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A B S T R A C T   

The fields of data mining, computational biology, and statistics have been combined to form the massive research 
area of bioinformatics. In the areas of genetics, education, and healthcare, bioinformatics integrates the tools 
available in different fields such as computing, inventorying, performing statistical analyses, and collecting and 
processing genomic data. Stress and depression are two of the most severe mental disorders that affect people of 
all ages, including children and adults. The goal of this study was to look into the relationship between genetic 
alterations and the two diseases mentioned above as well as to develop a PPI network or related channel. The 
first step is to determine whether or not there is a biological relationship between them. This would assist us in 
connecting both of them as well as building therapeutic drugs that are effective against stress and depression 
disorders. Using R programs, the genes that are responsible for different diseases are acquired, pre-processed, 
analyzed, and mined in order to better understand them. During the study, a novel pathway was discovered. 
Based on common genes between the two diseases studied, the PPI network, gene-miRNA interaction, TF-gene 
interaction, and PDI network were established. This data can help us better understand how the PPI network 
binds to its ligands. We anticipate that our study will contribute to the development of new drugs for stress and 
depression.   

1. Introduction 

Nowadays, people suffer from different kinds of psychological dis-
orders, such as anxiety disorder, bipolar disorder, panic disorder, stress, 
depression, schizophrenia, etc. It is also referred to as a “mental” or 
“psychiatric” disorder [1]. Mental disorders are affecting an increasing 
number of people worldwide. That’s why mental disorders are consid-
ered the most fatal problem globally [2]. Mental health concerns are 
common at all ages and have many potential triggers, including stress at 
home and work and financial difficulties (Mental Health Foundation, 
2016) [3]. Data, uncertainty, fear, and worry seem to heighten public 
concern, leading to mental health difficulties such as stress and 
depression [4]. Lazard et al. (2015) noted that previous findings and 
observations with significant outbreaks of deadly diseases have revealed 
“panic potential that is frequently much greater than disease risk” [5]. 

According to the World Health Organization, behavioral and mental 
disorders account for approximately 12% of the worldwide infection 
rates. According to the estimates provided by the Mental Health Sta-
tistical Analysis in 2017, 792 million people were living with a mental 
health issue. This equates to slightly more than one in every ten people 
worldwide (10.7%) [6]. 

The non-specific manner in which the body responds to any kind of 
demand placed on it is referred to as stress disorder (SD). It is possible for 
it to be an issue of both positive and negative experiences [7]. When 
social pressure becomes severe, SD can emerge, and in certain cases, it 
can induce anxiety disorders, including depression. 74% of participants 
felt stressed while unable to complete necessary tasks, according to 
mental health data (https://www.mentalh ealth.org.uk). Stress causes 
changes in the body’s physiology that lead to heart disease, high blood 
pressure, genetic susceptibility, growth insults, and psychosocial 
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problems, all of which are known to increase the risk of depression [8]. 
Depression risk can be raised by stress disorder, even though it is 
considered a separate factor. There is a clear link between stress and 
depression, as shown in research; nevertheless, many processes may be 
at work [9]. The American Stress Institute says that worldwide, around 
33% of people report experiencing significant stress. Stress has a nega-
tive impact on the physical health of 77% of people and the mental 
health of 73% of people [10]. Depressed feelings were expressed by 51% 
of stressed individuals, while anxiety was recorded by 61%. 16% of 
those who indicated they had experienced stress at some point in their 
lives had self-harmed, and 32% had suicidal thoughts and feelings [11]. 

Depression is among the most prevalent and debilitating neuropsy-
chiatric disorders, and it has emerged as a global health concern [12]. 
Studies indicate that approximately one-third of depressed people do not 
respond to traditional antidepressant treatment [13]. It is of the utmost 
importance that novel biomarkers for the treatment of depression be 
developed as soon as possible. A deeper investigation of the molecular 
pathways involved in the pathological process of depression may un-
cover novel approaches to tackle this complex disorder [14]. Depression 
has been linked to shrinking hippocampuses and changes in the function 
or interconnectivity of brain networks [15]. At its worst, depression may 
lead to suicide. Suicide is the leading cause of death among people aged 
15 to 19, according to the World Health Organization. Approximately 
4.4% of the world’s population suffers from depression, which affects 
350 million people globally [16]. Depression is more common in those 
who live in poverty than in those who are well-off, and it affects people 
of all ages and walks of life. Unemployment, physical disease, and drug 
use are all factors that contribute to depression [17]. 

Protein-protein interactions (PPIs) are essential in all organisms’ 
cellular activities and biological functions. Protein interactions can 
contribute to a better knowledge of infection processes, as well as the 
creation of numerous pharmaceutical medicines and therapy optimiza-
tion. PPIs are very important in regulating selectivity along signaling 
pathways. Thus, assessing the competitive interaction of PPIs in a cell is 
critical for understanding basic cellular regulation as well as designing 
treatments that target those diseases [18]. The networks of PPI in-
teractions are significant tools for studying cellular processes, mecha-
nisms for diseases, and the creation of medications. Interpreting a PPI is 
challenging because of the network’s complexity [19]. 

Bioinformatics is used in a variety of applications, including data 

collection, data organization, data sequencing, huge dataset manage-
ment, data storage, data transmission, DNA summarization, PPI 
networking, and treatment scheduling [20]. Bioinformatics is a hybrid 
science that stores biological information by means of a combination of 
biological and technical data. Bioinformatics plays a massive role in 
gaining extremely significant information on disorders that is useful in 
treatment development. Modern bioinformatics technologies, such as 
PPI network construction and drug design, provide a significant 
contribution to gene analysis [21]. 

Finding a genetic relationship and protein-drug interaction between 
stress and depression was one of the major objectives of this work. The 
new aspect of the research was the discovery of shared genes between 
the two diseases and the subsequent analysis of these genes [22]. 

Using the R programming language, we looked at a specific gene for 
two diseases: stress and depression disorders. created protein-protein 
interactions, topological characteristics, gene-miRNA interactions, 
protein-drug interactions, and TF-gene interactions after uncovering 
certain common genes. 

2. Proposed methodology 

The proposed technique is depicted step by step in Fig. 1. 

2.1. Gene collection 

The genes related to a disease must be gathered in order to study it. 
The NCBI (National Center for Biotechnology Information) is a valuable 
resource for online gene databases that are free to browse and download, 
as well as a large collection of bioinformatics services and tools. The 
genes are downloaded in ascending order based on their weight. Based 
on the behavior of large datasets, they retained data in many databases 
for analysis. Several databases, including GenBank, PubMed, and OMIM, 
can be used for various reasons. The NCBI gene database was used to 
compile a list of genes for stress and depression. 

2.2. Data preprocessing 

The gene database is selected in NCBI, and a list of genes associated 
with a certain disease is searched for. To search for genes associated with 
a certain disease, go to the National Center for Biotechnology 

Fig. 1. Procedures are to be followed in an orderly fashion in the ongoing research work. From NCBI, collected two datasets on stress and depression. The genes 
related to a disease must be gathered in order to study it. The genes are downloaded in ascending order based on their weight. The programming language R was 
implemented in order to search both datasets for genes that were common to both. Based on the common genes, a protein-protein interaction network is created, 
along with its topological properties. From the PPI network, the top 10 hub genes are identified. The top ten hub genes were used to create gene-miRNA interactions, 
TF-gene interactions, protein-drug interactions, co-expression and physical interactions. 
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Information (NCBI). In increasing order, the genes are downloaded 
based on their weight. The database was last accessed on March 15, 
2021. However, just preprocess and gather genes that are exclusive to 
Homo sapiens in this initial phase. However, in this initial phase, only 
Homo sapiens genes are preprocessed and collected. That is, all obtained 
genes are filtered, and only those associated with human diseases are 
preserved for further investigation. 

2.3. Gene mining 

The main objective of disease gene mining is to detect an essential 
gene as opposed to optimizing classification accuracy on a test set. The 
concordant genes are identified between those two diseases using R 
programming [23]. Data mining’s major purpose is to make the data 
useable for research and analysis. Everything relevant to the genes is 
collected and stored in a text file, while a separate text file includes 
non-research-related material or genes. Gene mining is a critical 
component of our study, and we shall achieve our goal via gene 
extraction. This study is crucial since a single omission might lead a gene 
to be backtracked, resulting in a false result. The genes are identified and 
categorized according to their relationship to one another. Data mining 
was used to find potential genes associated with stress and depression. 

2.4. Protein-protein interaction 

Protein functions have a variety of characteristics, the most impor-
tant of which is protein-protein interaction [24]. PPIs define the 
connection between two or more proteins, and these interactions are 
facilitated by biochemical, hydrophobic, and electrostatic factors. PPI 
networks provide a wealth of new information on protein function [25]. 
Proteins are the primary determinants of how biological processes work. 
Moreover, proteins regulate molecular and cellular functions, allowing 
us to assess the healthy situation or diseased states of organisms. PPI 
refers to several processes occurring inside the cell. A PPI network holds 
information about the protein-protein interactome of a specific organ-
ism. The Protein-Protein Interaction Network (PPI) represents in-
terconnections between genes and proteins between genes that are 
related. The PPI network serves an essential role in bioinformatics 
research. PPI networks are created using Cytoscape, a well-known and 
trustworthy bioinformatics research tool [26]. For this study, a PPI 
network is built using NetworkAnalyst, an online bioinformatics 
application. 

2.5. Protein-drug interaction 

The core tasks of drug design are thought to be increasing drug ef-
ficiency and decreasing toxicity [27]. Finding new inhibitors is a major 
issue during drug development. Structure-based design is a fundamental 
technique for this endeavor, and it is increasingly becoming a part of 
drug development. A substantial number of therapeutic targets have 
been shown to benefit from the protein’s precise three-dimensional ar-
chitecture [28]. Protein-drug interactions are essential for properly 
understanding the structural properties required for ligand affinity. 
These interactions relate to the regulation of drug distribution, disposal 
rate, and toxicity. Protein-drug interactions are developed for all genes 
that are related, causative, and common in the targeted disorders. The 
enrichment analysis for this study was calculated utilizing the online 
web-based program NetworkAnalyst, a prominent bioinformatics tool. 

2.6. Gene-miRNA interaction 

MicroRNAs play a vital role in transcriptomic regulation. MicroRNAs 
are essential post transcriptional mediators of gene expression in many 
biological processes in animals and plants. Identifying the genes that are 
controlled by a miRNA is essential for a complete understanding of its 
biological role. MicroRNAs are naturally occurring, single-stranded, tiny 

RNA molecules that regulate gene expression by binding and inhibiting 
translation and destruction by targeting mRNAs. The paucity of exper-
imental data identifying their associated mRNA targets contrasts with 
the identification and confirmation of numerous miRNA genes. The 
definition of the principles of miRNA target identification is the most 
fundamental problem in miRNA biology [29]. The accuracy and dura-
bility of the experimental approaches used to find novel miRNA targets 
and confirm anticipated interactions might vary substantially [30]. 
Functional miRNA interaction sites are defined by factors such as 
miRNA “seed” complementarity, structural accessibility, and sequence 
and positional biases. These components facilitate modulative in-
teractions with RNA-binding proteins [31]. 

2.7. TF-gene interactions 

TF (transferrin) is a gene that codes for proteins. Transcriptional 
factors (TFs) are thought to be important in the control of gene tran-
scription as well as the determination of cellular identity and activities. 
A variety of target genes are regulated by individual transcription fac-
tors (TFs) through direct or indirect interactions with other transcription 
factors. The TF-gene interaction explores the effect of TF on functional 
pathways and gene expression levels. In order to understand the func-
tions of pleiotropic global regulators, it is essential to identify the sig-
nificant TF-gene interactions. So, several transcription factors work 
together to control life activities [32]. 

3. Results and discussion 

3.1. Gene collection 

All relevant genes for stress and depression were gathered for this 
study from the NCBI’s online gene database. collected Homo sapiens 
genes from the NCBI. There are 3483 and 545 genes for stress and 
depression, respectively. Table 1 shows the number of NCBI-retrieved 
genes associated with various diseases as well as the number of Homo 
sapiens genes. 

3.2. Gene mining, intersection and common gene finding 

In this study, utilized the R programming language to discover genes 
that are shared by stress and depression. When it comes to data mining, 
the sequential pattern approach and the FP tree method are used to 
process the necessary information. Data mining techniques (sequential 
pattern approach and FP tree method) were used to find the common 
genes leading to stress and depression because the method of data 
mining can assist in the discovery or identification of common patterns 
or trends in transaction data for a specific time period. A sequential 
pattern is a type of data mining that is used to examine patterns in data 
that come in a particular order. Despite other algorithms such as Apriori, 
FP-tree is proposed for faster performance when there are a large 
number of patterns to select for mining [33]. It identified connections 
between stress and depression. Fig. 2 depicts the number of common 
genes. After linking the two diseases, 304 common responsible genes 
were found [34]. To avoid confusing the data, the top ten weighted 
genes were retained. The top ten weighted genes were APP, ESR1, TP53, 

Table 1 
The representation of the gene collection of targeted diseases is from the NCBI 
database. There are 3483 for stress and 545 for depression after processing and 
sorting the associated genes for Homo sapiens. The genes are sorted by their 
weight in ascending order. The numerical values of the identified liable genes 
are shown in Table 1.  

Diseases Total number of gene Total number of Homo sapiens gene 

Stress Dataset 105020 3483 
Depression Dataset 1165 545  
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CTNNB1, SIRT1, AR, ABL1, HSPA4, AKT1, and CREB1. We called the top 
ten genes weighted. We found the top ten genes according to their de-
gree values: 1958, 798, 659, 330, 314, 276, 275, 251, 248, 245. We 
found that those ten genes are mostly connected to each other. The 
protein-protein interaction of the top ten weighted nodes in the network 
has 3927 nodes and 5326 edges. The top ten genes are mostly respon-
sible for those diseases. If we treat those genes accurately, we can pre-
vent these diseases [35]. Fig. 2 shows a venn diagram showing the 
number of genes and their common gene ratio. Genes were obtained 
from a reliable database to begin this study. A data mining technique 
was then used to mine the data. Furthermore, there is a clear under-
standing of the relationship between two diseases. Stress and depression 
genes in the human genome totaled 3483 and 545, respectively. Fig. 2 
depicts the outcome of the verification inquiry. 

3.3. Protein-protein interaction 

Protein functions have a variety of characteristics, the most impor-
tant of which is protein-protein interaction. PPIs define the connection 
between two or more proteins, and these interactions are facilitated by 
biochemical, hydrophobic, and electrostatic factors. PPI networks pro-
vide a wealth of new information on protein function. The Protein- 
Protein Interaction Network (PPI) represents interconnections between 
genes and proteins between genes that are related. The PPI network 
serves an essential role in bioinformatics research. Researchers may 
perform frequent and sophisticated conceptual analyses of gene 
expression profiles using NetworkAnalyst 3.0, a powerful Internet tool 
with a natural online interface that enables them to do so easily [36]. 
The PPI network connects genes and hub proteins that are connected 
directly as well as those that are linked indirectly. The NetworkAnalyst 
web-based tool and the STRING interactome database are used to 
generate SIF files for the network diagram. The goal of the STRING 
database (http://string-db.org) is to provide a critical evaluation and 
integration of direct (physical) and indirect (functional) interactions 
between proteins [37]. PPI networks were created and evaluated using 
Cytoscape in order to identify the most important genes among the 
common genes. The top 10 common genes of APP, ESR1, TP53, 
CTNNB1, SIRT1, AR, ABL1, HSPA4, AKT1, and CREB1 were then 
investigated using the PPI network. Every organism for whom data on 
the relationship is available is included in the database [38]. Fig. 3 de-
picts the protein-protein interaction network for the top ten genes 
examined. 

3.4. Topological properties 

Topological properties are important to identify the key nodes in a 
network. The main objective of analyzing topological properties is to 
identify drug-target proteins and understand biological networks and 
mechanisms of drug activity. With the help of the Network Analyzer 
program, the PPI network in the Cytoscape tool is utilized to identify 

topological features of the network. Network Analyzer using the Cyto-
scape tool’s Simple Interaction Format (SIF) file. Table 2 lists the top 10 
weighted genes. Figs. 4–7 depicts the PPI network’s various topological 
features. Closeness centrality, as seen in Fig. 4, is a method of detecting 
objects that may effectively transfer data across a network. The average 
distance between nodes is determined by a node’s closeness centrality. 
With a high closeness score, nodes are closer to each other than any 
other nodes. The average clustering coefficient is determined by the 
degree of average clustering of nodes in a network, as shown in Fig. 5. 
Fig. 6 depicts, Betweenness centrality measures a vertex’s effect on data 
flow between two vertices, assuming data flows largely down the 
shortest pathways. Fig. 7 shows, the topological coefficient is a numer-
ical measure of how well a node links its neighbors to other nodes. Nodes 
with one or no neighbors are given a topological coefficient of 0. 

3.5. Gene regulatory network 

In order to represent the relationship between genes, the term “gene 
regulatory network” (GRN) is employed. Using web-based network an-
alyst tools, we defined the gene regulatory network. Gene regulatory 
networks may be divided into three categories: gene-miRNA in-
teractions, TF-gene interactions, and the TF-miRNA co-regulatory 
network [39]. 

RegNetwork TFs-miRNA coregulatory interactions to identify tran-
scriptional and post-transcriptional regulators of genes The TF-miRNA 
coregulatory network was visualized using NetworkAnalyst. Gene- 
miRNA Small non-coding RNAs are being found to have more and 
more types and functions. This suggests that there are regulatory 
mechanisms that are much more complicated than the ones that are 
presently used to analyze and design gene regulatory networks. The 
evaluation of inter-pathway regulatory reasons can be useful during the 
process of finding new therapeutic targets. The activity of noncoding 
miRNAs is essential in this regulatory context because miRNAs are 
responsible for activating pathways [40]. Through the use of the miR-
Base database, miRNAs can be retrieved. miRBase is a database that 
contains published miRNA sequences as well as annotations that can be 
searched. Each entry in the miRBase database for a miRNA is correlated 
with the relevant information on the genetic location, which can then be 

Fig. 2. A Venn diagram shows the relationship between the common genes. 
Out of all 4028 genes, 304 were identified as common, which is 8.2% of both 
stress and depression. 

Fig. 3. This network represents protein-protein interaction for top 10 hub 
genes. The network has 988 nodes, 1390 edges, and 10 seeds (APP, ESR1, TP53, 
CTNNB1, SIRT1, AR, ABL1, HSPA4, AKT1, CREB1). Nodes in red represents hub 
genes, edges in yellow represents the connections that exist between the pro-
teins. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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used to identify the host genes. NetworkAnalyst is web-based software 
that is used to make the gene-miRNA interaction network. NetworkA-
nalyst was made so that biologists, not just bioinformatics experts, could 
utilize it. The top ten hub genes’ gene-miRNA interactions are depicted 

in Fig. 8. 
Through TF-gene interaction analysis, the common genes are used to 

assess the effect of TF on the functional pathways and expression levels 
of the genes. Transferrin glycoproteins form a strong yet reversible bond 

Table 2 
Topological properties of the PPI network were investigated in order to understand the biological process, and the correlation between closeness centrality, cluster 
coefficients, betweenness centrality, topological coefficient, degree, number of neighbors, and other variables was discovered. Using the Cytoscape tool, we examined 
the topological properties of the top ten responsible genes in the PPI network.  

Name of Protein Degree Betweenness Centrality Closeness 
Centrality 

Clustering 
Coefficient 

Topological 
Coefficient 

APP 1958 0.4382706130 0.4837275878 4.3582582208 0.0013860241 
ESR1 798 0.1196689212 0.4085905186 0.0034905331 0.0039145678 
TP53 659 0.1024568117 0.4173003185 0.0050735433 0.0040595482 
CTNNB1 330 0.0521111492 0.4412755137 0.0126922723 0.0058149058 
SIRT1 314 0.0418426250 0.3907619279 0.0085468346 0.0067302307 
AR 276 0.0305328534 0.3825667302 0.0101712779 0.0082048563 
ABL1 275 0.0476278674 0.4161104270 0.0069276709 0.0058116696 
HSPA4 251 0.0361502317 0.4351155384 0.0167011952 0.0072242347 
AKT1 248 0.0322482364 0.4332366237 0.0177615254 0.0073262968 
CREB1 245 0.0453843127 0.4299296953 0.0117430579 0.0068597337  

Fig. 4. Figure depicts the relationship between the degree and closeness centrality of the cytoscape-generated protein-protein interaction network.  

Fig. 5. Figure depicts the relationship between the degree and clustering coefficient of the cytoscape-generated protein-protein interaction network.  
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Fig. 6. Figure depicts the relationship between the degree and betweenness centrality of the cytoscape-generated protein-protein interaction network.  

Fig. 7. Figure depicts the relationship between the degree and topological coefficient of the cytoscape-generated protein-protein interaction network.  

Fig. 8. Gene-miRNA interaction network was built according to the top ten hub genes. Nodes in sky blue indicated hub genes, and nodes in red indicated gene- 
miRNA. This network consists of 603 nodes and 754 edges. There are 10 seed nodes (APP, ESR1, TP53, CTNNB1, SIRT1, AR, ABL1, HSPA4, AKT1, CREB1). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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with iron molecules [41]. The TF gene makes the 76-kDa glycoprotein 
transferrin, which is made in the liver. Vertebrate serum is composed of 
a variety of proteins that bind iron. Transferrin is assumed to be the most 
important of all these. The NetworkAnalyst platform is used to identify 
TF-gene interactions with commonly known genes. Analysis of biolog-
ical modules can be performed with that, which also offers tasks that are 
typical of network topologies [42]. The ENCODE database, which is part 
of the NetworkAnalyst platform, is used to make the network for the 
TF-gene interaction network. TF-gene interactions are depicted in Fig. 9. 

3.6. Protein Drug Interaction 

In the cells and tissues of a live organism, activities of intermolecular 
recognition and/or mediation, including membrane transport events, 
are facilitated by protein-drug interactions [43]. During drug develop-
ment, the protein target must be studied structurally and mechanisti-
cally, and this should be accompanied by a thorough understanding of 
how ligand binding impacts protein conformation and biological activ-
ity on several levels [44]. The DrugBank database was used to create the 
PDI network, which was produced using the NetworkAnalyst program 
[45]. The PDI network has been analyzed in this research work very 
carefully which has been demonstrated in Fig. 10(a) and (b) 
respectively. 

3.7. Co-expression and physical interaction 

Typically, a co-expression network is an undirected graph; this 

network demonstrated a strong connection between two genes. If two 
genes are discovered to interact in protein-protein interaction research, 
they are linked. These ligand-based protein networks, which anticipate 
the capacity of adjacent proteins to bind linked molecules indirectly, 
may be used to supplement genetically oriented gene networks, which 
predict the importance of an operation or disease. This paper examines 
in detail the extent to which such interactions between ligand-based 
proteins may allow functional genomic correlations, taking into 
consideration genetic overlap, physical protein-protein interactions, co- 
expression, and disease gene annotations [46]. Two or more proteins 
may interact physically, resulting in binary interactions and complex 
proteins [47]. Physical interaction between ligands and proteins estab-
lishes protein-protein interactions, and these ligands are often devel-
oped within protein families [48]. Certain protein interactions occur in 
signaling or metabolic pathways with other ligands such as nucleic 
acids, lipids, and certain tiny compounds. Genetic interaction refers to 
the functional relationship between genes. Epistasis is a non-allelic gene 
interaction in which one gene’s function is hidden by another, resulting 
in repression or a new characteristic [49]. Standard pathway analysis 
includes software or web services that evaluate transcriptomics, prote-
omics with protein–protein interactions, and metabolomics data. The 
three most common categories of high-throughput data have been 
visualized and analyzed [50]. Using public data, we test the premise that 
interacting proteins should be co-localized. We show that a considerable 
number of interacting proteins are co-located using a fully filtered PPI 
dataset [51]. For this study, used GeneMANIA to construct networks of 
physical interaction and co-expression for 10 weighted genes. Fig. 11 

Fig. 9. TF-gene interaction network was built according to the top ten hub genes. Nodes in orange indicated hub genes, and nodes in yellow indicated TF genes. This 
network consists of 157 nodes and 206 edges. There are 7 seed nodes (TP53, CTNNB1, SIRT1, ABL1, HSPA4, AKT1, CREB1). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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displays the physical contact and co-expression between the two in-
dividuals’ diseases. The figure indicates the physical interaction is 61%, 
co-localization is 11.29%, pathway is 10.49%, genetic interaction is 
8.23%, co-expression is 6.58%, predicted is 1.30%, and shared protein 
domains are 1.12% between those two diseases. Physical interaction: 
61% of us truly recognize that, according to our diseases, they have 
physical interaction between them. 

4. Discussion 

Finding a genetic relationship and protein-drug interaction between 
stress and depression was one of the major objectives of this research 
work. The new aspect of the research was the discovery of shared genes 
between the two diseases and the subsequent analysis of these genes. 
Genes were acquired from NCBI, and common genes were retrieved from 
these diseases as a result of this research. The quantity of genes gathered 

from the NCBI gene database was huge. As a result, the pre-processing, 
filtering, and gene mining phases had to be followed. PPI networks were 
created and evaluated using Cytoscape in order to identify the most 
important genes among the common genes. The top 10 common genes of 
APP, ESR1, TP53, CTNNB1, SIRT1, AR, ABL1, HSPA4, AKT1, and CREB1 
were then investigated using the PPI network. By creating the top ten 
hub genes, different types of interactions between those two diseases 
were created. The topological properties of the PPI network were 
investigated in order to understand the biological process, and the cor-
relation between cluster coefficients, betweenness, degree, number of 
neighbors, and other variables was discoverd. Topological properties are 
important to identify the key nodes in a network. The main objective of 
analyzing topological properties is to identify drug–target proteins and 
understand biological networks and mechanisms of drug activity. The 
findings of the topological properties, which focused on an under-
standing of co-expression and pathway analysis in a less complicated 

Fig. 10. (a). The graphs show subnetwork 1 of the protein-drug interactions of the 10 most significant hub genes for stress and depression. Each node represents a 
gene, and each edge denotes a relationship between two genes. The nodes that are placed in the middle are seed nodes. There are 21 nodes in the network, 20 edges, 
and two seeds (ABL1 and AKT1). Based ondegree value, ABL1 is the most significant hub protein in the network. ABL1 comprises 80.5% of the overall network’s 
edges. (b). The graphs show subnetwork 2 of the protein-drug Interactions of the 10 most significant hub genes for stress and depression Each node represents a gene, 
and each edge denotes a relationship between two genes. The nodes that are placed in the middle are seed nodes. The network has 3 nodes, 2 edges, and 1 (CREB1) 
seed node. Based on the degree of interactions it has, CREB1 is the most essential hub protein in the network. 
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manner, were presented. Three kinds of gene regulatory networks were 
employed in this study to identify the functional analysis of genomic 
programs. Gene-miRNA and TF-gene networks demonstrated that ther-
apeutic molecules interacted with the genes they were targeting. The 
coregulatory interactions between RegNetwork TFs and miRNAs to 
identify transcriptional and post-transcriptional regulators of genes. The 
TF-miRNA coregulatory network was visualized using NetworkAnalyst. 
Through the use of nanosystems, a therapeutic approach that involves 
inserting exogenous nucleic acids into target cells in order to prevent or 
treat genetically based disorders can be combined with other treatment 
methods and imaging agents in order to produce much more precise and 
effective diagnostic and therapeutic approaches for stress and depres-
sion. In order to better understand how a cell’s many biological and 
medicinal qualities interact with one another, a number of these genes 
were studied. Based on the study of different analyses such as PPI, to-
pological properties, gene regulatory networks, physical interaction, 
and co-expression, a protein-drug interaction is recommended for stress 
and depression. The recommended drugs should be efficient in the 
therapeutic field of stress and depression. 

5. Conclusion 

We have given an overview of two diseases in this study: depression 
and stress. For drug design and development, this bioinformatics study 
classified collective genes from two different related diseases, which will 
be useful for classifying possible new drugs as a result. Four other critical 
characteristics have also been thoroughly studied in this work: PPI, 
gene-miRNA interaction, TF-gene interaction, and PDI. Modeling in-
cludes choosing the appropriate datasets, methods, variables, and 
formatting techniques for mining data. There must be an understanding 
of the genes that are affected by a disease before a drug can be recom-
mended for therapeutic purposes. The current study used inter-gene 
mapping to reveal the biological relationship between the detected 
disorders. The protein-protein interaction network (PPI) represents in-
terconnections between genes and proteins between genes that are 
related. The PPI network serves an essential role in bioinformatics 
research. The top 10 common genes of APP, ESR1, TP53, CTNNB1, 
SIRT1, AR, ABL1, HSPA4, AKT1, and CREB1 were then investigated 
using the PPI network. Using the top ten hub genes, different types of 
interactions between those two diseases were created. The topological 
properties of the PPI network were investigated in order to understand 

the biological process, and we discovered the correlation between 
cluster coefficients, betweenness, degree, number of neighbors, and 
other variables. PPI network, topological properties, PDI network, gene- 
miRNA interaction, TF-gene interaction, and co-expressions all help in 
drug discovery for the two diseases selected. Topological properties are 
created by the PPI network analysis program cytoscape to identify the 
disease-related genes that are connected to each other. Using cytoscape, 
find the top 10 hub genes from the PPI network that are mostly con-
nected to each other. These top ten genes are truly responsible for these 
two diseases. The co-expression and physical interaction of genes were 
established using GeneMANIA. The PPI network, topological properties, 
gene-regulatory network, protein-drug interaction, and physical inter-
action amongst the genes that were responsible for the scheme ensured a 
similar therapeutic design. This study may contribute to our knowledge 
of the PDI, but further system biology and bioinformatics research will 
be required. The goal of the study in the future is to develop a generic 
drug for the two diseases that have been identified. It is possible that this 
study may offer useful information for drug development. 
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