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ABSTRACT Recently, learned image compression algorithms have shown incredible performance compared
to classic hand-crafted image codecs. Despite its considerable achievements, the fundamental disadvantage is
not optimized for retaining local redundancies, particularly non-repetitive patterns, which have a detrimental
influence on the reconstruction quality. This paper introduces the autoencoder-style network-based efficient
image compression method, which contains three novel blocks, i.e., adjacent attention block, Gaussian
merge block, and decoded image refinement block, to improve the overall image compression performance.
The adjacent attention block allocates the additional bits required to capture spatial correlations (both
vertical and horizontal) and effectively remove worthless information. The Gaussian merge block assists the
rate-distortion optimization performance, while the decoded image refinement block improves the defects in
low-resolution reconstructed images. A comprehensive ablation study analyzes and evaluates the qualitative
and quantitative capabilities of the proposed model. Experimental results on two publicly available datasets
reveal that our method outperforms the state-of-the-art methods on the KODAK dataset (by around 4dB and
5dB) and CLIC dataset (by about 4dB and 3dB) in terms of PSNR and MS-SSIM.

INDEX TERMS Image compression, attention mechanisms, Gaussian merge block, refinement block,
autoencoder.

I. INTRODUCTION
(Revision) Image compression reduces spatial redundancy
in images and optimizes bandwidth and storage space in
various applications, including video compression, online
advertising, professional photographic exchange, etc. Tra-
ditional image compression algorithms [1]–[4] depend
on hand-crafted processes with intricate dependencies to
increase compression efficiency. For example, JPEG [1]
employs the discrete cosine transform (DCT). On the other
hand, JPEG2000 [2] uses discrete wavelet transforms (DWT)
to transfer an image pixel to the frequency domain and
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decompose multi-scale decomposition into spectral bands,
respectively. However, they cause artifacts along the image
borders, invisible at high bit rates. Recent video codecs,
such as VVC [3] incorporate intra prediction and an in-loop
filter for intra-frame coding. It is also utilized in BPG [4],
an image codec, to minimize redundant and irrelevant fea-
tures to improve the quality of the reconstruction frame.
However, traditional compression techniques cannot be opti-
mized end-to-end, limiting their overall rate-distortion (RD)
optimization performance (particularly in similarity index)
and learning ability.

Nowadays, deep learning-based image compression
methods [5]–[10] outperform traditional algorithms in
terms of rate-distortion (RD) performance. For example,
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Ballé et al. [5] provide an end-to-end image compression
using a convolutional neural network (CNN) based autoen-
coder. In particular, context-adaptive entropy models for
learned image compression are renowned for achieving
higher performance across traditional codecs. The study [6]
introduced a hyperprior to add more bits to the entropy
model to describe it more accurately. Minnen et al. [8] used
the auto-regressive previous information to build an accu-
rate entropy model and achieve equivalent or even higher
compression efficiency performance than the conventional
codec [4]. The work in [10] introduced a very similar notion
by taking into account two sorts of contexts, bit consuming
contexts (that is, hyperprior) and bit-free contexts (that is,
auto-regressive model), achieving a context-adaptive entropy
model. Although these methods enhance the compression
performance, they also greatly raise the compression arti-
facts [11] due to the quantization process during the entropy
coding and have stacked by limited respective fields in latent
space.

To boost the overall image compression performance,
the attention mechanism is being utilized to gather more
details from the latent space while suppressing irrelevant
information to allocate more bits [12]–[14]. The non-local
attention mechanism [15] is effective in many visual tasks
(i.e., semantic segmentation). Liu et al. [12] use the non-local
attention to build implicit significance masks for leading the
adaptive processing of latent features. On the other hand,
Cheng et al. [13] remove the non-local block to make it eas-
ier to learn image compression. The most recent research
in [14] also employed the non-local attention processes to
enhance the adaptive processing of latent features. It helps
the compression algorithm allocate additional bits to com-
plicated areas (e.g., edges and textures). However, this work
suffers some drawbacks. Firstly, their non-local attention
(working in a single direction) has no impact on the vertical
and horizontal weights to produce the respective wide field
and acquire valuable features to improve RD performance.
Secondly, a single mask in entropy coding will not be able
to eliminate latent feature data redundancy. Thirdly, the com-
pression artifacts are dramatically increased due to assigning
bits to non-essential areas, resulting in poor reconstructed
images. Motivated by it, we propose an efficient end-to-end
image compression method that significantly improves the
overall RD performance. Our contributions to this paper are
summarized as follows:
• We present an end-to-end autoencoder-based image
compression model to improve the overall image com-
pression performance. Three new blocks, i.e., an adja-
cent attention block (AAB), a Gaussian merge block
(GMB), and a decoded image refinement block (DIRB),
are included in this model.

• A plug-and-play AAB is applied to capture spatial cor-
relations (both vertically and horizontally), suppress
unnecessary information, and boost entropycoding effi-
ciency with more crucial features by allocating addi-
tional bits.

• The GMB simulates the distribution of the latent repre-
sentation in a precise manner to boost the rate-distortion
optimization performance.

• Compression artifacts are inevitable on the final recon-
structed images since our approach is lossy image com-
pression. A DIRB is used to leverage global information
with rich texture information and vibrant features to
improve the reconstructed image quality.

• An extensive experiment is conducted on two publicly
available datasets. Our method shows state-of-the-art
performance in both datasets and reduces the computa-
tional complexity simultaneously.

The remainder of the paper is arranged in the following
manner. In Section II, traditional and existing deep learning
based works are reviewed. The proposed architecture for
image compression with three new blocks, e.g., AAB, GMB,
and DIRB are described in detail in Section III. Section IV
represents the dataset, training details, and the evaluation
metrics. The qualitative and quantitative results with some
ablation studies are presented in section V. Finally, section VI
concludes the paper with our future research works.

II. RELATED WORKS
In this section, we briefly discuss the classical and deep
learning-based image compression methods.

A. CLASSICAL METHODS
Image compression techniques are primarily concerned with
reducing the levels of spatial redundancies present in images.
For example, converting photos from the pixel domain to
the frequency domain is simpler to compress. For instance,
JPEG [1] applies the discrete cosine transform. In contrast,
JPEG2000 [2] applies the discrete wavelet transform, which
is handcrafted. To reduce data redundancy, high-frequency
information is separated from low-frequency information,
and bits are allocated according to the signal significance.
Entropy coding such as Huffman [16], [17], hashing [18], and
arithmetic coding [19], [20] is also utilized to increase the
lossless compression performance of the image.

Currently, the intra-prediction approach [3], [4], which is
often used in video compression, has been employed for
image compression as well. The BPG [4] standard, for exam-
ple, is based on the HEVC/H.265 [21] image compression
standard, which delivers the highest possible image compres-
sion results in comparison to prior methods, such as JPEG
and JPEG2000. The prediction-transform approach is used
in the BPG standard [4], and 35 encoding options are uti-
lized to create the reconstructed image, which also decreases
redundant data. Then, bigger computing units, more forecast
methods, more transform varieties, and more coding facilities
are all supported by VVC [3]. Furthermore, the hybrid tech-
niques employ both conventional compression techniques
and themost current learning super-resolution strategies, such
as [22], to achieve higher compression ratios. However, tra-
ditional algorithms are created by hand-crafted components
(such as entropy coding).

17614 VOLUME 11, 2023



A. A. Jeny et al.: Improving Image Compression With Adjacent Attention and Refinement Block

B. DEEP LEARNING-BASED METHODS
Deep neural networks (DNNs) have shown to be useful
for various computer vision applications in recent years,
namely super-resolution, denoising, and object recognition.
Some recent studies have attempted to conduct neural
networks’ excellent representation capabilities to improve
the performance of image compression [5], [6], [8],
[10], [13], [23]–[32]. Toderici et al. [23] developed the first
learning-based image compression framework, which was
based on a recurrent neural network (RNN). Various bitrates
may be generated using a single model in their method.
When compared to BPG, [28] introduces more complex
RNN components and efficient reconstruction approaches to
obtain equivalent or even superior MS-SSIM [33] results.
Although some of these approaches [23], [25], [28] are aimed
to reduce the bitrates, the rate-distortion (RD) trade-off is not
considered.

By improving the RD performance, Ballé et al. [24]
introduced a CNN-based framework with the generalized
divisive normalization (GDN) layer, which is effective for
simulating nonlinear transformations that have been fre-
quently employed in subsequent approaches [5], [6], [8], [10],
[13], [14], [34]. However, to improve the RD performance,
thesemethods conduct the GaussianModel (GM) distribution
that is still short of encoding latent features by effectively
estimating the conditional statistics. According to Rippel
and Bourdev [35], a feature pyramid network (FPN) was
introduced to obtain more valuable features. However, this
would also lead to redundant information since convolutional
methods exchange features. Li et al. [29] suggested the use
of a significance map to alter the bit allocation of images,
which they found to be effective. To create the significance
map, a branch of a three-layer convolutional neural network
was trained. However, the explicit learning material requires
weight, which raises the computing cost. It is also tricky
to adaptively assign bits for in-depth features, as described
in [29].

In the training process, some methods [27], [32] employed
an adversarial network (GAN) as a distortion assessment
to lead the decoder to create more feasible pattern struc-
tures, which tends to result in reconstructed images of decent
visual quality. But the pattern structures obtained in this way
are not actual textures and lack fidelity. Recent studies on
adaptive learning of feature significance have shown that
attention strategies are quite effective. Considerable progress
has been achieved in areas like as natural language pro-
cessing [36] and semantic segmentation [15]. Moreover, the
efficiency of noise removal and super-resolution can be dra-
matically improved by incorporating non-local block (NLB)
into neural networks [37], [38]. In image compression, some
methods [12]–[14], [39] employ attention mechanisms that
allow spatially adaptive feature response for more diffi-
cult locations (i.e., patterns, saliency) in order to allocate
more bits. For example, [39] introduced an improvement
unit that functions on full-resolution photos to eliminate
compression artifacts by filtering the reconstructed images

using a simple neural network. [12]–[14] employed residual
non-local attention mechanisms to improve the RD perfor-
mance and compression artifacts due to the quantization pro-
cedure. However, these proposed attention mechanisms can’t
be exploited features in both directions (vertical and hori-
zontal) because of their one-way weight allocation. There-
fore, allocating more bits in complex regions (i.e., patterns,
edges) is not fully explored to improve the final reconstructed
image.

In contrast, we propose an adjacent attention block that
uses distinct weights in the horizontal and vertical directions
for feature maps to maintain only the most relevant infor-
mation while eliminating unnecessary information, such as
a complicated natural background, which has a significant
impact on the performance of RD. Furthermore, in order to
decrease compression artifacts, we have included a refine-
ment block, which is capable of smoothing out and improving
the visualization of the reconstructed image.

III. METHODOLOGY
This section presents the proposed deep image compression
framework in detail. In Figure 1, the architecture is shown.
Typically, well-known autoencoders are used in CNN-based
compression techniques [5], [6], [8], [12], [29], [30], [32],
[35]. Among them, variational autoencoder (VAE) has been
shown to be a successful architecture for compression as first
described in [6]. In this network [6], to successfully capture
spatial relationships while boosting the compression perfor-
mance by the entropy model efficiently, the hyper-encoder
and the hyper-decoder network are employed with two times
quantization. Therefore, motivated by [6], we adopt the
network of the autoencoder type for learning-based image
compression with three new blocks to improve the over-
all performance. In particular, four modules are employed
in the proposed system, which are the main encoder and
decoder, as well as the hyper-encoder and the hyper-decoder
network, respectively. The proposed attention mechanism,
referred to as the adjacent attention block (AAB), is included
in each architecturemodule. Two additional blocks, the Gaus-
sian merge block (GMB) and decoded image refinement
block (DIRB) are introduced to increase the overall per-
formance of the RD and improve the reconstructed image,
respectively.

At first, the original image I is taken through the main
encoder network and creates the corresponding latent rep-
resentations la by employing four convolutional layers with
non-linear functions (e.g., GDN). After that la is quantized
to l̂a. The quantized latent forms l̂a are delivered to the
decoder network to generate the final reconstructed image Î
after arithmetic encoding (AE) and decoding (AD) [19]. Sim-
ilarly, we utilize the same quantizationmethod as [6], [8] with
some modifications in the latent state (i.e., added the GMB
block) in a precious way. When it comes to image compres-
sion, the goal is to obtain high-quality reconstructed images
at a certain bitrate, and the entropy model is utilized to predict
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FIGURE 1. Proposed architecture. The AAB, GMB, and Dt attention block, Gaussian merge block, and decoded image refinement block. Q, AE, and AD
correspondingly indicate the quantization, arithmetic encoder, and arithmetic decoder. The parameters of Conv (convolution) layers indicate the number
of filters × (kernel height) × (kernel width) × stride (up or downsampling). Here, upsampling and downsampling are represented by ↑ and ↓,
respectively. For the feature map values of N and M, we employ 192 and 320, respectively.

the bitrate target. The entropymodel uses the hyperpriormod-
ule in conjunction with the factorized module. This method
of entropy coding uses a hyperprior network to produce an
estimate of latent forms before quantizing and encoding the
output of the hyperprior encoder into the bitstream. It will be
encoded into the bitstream since this information is necessary
for decoding, and the proper entropy model will increase
compression effectiveness. In this work, the hyper-encoder
module received the hyper-prior information from the latent
forms l̂a and encoded them into latent representations lb.
After that, it is quantized to l̂b and passed to the hyper-decoder
after AE and AD process. The hyper-decoder module again
retrieves the hyper-prior information from l̂b and estimates
the relevant entropy model parameters (ϕ, ϑ) accordingly.
In the following three subsections, we will go through our
proposed three blocks, i.e., AAB, GMB, and DIRB of the
framework.

The below loss function (ϒ) is employed to optimize the
whole training process of the compression technique:

ϒ = λD+ R = λd(I, Î )+ H(
l̂a
) + H(

l̂b
) (1)

The D and R are the distortion and bitrate, respectively,
in this equation. The amount of distortion and the bit rate
are both taken into consideration by λ. The distortion mea-
sure (MS-SSIM [33]) is denoted by d(.). H is the bitrate
utilizing for encoding the latent visualization l̂a and l̂b,
respectively.

During the training phase, we use an entropy estimation
method that is presented in [8], and we represent the latent
features in the following way:

Pl̂a|l̂b

(
l̂a | l̂b

)
=

∏
i

N
(
ϕi,ϑ2(i)

)
∗ U

(
−
1
2
,
1
2

)(
l̂ai
)
. (2)

Every latent portrayal l̂ai is represented as a Gaussian dis-
tribution with its parameters ϕi and ϑ i which are predicted
by the probability of the hidden element l̂b. l̂b is referred to as
the hyperprior, U stands for a uniform distribution, and ∗ is
the convolution process. The hyperprior l̂b is represented as
below:

pl̂b|ψ (l̂b|ψ) =
∏

i

(
p(i)
l̂b
|ψ (i)(ψ (i)) ∗ U(−

1
2
,
1
2
)
)
(l̂bi ) (3)

where every univariate’s distribution is represented by pl̂(i)b |ψ (i)

and its parameters are represented by ψ (i). The bit rate in our
technique is made up of the bit rates for the hidden variable l̂b
and the latent representations l̂a. However, the bit rates of
Equation (1) are indicated as:

H(
l̂a
) =∑

i

− log2
(
Pl̂ai |l̂bi

(
l̂ai | l̂bi

))
(4)

H(
l̂b
) =∑

i

− log2
(
Pl̂bi |ψ (i)

(
l̂bi | ψ

(i)
))
. (5)

A. ADJACENT ATTENTION BLOCK
In deep neural networks, the attention mechanism is an
effort to emulate the similar behavior of deliberately focus-
ing on a few significant elements while disregarding the
rest. Nowadays, there are now three primary techniques to
include attention mechanisms: spatial [40], channel [41], and
Convolution Block Attention Module (CBAM) [42]. In the
meanwhile, several researchers have adapted spatial attention
processes by non-local blocks [43] to image compression [14]
and [12], intending to reduce spatial redundancy. Further-
more, to construct an image generation model, [44] employed
a transformer-based self-attention block which increased the
size of the images. However, these methods concentrate only
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FIGURE 2. Proposed architecture of AAB. VWF and HWF represent the
coefficients of the feature maps (size 320 for encoder and 192 for hyper
encoder-decoder and decoder): vertical weight features (VWF)
coefficients and horizontal weight features (HWF) coefficients,
respectively. The softmax function recognizes the weight coefficients,
then extended by the weight multiplication block, and the maximum
weight block selects the most significant weight coefficients. After that,
the weight coefficients are passed to the convolution layer (Conv) and
average pooling layer (AP) to produce deep features.

on building deep networks to increase the models’ repre-
sentation capability, which results in high computation and
memory demands. Besides, in most cases, the conventional
spatial attention mechanism [45] only provides one-direction
weight allocation [12]–[14], which results in the loss of vital
information up to a specific level.

We propose a spatial adjacent attention mechanism,
namely, AAB, which allocates weights coefficients based on
distinct methods from both the vertical and horizontal direc-
tions. In addition to successfully suppressing irrelevant infor-
mation, it may also ensure that the loss of critical information
is kept to an absolute minimum. Besides, it concentrates
the texture on the edges of the image with much contrast
and allocates additional bits to them. Figure 2 depicts the
proposed structure of AAB. Three parts are included in the
structure.

• First, the coefficients of weight features are selected
by the vertical weight features (VWF) and horizontal
weight features (HWF) blocks. It works crosswise to
obtain more stable features for allocating more bits in
edge areas.

• Second, the two types of weight features are multiplied
through the structure’s weight multiplication (WM)
module to increase the weight coefficients (for example,
a tiny weight could be 0.1 × 0.2, while the highest
weight could be 0.9 × 0.7).

• Third, the softmax function recognizes the weight coef-
ficients, then extended by the weight multiplication
block, and the maximum weight (MW) block selects
the most significant weight coefficients [for instance,
max (0.1, 0.9)].

To connect and concatenate the weights coefficients of the
three parts of the model are arranged as follows:

wi =
n∑
l=1

aai,l∑n
q=1 a

ai,q
dl (6)

wm = concat ([ws,wr , (ws ∗ wr ) , (ws,wr )]) (7)

The weights (wi) of VWF andHWF allocated by the attention
process are denoted by aai,l ,, pixel i and I denote the feature
at a specific instant and the sequential feature, and the hidden
layer characteristics of the feature sequence I are indicated
by dl . In equation 2, m indicates the weight multiplication,
andws represents theweight coefficient of VWF in the feature
space (ws = [w1,w2, . . . . wi−1,wi]). Then the weight oper-
ation of WM and MW is denoted by (ws ∗ wr ), and (ws,wr ),
respectively. After completing all the weight operations of
VWF and HWF, one convolutional layer (Conv) and average
pooling (AP) layer produce the deep feature.

According to Figure 1, for high-quality compression, the
suggested AAB is incorporated into the encoding, decoding,
hyper-encoding, and hyper encoding networks for leveraging
the channel relationship. The re-weighted feature map from
AAB is included in the subsequent quantization and entropy
coding components.

FIGURE 3. Architecture of GMB. For each layer, N specifies the
hyper-parameter that determines how many channels will be available,
and C indicates how many different Gaussian models will be available.

B. GAUSSIAN MERGE BLOCK
Estimating bit rates is critical in learning-based image com-
pression techniques. Minnen et al. [8] and Lee et al. [10]
demonstrate learning-based systems in which the hyper-prior
compression technique is employed and a Gaussian
Model (GM) distribution is used to represent the latent rep-
resentations

(
l̂a
)
in the model.

El̂a|l̂b

(
l̂a | l̂b

)
∼ ∂(ϕ, ϑ) (8)

where El̂b (l̂b) denotes the quantized entropy model [5]. The
purpose of the hyper-encoder and hyper-decoder is to predict
the parameters (ϕ, ϑ) of the GM. Though the single GM-
based entropy model has significantly improved over prior
work [5], the representation capabilities of single GM are still
inadequate, particularly for complicated components. As a
result, we conduct the GaussianMerge Block (GMB) to boost
the image compression performance. In our proposed GMB,
the l̂a is expressed as below:

El̂a|l̂b

(
l̂a | l̂b

)
∼

G∑
i=1

Wi∂ (ϕi, ϑi) (9)

where Wi and G denote the weights assigned to various
GMs and the number of GMs, respectively. To estimate the
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parameters (ψ) of the GMB, we generate three convolutional
layers with three LeakyReLU layers, as illustrated in Figure 3.
In our proposed GMB, the value of G is set to three. A total
of 6× N output channels are employed, with the first 5× N
channels being used for predicting the mean and variance
of three GMs. A sigmoid layer is included in the output of
the final N channels in estimating the weights of every GM.
For example, the weight of the first GM is denoted by W,
and the next one will be (1-W), respectively. Furthermore,
by creating G(G ≥ 4) GMs, we may increase the number of
output channels on the GMB block to 4×G×N (C = 4×G).
For G of GMs, the mean and variance parameters are esti-
mated by the first 3 × G × N channels in the same manner.
The softmax layer is utilized after the final G × N channels
to figure out each GM weight.

FIGURE 4. Architecture of DIRB. Conv indicates the convolution layer and
RC means residual connection. See Section III (C) for more details.

C. DECODED IMAGE REFINEMENT BLOCK
The proposed compression approach for the entropy model
employs a quantization procedure. As a result, compres-
sion artifacts may appear in the reconstructed image. Thus,
a proposed DIRB, at the decoder side, is adjoined after
image reconstruction, which significantly improves the per-
formance of the decoded image. To improve the representa-
tions of feature maps, the proposed refinement block uses a
self-similarity measures and inter-spatial relationship infor-
mation. The following is a concept of a deep neural network
process:

Ii =
1

f (O)

∑
ωj

F
(
Oi,Oj

)
γ
(
Oj
)

(10)

f (O) =
∑
ωj

F
(
Oi,Oj

)
(11)

where i is the position reference of the feature reaction await-
ing to be computed, and j is the counted position reference of
input features. The input and output signals are represented by
I and O, respectively, with the same area and channel number.
At the input feature map, F(.) calculates the similar reaction

between i and all j. The response ismultiplied by thematching
features representation calculated by γ (.) after normalizing
with a coefficient f (O). Refinement block can extract the
long-distance dependency between multiple places by cal-
culating the reaction matrix, which may efficiently enlarge
the receptive fields of deep convolution layers. It solves the
shortcomings of traditional standard convolution operations,
which can only gather minimal data from nearby regions.
Figure 4 depicts our proposed DIRB for obtaining spatial
relevant information in a feature space.

F
(
Oi,Oj

)
= α (X0)t β (X0) (12)

where X0 represents the input features and F
(
Oi,Oj

)
repre-

sents the reaction weight vector for every position. Convolu-
tion operations (α(.) and β(.)) are used to produce the features
descriptions, which are multiplied to create the matching
matrix.

XIF = softmax
(
α (X0)t β (X0)

)⊗
γ (X0) (13)

where softmax (.) and XIF denote the normalized operation
and improved features, respectively. Improved features XIF
are calculated by multiplying the reaction weight vector for
the feature representations, produced by the 1×1 convolution
operation γ (.).

Xout = X0
⊕

XIF (14)

In the refinement block, we included a residual connection
that constructs similar to a residual learning network by com-
bining input feature X0 and improved feature XIF . It enables
the component to concentrate on improving high-frequency
information rather than low-frequency information.

Comparing the ways of gradually expanding the receptive
fields in typical regular convolution procedures, our pro-
posed refinement block can acquire the spatial dependency
between any two locations for the purpose of further refin-
ing and improving the flow of gradients and information.
Our DIRB can also add global information to the features
that allow our network to utilize better the promising infor-
mation contained within the low-resolution reconstructed
images.

IV. EXPERIMENTS
A. DATASET
The experimental datasets are primarily separated into two
types: training data and test data. We randomly select 300k
images from the Open Images dataset [46] and crop them
to a 256 × 256 pixel size for training. For testing, the
KODAK image dataset [47] and CLIC professional vali-
dation dataset [48] are employed, including high-resolution
natural images. The KODAK dataset comprises 24 photos
with a resolution of 512 × 768 pixels and a broad range of
contents and patterns, which are artifact-sensitive (restricted
color gradients). As a result, it’s frequently been employed
to test image compression techniques. The CLIC dataset [48]
includes 41 pictures acquired by mobile phones and profes-
sional cameras. The images have greater resolutions, with
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an average size of 1913 × 1361 pixels for mobile shots and
1803× 1175 pixels for professional photos.

B. TRAINING DETAILS
All experiments are carried out on a Windows 10 worksta-
tion with an Intel Core i7 processor, 32GB of RAM, and
a single NVIDIA GeForce RTX 2070 GPU with 8GB of
memory running under the CUDA 10.0. To finish the experi-
ment’s code, we used Python 3.7.0 with Conda environment.
Pytorch 1.0.0 is used as the deep learning framework. For the
model implementation process, the Adam optimizer [49] is
conducted to train all models for 1.8M steps with a batch
size of 8. For the first 110k iterations, the learning rate is
determined to 0.0003, then reduces to 0.00003 for the other
35k iterations, and finally to 0.00001 for the final 35k iter-
ations. The channel numbers of the latent and hyper latent
variables are set in the proposed model at 320 and 192,
respectively.

C. EVALUATION METRICS
This article evaluates the rate-distortion in bits per pixel (bpp)
while the model is optimized by employing the PSNR [50]
and MS-SSIM [33]. To show their coding efficiency, rate-
distortion (RD) curves are generated. We followed the same
setting of [51], and for MS-SSIM, the λ values are fixed to
2.41, 5.24, 8.31, 15.65, 30.43, and 60.56.

V. RESULTS AND DISCUSSIONS
A. QUALITATIVE RESULTS
We present some visualization outcomes to make the effi-
ciency of our approach more apparent. Figure 5 and Figure 6
demonstrate the qualitative comparisons (final reconstructed
images) of some images from KODAK dataset [47] dataset.
In Figure 5, we compare our results with existing meth-
ods [2]–[5]. To illustrate the efficiency of our proposed tech-
nique, we highlight a few specific areas of the reconstructed
images for a more in-depth examination. Our reconstructed
images have a higher PSNR, i.e., 37.9dB (Kodim 23.png),
34.21dB (Kodim 24.png), and 30.01dB (Kodim 19.png),
and maintain around the same bit rates as other methods.
Besides, the texture of the images is more vibrant (espe-
cially the patterns around the eyes of the birds (row 1), the
drawing (row 2), and the window (row 3), allowing us to
preserve the finer feature pleasingly. In Figure 6, we show
the comparison of the reconstructed images with origi-
nal images in different zoom-in ways for better qualitative
visualization.

Usually, textured areas (high contrast) are often allocated
more bits than non-textured areas (low contrast), resulting
in better visual quality at the same bit rate. To dis-
play the efficiency of the proposed AAB, the visualiza-
tions of kodim23.png, kodim19.png, and kodim24.png from
the KODAK [47] dataset are depicted in Figure 7. From
Figure 7 (b and c), it can be shown that AAB distributes
weights vertically and horizontally to suppress irrelevant

information effectively. As a result, in latent (Figure 7(b)),
it assigns more bits to regions of high contrast (objects)
while assigning fewer bits to regions of low contrast (back-
ground). However, Figures 7 (b and c) are expressed for
1.19 Bpp and 0.17 Bpp, respectively. It can be clearly said that
by AAB, we can allocate more bits not only at higher bit rates
Figure 7 (b) but also at lower bit rates Figure 7 (c). Even we
keep both kernels and feature maps maintain a virtually iden-
tical pattern, although each element’s intensity is adjusted
differently. In summary, our proposed AAB is very effective
in the latent representations because it can provide the almost
same pattern at lower bit rates.

In order to demonstrate the efficiency of our pro-
posed DIRB, the visualizations are portrayed in Figure 8
of kodim23.png, kodim19.png, and kodim24.png from
KODAK [47] dataset. The result after the last convolution
layer is shown in Figure8 (b), and after applying the DIRB,
the final reconstructed images are shown in Figure 8 (c).
We can see that the learned residual images (Figure 8 (b))
include a disproportionate amount of high-frequency infor-
mation. On the other hand, the final reconstructed images
(Figure 8 (c)) also aid in perfectly predicting the spectral
analysis of the images with a better display.

B. QUANTITATIVE RESULTS
To evaluate our proposed model, the RD performance is com-
puted. We employ the PSNR as the quality measure, as illus-
trated in Figure 9 (a). Our technique is evaluated against a
variety of well-known image compression algorithms (both
classical and deep learning-based), including [3]–[5], [8],
[10], [13], [14]. When compared to [4], [5], [8], [10], [13],
, our method outperforms them by a large margin, specially
from the most popular methods Chen et al. [14] (around
41.12 vs. 37.4), and Cheng et al. [13] (around 41.12 vs. 37.1).
However, the bit rates are slightly lower (about 0.7%)
when comparing our approach to the traditional method [3]
(around 41.4 vs. 41.12).

The experiments are also carried out using the MS-SSIM
quality measure, as seen in Figure 9 (b). We provide MS-
SSIM values in decibels (i.e., −10log10(1 − MS − SSIM ))
to better illustrate the progress. It is clearly said that our
method shows state-of-the-art performance against both the
traditional methods, including [4] and [3], and deep learning-
based methods, including [8], [10], [13], [14], and [5]. There-
fore, we can say that the AAB, GMB, and DIRB we have
presented have a significant influence on showing higher
RD performance and improving the reconstructed image’s
similarity. Please refer the ablation study (in next sub-section)
to get a better idea of the modules’ efficacy.

We employ another CLIC [48] professional validation
dataset to confirm the robustness of our technique, and
the results are shown in Table 1. It is noteworthy that our
approach also yields state-of-the-art results in terms of MS-
SSIMwhich we express in decibels (i.e.,−10log10(1−MS−
SSIM )). However, regarding PSNR, our method achieves
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FIGURE 5. Qualitative performance comparison of the our reconstructed images with existing methods, such as Ball é et al. [5], BPG444 [4], JPEG [2], and
VTM 8.0 [3]. These images are taken from KODAK [47] dataset.
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FIGURE 6. Qualitative comparison of the reconstructed images (row 2, 4) with the ground truth (row 1, 3) images from KODAK [47] dataset
(Kodim 07.png and Kodim 20.png). The highlighted rectangular area zoom-in by ×2 (in row 1, 2) and ×3 (in row 3, 4) for better visualization.
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TABLE 1. RD performance (MS-SSIM and PSNR) of the CLIC [48]
Professional Validation dataset. Bold indicates the highest performance
and underline indicates the second highest.

FIGURE 7. Visualization result of AAB regarding kodim23.png,
kodim19.png, and kodim24.png from KODAK [47] dataset. (a) original
image, (b) Latent, and (c) Allocated bits (see the edges of the objects).

TABLE 2. Performance comparison of different prior attention blocks with
our AAB in terms of PSNR with bit rates (bpp) on KODAK dataset [47].

the second-highest result (underline results in Table 1),
which is approximately 4% less than the traditional

FIGURE 8. Visualization result of DIRB in terms of kodim23.png,
kodim19.png, and kodim24.png from KODAK [47] dataset. (a) original
image, (b) the reconstructed image without applying DIRB, and (c) the
reconstructed image after applying DIRB.

method [3] (around 42.5 vs. 40.8) at lower bit rates (0.58).
However, it outperforms all existing deep learning approaches.

C. ABLATION STUDY
We perform some ablation studies on the KODAK
dataset [47] to further illustrate the robustness and effective-
ness of our proposed approach.

In Table.2, we provide an investigation by adopting current
attention modules replacing our suggested attention mod-
ule in our proposed approach for two kinds of λ values.
PSNR performance is relatively poor (27.23) for λ= 2.41 and
8.31 at low and high bit rates when the attention module is not
included in the baseline model. When the attention modules
of Cheng et al. [13] and Chen et al. [14], and ours are uti-
lized, the PSNR values improve by around 15% (31.89 vs.
27.23 and 32.21 vs. 27.23) for [13] and [14], and by about
17% (32.98 vs. 27.23) for ours at low bit rates, respectively.
The PSNR improves significantly when λ = 8.31, for exam-
ple, for our suggested adjacent attention module, the PSNR
is improved by roughly 23% (35.67 vs. 27.51) and even by
around 5% (35.67 vs. 33.87 and 35.67 vs. 34.01) over the
prior modules of [13] and [14].

TABLE 3. Performance measurement of the proposed modules in trems of PSNR, MS-SSIM, and Inference Time on KODAK dataset [47]. The AAB, GMB
and DIRB indicate Adjacent Attention Block, Gaussian Merge Block, and Decoded Image Refinement Block, respectively.
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FIGURE 9. RD performance assessment on the KODAK dataset [47]. (a) the performance of MS-SSIM in decibels (i.e., −10log10(1−MS − SSIM)), and
(b) the performance of PSNR.

To further verify the effectiveness of our proposed three
modules in the main architecture, we have carried out another
experiment in terms of PSNR,MS-SSIM, and Inference Time
by replacing and adding the modules to bring the bpp close
to 1 in Table 3. The PSNR and MS-SSIM performance of the
baseline model are 26.27 and 18.71, respectively, when the
three modules are not included as well as the inference time
of 522ms. The value of PSNR and MS-SSIM dramatically
increases with the inference time of 1067ms when all compo-
nents are taken into account. For example, the improvement
in PSNR andMS-SSIM is roughly 27% (35.89 vs. 26.27) and
28% (26.01 vs. 18.71). Among them, the proposed adjacent
attention module and refinement block are able to boost
the RD performance more, for instance, approximately 23%
(33.96 vs. 26.27) in PSNR and 23% (24.45 vs. 18.71) in
MS-SSIM. Eventually, it can be concluded that our proposed
modules are very effective in boosting the state-of-the-art RD
performance.

VI. CONCLUSION
This paper introduces a deep learning-based efficient image
compression model that utilizes the autoencoder-style net-
work. To increase the overall performance of image compres-
sion, three additional components, namely Adjacent Atten-
tion Block (AAB), Gaussian Merge Block (GMB), and
Decoder Image Refinement Block (DIRB), are included in
this model. The AAB is used to concentrate the texture on
the edges of the image in order to allocate additional bits
for capturing spatial correlations and concealing irrelevant
features. The GMB and DIRB are applied to simulate the dis-
tribution of the latent representation and improve the defects
in low-resolution decoded images, respectively. Two publicly

available datasets (KODAK and CLIC) are employed in this
experiment. Experimental findings reveal that the proposed
model outperforms existing deep learning-based techniques
in terms of MS-SSIM and PSNR. In the future, we will inves-
tigate additional components that influence reconstructed
images, such as the entropy model.
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