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Deep learning methods in artificial intelligence are used for brain tumor diagnosis as they handle a huge
amount of data. Compared to computerized tomography (CT), Ultrasound, and X-ray imaging, Magnetic
Resonance Imaging (MRI) is effectively used for machine vision-based brain tumor diagnosis. However, due to
the complex nature of the brain, brain tumor diagnosis is always challenging. This research aims to study the
effectiveness of deep transfer learning architectures in brain tumor diagnosis. This paper applies four transfer
learning architectures- InceptionV3, VGG19, DenseNet121, and MobileNet. We used a dataset with data from

three benchmark databases of figshare, SARTAJ, and Br35H to validate the models. These databases have
four classes: pituitary, no tumor, meningioma, and glioma. Image augmentation is applied to make the classes
balanced. Experimental results demonstrate that the MobileNet outperforms competing methods by exhibiting

an accuracy of 99.60%.

1. Introduction

The brain is an essential part of the human body and is involved in
all aspects of perception, cognition, emotion, and behavior. There are
many billions of neurons in the brain, and they communicate electrical
and chemical signals with one another. It is divided into various
regions, each of which performs a specific purpose, such as the cerebral
cortex, which is in charge of consciousness, and the cerebellum, which
is in charge of balance and coordination.

A tumor, also referred to as a neoplasm, is an abnormal growth
of cells that appears as a mass or lump in the body. There are two
types of tumors named benign and malignant. Mostly slow-growing and
confined to one area of the body, benign tumors do not spread. But, if
they expand into or close to critical organs or tissues or get too big, they
may become problematic. Each of the body’s organs, such as the brain,
breast, lung, liver, colon, and skin, can develop tumors [1]. A brain
tumor is a mass or abnormal growth of brain cells. Brain tumors can
grow from the brain tissue itself or from cancer that first spreads from
another part of the body to the brain (metastasis). Brain tumor diag-
nosis frequently involves imaging tests like computerized tomography
(CT) or Magnetic Resonance Imaging (MRI) scans, as well as a biopsy
to identify the tumor type [2]. There are many different types of brain
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tumors including Gliomas, Meningiomas, Pituitary, Schwannomas, and
Glioblastomas [3].

+ Gliomas - These are glial cell-derived malignancies, which are the
brain’s supporting cells. They can grow anywhere in the brain,
either low-grade or high-grade.

» Meningiomas - Meninges are the protective layers that protect the
brain and spinal cord, and these tumors grow there. Meningiomas
are typically benign.

« Pituitary adenomas - These are tumors that arise in the pituitary
gland, a little organ that makes hormones and is situated at the
base of the brain.

» Schwannomas - Schwann cells, which create the myelin coating
that protects nerve fibers, is the source of these malignancies.

+ Glioblastomas - These gliomas are the most dangerous and aggres-
sive kind.

Deep learning and artificial intelligence (AI) have made significant
advancements in the field of medical imaging analysis and have played
a crucial role in the classification of different types of cancer, including
lung and breast cancer. A pre-trained model that has been trained on
a sizeable dataset for a certain task is used as a starting place for
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a new, related task using the machine learning technique known as
transfer learning (TL). TL enables us to benefit from the knowledge
and attributes that have been obtained by the pre-trained model rather
than having to train a new model from scratch. There are numerous
transfer learning models named VGG (Visual Geometry Group), ResNet
(Residual Network), Inception, MobileNet, DenseNet, and so on.

In [4], brain images with a tumor are initially classified into three
categories: normal, Low-Grade Glioma (LGG), and High-Grade Glioma
(HGG). Tumor identification is carried out using the VGG19 transfer
learning model. In the second phase, they use the superpixel segmen-
tation method to split the tumor from surrounding muscles in LGG and
HGG images. In [5], it is important to alter the model hyper-parameters
and learning parameters in order to use deep pre-trained convolutional
neural networks (CNNs) based on transfer learning in medical imaging.
They suggested a new approach to classify MRI images of the brain
using transfer learning. In [6], the CNN method is used to categorize
brain MRI scan images into cancerous and non-cancerous. Using the
transfer learning method, they evaluated the efficacy of their scratched
CNN model against the pre-trained VGG16, ResNet50, and InceptionV3
models. The investigation reveals a 96% accuracy for the suggested
VGG16 model.

In order to categorize the brain MRI images effectively, we eval-
uated four transfer learning models including VGG19, InceptionV3,
DenseNet121, and MobileNet. The main contribution of this paper is
as follows.

Classify the brain tumor into four classes using transfer learning
and fine-tuning based on magnetic resonance images.

Preprocess and use three benchmark datasets for high accuracy
and apply fine-tuning on the transfer learning models.

Modify VGG19, InceptionV3, MobileNet, and DenseNet121 mod-
els by adding a single fully connected layer.

Establish standard comparisons between the proposed transfer
learning approaches and existing works.

Achieve the best accuracy with MobileNet obtaining 99.60%
accuracy in the epoch scenery and InceptionV3 obtaining 98%
accuracy in performance.

The majority of the work is organized as follows. In Section 2, we
briefly summarized the literature. The proposed approach is given in
Section 3, which also covers experiment setup, model training, and
assessment. Section 4 provides the result analysis and discussion. In
Section 5, the paper is completed.

2. Literature review

Some works have been done by researchers on the classification
of brain MRI images. S. Kumar et al. [7] extracted the features and
submitted them to the Deep CNN. The proposed model has performed
remarkably well with a maximum accuracy of 96.3%. In [8], the
authors suggested artificial neural networks (ANN) and additional clas-
sifiers used to categorize the tumor grades. The suggested algorithm
has 99% of accuracy. In [9], the authors applied machine learning
models named extreme gradient boosting for detecting brain tumors
and their model achieved 97% of accuracy. In [10], the researcher
applied the Support Vector Machine (SVM) classifier to obtain sev-
eral cross-validations on the feature set. According to the comparison
analysis, the proposed method has a 97.1% accuracy. In [11], the
CNN and conventional architecture are combined in the author’s ap-
plication of the correlation learning mechanism (CLM) for deep neural
network designs. Their findings indicate that the CLM model achieves
an accuracy of roughly 96%. In [12], the researchers used the U-
Net model for segmenting the brain tumors using MRI images and
they got only 89% of accuracy. The researchers proposed a model
based on a statistical approach and machine learning technique with an
accuracy of 98.9% along with the surviving brain cancer, they created
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an interactive web-based tool [13]. In [14], the authors proposed
machine learning and deep learning for classifying hydrocephalus in
brain tomography images with an accuracy of 98.5%. In [15], the
authors presented a deep learning architecture for classifying the brain
tumor images with an accuracy of 98.69%. In [16], the AlexNet model
was used by the researcher to identify brain tumors. With the high-
est accuracy of 99.04%, the planned arrangement achieves a notable
performance. In [17], the researcher categorizes the tumor portion
for the process of classifying brain tumors using a deep autoencoder
(DAE)based Jaya optimization algorithm(JOA). The suggested method
had a 98.5% classification accuracy rate. In [18], the study offers a CNN
architecture for the classification of brain tumors and got an accuracy
of 96.56%. In [19], the authors presented a deep residual network
for classifying brain tumor images with an accuracy of 99%. In [20],
a novel deep learning-based strategy is suggested in the investigator
study for the identification of tiny brain tumors and the classification
of tumor types. The initial stage is to create a 3D CNN architecture
to extract brain tumors, and the extracted tumors are then sent to
a pre-trained CNN model for feature extraction. The investigation
reveals a 92.67% accuracy for the suggested CNN model. In [21],
the researcher describes a hybrid deep method named transformer
model and the self-attention unit for classifying brain tumors with an
accuracy of 99.30%. In [22], the authors proposed the BrainMRNet
model for the classification of the brain MRI images and they got
96.05% of accuracy. In [23], the researchers proposed two hybrid
deep-learning models named ExpDHO-based ShCNN (Exponential deer
hunting optimization-based Shepard CNN) and ExpDHO-based Deep
CNN for detecting and classifying brain tumors effectively. The models
achieved an accuracy of 92.9% and 91.7% respectively. In [24], the
refined VGG16 architecture achieved the maximum accuracy up to
98.69% in terms of classification and detection in the investigator-
proposed studies. In [25], the authors proposed a convolutional neural
network for segmenting brain tumor MRI images with an accuracy
of 98.81%. In [26], the authors presented a model named attention-
convolutional-LSTM (long short-term memory) for classifying brain
tumors with an accuracy of 98.90%.

In [27], the researcher applied three transfer learning approaches.
VGG16, InceptionV3, and ResNet50 are used in this paper. VGG16
model achieves 91.58%, the highest accuracy among these three mod-
els. In [28], the researcher works with deep characteristics that have
been extracted from the tumor regions and also used pre-trained
AlexNet, ResNet18, GoogleNet, and ShuffleNet networks and the accu-
racy is 98.02%. In [29], the authors established a model to detect brain
tumors using MRI images with an accuracy of 99.3%. In [30], five well-
known convolutional neural networks—AlexNet, VGG16, ResNet18,
GoogleNet, and ResNet50 were used by the researcher. For train-
ing and testing, the five-fold cross-validation methodology was used.
The method named Fluid attenuated inversion recovery (FLAIR) MRI
achieves 98.88% of accuracy. In [31], the researchers proposed a
CNN model for classifying different types of brain tumors through
MR images. The accuracy of the model is 98.32%. In [32], the re-
searcher proposed the Brain Tumor Classification-Fast Convolution
Neural Network (BTC-fCNN) model to achieve 98.63% average ac-
curacy using five iterations with the help of transfer learning, and
they got 98.86% using retrained five-fold cross-validation. In [33],
the researcher pre-trained five EfficientNets variants: EfficientNetBO —
EfficientNetB4. The proposed method EfficientNet achieves 98.86% ac-
curacy and showed better performance with the help of EfficientNetB2.
In [34], the researcher employs pre-trained deep convolutional neural
network (DCNN) architecture, VGGNet. It was trained with large data
before applying it to the dataset. With the help of this approach, the
suggested method provides 98.93% accuracy. In [35], the authors com-
pared the AlexNet, ResNet, VGG16, and UNet for classifying the brain
tumor images. After this comparison, their proposed model achieves
99.30% accuracy for benign and malignant. In [36], the researcher
builds an improved version of the Hunger Games Search algorithm
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Fig. 1. Methodological block diagram.

Fig. 2. Sample Data from various classes of data.

(I-HGS) and suggests an optimal residual learning architecture for cat-
egorizing various brain tumors. For the three datasets, I-HGS-ResNet50
obtained accuracy is 99.89%, 99.72%, and 99.88%.

In this paper, we applied four TL models for classifying the MRI
brain images. Among the models, MobileNet achieves the highest ac-
curacy of 99.60%.

3. Proposed methodology

Fig. 1 shows the block diagram of the prospective methodology.
Four renowned transfer learning techniques are used in this work in
order to identify four classes to analyze and estimate our suggested
frame utilizing transfer learning models named VGG19, InceptionV3,
MobileNet, and DenseNet121. With the use of these four transfer learn-
ing techniques, we test our dataset. We divided our dataset into training
and testing parts based on the data. We separated the data this way
because the training data will be used to learn the model, the validation
data, which is sample data, will be used to assess the model, and the
test data will be used to assess the proposed model in its entirety. Our
proposed model is confident in various phases.

3.1. Dataset description and splitting

For our model, we used the brain tumor dataset from Kaggle [371],
which contains brain MRI pictures of 7023 patients, both healthy
individuals and those with brain tumors. The pituitary, no tumor,
meningioma, and glioma types of brain tumors are all included in this
dataset. Each class in the collection has more than 1600 photos, all
of which are in excellent resolution. The dataset sample is displayed
in Fig. 2.

Table 1 describes the number of test train splitting images. There
are a total of 7023 images. Among them, training images are 5712 and

Table 1
Training and testing dataset for each class.
Set Brain Tumor No Tumor Total
Training 4117 1595 5712
Testing 906 405 1311
Total 5023 2000 7023
Number of images in each class
2000
1500
2
§ 1000
c
Q
g
E
500

0 f f
Glioma

Meningioma No Tumor Pituitary

Class

Fig. 3. Images from each class are depicted in a bar graph.

testing images are 1311, 2000 images are with no tumors and 5023 are
tumors.

Fig. 3 depicts the quantity of each brain tumor image class. It
demonstrates that there are more than 1800 photos in the No Tumor
class, 1757, 1645, and 1621 images in the classes of pituitary, glioma,
and meningioma, respectively.
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3.2. Data augmentation

Image Augmentation is a method of applying various modification
methods to real photos, resulting in altered duplicates of the same
image. This allows deep learning models to be trained on more picture
variants than are present in the real dataset. Keras’ ImageDataGenerator
class is used to perform picture augmentation. It can automatically
create enhanced pictures during model training, making the overall
mode more resilient as well as accurate [38].

3.3. Applied transfer learning models

A model that has been trained for one job can be used to solve a
different but related task using the machine learning technique known
as transfer learning. In transfer learning, the weights of a pre-trained
model are adjusted for the new task and utilized as the foundation for
a new model. Transfer learning is based on the notion that a model
that has already been trained can reuse features that it has already
learned from a big dataset for the new assignment. Transfer learning
enables us to leverage the knowledge from the pre-trained model to
save time and resources instead of starting from zero and training a
new model from scratch. Transfer learning has been successfully used
in a variety of applications, such as image recognition, natural language
processing, and speech recognition. By reusing pre-trained models,
transfer learning has enabled state-of-the-art performance on many
tasks with limited training data. Transfer learning has been applied
in diverse deep-learning applications, including image classification,
object finding, and tumor detection. In this paper, we used four TL
models. In all models, we used a fixed size of (224 x 224) RGB image as
input for our model. It defines that the matrix shape was (224,224,3).

» DenseNet121 is made up of a dense network with 121 layers,
including convolutional, pooling, and dense block layers. Each
layer is joined to all preceding layers by DenseNet by concate-
nating their feature maps. The number of parameters is reduced,
feature reuse is increased, and gradient flow is improved thanks to
the dense connectivity design. The architecture of DenseNet121 is
based on the idea of densely connected layers, where each layer
is connected to every other layer in a feedforward fashion. The
input of each layer is a concatenation of the feature maps from all
previous layers, which allows for more efficient parameter reuse
and reduces the risk of overfitting. It has also been adapted for
transfer learning and fine-tuning on other datasets with fewer
classes or different image characteristics [39].

We sometimes obtain the same layer, which is why we employ
x2, x3, and x4. Moreover, this model is divided into four blocks.
DenseNet121 design is shown in Fig. 4.

VGG stands for Visual Geometry Group and contains multiple
layers. There are 19 layers total in the VGG19, containing a mix
of convolutional, pooling, and fully linked layers. The key feature
of the VGG19 architecture is its use of small (3 x 3) convolutional
filters throughout the network, which allows for a more detailed
analysis of the input image. The model also uses max pooling
layers to reduce the spatial size of the feature maps and increase
the model’s translation invariance. With transfer learning, we
can work to attain high accuracy on new datasets with narrow
training data [40].

We employed kernels that were 3 x 3 in size with these multiple
convolutional (conv) layers. Max pooling was done over the 2 x 2
pixel windows with a stride of 2, while the convolution stride and
pixel padding size are also 1. Also, we added one fully connected
(FC) layer and a softmax function as the model’s final layers.
Fig. 5 shows the construction of the VGG19.
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Table 2
Hyperparameters of all exploit Transfer Learning models.

Metrics Metrics value
Batch size 128

Optimizer Adam

Epochs 50

Learning rate 0.001

Criterion Cross Entropy Loss

+ InceptionV3 is a popular pre-trained model. This model is built
using a number of convolutional layers with various kernel sizes,
pooling techniques, and dimensionality reductions. The architec-
ture uses a combination of different convolutional filters, includ-
ing1 x 1, 3 x 3, and 5 x 5 convolutions, as well as max pooling
and average pooling layers. It also incorporates a number of other
techniques, such as batch normalization and dropout, to improve
the model’s performance. It also includes a few other architectural
features such as batch normalization, factorized convolution, and
auxiliary classifiers. Overall, InceptionV3 has achieved state-of-
the-art performance on several benchmark datasets for image
recognition [40].

We have divided the TL InceptionV3 model into numerous com-
ponents to make it easier to grasp. We sometimes obtain the same
layer, which is why we employ x2, x3, and x4. Fig. 6 displays the
InceptionV3 architectural layout.

MobileNet is a family of neural network architectures designed
for efficient computation on mobile devices with limited com-
puting power and memory resources. The MobileNet architec-
ture uses a combination of depth-wise divisible complications
to reduce the number of parameters and calculations demanded
to perform image recognition and classification tasks. It uses
depth-wise separable convolutions, which break down a standard
convolution into two separate operations: a depth-wise convolu-
tion and a pointwise convolution. This reduces the number of
parameters required and makes the network much more efficient.
Additionally, MobileNet uses a technique called “bottlenecking”
to further reduce computational complexity by compressing the
input feature map before processing it with the convolutional
layers. Mobile Net architecture has many variations, including
MobileNet, MobileNetV2, and MobileNetV3 [41].

This model has so many different types of layers like convolution
layers, and Flatten Dense blocks. We separate the diagram into
blocks to understand the TL MobileNet model easily. Sometimes,
we get the same layer, so we use x2 and x6. Also, we separate
the model into three blocks. The architecture of the proposed
MobileNet is presented in Fig. 7.

3.4. Experimental preparation and assessment

This experiment uses a dataset with a huge number of photos. Our
model was trained in Google Collab. A reliable configuration machine
is what we need to train and test our model. The dataset’s train names
are reposted using Kaggle. For all of the advanced models, we use
the same dataset. We have divided our dataset into a training dataset
and a test dataset. We used the test dataset to evaluate the TL model
and the training dataset to train the TL model. The models combine
the strengths of Sklearn, TensorFlow, and Keras. The block size for all
advanced models is 128. The hyperparameters for our developmental
format are defined in Table 2.

We apply the cross-entropy loss to each epoch’s train and test sets.
Each model has undergone 50 epochs of training. Adam is an optimizer
that we use; its learning rate is 0.001.

Fig. 8, shows the model trained over a series of epochs. For In-
ceptionV3, VGG19, DenseNet121, and MobileNet models train loss and
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validation loss are so close to each other, sometimes they overlay each
other. But the DenseNet121 model is very different from them. We see
while train loss is decreasing on the other hand the validation loss
is increasing in every epoch. From Figure, we can see that train loss
is increasing and loss of validation is decreased after the first epoch.
The training loss is 0.6370 and the validation loss is 0.5961 after 2nd
epoch. Train and validation loss is not so fluctuating for Mobile Net.
The highest validation loss is at epoch 23 and the lowest validation loss
is at epoch 8. The validation loss fluctuates but training loss does not
fluctuate throughout the epochs. The final training loss is 0.0467 and
the validation loss is 0.1265 for the VGG19 model. The final training
loss is 0.0605 and the validation loss is 0.1862 for the InceptionV3
model.

DenseNet121 has generated the highest validation loss. The min-
imum loss of the DenseNet model is 0.0260 at epoch 39. And the
minimum validation loss is 0.0664 at epoch 18. Both train and valida-
tion loss fluctuated rapidly. We can say, the InceptionV3 model shows
better performance than VGG19, DenseNet121, and MobileNet.

Fig. 9 demonstrates the accuracy of the proposed models. The pair
of validation accuracy and training accuracy has been explained here.

InceptionV3 achieves the highest accuracy. The training accuracy
of the InceptionV3 model is 98.76% and the validation accuracy is
96.64%. The training accuracy of the VGG19 model is almost similar
to InceptionV3. Training accuracy is 98.97% and validation accuracy

Table 3

Overall performance of each model of 50 epochs.
Model Training Accuracy Training loss Testing accuracy Testing loss
InceptionV3  98.76% 0.0605 96.80% 0.1862
VGG19 98.97% 0.0467 95.50% 0.1265
DenseNet121 99.12% 0.0260 97.41% 0.0965
MobileNet 99.60% 0.0368 98.40% 0.1296

is 96.72% for the VGG19 model. Both training and validation accuracy
is not so fluctuating in this model. DenseNet121 gives an accuracy of
99.12% and 98.32% correspondingly for the pair of validation accuracy
and training accuracy. DenseNet121 has the most fluctuation in the
pair of training accuracy and validation accuracy compare to the other
models. MobileNet model has gained 99.60% training accuracy and
99.39% validation accuracy. Training accuracy is not very fluctuating
for this model while validation accuracy has quite fluctuated in some
epochs.

Table 3 shows the overall performance of each model of 50 epochs.
The highest training accuracy from 50 epochs of each model has
shown in this table. The experiment result shows the accuracy of
98.76%, 98.97%, 99.12% and 99.60% for models InceptionV3, VGG19,
DenseNet121 and MobileNet respectively. We have learned that the
MobileNet model got the highest testing accuracy.
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Table 4 Table 5
Confusion Matrix. Performance Metrics of all TL models on dataset.
Actual Positive Actual Negative Model Class P R F1 A
Predict Positive True Positive (TP) False Negative (FN) Pituitary 1.00 0.92 0.96
Predict Negative False Positive (FP) True Negative (TN) InceptionV3 No t-um-()r 0.96 1.00 0.98 0.98
Meningioma 1.00 1.00 1.00
Glioma 0.97 1.00 0.99
Pituitary 1.00 0.88 0.94
i i i i i No tumor 0.93 0.93 0.93
4. Result investigation and discussion VGG19 Meningioma oo L oo oo 0.96
Glioma 0.91 1.00 0.95
Our models use the confusion matrix to calculate the precision, F1 Pituitary 1.00 0.86 0.93
Score, recall, and accuracy. These are all the fundamental criteria used DenseNet121 No tumor 0.85 1.00 0.92 0.96
to categorize the models. Typically, we know that the Confusion Matrix Meningioma 1.00 1.00 1.00
output will be a matrix. It specifies how well all of the models perform Glioma 1.00 1.00 1.00
Pituitary 1.00 1.00 1.00
overall. Table 4 provides a summary of the confusion matrix. No tumor 1.00 0.82 0.90
Here TP represents True Positive, FP represents False Positive and MobileNet Meningioma 1.00 1.00 1.00 0.96
FN represents False Negative. Also, the F1 score, the P representing Glioma 0.86 1.00 0.93
Precision and R representing recall.
We assessed the performance metrics in our model. We show the Table 6
confusion matrix of the MobileNet model here in Fig. 10. In the Summary of models Accuracy as per epochs number.
confusion matrix, the tumor classes are shown as classes of numbers Model Train/Test Max Acc(%) MAE Min Acc (%) MinAE
0 to 3 where 0 means “Pituitary”, 1 means ‘“No tumor”, 2 is “Menin- L VGG19 Train 98.97 50 68.77 1
gioma”, and 3 is “Glioma”. For the confusion matrix of MobileNet, the Test 96.72 45 80.24 1
“Pituitary” class was recognized 25 times correctly, “No tumor” was TL InceptionV3 i:in zgzg 2(7) gg'i; 51;
correctly recognized 23 times but 5 times was not recognized correctly. Train 9912 39 04.54 1
Meningioma” which 44 times are correctly recognized. Also, “Glioma” TL DesneNet12l . o 08.32 46 91.99 3
which 31 times images are recognized correctly. TL MobileNet Train 99.60 31 78.47 1
Table 5 describes the performance metrics of every model. Var- Test 99.39 48 91.38 1
. . Train Max Acc  99.60 TL MobileNet at Epoch 31
ious numbers of scores are set into the test dataset for separated All Test Max Ace  99.39 TL MobileNet at Epoch 48

experimental models. Among the models, InceptionV3 outperforms the Both Max Acc  99.60 TL MobileNet at Epoch 31
accuracy. We took 50 epochs for InceptionV3, VGG19, DenseNet121,
and MobileNet of the training set.

Table 6 exhibits the accuracy of all models as per the maximum and

Table 7
Training length each-epoch of TL models.

minimum epochs number. The MobileNet model achieves the highest Model Duration (h:mm:ss)
. N . ;

train .accuracy.of ?9.60 % over the 50th epoch and it also achieves InceptionV3 32508

the highest validation accuracy of 99.39% over the 45th epoch among VGG19 3.48:15

all other models. Here, we denote the Maximum Accuracy as Max DenseNet121 2:50:08

Acc, Minimum Accuracy as Min Acc, Maximum Epochs as MA_E, and MobileNet 2:44:44

Minimum Epochs as MinA _E. Table 7 represents the length of the
training set for each epoch that we run on the Google Collaboratory
its Graphics Processing Unit (GPU) runtime.
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Table 8
Comparison of the proposed model using similar existing studies.

Source Method Dataset Accuracy

[71 Deep CNN BRATS, SimBRATS 96.3%

[8] Artificial neural networks RIDER and BRATS 2018 99%

[10] Support Vector Machine Harvard, RIDER & Local 97.1%

[11] Correlation learning Kaggle 96%
mechanism

[16] Alex Net TCIA 99.04%

[17] DAE + JOA + SoftMax BRATS 2015 98.5%
regression

[18] CNN Own 96.56%

[20] CNN BraTS 2018 92.67%

[22] AlexNet, GoogleNet, Own 96.05%
VGG16

[24] VGG16 Figshare 98.69%

[27] VGG16, InceptionV3, and - 91.58%
ResNet50

[28] [ResNet18 + ShallowNet] - 98.02%
+ SVM

[30] AlexNet, VGG16, TCIA (REMBRANDT) FLAIR-MRI (98.88%)
ResNet18, GoogleNet,
ResNet50

[31] ResNet50, VGG19, - 98.32%
DensetNet121 and
InceptionV3

[32] BTC-fCNN FIGSHARE 98.86%

[33] EfficientNet FIGSHARE 98.86%

[34] VGG-16 CNN FIGSHARE 98.93%

[35] ResNet, AlexNet, UNet, - 99.30%
and VGG16

Proposed InceptionV3 Figshare, SARTAJ and 99.60%

Br35H
4.1. Discussion and comparison Acknowledgment

Medical images include a wide range of heterogeneity; hence image
detection is important in their elucidation. We used MRI and CT scan
pictures to identify brain tumors. For the detection and categorization
of brain tumors, MRI is frequently used. In this work, we employ TL
models for brain tumor identification since they can accurately forecast
the tumor cells. In Table 8, We have drawn up a comparison table of
the existing work with the proposed work. The proposed model named
MobileNet gives the highest accuracy of 98%.

5. Conclusion

In this paper, we used MRI to represent the transfer learning meth-
ods for classifying brain tumors. We used four transfer learning meth-
ods in the experimental evaluation, including InceptionV3, VGG19,
DenseNet121, and MobileNet on the three brain tumor image datasets.
We have utilized the terms accuracy, precision, f1-score, and recall as
performance metrics. InceptionV3 beats all other models in using the
terms of performance parameters by achieving an accuracy of 98% as
well as MobileNet outperforms 99.60% in the case of experimenting
on epochs experiments. The narrowness of this paper is that the au-
thors used a secondary dataset. In the future, they can also apply the
proposed model to CT images. The proposed model will be helpful for
medical applications.
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