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ABSTRACT 
One of the most important aspects of the ‘sub-tropical’ monsoon- 
influenced environment is the issue of ‘soil erosion’ and its related 
‘land degradation’. On the other hand, the climate in this area 
has become quite extreme. According to this viewpoint, it is 
important to research a future ‘soil erosion’ scenario in front of 
the probable effects of climate change and land use change. For 
the objective of assessing the extent of soil erosion in this area, 
this study took into account both the USLE and the RUSLE. 
Compared to the USLE that has been validated, RUSLE has a com-
paratively greater quantitative efficiency. In RUSLE, the ‘very high’ 
(>20) and ‘high’ (15–20) ‘soil erosion’ zones tend to be associated 
with the ‘north-western, western, south-western, and southern’ 
regions of the river basin. The ‘soil erosion’ that will occur in the 
future has been estimated by taking into account the projected 
rainfall, land use and land cover (LULC). ‘Soil erosion’ has 
increased from the previous time to the projected time. Predicted 
R factor values for SSP 585 range from 399.92 to 493.72. In add-
ition, a growing erosion tendency associated with increased 
shared socio-economic pathways (SSPs) has been found.
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1. Introduction

Changes in intense precipitation has a major impact on soil erosion under climate 
change (Eekhout et al. 2018). A warmer atmosphere’s increased ability to store mois-
ture is expected to lead to an increase in extreme precipitation and a more active 
hydrological cycle (Allan et al. 2020). Globally, long-term measurements already 
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indicate an increase in severe precipitation, and future forecasts from climate models 
point to a continuation of this trend (Fischer et al. 2013). Extreme rainfall has an 
influence on soil erosion both through the impact of raindrops on the soil and 
through runoff that separates soil particles (Eekhout and De Vente 2020). The likeli-
hood of climate change increasing infiltration and excess surface runoff increases the 
likelihood of rill and (ephemeral) gully erosion, which are said to account for the 
majority of the overall sediment production (Anderson et al. 2021).

Thirty-eight percent of the world’s land is used for agriculture, and contemporary 
society depends on this cultivated environment (Hazell et al. 2010). The capacity of 
the soil to sustain agricultural and animal production, which together account for 
more than 95% of the ‘global food supply’, is of primary importance to humans 
(Keating et al. 2014). The process of soil erosion is a natural process, though it is dir-
ectly impacted by various anthropogenic activities. In this perspective, agricultural 
production is directly negatively linked with soil erosion and its associated nutrient 
losses. The agricultural outputs that underlie them are important contributors to bio-
logically active ‘greenhouse emissions’ as well as key sources of soil and 
‘environmental degradation (Aryal et al. 2022)’. According to the most recent assess-
ment made by the ‘United Nations (UN)’ on the ‘state of global soil resources’, the 
quality of the soil on the majority of the planet is either merely fair, poor, or 
extremely bad. This was found in the report on the ‘status of global soil resources’. It 
emphasises that soil erosion is a major issue for agriculture and the environment 
worldwide. Plowing, poor farming practices, deforestation, and animal grazing are the 
most important cause of human-induced soil erosion (Borrelli et al. 2020). As a con-
sequence, the ecosystem suffers from cumulative effects such as nutrient loss, reduced 
carbon storage, diminished diversity, and soil and ecological instability. At the world-
wide scale, modelling attempts to forecast the influence of ‘climate’ and ‘land use 
change’ on soils are growing, but they are restricted (Dignac et al. 2017). The goal of 
this research is to progress our capacity to anticipate erosion in light of these factors.

Rural regions have seen major changes as a result of ‘agricultural LU’, mainly 
extensive cropland usage, during the last several decades (Pongratz et al. 2008). The 
potential for soils to be eroded by wind and water has significantly risen due to 
anthropogenic factors such as shifts in LU and selected crop sequences, the use of 
large agricultural utensils, and considerable land consolidation (Lin et al. 2023). 
Increasing air temperatures have an impact on soil evaporation and transpiration, 
which changes the water balance in the soil (Eekhout and de Vente 2022). 
Additionally, when growth circumstances vary due to climate change, soil erosion is 
mostly negatively impacted (Li and Fang 2016). Relevant parameters include root 
development, soil organic carbon content, and soil cover by canopy of plants and 
plant residues are the important parameters that directly influence overall soil loss 
(Etehadi Abari et al. 2017). Although land use might remain the same, higher rainfall 
erosivity alters the hydrological situation, leading to surface runoff and soil loss 
(Ouyang et al. 2018).

Under climate change, strong precipitation have the significant immediate effect on 
soil erosion (O’Neal et al. 2005). Because a warmer atmosphere is better able to store 
moisture, it is projected that extreme precipitation would rise and the hydrological 
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cycle will become more dynamic. Global severe precipitation already seems to be 
trending upward over the long run, however, predictions made by climate models 
point to a more rise in the next decades (Walsh et al. 2016). Extreme rainfall influen-
ces soil erosion through the contact of raindrops on the soil (splash erosion)and run-
off, separating soil (soil detachment) particles. Increased infiltration and excessive 
surface runoff, both of which are virtually surely brought on by climate change, are 
thought to encourage rill and (ephemeral) gully formation and erosion, which are said 
to contribute the most to overall sediment production (Li and Fang 2016).

It is generally known that changes in land use (LU) is one of the important diverse 
factors that have significant effects on soil erosion as well as how they interact with 
climate change (Lal 2004). However, predicting how LU will change under future cli-
matic conditions is not a simple undertaking because to the many forces that work at 
local to global scales. It is expected, given these complications, that only a small num-
ber of studies take land use change, plant growth, and the effect of climate change 
(CC) on soil erosion (SE) into account (Smith et al. 2016). Promotion of soil conser-
vation initiatives, which could involve altering land use, such as reforestation pro-
gramme, and a variety of on-site and its associated off-site methods, is common as a 
response to the anticipated rise in SE caused by CC (Smith et al. 2016). In addition 
to reducing SE, soil conservation practices may also offer other related ecosystem 
services, such like the storage of carbon and nitrogen, which helps to mitigate CC 
and preserve biodiversity.

According to earlier research, the techniques used in CC effect assessments may 
considerably impact the expected change in soil erosion (Doulabian et al. 2021). Due 
to the uncertainty in the climate projections, it has been shown that climate models 
have a considerable impact on predictions for soil erosion. Positive as well as negative 
increases in soil erosion are frequently found using the climate model used (Segura 
et al. 2014). In general, multiple studies reveal notable heterogeneity within the 
ensembles of climate models. In addition, it is shown that various predictions of 
future soil erosion are provided by emission scenarios.

In order to employ climate model data in impact evaluations of soil erosion, down-
scaling and correction for bias are employed. Data from coarse-scale climate models 
are converted to fine-scale model domains via the process of downscaling, which may 
include downscaling in time or space (Giorgi 2019). Dynamic downscaling, which is 
connected to regional climate models, and quantitative downscaling are two types of 
downscaling. By using bias-correction techniques, biases between historic model out-
put and observed are often produced by climate models (Wang and Tian 2022). 
Despite the fact that many researchers use downscaling and associated bias correction 
approaches after processing climate model data, research has demonstrated that these 
techniques have an influence on the projections for SE. At the very least, SE models 
additionally add to the variability in future estimates, for example, because of the 
time-step employed in conceptualizing soil erosion models and rainfall triggering 
(Alewell et al. 2019). SE is expected to become worse over the next several years due 
to the projected increase in heavy rainfall and the probable negative effects of changing 
LU. The few current global modeling studies forecast a rise in SE of between 9 to 56%, 
but they suffer from several conceptual oversights (Borrelli et al. 2017).
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The ‘general circulation models (GCMs)’ have been extensively employed for 
research on the potential impacts of CC worldwide (Rajbanshi and Bhattacharya 
2022). However, the lower resolution of the GCMs often restricts their usefulness to 
conduct evaluations of the impacts of CC and adaptations for small areas to catch-
ment sizes. As a result, numerous studies have used ‘regional climate models (RCMs)’ 
to provide future climate estimates that are very accurate. Because of the sub-grid 
scale phenomena accessed via the various parametrization techniques, the RCMs are 
believed to be a more accurate portrayal of regional climate forecasts. RCMs perform 
better, according to Falco et al. (2020), especially in regions with varying terrain and 
intense or small-scale climatic phenomena. Similar to this, Kalognomou et al. (2013) 
also discovered a trustworthy simulated rainfall pattern in their research region using 
the ensemble of 10 RCMs. RCM simulations still retain systemic model mistakes, 
sometimes known as biases, despite their better performance. The shape of the distri-
bution is also changed by these biases in RCM simulation, which makes it difficult to 
use these simulations as input data for further impact research. By using an appropri-
ate bias correction strategy, these systematic mistakes or biases may be rectified. 
Using the gamma distribution-based bias reduction technique, for instance, (Switanek 
et al. 2017) demonstrated that the method is effective in correcting both the mean 
and the intensity of the heavy rainfall distribution. Using an empirical quantile map-
ping bias reduction approach, (Casanueva et al. 2020) discovered a trustworthy spatial 
connection among the actual and RCM-predicted seasonal and yearly rainfall. 
However, not all RCMs may exhibit identical bias correction performance under all 
climate change scenarios. As a result, in order to serve a particular research aim, it is 
important to assess their performance. Eekhout and de Vente (2019) contend that 
reliable assessments of the effects of CC on SE under various emission scenarios 
depend on the evaluation of bias correction methodology.

Considering all of the prior studies, it is clear that the sediment yield (SE) and SY, 
which are expected to rise in the future, are directly impacted by the changing rainfall 
caused by modifying the R factor. Furthermore, the chosen RCMs and the bias cor-
rection approach have a large impact on the expected change in SE and SY. To com-
prehend how Indian precipitation may change in the future, multiple investigations 
have been carried out, starting with the ‘coupled model inter-comparison project 
(CMIP3)’ GCMs and continuing with its upgraded version, CMIP5. The main 
research question of this work is: what is the potential impact of climate and LULC 
change on future soil erosion? Therefore the primary objective of this study is to 
assess the potential impact of CC and LU change on soil erosion in Kangsabati river 
basin, eastern India.

2. Materials and methods

2.1. Study area

The upper portion of the ‘Kangsabati river’ basin in the lower ‘Ganga’ basin, between 
85�57’08’ east and 86�48’56" east, and 22�42’54" north and 23�28’29" north, constituted 
the study area (Figure 1). The areal coverage is about 5796 km2. The Kasai and Cossye 
are other names for the Kangsabati River (Bhattacharya and Das Chatterjee 2021). 
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The Bhagarathi Hooghly River’s right-hand secondary tributary is often a non-perennial 
river by nature. Its source is the Ghoramara hill in Jhalda, which is located at 23�32’30"N 
and 85�56’30"E on the Eastern Chotonagpur plateau. It then runs east across the districts 
of Puruliya, Bankura, and undivided Midnapore (Mandal et al. 2021). Near Ghatal 
(Bandar), the Kangsabati River merges into the Rupnarayan River. Keleghai is the name 
for the Rupnarayan and Kangsabati merged flow (Chakraborty and Chakraborty 2021).

Figure 1. Study area.
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The river rises in Jhalda on the Chhotanagpur Plateau in the Purulia district and flows 
through the Bankura district’s Khatra and Ranibandh before entering Paschim 
Medinipur in the Binpur region. At Sijua, the Bhairabbanki and Taraphini rivers are 
merged to form the Kangsabati River. At Palaspai, the Rajnagar segment—also known as 
the Rupnaryan branch—and the Panskura segment—also known as the Khelaghai 
branch—are separated. Whereas the Panskura portion travels in a southerly direction 
and joins the Kaliaghai River, the Rajnagar segment goes through the Daspur region and 
joins the Rupnaryan River. The most significant right-hand tributary, Kumari, meets the 
main stem river in Ambikanagar, close to the Kangsabati-Kumari or Mukutmonipur 
dam. This alluvial river has ‘meandering, straight, and braided’ channel patterns in add-
ition to dendritic, rectangular, trellised, and parallel drainage patterns. The whole Khatra 
and Raipur subbasins are composed of a plateau fringe region and a series of undulating 
plains that provide a dendritic drainage structure. The existence of a consistent, resistant 
rock structure is indicated by this pattern. A trellis drainage system formed in the 
Lalgarh subbasin as a result of the area’s high, undulating plain area and ridge and valley 
topography. In the Lalgarh subbasin, this structure was discovered to consist of alternat-
ing bands of relatively strong and weak rock. Due to the existence of an intense bedrock 
joint in the thin soil layer, the Kumari-Trapheni Rivers exhibit a rectangular drainage 
pattern, which is also significant. In contrast, the extensive alluvial flood plain with silt 
content along the lower course of the basin displays a pinnate drainage structure. This 
pattern suggests the presence of a stable, durable rock structure. The high, undulating 
plain and ridge and valley terrain of the Lalgarh subbasin resulted in the formation of a 
trellis drainage structure. This structure was found to consist of alternating bands of 
fairly strong and weak rock in the Lalgarh subbasin. The Kumari-Trapheni Rivers have a 
rectangular drainage pattern, which is also notable as a result of the presence of an inten-
sive bedrock joint in the thin soil layer. On the other hand, the large, silt-rich alluvial 
flood plain throughout the basin’s lower course has a pinnate drainage system.

2.2. Database

The following dataset was utilized to fulfil the goals of this research study: ‘ALOS 
PALSAR Digital Elevation Model (DEM)’ by the ‘Japan Aerospace Exploration 
Agency’ topographic map (‘Survey of India’), Sentinel 2a satellite data, various soil 
samples, and first-hand field observation. Table 1 provides detailed information on 
the large datasets, suppliers, and intended uses.

2.3. Methodology

In Figure 2, the exact process for assessing how ‘climate’ and ‘LULC’ change affects 
‘soil erosion’ is shown. This work relates to the following goals:

� To determine the current rate of ‘soil erosion’ in this region.
� To develop a reliable model that can estimate ‘average annual soil erosion’.
� Predicting how ‘climate’ and ‘LULC’ change in the future will impact ‘soil erosion’.
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2.4. Soil erosion

To estimate ‘average annual soil erosion’, many criteria have been taken into account 
as ‘USLE’ and ‘RUSLE’ components (Figure 3).

2.4.1. ‘Rainfall and runoff erosivity factor (R)’
The storm kinetic energy is multiplied by the maximum storm depth to generate the 
rainfall-runoff erosivity factor in RUSLE, and the results are then added for all storms 

Table 1. Database and its sources.
Parameters Data type Data source Data details

Digital Elevation  
Model (DEM)

Raster grid ALOS PALSAR DEM, (Japan 
Aerospace Exploration Agency)

12.5 m spatial resolution

Slope gradient (degree) Raster grid ALOS PALSAR DEM, (Japan 
Aerospace Exploration Agency)

12.5 m spatial resolution

Slope length and  
steepness factor

Raster grid ALOS PALSAR DEM, (Japan 
Aerospace Exploration Agency)

12.5 m spatial resolution

Rainfall and runoff  
erosivity factor

Station specific  
information

Primary observation Interpolated with same 
resolution according to 
other parameters.

Soil texture Soil sample Primary observation and 
laboratory analysis

Same resolution with other 
parameters

Soil erodibility Soil sample Primary observation and 
laboratory analysis

Same resolution with other 
parameters

LULC Spatial/Raster grid Sentinel 2A (European Space 
Agency)

10 m spatial resolution

Figure 2. Methodology flow chart.
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Figure 3. Soil erosion factors.
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in a year (Kinnell 2017). The input that powers the sheet and rill erosion processes is 
represented by the R-factor. Changes in the erosivity of the climate are reflected in 
changes in R values. The weighting of the soil erodibility value, K, and the cover- 
management component, C, in the R-factor calculation, is done using a seasonal dis-
tribution. For climatically homogenous regions, climate data have been created to 
simplify these computations.

The following equation represents the ‘MFI’:

FI ¼
P2

max

P
(1) 

MFI ¼
Xi¼12

i¼1

pi2

P
(2) 

Using the following equation, ‘the R factor is then expressed on the basis of MFI’ 
(Plangoen et al. 2013; Tiwari et al. 2016):

R ¼ aMFIb þ e (3) 

‘Where is an arbitrary, normally dispersed error and a and b are experiential fac-
tors’ (Plangoen et al. 2013; Tiwari et al. 2016).

2.4.2. ‘Soil erodibility factor (K)’
The K factor measures how easily a certain soil will erode under typical USLE plot 
maintenance conditions, which call for continual fallow land (Alewell et al. 2019). 
Values are greater for soils with a high silt percentage, whereas values are lower for 
soils with a high sand and clay concentration. The RUSLE process differs significantly 
from the USLE in that K also fluctuates seasonally. K is not constant, according to 
experimental data, and it changes with the season, reaching its maximum point in 
early spring and its lowest point in mid-fall or during frozen soil.

The following equation has been used to calculate the K factor while taking into 
consideration a number of physical and chemical parameters:

K ¼ 0:0137� 0:2þ 0:3� e −0:0256�San� 1−Sil
100ð Þ½ �

� �
�

Sil
Claþ Sil

� �0:3

� 1 −
0:25� TOC

TOC þ e 3:72−2:95�TOCð Þ

� �

� 1 −
0:7� SN1

SN1 þ e 22:9�SN1−5:51ð Þ

� �

(4) 

‘San is the proportion of sand, Sil is the proportion of silt, Cla is the proportion of 
clay, and SN1 is the 1-San/100, where K is the soil erodibility (Teng et al. 2018)’.

2.4.3. ‘Slope length and steepness factor (LS)’
The calculation of the LS factor includes considerable subjectivity since different users 
want various slope lengths for circumstances that are otherwise identical. To increase 
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user uniformity, RUSLE has updated recommendations for selecting the slope length 
parameters. In terms of the L-factor, the slope length is the USLE characteristic that 
has the least impact on soil loss. A 10% inaccuracy in the slope length measurement 
causes a 5% error in the estimated soil loss under typical slope conditions. RUSLE 
employs four distinct slope length relationships. Three depend on the slope steepness 
as assessed by USLE, the soil’s susceptibility to rill erosion in relation to interrill ero-
sion. The LS factor may be determined using the slope and length provided as 
follows:

The ‘LS factor’ for this site was calculated using the equation shown below:

L ¼
k

22:13

� �m

(5) 

m ¼
F

1þ Fi
(6) 

F ¼
sinb=0:0896

3 sinbð Þ
0:8
þ 0:56i

(7) 

L ¼
flowaccþ 625ð Þ

ðmþ1Þ − flowaccðmþ 1Þ
25ðmþ1Þ � 2:13m (8) 

where ‘L is the slope length factor, b is the slope length, m is the potential of erosion 
in relation to the amount of gradient in percentage terms, is the slope angle (in 
degrees) in the GIS environment, and flowacc is the flow accumulation. F is the ratio 
of rill and inter-rill erosion’.

S ¼ Tanðslope� 0:01745
� �

< 0:09Þ, 10:8� sin slope� 0:01745ð Þ þ 0:3ð Þ,
ð16:8� sin slope� 0:01745ð Þ − 0:5Þ

(9) 

LS ¼ L� S (10) 

where ‘LS is the combination of the slope length and steepness’ and ‘L is the slope 
length, S is the slope steepness’ (Nearing et al. 2017).

2.4.4. ‘Cover and management factor (C)’
Given that it identifies variables that may be changed most quickly to prevent ero-
sion, the vegetative cover component of the RUSLE is perhaps the most significant. 
The values of C may range from virtually 0 for soil that is extremely well pro-
tected to 1.5 for a surface that has been finely tilled and ridged, which generates a 
lot of runoff and makes the soil especially sensitive to rill erosion (Thomas et al. 
2018).

A unit plot is a fallow land that has been clean-tilled. The values of C indicate the 
weighted average of the soil loss ratios, which show how much soil has been lost over 
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time compared to the unit plot in a particular circumstance (M.A. Nearing et al. 
2017). As soil and cover conditions fluctuate throughout the year, so do soil loss 
ratios. ‘Soil loss ratios (SLR)’ are weighted in accordance with the distribution of ero-
sivity throughout a year to get C. The C-factor in RUSLE takes into account how dif-
ferences in soil erosion from losses that happen in bare fallow areas are caused by 
land cover, crops, and management of crops. Here, for the base period, the vegetation 
indices have been considered for estimating the C factor for this region. In projecting 
the C factor for the predicted period, we consider LULC prediction.

2.4.5. ‘Support practice factor (P)’
The erosion management practice element largely illustrates how surface characteris-
tics have an influence on flow routes and flow hydraulics. For instance, runoff runs 
along channels created by tillage while contouring the slope. When compared to up- 
and-down hill flow pathways, the gradient and flow velocities may be much lower. 
The reliability of the P-factor values is the lowest of any of the other factors. The 
impact of contouring is influenced by a number of interrelated factors. In the few 
field studies that have addressed contouring, these interactions have made it difficult 
to record. Due to interactions between the intensity of the storm, antecedent soil 
water, and tillage, a contouring factor may vary considerably from storm to storm 
and field to field. Applying RUSLE makes it difficult to spot these minor traits in the 
field. The P-factor values, therefore, show wide, all-encompassing impacts of techni-
ques like contouring.

The RUSLE P-components are seen as the sum of all the individual factors that 
were computed according to the methodology utilized in the landscape (Stefanidis 
et al. 2022). RUSLE has looked at a large quantity of data (both model-based and 
field-based) to assess the impacts of contouring (Tanyaş et al. 2015). As a conse-
quence of the findings, factor values for contouring have been created as a function 
of ridge height, furrow slope, and climate erosivity. Even while RUSLE takes a wider 
range of strip cropping situations into consideration, new P-factor estimations for the 
impact of terracing take the slope along the terrace into account (Xiong et al. 2019). 
Not to add that RUSLE P-factors have been created to represent conservation efforts 
on a range areas. Estimates of surface roughness and runoff reduction are needed for 
the practices (Tamene et al. 2017). Here, different support practice measures have 
been incorporated,considering different slopes for estimating the P factor of this 
region.

A ¼ R �K � LS �C �P (11) 

The validation of the models has been done with the help of estimated soil erosion 
and measured soil erosion. The correlation has been made between measured soil 
erosion and estimated soil erosion.

2.5. Climate change

The study took into account the latest set of SSP scenarios created by CMIP6 of the 
World Climate Research Programme (WCRP) (SSP1-2.6, SSP2-4.5, SSP3-7.0, and 
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SSP5-8.5). These additional scenarios were taken into account since they show various 
socioeconomic trends and paths for atmospheric greenhouse gas concentrations. SSPs 
are projections of expected worldwide socioeconomic trends through 2100. They are 
applied to create scenarios for greenhouse gas emissions under various climate 
policies.

The cumulative distribution function (CDF) of data and raw predictions are 
matched by quantile method (QM). Matching occurs at the level of specific combined 
members for ensemble predictions. Let FX and FO stand for the CDFs of the raw pre-
dictions and observations, and let and stand for the raw and post-processed projec-
tions, accordingly. QM is defined as

Xı ¼ F1
O FXðxÞ½ � (12) 

Applying FO to Equation (1)’s left and right sides results in

FO x1ð Þ ¼ FX xð Þ (13) 

A fresh raw forecast number is postprocessed in two phases in accordance with 
Eqs. (12) and (13). The location of the raw prediction in the CDF of (preceding) fore-
casts is used to compute the raw forecast’s quantile percentage (or cumulative likeli-
hood). In the following step, ‘looking up’ the quantile in the data’s CDF updates the 
predicted ensemble member.

Conceptually, QM is straightforward and implementable. FX and FO can be 
derived either parametrically (Gudmundsson et al. 2012) or nonparametrically 
(Bennett et al. 2014) using a ‘lookup table’, ‘empirical distribution function’, or 
‘kernel density estimation’. In particular, when dealing with tiny samples, the use of 
parametric models has the benefit of being less prone to sampling mistakes. 
Furthermore, the mapping functions that are generated by these models are often 
more stable (Lafon et al. 2013). They also make it simple to extrapolate when freshly 
predicted values are higher than the capabilities of the sample data that was used to 
construct the CDFs. This is because the CDFs are generated using sample data. The 
QM setup is being used here for the query. The CDFs take on the appearance of a 
mixed Bernoulli-gamma distribution, with the gamma distribution reflecting precipi-
tation amounts larger than zero and the Bernoulli distribution representing rainfall 
probabilities. In this context, ‘precipitation amounts greater than zero’ refers to quan-
tities of precipitation that are greater than zero. When there are many outliers and 
the mixed distribution cannot be fitted to the data, a nonparametric empirical cumu-
lative distribution function is built from the data. This function is based on the data 
itself (Zhao et al. 2017).

2.6. LULC prediction

2.6.1. Markov model
The Markov model is a theory that was developed for the goals of optimal control 
theory and prediction. This theory is based on the way in which Markov random 
process systems are formed. The Markov model has the capability of displaying the 
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transfer rate across the various categories of land use in addition to quantifying the 
steps involved in converting one land use type to another. It is often employed in the 
forecasting of geographic features without an associated event, and as a consequence, 
it has developed into a major forecasting tool in the field of geographic studies. The 
following computation forecasts changes in LU using the conditional probability for-
mula—Bayes (Sang et al. 2011):

S t þ 1ð Þ ¼ Pij � S tð Þ (14) 

‘The system state at time t or time tþ 1 is S(t), S(tþ 1), and Pij is the state’s trans-
fer likelihood matrix, which is derived as follows’ (Hou et al. 2004):

Pij ¼

P11 P12 ::: P1n
P21 P22 ::: n
..
. ..

. ..
. ..

.

..

. ..
. ..

. ..
.

Pn1 Pn2 ::: Pnn

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

(15) 

0 � Pij < 1 and
XN

j¼1
Pij ¼ 1, ði, j ¼ 1, 2, :::, nÞ

� �

(16) 

2.6.2. Cellular automaton (CA) model
The behavior of CA models may be affected by the uncertainty that results from 
interactions between model components and structures, as well as the quality of 
information sources that are utilized as model input. It focuses primarily on the local 
interactions of cells that have specific temporal and spatial connection qualities, as 
well as the tremendous computational capacity of space, which makes it particularly 
suitable for dynamic modeling and presentation along with distinctive networks that 
self-regulate. The use of geographic cellular automata for land use change simulations 
takes into account not only all of the natural factors, such as soil and climate and 
topography and other natural factors, but also all of the human factors, such as policy 
and economy and technology and other human factors, as well as the historical pat-
terns of land use, all of which are very useful. The CA may be stated in the following 
way (Hou et al. 2004):

S t, t þ 1ð Þ ¼ f ð S tð Þ, Nð Þ (17) 

where ‘t and tþ 1 denote the various periods, S is the set of finite and discrete cellu-
lar states, N is the cellular field, and f is the rule for transforming cellular states in 
local space’.

2.6.3. CA–Markov model
The CA-Markov land cover projection system combines ‘Cellular Automata, Markov 
Chain, Multi-Criteria, and Multi-Objective Land Allocation (MOLA)’ with a spatial 
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contiguity component and knowledge regarding the predicted geographical pattern of 
changes. CA-Markov is referred to as a ‘Cellular Automata, Markov Chain, Multi- 
Criteria, and Multi-Objective Land Allocation (MOLA)’ land cover projection 
system.When making predictions about changes in land use, the Markov model empha-
sizes quantity. The spatial variables included in this model are insufficient and do not 
account for the many ways that land use has changed geographically (Wickramasuriya 
et al. 2009). The CA model has a robust concept of space, which enables it to manage the 
space-time dynamic growth of complex space systems. By combining the concepts of CA 
and Markov, the CA-Markov model concentrates on time series and space for the pur-
pose of benefit prediction. It may be possible to develop more accurate models of the 
temporal and spatial patterns of change in LU. The CA-Markov module is able to antici-
pate the states in which land use changes will occur by combining the capabilities of cel-
lular automaton filters with those of Markov processes. It’s possible that simulating 
changes in land usage might be more beneficial.

In this particular piece of research, shifts in land use have been modeled using the 
CA-Markov framework. Before achieving the geographical distribution of land use, 
vector data are first transformed into raster data. The Markov model assessment of 
land use patterns and the application of CA modeling, both of which are based on 
the CA-Markov module—a GIS and image processing module—achieve the desired 
results. The specific actions to take are as follows:

Markov chain analysis may be used to forecast future changes in land usage by 
beginning with the previous state. In order to make accurate predictions about the 
future, it is possible to use a matrix that contains the observed transition probabilities 
between maps from the past and the present. The transition probability matrix and 
the transfer region of the matrix may both be determined using the process of spatial 
overlay modeling. The transfer zone of the matrix illustrates how the predicted area 
will transition from one type of land use to another during the following time period. 
The transformation of the various land use categories into other forms of likelihood 
is represented by the change in the probability matrix between them. Remember that 
the baseline is the map of current land usage, which is positioned on the map before. 
Testing of the CA-Markov model will make use of the transition probability matrix 
that was produced as its change rules.

When CA filters are used, the space weighting factor is made readily apparent and 
is subject to alterations at any given time based on the characteristics of the cells that 
are located in the surrounding area. The neighborhood is determined in this study 
using the standard 55 contiguity filter. A matrix region composed of 55 cellular units 
surrounds each cellular center to drastically affect cellular alterations.

The current year will serve as the basis for the investigation. The number of itera-
tions of CA was set at 15, and this was done so that the landscape spatial pattern 
could be replicated at the research site in the period of time that was projected. As a 
result, the CA-Markov model was used for this work to simulate and forecast LULC 
change. This procedure created transition area matrices by performing Markovian 
chain evaluation on the prior and base LULC maps. Next, transitional area maps of 
LULC were created. Finally, the model’s accuracy was assessed in order to simulate 
potential alterations and predict the geographic distribution of LULC within 2100.
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3. Results

3.1. Soil erosion

This region’s ‘average annual soil erosion’ has been predicted while taking into 
account USLE and RUSLE. For a precise knowledge of the nature of erosion 
across the area, the spatial variance has been measured using several classifica-
tions. In USLE, the north-western, western, and southern portions of this river 
basin are mostly related to the geographical coverage for the ‘very high’ (>20) 
and ‘high’ (15-20) ‘soil erosion’ zones. The remainder of this basin has soil 
erosion zones that are classified as ‘moderate’ (10–15), ‘low’ (5–10), and ‘very low’ 
(<5) (Figure 4).

The ‘north-western, western, south-western, and southern’ portions of the river 
basin in RUSLE are mostly connected with the ‘very high’ (>20) and ‘high’ (15-20) 
‘soil erosion’ zones. The remaining portions of this basin are characterized by ‘soil 
erosion’ zones that are ‘moderate’ (10–15), ‘low’ (5–10), and ‘very low’ (<5) (Figure 
5) (Table 2). For a clear underestimation of the nature of erosion, careful fieldwork 
has been done to identify the main erosion-prone locations. Figure 6 depicts a few of 
the main ‘erosion prone areas’ in this region.

Figure 4. Average annual soil erosion using USLE.
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3.2. Validation

The actual measured ‘soil erosion’ was taken into account while validating the mod-
els. Actual measured ‘soil erosion’ and USLE have an R2 value of 0.804, whereas 
RUSLE has an R-squared (R2) value of 0.883 (Figure 7). In terms of quantitative effi-
ciency, the RUSLE’s optimum capacity in this area is superior to the USLE. Long 
rains have the potential to saturate the soil, which lowers input and increases ero-
sional discharge, which RUSLE is better able to estimate than USLE. In contrast to 

Figure 5. Average annual soil erosion using RUSLE.

Table 2. Areal coverage of different soil erosion zones.
Average annual soil erosion

USLE RUSLE

Soil erosion  
classes Area

Area in  
percentage (%)

Soil erosion  
classes Area

Area in  
Percentage (%)

Very Low 1350.96 39.11 Very Low 1143.02 33.09
Low 1224.19 35.44 Low 1189.99 34.45
Moderate 433.51 12.55 Moderate 621.42 17.99

High 249.05 7.21 High 284.98 8.25
Very high 196.55 5.69 Very High 214.86 6.22
Total 3454.27 100 Total 3454.27 100
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USLE, RUSLE can handle convergent and divergent topography and accounts for 
regions with net deposition. The RUSLE has also changed since it now takes into 
consideration rock fragments in and on the soil. The K-factor corrects for rock in the 
soil layer to account for its impacts on permeability and, therefore, runoff. The C-fac-
tor considers rock particles on the soil’s surface as mulch.

3.3. Impact of climate and LULC change on soil erosion

Using predicted rainfall and ‘LULC’ data, the impact of CC on ‘soil erosion’ has been 
determined (Figure 8). The estimated R factor values when taking SSP 126 into account 
vary from 369.34 to 461.07. In SSP 245, the expected R factor values vary from 376.36 to 
473.85. The estimated R factor values while taking into account SSP 370 vary from 
392.03 to 484.54. In the instance of SSP 585, predicted R factor values vary from 399.92 
to 493.72. R factor has a propensity to rise in correlation with greater SSPs.

By taking into account the ‘CA-Markov chain’ model for calculating the influence 
of ‘LULC’ change on ‘soil erosion,’ the future ‘LULC’ of this area has been forecasted. 
The 2100s are chosen as the expected time period in this viewpoint. In this light, the 
‘LULC’ change from the base period has been chosen. This location has been linked 
to a number of ‘LULC’ categories, including ‘waterbody, dense vegetation, mixed 
vegetation, agricultural area, built-up area, and bare terrain’. There is a trend for thick 
vegetation and waterbodies to decline throughout the forecast timeframe (Figure 9).

Figure 6. Some erosion prone areas of this study region.
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With expected rainfall and ‘LULC’ into account, the average annual ‘soil erosion’ 
for the predicted period has been calculated (Figure 10). With greater SSPs, ‘soil ero-
sion’ is anticipated since there is a growing tendency. In compared to the base period, 
the ‘very high’ and ‘high’ ‘soil erosion’ regions mostly show an increase in the pro-
jected period. In addition, the similar situation has been seen in relation to the higher 
SPPs. We may thus conclude from this research that ‘climate and LULC change’ may 
have some effect. Table 3 displays the area covered for the ‘soil erosion’ zones classi-
fied as ‘very low,’ ‘low,’ ‘moderate,’ ‘high,’ and ‘very high’ while taking SSP126, 
SSP245, SSP370, and SSP585 into account.

Figure 7. Correlation between measured soil erosion and estimated soil erosion using USLE (a) 
and RUSLE (b).
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Figure 8. R factor in the projected period with considering SSP 126 (a), SSP 245 (b), SSP 370 
(c) and SSP 585 (d).

Figure 9. LULC map of the study region in base period (a) and the projected period (b).
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Figure 10. Soil erosion in the projected period with considering SSP 126 (a), SSP 245 (b), SSP 370 
(c) and SSP 585 (d).

Table 3. Areal coverage of projected soil erosion with considering different SSPs.
SSP 126 SSP 245

Soil erosion  
classes Area

Area in  
percentage (%)

Soil erosion  
classes Area

Area in  
percentage (%)

Very Low 1105.71 32.01 Very low 1100.87 31.87
Low 1144.05 33.12 Low 1111.93 32.19
Moderate 616.93 17.86 Moderate 590.33 17.09
High 303.28 8.78 High 324.36 9.39
Very high 284.29 8.23 Very high 326.77 9.46
Total 3454.27 100 Total 3454.27 100

SSP 370 SSP 585

Soil erosion  
classes Area

Area in  
percentage (%)

Soil erosion  
classes Area

Area in  
percentage (%)

Very low 1073.24 31.07 Very Low 1041.46 30.15
Low 1090.51 31.57 Low 1070.48 30.99
Moderate 601.73 17.42 Moderate 573.75 16.61
High 343.70 9.95 High 359.59 10.41
Very high 345.08 9.99 Very High 408.99 11.84
Total 3454.27 100 Total 3454.27 100
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4. Discussion

Future ‘soil erosion’ may be increasingly severe due to CC, rising population pressure, 
unsuitable land use, and the loss of natural resources. As the population and land use 
change, the mapping and quantitative assessment of soil has increased in importance 
for sustainable use and the growth of conservation activities. The main causes of ‘soil 
erosion’ include inadequate land use, improper hill slope reduction, agricultural 
growth, urbanization, and a decline in plant cover. However, in certain environments, 
the physical process may be a major cause of erosion. As a result, human activities as 
well as physical processes, are linked to erosion and its accompanying sedimentation.

The global differences in ‘soil erosion’ caused by CC, the potential for ‘land use’ 
and ‘soil management’ strategies to mitigate these impacts, and the ambiguities sur-
rounding these policies are all poorly understood despite several published research 
(Eekhout and de Vente 2022). Changes in severe precipitation have the most effects 
on SE as a consequence of CC. Extreme rainfall is expected to rise because a hotter 
atmosphere can hold more moisture, leading to a more active hydrological cycle 
(Parr and Wang 2014). Globally, data over a long period of time show an increase in 
heavy rainfall, and projections from climate models show that this trend will continue 
in the next decades (Fischer et al. 2013). Excessive rainfall results in ‘soil erosion’ due 
to drainage as well as separating soil particles due to the impact of raindrops 
(R€omkens et al. 2002).

It is commonly known that altering how land is used has a vital influence on ‘soil 
erosion,’ which is connected to CC (Borrelli et al. 2017). Predicting how ‘land use’ 
will change under ‘future climate conditions’ is not a simple undertaking, however, 
given the evident large range of elements that operate at local to global dimensions 
(Riebsame et al. 1994). Due to this complexity, only a few studies have looked at how 
‘land use change’ and increased plant growth relate to how ‘soil erosion’ is affected 
by climate change (Eekhout and de Vente 2022). The projected increase in ‘soil ero-
sion’ as a consequence of CC is commonly used as an argument for soil conservation 
(Altieri et al. 2015). By providing important biological services like carbon and nitro-
gen sequestration in addition to reducing ‘soil erosion,’ soil conservation techniques 
may aid in the mitigation of CC and the preservation of biodiversity. According to 
this viewpoint, soil erosion has a specific effect on the local climate. Therefore, this 
kind of issue might be seen as a major environmental concern that could have a 
negative impact on society.

In mountainous locations, CC, unsustainable LU practices, and steep terrain all 
contribute to soil erosion (Tarolli and Straffelini 2020). In order to estimate the 
hydrological, ecological, and soil carbon dynamics reactions to global warming, it is 
essential to evaluate how climate change affects soil erosion. Therefore, assessing the 
effect of CC on erosion is essential for comprehending the consequences for the eco-
system and food security. Only the quantity, intensity, and erosivity of rainfall are 
impacted by climate change (Nearing et al. 2004). In the present context for land use 
planning and management, CC is, therefore, a crucial role. This conservation plan-
ning requires spatially dispersed soil erosion data. Users and politicians must be 
informed of this information in order to ensure the sustainability of farming.
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During calculating the ‘average annual soil erosion’ during the base period, the 
‘USLE’ and ‘RUSLE’ have been taken into consideration in this study. The result was 
then verified by taking into account primary measured erosion data. This research 
reveals that ‘RUSLE’ is more quantitatively efficient than ‘USLE’ in comparison. 
When it comes to modeling erosion in various circumstances, ‘RUSLE’ is more adapt-
able and effective than ‘USLE’ (Wischmeier and Smith 1965). Empirical and process- 
based design is combined in ‘RUSLE, ’ which has an advantage over ‘USLE’ in terms 
of dataset utilization. Because RUSLE components are divided into sub-factors, you 
have additional alternatives when it comes to assessing soil loss. It also makes it pos-
sible to estimate deposits via sediment transfer. RUSLE applies a concept known as 
‘rainfall erosivity’ in order to determine how much of an impact rainfall has on ero-
sion. Since rainfall erosivity is a combined evaluation of the amount and ‘kinetic 
energy of rainfall’, the ‘sub-hourly rainfall’ occurrences provide the most accurate 
results when used to make the determination. According to ‘RUSLE’, ‘soil erosion’ is 
exactly proportional to ‘rainfall erosivity’ as long as other characteristics such as 
‘topography, soil type, land cover, and management’ stay unchanged.

In this viewpoint, ‘RUSLE’ has been used to quantify the expected ‘soil erosion’. 
To simulate the probable effects of ‘climate’ and ‘LULC’ change on SE, the expected 
rainfall and its related R factor and ‘LULC’ were utilized. Monsoon rains make SE 
worse. Numerous major environmental problems are brought on by ‘soil erosion’. 
Sediment is a result of SE and is unusual in that it may serve as both a pollutant and 
a carrier for further contaminants that may be deposited onto soil particles. A prac-
tical and effective strategy for lowering contaminant transmission via sediment for-
mation is stabilization of the sediment source by restricting ‘soil erosion’ through the 
use of appropriate management techniques (Toy et al. 2002).

5. Conclusion

One of the most important factors affecting land gradation in an area dominated by 
‘sub-tropical monsoon’ is the issue of ‘soil erosion’. The majority of the subtropical 
zone is already free from the issue of severe climatic events worldwide. On the other 
hand, human actions have the ability to significantly alter the environment. Future 
estimations of the potential impact of ‘climate and LULC change’ on ‘soil erosion’ are 
thus necessary. ‘Average annual soil erosion’ has been calculated for the base period 
while taking ‘USLE’ and ‘RUSLE’ into account. In this case, ‘RUSLE’ offers more 
computing efficiency than ‘USLE.’ In this viewpoint, ‘soil erosion’ has been forecasted 
using the RUSLE, while ‘rainfall’ and ‘LULC’ simulations have been taken into 
account. In comparison to the base era, there is a growing trend for higher ‘soil ero-
sion’ zones. The higher projected ‘soil erosion’ has been seen, going by higher SSPs. 
So the impact of climate and LULC change on future soil erosion has been estab-
lished in this research. Due to the enhanced erosive potential of the upcoming severe 
rainfall, the soil loss rate is thus anticipated to rise under both scenarios. Future esti-
mations of the potential impact of CC and ‘LULC’ change on ‘soil erosion’ are thus 
necessary. The primary goal of future investigators will be to use this methodology 
across many socio-political aspects while taking the environment’s geography into 
consideration.

22 S. C. PAL ET AL.



Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Subodh Chandra Pal http://orcid.org/0000-0003-0805-8007 

Data availability statement

The data will be made available upon request by the first author.

References

Alewell C, Borrelli P, Meusburger K, Panagos P. 2019. Using the USLE: chances, challenges 
and limitations of soil erosion modelling. Int Soil Water Conserv Res. 7(3):203–225. doi:10. 
1016/j.iswcr.2019.05.004.

Allan RP, Barlow M, Byrne MP, Cherchi A, Douville H, Fowler HJ, Gan TY, Pendergrass AG, 
Rosenfeld D, Swann ALS, et al. 2020. Advances in understanding large-scale responses of the 
water cycle to climate change. Ann N Y Acad Sci. 1472(1):49–75. doi:10.1111/nyas.14337.

Altieri MA, Nicholls CI, Henao A, Lana MA. 2015. Agroecology and the design of climate 
change-resilient farming systems. Agron Sustain Dev. 35(3):869–890. doi:10.1007/s13593- 
015-0285-2.

Anderson RL, Rowntree KM, Le Roux JJ. 2021. An interrogation of research on the influence 
of rainfall on gully erosion. CATENA. 206:105482. doi:10.1016/j.catena.2021.105482.

Aryal B, Gurung R, Camargo AF, Fongaro G, Treichel H, Mainali B, Angove MJ, Ngo HH, 
Guo W, Puadel SR. 2022. Nitrous oxide emission in altered nitrogen cycle and implications 
for climate change. Environ Pollut. 314:120272. doi:10.1016/j.envpol.2022.120272.

Bennett JC, Grose MR, Corney SP, White CJ, Holz GK, Katzfey JJ, Post DA, Bindoff NL. 
2014. Performance of an empirical bias-correction of a high-resolution climate dataset. Intl 
Journal of Climatology. 34(7):2189–2204. doi:10.1002/joc.3830.

Bhattacharya RK, Das Chatterjee N. 2021. Geomorphic threshold and sand mining: a geo- 
environmental study in Kangsabati River. In River sand mining modelling and sustainable 
practice: the Kangsabati River, India. Springer Nature Switzerland AG; p. 21–50.

Borrelli P, Robinson DA, Fleischer LR, Lugato E, Ballabio C, Alewell C, Meusburger K, Modugno 
S, Sch€utt B, Ferro V, et al. 2017. An assessment of the global impact of 21st century land use 
change on soil erosion. Nat Commun. 8(1):2013. doi:10.1038/s41467-017-02142-7.

Borrelli P, Robinson DA, Panagos P, Lugato E, Yang JE, Alewell C, Wuepper D, Montanarella 
L, Ballabio C. 2020. Land use and climate change impacts on global soil erosion by water 
(2015-2070). Proc Natl Acad Sci U S A. 117(36):21994–22001. doi:10.1073/pnas.2001403117.

Casanueva A, Herrera S, Iturbide M, Lange S, Jury M, Dosio A, Maraun D, Guti�errez JM. 2020. 
Testing bias adjustment methods for regional climate change applications under observational 
uncertainty and resolution mismatch. Atmos Sci Lett. 21(7):e978. doi:10.1002/asl.978.

Chakraborty SK, Chakraborty SK. 2021. Physiography of rivers: relevant hypothesis and theo-
ries. In Riverine Ecology Volume 1: eco-Functionality of the Physical Environment of 
Rivers, Springer Nature Switzerland AG, 235–374.

Dignac M-F, Derrien D, Barr�e P, Barot S, C�ecillon L, Chenu C, Chevallier T, Freschet GT, Garnier 
P, Guenet B, et al. 2017. Increasing soil carbon storage: mechanisms, effects of agricultural 
practices and proxies. A review. Agron Sustain Dev. 37(2):14. doi:10.1007/s13593-017-0421-2.

Doulabian S, Toosi AS, Calbimonte GH, Tousi EG, Alaghmand S. 2021. Projected climate 
change impacts on soil erosion over Iran. J Hydrol. 598:126432. doi:10.1016/j.jhydrol.2021. 
126432.

GEOMATICS, NATURAL HAZARDS AND RISK 23

https://doi.org/10.1016/j.iswcr.2019.05.004
https://doi.org/10.1016/j.iswcr.2019.05.004
https://doi.org/10.1111/nyas.14337
https://doi.org/10.1007/s13593-015-0285-2
https://doi.org/10.1007/s13593-015-0285-2
https://doi.org/10.1016/j.catena.2021.105482
https://doi.org/10.1016/j.envpol.2022.120272
https://doi.org/10.1002/joc.3830
https://doi.org/10.1038/s41467-017-02142-7
https://doi.org/10.1073/pnas.2001403117
https://doi.org/10.1002/asl.978
https://doi.org/10.1007/s13593-017-0421-2
https://doi.org/10.1016/j.jhydrol.2021.126432
https://doi.org/10.1016/j.jhydrol.2021.126432


Eekhout JP, De Vente J. 2020. How soil erosion model conceptualization affects soil loss pro-
jections under climate change. Prog Phys Geogr: Earth Environ. 44(2):212–232. doi:10.1177/ 
0309133319871937.

Eekhout JP, Hunink JE, Terink W, de Vente J. 2018. Why increased extreme precipitation 
under climate change negatively affects water security. Hydrol Earth Syst Sci. 22(11):5935– 
5946. doi:10.5194/hess-22-5935-2018.

Eekhout JP, de Vente J. 2019. The implications of bias correction methods and climate model 
ensembles on soil erosion projections under climate change. Earth Surf Processes Landf. 
44(5):1137–1147. doi:10.1002/esp.4563.

Eekhout JPC, de Vente J. 2022. Global impact of climate change on soil erosion and potential 
for adaptation through soil conservation. Earth Sci Rev. 226:103921. doi:10.1016/j.earscirev. 
2022.103921.

Etehadi Abari M, Majnounian B, Malekian A, Jourgholami M. 2017. Effects of forest harvest-
ing on runoff and sediment characteristics in the Hyrcanian forests, northern Iran. Eur J 
Forest Res. 136(2):375–386. doi:10.1007/s10342-017-1038-3.

Falco M, Carril AF, Li LZ, Cabrelli C, Men�endez CG. 2020. The potential added value of 
Regional Climate Models in South America using a multiresolution approach. Clim Dyn. 
54(3-4):1553–1569. doi:10.1007/s00382-019-05073-9.

Fischer EM, Beyerle U, Knutti R. 2013. Robust spatially aggregated projections of climate 
extremes. Nature Clim Change. 3(12):1033–1038. doi:10.1038/nclimate2051.

Giorgi F. 2019. Thirty years of regional climate modeling: where are we and where are we 
going next? JGR Atmospheres. 124(11):5696–5723. doi:10.1029/2018JD030094.

Gudmundsson L, Bremnes JB, Haugen JE, Engen-Skaugen T. 2012. Downscaling RCM precipi-
tation to the station scale using statistical transformations–a comparison of methods. 
Hydrol Earth Syst Sci. 16(9):3383–3390. doi:10.5194/hess-16-3383-2012.

Hazell P, Poulton C, Wiggins S, Dorward A. 2010. The future of small farms: trajectories and 
policy priorities. World Development. 38(10):1349–1361. doi:10.1016/j.worlddev.2009.06.012.

Hou X, Chang B, Yu X. 2004. Land use change in Hexi corridor based on CA-Markov meth-
ods. Nongye Gongcheng Xuebao (Trans Chinese Soc Agric Eng). 20(5):286–291.

Kalognomou E-A, Lennard C, Shongwe M, Pinto I, Favre A, Kent M, Hewitson B, Dosio A, 
Nikulin G, Panitz H-J, et al. 2013. A diagnostic evaluation of precipitation in CORDEX 
models over southern Africa. J Climate. 26(23):9477–9506. doi:10.1175/JCLI-D-12-00703.1.

Keating BA, Herrero M, Carberry PS, Gardner J, Cole MB. 2014. Food wedges: framing the 
global food demand and supply challenge towards 2050. Global Food Secur. 3(3-4):125–132. 
doi:10.1016/j.gfs.2014.08.004.

Kinnell P. 2017. A comparison of the abilities of the USLE-M, RUSLE2 and WEPP to model 
event erosion from bare fallow areas. Sci Total Environ. 596-597:32–42. doi:10.1016/j.scito-
tenv.2017.04.046.

Lafon T, Dadson S, Buys G, Prudhomme C. 2013. Bias correction of daily precipitation simu-
lated by a regional climate model: a comparison of methods. Int J Climatol. 33(6):1367– 
1381. doi:10.1002/joc.3518.

Lal R. 2004. Soil carbon sequestration to mitigate climate change. Geoderma. 123(1-2):1–22. 
doi:10.1016/j.geoderma.2004.01.032.

Li Z, Fang H. 2016. Impacts of climate change on water erosion: a review. Earth Sci Rev. 163: 
94–117. doi:10.1016/j.earscirev.2016.10.004.

Lin H, Cheng X, Bruijnzeel LA, Duan X, Zhang J, Chen L, Zheng H, Lu S, Dong Y, Huang J, 
et al. 2023. Land degradation and climate change lessened soil erodibility across a wide area 
of the southern Tibetan Plateau over the past 35–40 years. Land Degrad Dev. 34(9):2636– 
2651. doi:10.1002/ldr.4636.

Mandal B, Bej D, Baghmar N. 2021. Environmental impact and management of sand mining: 
a case study of Kangsabati River Watershed, West Bengal using remote sensing and GIS 
technique. Int J Technol Res Manag. 8(8):1–9.

Nearing M, Lane LJ, Lopes VL. 2017. Modeling soil erosion. In Soil erosion research methods. 
Routledge; p. 127–158.

24 S. C. PAL ET AL.

https://doi.org/10.1177/0309133319871937
https://doi.org/10.1177/0309133319871937
https://doi.org/10.5194/hess-22-5935-2018
https://doi.org/10.1002/esp.4563
https://doi.org/10.1016/j.earscirev.2022.103921
https://doi.org/10.1016/j.earscirev.2022.103921
https://doi.org/10.1007/s10342-017-1038-3
https://doi.org/10.1007/s00382-019-05073-9
https://doi.org/10.1038/nclimate2051
https://doi.org/10.1029/2018JD030094
https://doi.org/10.5194/hess-16-3383-2012
https://doi.org/10.1016/j.worlddev.2009.06.012
https://doi.org/10.1175/JCLI-D-12-00703.1
https://doi.org/10.1016/j.gfs.2014.08.004
https://doi.org/10.1016/j.scitotenv.2017.04.046
https://doi.org/10.1016/j.scitotenv.2017.04.046
https://doi.org/10.1002/joc.3518
https://doi.org/10.1016/j.geoderma.2004.01.032
https://doi.org/10.1016/j.earscirev.2016.10.004
https://doi.org/10.1002/ldr.4636


Nearing M, Pruski F, O’Neal M. 2004. Expected climate change impacts on soil erosion rates: 
a review. J Soil Water Conserv. 59(1):43–50.

Nearing MA, Yin S, Borrelli P, Polyakov VO. 2017. Rainfall erosivity: An historical review. 
Catena. 157:357–362. doi:10.1016/j.catena.2017.06.004.

O’Neal MR, Nearing MA, Vining RC, Southworth J, Pfeifer RA. 2005. Climate change impacts 
on soil erosion in Midwest United States with changes in crop management. Catena. 61(2- 
3):165–184. doi:10.1016/j.catena.2005.03.003.

Ouyang W, Wu Y, Hao Z, Zhang Q, Bu Q, Gao X. 2018. Combined impacts of land use and 
soil property changes on soil erosion in a mollisol area under long-term agricultural devel-
opment. Sci Total Environ. 613-614:798–809. doi:10.1016/j.scitotenv.2017.09.173.

Parr D, Wang G. 2014. Hydrological changes in the US Northeast using the Connecticut River 
Basin as a case study: part 1. Modeling and analysis of the past. Global Planet Change. 122: 
208–222. doi:10.1016/j.gloplacha.2014.08.009.

Plangoen P, Babel M, Clemente R, Shrestha S, Tripathi N. 2013. Simulating the impact of 
future land use and climate change on soil erosion and deposition in the Mae Nam Nan 
Sub-Catchment, Thailand. Sustainability. 5(8):3244–3274. doi:10.3390/su5083244.

Pongratz J, Reick C, Raddatz T, Claussen M. 2008. A reconstruction of global agricultural 
areas and land cover for the last millennium. Global Biogeochem Cycles. 22(3):n/a–n/a. doi: 
10.1029/2007GB003153.

Rajbanshi J, Bhattacharya S. 2022. Modelling the impact of climate change on soil erosion and 
sediment yield: a case study in a sub-tropical catchment, India. Model Earth Syst Environ. 
8(1):689–711. doi:10.1007/s40808-021-01117-4.

Riebsame WE, Meyer WB, Turner B. 1994. Modeling land use and cover as part of global 
environmental change. Clim Change. 28(1-2):45–64. doi:10.1007/BF01094100.

R€omkens MJ, Helming K, Prasad S. 2002. Soil erosion under different rainfall intensities, sur-
face roughness, and soil water regimes. Catena. 46(2-3):103–123. doi:10.1016/S0341- 
8162(01)00161-8.

Sang L, Zhang C, Yang J, Zhu D, Yun W. 2011. Simulation of land use spatial pattern of 
towns and villages based on CA–Markov model. Math Comput Modell. 54(3-4):938–943. 
doi:10.1016/j.mcm.2010.11.019.

Segura C, Sun G, McNulty S, Zhang Y. 2014. Potential impacts of climate change on soil ero-
sion vulnerability across the conterminous United States. J Soil Water Conserv. 69(2):171– 
181. doi:10.2489/jswc.69.2.171.

Smith P, House JI, Bustamante M, Sobock�a J, Harper R, Pan G, West PC, Clark JM, Adhya T, 
Rumpel C, et al. 2016. Global change pressures on soils from land use and management. 
Glob Chang Biol. 22(3):1008–1028. doi:10.1111/gcb.13068.

Stefanidis S, Alexandridis V, Mallinis G. 2022. A cloud-based mapping approach for assessing 
spatiotemporal changes in erosion dynamics due to biotic and abiotic disturbances in a 
Mediterranean Peri-Urban forest. Catena. 218:106564. doi:10.1016/j.catena.2022.106564.

Switanek MB, Troch PA, Castro CL, Leuprecht A, Chang H-I, Mukherjee R, Demaria E. 2017. 
Scaled distribution mapping: a bias correction method that preserves raw climate model 
projected changes. Hydrol Earth Syst Sci. 21(6):2649–2666. doi:10.5194/hess-21-2649-2017.

Tamene L, Adimassu Z, Ellison J, Yaekob T, Woldearegay K, Mekonnen K, Thorne P, Le QB. 
2017. Mapping soil erosion hotspots and assessing the potential impacts of land manage-
ment practices in the highlands of Ethiopia. Geomorphology. 292:153–163. doi:10.1016/j. 
geomorph.2017.04.038.
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