotic activity to prevent oral mucositis and
other oral infections [68]. GA (4 mg) gel preparation has shown a pro-
tective effect against un-investigated dyspepsia patients and improved
GERD [125]. Currently, no clinical trials have been reported on
clinical.gov.in for guaiazulene and its related compounds. Therefore,
GA and its related compound might be novel for clinical trials conduct-
ing a study to prevent various inflammatory consequences. On the
other hand, these compounds could be novel for clinical study and clini-
cal trials for various diseases, including cancer, hepatitis, neurotoxicity,
cardiotoxicity, diabetes, and various types of infection shown in previ-
ous in vitro and in vivo studies.

6. Future perspectives

Guaiazulene (GA), derived from plants like M. chamomilla L, has a
wide range of functions, including anti-inflammatory, antiseptic, an-
timicrobial, antioxidant, epithelializing, antimutagenic, immunomodu-
latory, fungicidal, expectorant, diuretic, diaphoretic, demulcent, and
bitter stimulant properties. Numerous in vitro and in vivo investigations
have demonstrated the favourable, helpful effects of GA in a wide range
of diseases. As a result, it may be a useful option to treat various ill-

nesses, such as cancer, ulcers, inflammation, microbial infections, dia-
betes, cardiovascular and neurological ailments. Due to its lipid solubil-
ity, it can easily traverse the blood-brain barrier and may therefore be
effective in treating neurological illnesses. It is necessary to create GA-
based nanoformulations for targeted distribution in neurological, im-
munological, and cancer cases. However, much more research is
needed to confirm GA's potential as a therapeutic candidate. In addi-
tion, there is a need to investigate certain illnesses that have not yet
been studied. Data suggest that it could be the best alternative for treat-
ing nipple fissures or pain and diaper dermatitis.

7. Conclusion

Guaiazulene has gained recognition for its pleiotropic health effects,
especially due to its anti-inflammatory and antioxidant properties.
Studies have supported the use of GA to manage disorders such as bac-
terial infections, tumors, immunomodulation, expectorants, diuretics,
diaphoresis, ulcers, dermatitis, proliferation, and gastritis, where lipid
peroxidation or inflammatory response is a crucial pathological compo-
nent. Additionally, it aids in the management of drug- and exercise-
induced hepatotoxicity, improving recovery and subsequent perfor-
mance. Moreover, a relative dose of GA with photodynamic therapy us-
ing a 635 nm red laser exhibits anti-inflammatory effects in fibroblasts
and mononuclear cells from peripheral blood. Clinically, the use of lo-
cal pomade (0.05 g/100 g) for diaper dermatitis might still be benefi-
cial for those who do not have a diagnosed medical problem. The evi-
dence suggests that GA has beneficial effects on hepatotoxicity, inflam-
mation, bacterial illness, and diaper dermatitis, but more extensive
studies are required before a firm conclusion can be drawn. In conclu-
sion, all the data suggest that GA and its derivatives might open a new
avenue for treating different pathological conditions. Still, there is a
need to find or synthesize a GA-derivative with a more specific pharma-
cological effect and lower toxicity and subsequently access them for
their therapeutic benefits over the GA and already developed GA-
related compounds.

Abbreviations
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12

http://clinical.gov.in/


CO
RR

EC
TE

D
PR

OO
F

W. Akram et al. Life Sciences xxx (xxxx) 121389
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GERD Gastroesophageal reflux disease
GSH Glutathione
LD50 Lethal dose 50
mTOR Mammalian target of rapamycin
NAPQI N-acetyl-p-benzoquinone imine
NSCLC Non–small cell lung cancer
PBMC Peripheral blood mononuclear cells
PCM Paracetamol
QoL Quality of life
UD Uninvestigated dyspepsia
fMLP N-Formyl-methionyl-leucyl-phenylalanine
DSB Double-strand break
PIKK Phosphatidylinositol 3-kinase-related kinase
TXA2 Thromboxane A2
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