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Abstract. Reinforcement learning has quickly risen in popularity because of its 

simple, intuitive nature and it's powerful results. In this paper, we study a number 

of reinforcement learning algorithms, ranging from asynchronous q-learning to 

deep reinforcement learning. We focus on the improvements they provide over 

standard reinforcement learning algorithms, as well as the impact of initial start-

ing conditions on the performance of a reinforcement learning agent. 

Keywords: Deep Learning, Transfer Learning, Reinforcement Learning, Con-

volutional Neural Networks, Q-networks 

1 Introduction 

Reinforcement learning is a class of machine learning algorithms that are designed to 

allow agents provided with only the knowledge of the states it visits and the actions 

available to the agent to learn how to maximize its reward function, quite similar to the 

trial-and-error approach. There are di erent techniques used for reinforcement learning, 

one of the most popular ones being Q-learning where an agent develops a policy that 

chooses the action that is estimated to lead to the greatest total future rewards. Rein-

forcement learning has seen great recent success, particularly in Playing Atari with 

Deep Reinforcement Learning [1] and Mastering Chess and Shogi by Self-Play with a 

General Reinforcement Learning Algorithm [2] as it is a relatively simple yet extremely 

powerful algorithm, making it an interesting class of learning algorithms to study. Fur-

thermore, the training of reinforcement learning agents is extremely slow, since the 

information it is provided is minimal, which means that there is a lot of room for im-

provement with reinforce- ment learning algorithms. Transfer learning on the other 

hand is a class of machine learning algorithms that seeks to transfer knowledge gained 

from solving one problem and applying it to another problem, so transfer learning can 

solve the problem of speed for reinforcement learning agents. In this paper, we discuss 

the impact of initial conditions with transfer learning on the convergence of reinforce-

ment learning agents. In real life, we know that initial starting conditions matter. Con-

sider a person who chooses to learn a sport: the athletic ability, age, equipment, training, 

and instructor will all in uence the time it takes for the person's skill to peak. If it were 
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at all possible, we would want to transfer the traits of high-performing athletes to the 

beginner to provide better chances at performing well. Based on this intu- ition, we 

want to experiment with transferring the models of trained reinforcement learning 

agents as the initial starting conditions of reinforcement learning algorithms and con 

rm that this hypothesis does indeed apply here too. That is, we want to show that given 

better initial conditions, an agent will likely achieve high performance faster than an 

agent with worse initial conditions. This is reasonable, and we can easily produce sim-

ple examples that illustrate the point. Consider an extreme example where an agent uses 

a neural network to model its policy, and all the weights in the network are initialized 

to zero. Then all the weights follow the same gradients, and the policy will likely per-

form poorly. Conversely, an agent with a policy model that has been trained for ex-

tremely long periods of time will likely be much closer to optimality: hence it will likely 

take much less time to converge. Intuitively, it makes sense that better initial conditions 

lead to optimal performance faster, and we wish to establish this for reinforcement 

learning, by means of a simple form of transfer learning. 

2 Related work 

An interesting improvement to Q-learning is asynchronous Q-learning (AQL). This 

technique involves one central, shared neural network. Then each asynchronous agent 

copies the shared network as its own individual network, learns on its own, and period-

ically shares its accumulated updates with the shared neural net- work. Furthermore, 

each agent will periodically copy the shared neural network as it's own individual neural 

network, making use of the learning that other agents have done. In e ect, an AQL agent 

searches across multiple locations in the state space while sharing information with 

other agents, speeding up its learning process. Wang et al. [3] to represent the ride dis-

patching problem and suggest suitable solutions which are based on deep Q-networks. 

Nowadays the GPS authorization applications are getting more popular and also used 

in ride-sharing. To get the result they use a window of 100 circumstances for counting 

the reward curve and the total number of training duration is 40000 circumstances. Our 

work has suggested a procedure which has based on DQN for this dispatching platform. 

They are successful to show that CFPT is most successful and better than other meth-

ods. Victoria et al. [4] aims to establish a method for deep reinforcement learning that 

will refine the effectiveness and capacity of this advisable method by structural percep-

tivity and relational argument. They advisable relational model has gained favorable 

performance and solving more than 98% of levels. Lample et al. [5] focuses on repre-

senting a structure to face 3D infrastructure in FPS games. In recent times Deep rein-

forcement education has shown much success to achieve human-level control. In this 

paper, they describe a procedure to increase the efficiency of the model to utilize the 

information of game features. They apply the DQRN model because of its good perfor-

mance accuracy. This model is instructed and used to shorten Q- learning. Our advisa-

ble structure is trained to permit various models in various phases of FPS games. This 

paper [6] aims to establish an efficient model that will repetitively store the results of a 

chemical reaction and select new exploratory conditions to upgrade feedback outcomes. 
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Here they take random 5000 functions and the DRO takes 32 steps to arrive at the 

standard of regret. Where some other algorithm such as CMA-ES takes 111 steps, 

SNOBFIT takes 187 steps and Nelder−Mead fails. Our established DRO model has 

shown its remarkable performance to optimize chemical reactions. This model has al-

ready shown its ability to optimize and also increase the speed of reaction. Baldazo et 

al. [7] aims to suggest a new model for the mean embedding of distribution which is 

based on DRL. Nowadays DRL has widely used for solving various multi-agent col-

laboration problems. In Our advisable model, they use the agents as a sample and as 

input use mean embedding. Besides they describe various features of the mean embed-

ding by using radial basis functions and training neural networks. The paper [8] aims 

to establish some effective methods to upgrade exploration conjunctional optimization 

based on DRL. In recent times DRL has successfully shown an excellent improvement 

to solve different kinds of control problems. The paper [9] aims to explore Mobile edge 

computing for smart (IoT) based on deep Reinforcement Learning. In incent times there 

has been tremendous advancement in developing IoT. Basically Kiran et al. [10] aims 

to show a classification of automated driving activity where can apply DRL methods. 

With the advancement of the DRL network, the autonomous driving system has gained 

high fidelity.  

3 Background 

3.1 Reinforcement Learning 

The reinforcement learning task is often formulated as a Markov decision process, a 

modeling framework useful for partially random, partially controlled environments, 

which is certainly the case in reinforcement learning where the envi- ronment may be-

have randomly, but the agent has control over its own actions. In the rein- forcement 

learning task, a Markov decision process consists of the following elements: 

1. SE: The set of states that the environment (with the agent in it) E can be in. 

2. AE: The set of possible actions that the agent can take in the environment. 

3. WE : SE × AE → SE: The function that de- termines the resulting state given a 

starting state and an action. 

4. RE : SE × SE → R: The function that gives the immediate reward for a state transi-

tion. 

The agent constructs a policy πE : SE → AE that maps a state in the state space to an 

available action that leads to the highest total immediate and future rewards. So we 

formulate a utility function UπE : SE → R that determines all rewards received by fol-

lowing the policy given a starting point s0: 

 

UπE(s0) = ∑ 𝛾𝑡𝑅𝐸(𝑠𝑡 ,𝑊𝐸(𝑠𝑡 , 𝜋𝐸(𝑠𝑡)))
∞

𝑡=0
                      (1) 

 

Then the policy for our reinforcement learning agent can be deined as follows: 
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  πE(st) = argmaxaϵAEUπE(WE(st, a))         (2) 

 

3.2 Q-learning  

Often times, an agent does not have access to WE and in such cases, the agent's policy 

is said to be model-free. The agent must, then, estimate the utility function by it's inter-

nal Q-value function QπE : SE ! R. A simple way to represent QπE is to use a table in 

which each possible state and action pair is listed, and the estimated cumulative reward 

is the entry. To learn the optimal Q-value function which we denote by QE, we use the 

Q-learning algorithm on our Q-value function QπE. In one-step Q-learning, the algo-

rithm takes one step at every training iteration t from state st, observes the reward re-

ceived rt and the new state st+1, and updates the policy as follows:  

 

QπE(st) = QπE(st)+α(r+γQπE(st+1)−QπE(st))    (3) 
 

with α as the learning rate, typically a real number between 0 and 1. This algorithm 

sets the target value to be the discounted sum of all the future rewards estimated by 

γQπE(st+1) added to the observed immediate reward r. The dierence between the target 

value and output value is then a weighted by the learning rate, and used to update the 

Q-function. To avoid settling for a non-optimal policy (premature convergence of pol-

icy), an exploration factor  is introduced:  is the probability that the agent will ignore 

its policy and execute a random action, to diversify its experiences and to avoid local 

minima in its policy. As time progresses, the exploration rate is decayed, so that the 

agent relies more (but not completely) on its policy. However, it is often the case that 

the exploration rate is not allowed to decay to 0 and is instead held at some xed mini-

mum exploration rate, to discourage the policy from sinking into a local minimum. 

 

3.3 Q-networks  

It becomes hard to maintain such a Q-table when the size of the state space increases: 

for example, consider an agent playing a video game, using the screen's pixel values as 

its state space. If the state is a 84 × 84 × 3 array of 8 bit pixels and there are four actions 

available, the q-value table will hold 284∗84∗3+2 ≈ 106351 entries! A popular solution 

to the problem of poorly scaling tables is the use of articial neural networks in Q-learn-

ing termed Q-networks [11][12]. Q-networks map states in the state space, represented 

by frames from the game, to q-values for each possible action. Q-networks learn to 

approximate Q in a way intuitively similar to the update formula for the Q-table, by 

computing gradients for the network based on the output of the network (determined 

without knowing the next states) and target Q-values (determined using the next states) 

for the network [13][14]. Q-networks are far more powerful than Q-tables because they 

can also approximate Q-values for states it has not yet seen and scales much better in 
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terms of size. However, they come with the downside of being harder and slower to 

train.  

 

4 Approach and Experiments 

We first describe the infrastructure available to us for our experiments. For high 

numbers of independent experiments, we use a distributed high-throughput computing 

resource through the Center for High Throughput Computing (CHTC) available at UW-

Madison. For our guaranteed convergence experiment, we tested using a custom maze 

environment with a state size of 4 and an action space size of 4. For our initial condi-

tions experiment, we describe how we dene an operational convergence criteria for our 

problem setting [15][16]. We say that the agent's learning has stopped if the winning 

rate over the last 100 evaluations averages to a value greater than: 78, the same stopping 

criteria for the environment FrozenLake.  

 

4.1 Guaranteed Convergence Given Infinite Time  

We know from Even-Dar et. Al [17] that using the action-elimination algorithm, our 

reinforcement learning agent will converge given innite time. Our hypothesis was that 

the algorithm would work for a reinforcement learning agent in an environment with 

an extremely simple problem with an extremely small state space. We expected to see 

the algorithm converge given a couple months time. Unfortunately, the algorithm's pro-

gress exponentially diminished, and we never saw the convergence (or anything even 

close) after 2 months of running the algorithm on a high-throughput computing cluster. 

As such, we a rm that innite time really does mean some enormous time quantity that 

is infeasible. We ran this experiment on a Google Cloud Compute Engine instance with 

8 cores and 32 GB RAM.  

4.2 Impact of Initial Conditions on Convergence  

We hope to nd that given better initial conditions, our DQN agent will converge 

faster. We provided these initial conditions as trained DQN models, saved after various 

periods of pre-training. We hypothesize that models that have had more pre-training 

will require less time to converge, while models that have had little pre-training. We rst 

show the baseline performances of each initial condition in figure 3. Then we show 

training times until convergence starting from each initial condition in figure 4. Our 

hypothesis is a rmed through this experiment as we can see that indeed agents with 

more pre-training had faster times to convergence. The pre-training was done on a sys-

tem with an Intel i7-7700k overclocked to 4.9 GHz with 32 GB DDR4 3200 MHz 

SDRAM on a Samsung 960 EVO M.2 drive. When testing each initial condition, we 

used CHTC. Each job was run on a system with 8 CPUs and 10 GB memory.  
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Fig 1. Comparison of average total number of iterations over all agents until the task 

was solved and the average of the number of iterations of each agent. 

Fig 2. Comparison of average total time over all agents until the task was solved. 

 

 

 

Fig 3. Baseline performances of the DQN agent. The x-axis shows the number of 
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iterations that had passed when the agent was saved while the y-axis shows the win-

ning percentage of the agent over 1000 games. 

 

 

Fig 4. Comparison of time to convergence for di erent amounts of pretraining for 

DQN agents. 

5 Conclusion and Future Work 

We have shown that initial conditions greatly impact the rate of convergence for 

reinforce- ment learning. As a result, transfer learning shows great potential for accel-

erating the convergence rate of reinforcement learning agents. Transfer learning has 

already seen great success in deep reinforcement learning, and we hope that this re-

search is now further motivated. In the future, we would want to study adver- sarial 

learning in the reinforcement learning setting [18]. Intuitively, presenting challenges 

allows humans to learn better, and we believe that this translates to reinforcement learn-

ing agents as well. In fact, it has already been shown that this adds robustness [19]. Fur- 

thermore, adversarial learning is perfectly suited for two-player games like many of the 

Atari games. Hence our future work should include studies in adversarial learning in 

the reinforcement learning setting. We would also like to study learning models for 

multiple games and using transfer learning to apply these models to di erent reinforce-

ment learning tasks. 
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