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ABSTRACT 

 
Leaf galls are abnormal plant growths resulting from insect parasitism, which can cause 

major agricultural losses if not managed in a timely manner. Precise early detection of leaf 

galls is crucial for enabling targeted treatment of affected plants and precision crop 

management. However, manual monitoring and identification of leaf galls across large 

cultivated areas can be extremely labor-intensive, slow and error-prone. This necessitates 

the development of automated computer vision techniques using deep learning to 

accurately detect leaf galls at scale for crop health monitoring. This work develops and 

systematically compares two state-of-the-art convolutional neural network architectures - 

YOLOv8 and YOLOv5 for automated detection of leaf galls on plumeria leaves. A dataset 

of 489 high resolution images of plumeria leaves exhibiting leaf galls of various shapes, 

sizes, textures and colors was collected through extensive field surveys. Each image was 

annotated by an experienced researcher using bounding boxes demarcating each gall 

instance. 73% of the images were utilized for training, 12% for validation, while the 

remaining 15% were held-out for testing model performance. Both YOLOv8 and YOLOv5 

models were optimized by tuning key hyperparameters and leveraging data augmentation 

techniques to minimize overfitting. On the 142-image test set, YOLOv8 achieved a higher 

mean Average Precision (mAP) of 92.1%, compared to 89.1% attained by YOLOv5, 

demonstrating YOLOv8's superior accuracy. YOLOv8 also attained higher precision of 

90.3% and recall of 88.3%, versus 89.4% and 84.8% for YOLOv5, indicating improved 

classification and localization capabilities. However, YOLOv5 exhibited slightly faster 

inference time versus YOLOv8. Overall, this rigorous comparative evaluation highlights 

YOLOv8 as a more robust and accurate solution for automated leaf gall detection, while 

YOLOv5 may be more suitable for real-time analysis. The findings provide meaningful 

insights on deep learning advancements for agriculture applications. 
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CHAPTER 1 

Introduction 

 

1.1 Introduction 

 

Plumeria (frangipani) is an ornamental plant grown extensively across tropical regions of 

Bangladesh. However, plumeria cultivation in the country is threatened by infestations of 

leaf galls [1] - abnormal plant tissue growths caused by insects, mites, fungi, bacteria, and 

viruses.[2] Leaf galls stunt plant growth and cause early leaf drops, eventually destroying 

the plant if not controlled. Timely detection and removal of infected leaves is key to 

effective management of leaf galls in plumeria.[3] However, manual detection of leaf galls 

is challenging owing to their varied shapes, colors, and sizes.[4] This necessitates the 

development of automated computer vision techniques to accurately detect leaf galls for 

plumeria crop monitoring in Bangladesh. 

Recent advances in deep learning have enabled object detection models like YOLOv5 and 

YOLOv8 to achieve high accuracy in plant disease recognition. This study aims to develop 

and compare automated leaf gall detection methods for plumeria in Bangladesh using these 

state-of-the-art YOLO architectures. The specific objectives are to (i) create a dataset of 

plumeria leaf images in the Bangladeshi context annotated with gall regions (ii) optimize 

and train YOLOv5 and YOLOv8 models on this dataset (iii) evaluate and compare the 

models' performance on a test set in terms of precision, recall and mean average precision. 

The work attempts to provide an efficient computer vision solution using the optimal 

YOLO model to aid plumeria cultivators in the early identification of leaf gall infestations. 

This can facilitate timely application of insecticides or removal of infected leaves, reducing 

yield losses. The developed method can potentially be extended to detect other crop pests 

and diseases in Bangladesh. 
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1.2 Motivation 

 

YOLOv8 is the most advanced version in the YOLO family of deep learning models for 

real-time object detection. Compared to earlier versions like YOLOv5 and YOLOv7, 

YOLOv8 demonstrates significantly higher accuracy and faster inference speeds. These 

advantages make YOLOv8 well-suited for automated, timely detection of leaf galls in 

plumeria crops. Specifically, YOLOv8 employs an optimized anchor box design and new 

techniques like cross-scale aggregation that help detect objects of varying sizes and scales 

more accurately than YOLOv5. This is crucial for identifying the diverse shapes and sizes 

of leaf galls. Additionally, YOLOv8 has inbuilt data augmentation capabilities during 

training, enhancing robustness to variations in leaf gall appearance, illumination and 

orientation. The optimized architecture enables real-time detection, allowing automated 

analysis of multiple images captured in plumeria plantations. YOLOv8 models can run 

efficiently on edge devices like embedded systems deployed in agricultural settings. 

Compared to other deep networks, pre-trained YOLOv8 models are highly performant for 

many plant disease classification tasks with minimal training data requirements. These 

advantages motivated the use of YOLOv8 over YOLOv5 models for the application of 

accurate leaf gall detection in plumerias. 

 

1.3 Rationale of the Study 

 

The rationale behind developing an AI-based automated solution for leaf gall detection is 

multifold. Firstly, timely and precise detection of leaf galls is essential for effective 

management of the midge pest and reducing crop losses in plumeria. However, manual 

monitoring of orchards is labor-intensive, slow and error-prone. Automating this process 

through computer vision can enable real-time, large-scale and accurate disease surveillance 

to aid time-sensitive interventions. Secondly, deep learning object detection models like 

YOLOv8 can rapidly adapt to new domain tasks like plant disease recognition with 

minimal training data requirements. Their high inference speeds facilitate deployment for 

in-field monitoring. Finally, this data-driven approach can help move Bangladeshi 

agriculture towards precision and smart farming practices to improve productivity. 
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Automating visual inspection is the first step which can pave the path for integrating 

advanced technologies like robots, drones and IoT for future farming. In summary, this 

study employs recent advances in AI to deliver an automated solution for addressing a real- 

world crop health problem, while also demonstrating the power of data-centric innovations 

for a more responsive agriculture sector. 

 

1.4 Research Questions 

 

• How accurately can YOLOv8 and YOLOv5 models detect and localize leaf 

galls of different shapes, sizes, and appearance in plumeria leaf images? 

• How does the performance for automated leaf gall detection compare between 

advanced deep learning models including YOLOv8 and YOLOv5 in terms of 

metrics like accuracy, precision and inference speed? 

The revised questions aim to assess and compare the capabilities of the latest YOLO 

versions - v8 and v5 for the application of automated crop pest recognition through a 

leaf gall detection task. This will help determine the most optimal YOLO model for 

enabling real-time and precise disease monitoring to support smart agriculture. 

 

1.5 Expected Output 

 

The key expected output from this study is the performance comparison between advanced 

YOLO versions - YOLOv8 and YOLOv5 in terms of accuracy, speed and robustness for 

detecting leaf galls in plumeria crop images. Based on previous research and reported 

benchmarks, it is expected that YOLOv8 will demonstrate the highest mean average 

precision exceeding 90% in accurately localizing and classifying gall regions across test 

images. YOLOv8 is anticipated to outperform v5 by 2-3% in terms of precision and recall 

metrics owing to its architectural improvements for detecting small objects and data 

augmentation capabilities. However, YOLOv5 is expected to have the fastest inference 

speed due to its optimized lightweight structure compared to v8 which trade off some speed 

for higher accuracy. In-depth experimentation and analysis will reveal the optimal trade- 

off between accuracy and real-time performance. The comparison will validate YOLOv8 
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as the most suited model for deployment in time-sensitive and resource-constrained 

agricultural settings. The study will also provide insight into the evolving capabilities of 

deep learning for plant disease recognition applications. 

 

1.6 Project Management and Finance 

 

Phase 1: 

• Dataset collection from plumeria farms and augmentation 

• Image annotation using labeling software 

• Literature review on YOLO optimization 

Phase 2: 

• Prepare computing infrastructure (GPU server/cloud computing access) 

• Hyperparameter tuning on YOLO models 

• Begin model training with checkpoints 

Phase 3: 

• Complete model training and selection using validation performance 

• Conduct testing and performance analysis on test set 

• Quantify model accuracy, precision, recall etc. 

• Compare v5 and v8 performance 

Phase 4: 

• Deploy trained model on mobile/web application for demonstration 

• Documentation and writing of research paper 

• Submission to conference/journal for publication 

The timeline allows for iterative model building, rigorous evaluation, and demonstration 

of a real-world application. The aim is to complete the project within 8 months culminating 

in a publication to share knowledge gained. This plan will help monitor progress and utilize 

resources effectively. 
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CHAPTER 2 

Background 

 

2.1 Preliminaries 

 

Plumeria, also known as frangipani, are ornamental tropical flowering plants widely grown 

for their attractive and fragrant blooms across various regions of Bangladesh. The leaves 

of plumeria plants are thick, leathery, and oblong [5] in shape with light green coloration. 

The leaves emerge in a spiral pattern along branches and play a key role in photosynthesis 

sustaining the plant's growth. However, plumeria cultivation faces a major threat from 

infestations by gall midges. These are tiny flies whose females’ lay eggs on young plumeria 

leaves. The eggs hatch into larvae [6] that release chemicals into the leaves and induce 

abnormal swellings or outgrowths known as galls. The leaf galls come in various shapes 

like round, cigar-shaped, or spiral forms ranging from a few millimeters to several 

centimeters in size. They disrupt vascular [7] flow and photosynthetic capacity, ultimately 

causing infected leaves to fall prematurely. If unchecked, serious infestations can destroy 

entire plants. Gall formations are most rampant in hot and humid conditions favoring 

proliferation of these pests. Unfortunately, there are no effective chemical control methods 

as the larvae remain concealed inside the leaf galls.[8] Therefore, timely detection and 

removal of galled leaves provides the only recourse for sustainably managing these pests 

in plumeria. Automated computer vision techniques like the proposed YOLOv8 model can 

enable fast and accurate identification of infected [9] leaves with minimal manual effort. 

The primary visible sign of gall midge infestation on plumeria leaves are the abnormal 

growths known as galls induced by the feeding and growth of larvae within the leaf tissue. 

These galls manifest as swellings or protrusions of varying shapes, though they often 

appear round, oval, cigar-shaped, or filamentous (thread-like) in morphology.[10] 
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Figure 2.1: Sample infected leaves 

 

 

The galls can range tremendously in size, from just a few millimeters to over 3-4 

centimeters in diameter for larger [11] abnormal growths. They are found on the underside 

or topside of leaves, centered around the feeding site of the initial larval infestation. The 

surface texture is smooth or wrinkled.[12] 

Galls exhibit a variety of colors from light green, pink, red, dark brown to black based on 

the age, larval stage, and plant genetics. Younger galls tend to be lighter colored, turning 

darker as they age. The abnormal plant tissue of the gall is differentiated from the rest of 

the leaf by its distinct color. 

As the infestation advances, the galls may fuse and cover a substantial portion of the leaf 

surface, causing curling or twisting of the leaf.[13] Severely infected leaves turn yellow, 

wilt, and eventually abscise from the plant. Premature leaf drop and branch dieback are 

observable effects of uncontrolled gall midge attacks on susceptible plumeria plants. 
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2.2 Related Works 

 

Recent advances in deep learning have led to significant progress in automated diagnosis 

and monitoring of diseases and pests in agricultural crops using imaging data. 

Convolutional neural networks (CNN) have proven effective for classification and 

detection tasks. Chon et al. [14] demonstrated that artificial neural networks can reliably 

predict population growth patterns of the major pine forest pest gall midge, providing a 

tool for data-driven pest management. Agarwal et al.’s review [15] systematically 

compared different CNN architectures like ResNet and DenseNet as well as Long Short- 

Term Memory (LSTM) models for identifying multiple rice plant diseases. The study 

recommended ResNet-50 as an optimal balance of accuracy and efficiency. Transfer 

learning, where CNN models pre-trained on large natural image datasets are fine-tuned for 

specific tasks, has become very popular.Rajbongshi et al. [16] and Arivazhagan et al. [17] 

showed that fine-tuned CNNs achieved over 96% accuracy in classifying various fungal 

and bacterial leaf spot diseases in mango plants. 

Looking beyond CNNs, Xin et al. [18] developed an enhanced deep learning model called 

DCNN-G by combining convolutional neural networks with generative adversarial 

networks. DCNN-G demonstrated 95% accuracy in recognizing crop pest and disease 

images, outperforming standard DCNNs. Wang et al. [19] optimized the classic AlexNet 

CNN architecture by adjusting fully connected layers and parameters to improve 

classification of fragrant pear diseases, attaining 96.26% overall accuracy. Climate-based 

modeling incorporating machine learning algorithms like regression trees and support 

vector machines accurately predicted population cycles of rice gall midge, a major yield 

loss pest in rice, as shown by Rathod et al. [20]. Ayaz et al. [21] applied deep transfer 

learning using YOLOv4 model for automated early detection of gall formations in Cordia 

trees. 

Beyond deep learning, Chouhan et al. [22] proposed an integrated pipeline called 

IoT_FBFN combining fuzzy logic, computer vision and IoT connectivity for automated 

disease identification from leaf images. Jiao et al. [23] developed a LAMP diagnostic assay 

for rapid field detection of the invasive pine pest Thecodiplosis japonensis where 

morphological identification was difficult. Overall, deep neural networks have become 
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indispensable tools in precision agriculture, demonstrating high accuracy in recognizing 

diverse leaf galls. 

 

2.3 Comparative Analysis and Summary 

 

Convolutional neural networks (CNNs) like ResNet, DenseNet, AlexNet have been widely 

used for image-based classification and achieved high accuracy (over 95%) for identifying 

multiple crop diseases when fine-tuned with domain-specific datasets.[24] 

More advanced deep learning models like DCNN-G combining CNN and GAN show 

slightly improved performance over standard CNNs.[25] 

YOLO-based deep transfer learning demonstrated effective early detection of gall 

formations. 

Beyond deep learning, techniques like fuzzy logic, computer vision pipelines, IoT 

connectivity, and rapid diagnostic assays have also shown promise for pest monitoring and 

disease diagnosis.[26] 

Overall, deep CNNs and transfer learning emerge as the leading techniques with the highest 

accuracy on crop pest and disease detection from visual data. Enhancements like generative 

adversarial training and climate-based modeling have incrementally improved results.[27] 

In summary, deep learning models, especially CNN architectures fine-tuned on agricultural 

datasets, have become indispensable tools for automated, real-time monitoring and 

diagnosis of a wide variety of crop pests and diseases from visual data. Techniques like 

transfer learning and GANs show additional potential to improve accuracy.[28] The rapid 

advances demonstrate that machine learning has become a vital part of precision 

agriculture, providing data-driven tools for better pest control and disease prevention. 

 

2.4 Scope of the Problem 

 

Leaf galls induced by insects can cause significant damage and economic losses in 

plumeria cultivation. Timely detection and management of gall formations is critical for 

healthy plumeria crops. Manual monitoring and identification of leaf galls is labor- 

intensive and often inaccurate. Automated detection using imaging techniques provide an 
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efficient alternative. Object detection models based on deep learning can rapidly and 

accurately pinpoint leaf gall instances from plumeria leaf images captured in the field. 

 

Recent versions of the YOLO (You Only Look Once) model offer optimized architectures 

for tackling such object detection tasks. In this work, we focus on benchmarking the 

detection performance of the latest YOLOv8 against the popular YOLOv5 models 

specifically for localizing and classifying leaf galls on plumeria leaves. We quantify key 

metrics like precision, recall, mAP, FPS on a plumeria leaf dataset with annotated gall 

instances. The comparative evaluation provides insights into the detection capabilities of 

evolving YOLO architectures to determine the optimal version for this particular 

application. Our focus is on assessing real-world improvements by leveraging a state-of- 

the-art deep learning approach optimized through multiple iterations, providing a case 

study for pest detection in precision agriculture. 

 

2.5 Challenges 

 

Here are some potential challenges for comparing YOLOv5 and YOLOv8 for detecting 

leaf galls in plumeria leaf images: 

• Obtaining a sufficiently large, diverse and accurately annotated plumeria leaf 

dataset with examples of various leaf gall types. 

• Manual annotation of bounding boxes can be labor intensive and prone to errors. 

• Accounting for class imbalance during training as leaf gall instances may be 

relatively rare compared to normal leaf regions. 

• Detecting small, subtle or obscured galls versus more obvious protruding ones. 

Models need to handle variation in gall appearance and visibility. 

• Generalizing well on test data despite potential gaps in gall diversity between train 

and test sets. 

• Modeling galls in varied illumination conditions, angles and with partial occlusion. 

• Optimizing models for a lean and efficient architecture that can run in real-time on 

hardware with limited compute capacity. 
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• Quantifying performance tradeoffs between accuracy, speed and hardware 

requirements for the different YOLO versions. 

• Determining an acceptable balance between precision and recall rates given the 

impact of false positives vs false negatives in pest detection. 

• Analyzing factors that influence generalizability of the models in field deployment. 
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CHAPTER 3 

Research Methodology 

 
3.1 Research Subject and Instrumentation 

 

This research focuses on benchmarking and comparing the detection performance of three 

different versions of the YOLO object detection model - YOLOv5 and YOLOv8 - for the 

specific application of identifying leaf galls in images of plumeria leaves. The aim is to 

quantify key evaluation metrics like precision, recall, mAP and FPS to analyze the 

improvements in detection capabilities with each iterative version of YOLO and determine 

the optimal architecture for this particular use case of pest detection in plumeria crops. 

The key instruments utilized in this research are: 

• Roboflow: An end-to-end computer vision platform used for managing and 

annotating the plumeria leaf image dataset with bounding box labels for leaf gall 

instances. 

• Google Colab: A cloud-based Jupyter notebook environment used for training, 

evaluating and comparing the YOLOv5 and YOLOv8 models implemented in 

PyTorch and OpenCV frameworks. 

• Custom Python scripts: Code written for data preprocessing, augmentation, model 

optimization, quantitative analysis and qualitative visualization of results. 

• GPU Hardware: Graphics processing units provided through Google Colab for 

accelerating model training and inference. 

• Evaluation Metrics: Precision, recall, mAP, F1 and loss metrics used for 

quantitative benchmarking of model performance. 

By leveraging these instruments, the comparative study on evolving YOLO architectures 

is conducted in a cloud-based notebook environment using a specialized computer vision 

platform, optimized deep learning libraries, evaluation metrics and visualizations. 
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3.2 Data Collection Procedure 

 

The dataset for this research was collected by capturing images of plumeria leaves showing 

gall formations using a smartphone camera. A total of 489 images were taken from local 

plumeria crops during daytime under natural lighting conditions. 

The following steps were taken for data collection: 

• Identified plumeria plants in local gardens and farms showing visible leaf galls of 

different shapes, sizes and severity levels. 

• Captured images of affected leaves from multiple angles using a smartphone 

camera at close range. 

• Ensured galls were clearly visible in the frame and the images were in focus. 

• Collected at least 3 images per affected leaf, capturing different sides and gall 

formations. 

• Compiled all images into a labelled folder structure organized by date and location. 

• Reviewed images and excluded any unwanted blurred or redundant images. 

• Finally, curated image dataset contained 489 photos of plumeria leaves with leaf 

galls of various types. 

This protocol focused on systematic collection of relevant images showcasing the target 

object (leaf galls) captured from natural settings with consistent smartphone cameras. The 

compiled dataset serves as input for annotation, model training and evaluation in this study. 

 

3.3 Statistical Analysis 

 

The core metrics used to evaluate and compare the detection performance of the YOLOv5 

and YOLOv8 models are: 

• Mean Average Precision (mAP): Provides an overall measure of detection accuracy 

by calculating the mean of maximum precisions at different recall levels. 

• Precision: Quantifies the percentage of positive identifications that are actually 

correct. High precision relates to low false positives. 

• Recall: Quantifies the percentage of actual positives that are correctly identified. 

High recall relates to low false negatives. 
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These metrics are standard for assessing object detection models as they provide a 

quantitative measure of precision and sensitivity. The mAP metric in particular is well- 

suited for evaluating overall accuracy across multiple classes on a consistent scale. 

Based on the results, YOLOv8 achieved the highest mAP of 92.1% indicating it had the 

best overall detection accuracy. Its precision of 90.3% and recall of 88.3% also 

outperformed YOLOv5 showing improvements in minimizing both false positives and 

false negatives. 

Statistical tests like paired t-tests could also be applied to determine if differences between 

models are statistically significant. However, the performance gaps observed through the 

metrics alone clearly highlight YOLOv8 as the optimal model for this particular leaf gall 

detection application. 
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3.4 Proposed Methodology 
 

 

 

 

 
Figure 3.1: Object Detection Flowchart 

 

 

This study implements and compares two versions of the YOLO object detection model - 

YOLOv5 and YOLOv8 for leaf gall detection. The following implementation details apply: 

• YOLOv5: The yolov5m model from the official repository was used as the base 

architecture. It was pre-trained on the COCO dataset then fine-tuned on the 

plumeria leaf dataset for 70 epochs with a batch size of 16, learning rate of 0.01 

reduced by a factor of 10. 
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• YOLOv8: The yolov8m model was loaded with COCO pre-trained weights. It was 

fine-tuned for 70 epochs with a batch size of 8 and a constant learning rate of 0.001. 

All models were trained using the PyTorch framework on Google Colab GPUs. Training 

configurations were tuned for each architecture based on recommended settings to optimize 

stability and performance. 

For comparison, the trained models were evaluated on the plumeria test set using the 

following metrics: precision, recall, mAP@0.5, and inference speed (FPS). Precision-recall 

curves were also plotted to analyze trade-offs. A prediction confidence threshold of 0.25 

was used across models. Additionally, qualitative results were visualized for subjective 

assessment. 

This methodology provides a standardized approach to benchmark the leaf gall detection 

capabilities of the different YOLO versions using both quantitative metrics and qualitative 

examples. The results will highlight the evolution in accuracy and speed with each model 

iteration. 

 

3.5 Implementation Requirements 

 

Once the YOLOv5 or YOLOv8 model has been successfully trained, we can upload the 

model weights back to the Roboflow Object Detection project by using the.deploy() 

function. Better training outcomes are obtained with larger model sizes. However, training 

time and inference speed decrease with increasing model size. 
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Figure 3.2: Roboflow Model Deployment 

 

 

The hardware and software requirements for implementing this research are as follows: 

Hardware: 

• Google Colab GPU (e.g. 13GB RAM NVIDIA Tesla T4) for accelerated training 

and inference 

• Local machine for basic data preprocessing and visualization (e.g. 16GB RAM, 

Intel i7 CPU) 

Software: 

• Python 3.7 

• PyTorch 1.11 

• OpenCV 4.5 

• CUDA Toolkit 11.3 

• Packages like scikit-learn, matplotlib, seaborn 

Additional Tools: 

• Roboflow - Used for dataset labeling, management and preprocessing 

• Streamlit - Used to build model demo application 
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• YOLOv5 and YOLOv8 repositories - Leveraged pre-trained weights and 

configurations 

Google Colab GPU provided the necessary computational resources for intensive 

operations like model training. Local hardware was sufficient for basic data loading, 

augmentation and analysis. The core Python packages included optimized frameworks like 

PyTorch and OpenCV for computer vision. Roboflow enabled efficient annotation while 

Streamlit allowed model deployment. Overall, widely used libraries, standard hardware 

and specialized tools facilitated the implementation. 
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CHAPTER 4 

Results and Discussion 

 

4.1 Experimental Setup 

 

Table 4.1: Accuracy Measures 
 

Recall Recall is used to evaluate how 

sensitive or comprehensive 

the classifier is. 

R = TP / (TP+FN) 

Precision Precision  evaluates  the 

classifier's correctness and 

accuracy. 

P = TP / (TP+ FP) 

mAP Assesses the overall accuracy 

of a model in object detection 

tasks. 

mAPv = Σ(AP_class1 + 

AP_class2 + ... + AP_classN) 

/ N 

F1-Measure Combines precision and recall 

into a single metric 

F = 2*(P*R) / (P+R) 

 

 

The plumeria leaf dataset was augmented using the following techniques to increase 

diversity: 

• Brightness adjustment from -40% to +40% 

• Exposure adjustment from -25% to +25% 

• Adding gaussian noise with a variance of 0.05 

This augmented the original 489 images to a total of 947 images. The dataset was split into 

training (70%), validation (15%) and test (15%) sets. 

Two YOLO models were trained: 

• YOLOv8m 

• YOLOv5m 
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All models were trained for 70 epochs each using Adam optimizer and a learning rate of 

0.001, reduced on plateau. A batch size of 16 was used. The models were evaluated on the 

test set using the following key metrics: 

• Mean Average Precision (mAP) 

• Precision 

• Recall 

• F1 

The experimental setup allows for standardized benchmarking of the detection capabilities 

of the different YOLO versions using both augmented data as well as a holdout test set. 

The chosen evaluation metrics will quantify both accuracy and speed. 

 

4.2 Experimental Results and Analysis 

 
Table 4.2: Structure of confusion matrix 

 

True- Positive False-Negative 

False-Positive True-Negative 

 

The quantitative results from evaluating the YOLO models on the plumeria leaf gall test 

set are summarized below: 

 
Table 4.3: Classification Report of YOLOv5-v8 

 

Model Recall Precision mAP F1-Score 

YOLOv8 88.3% 90.3% 92.1% 89.3% 

YOLOv5 84.8% 89.4% 89.1% 87.04% 

 

As we can see here, YOLOv8 has outperformed YOLOv5 in every metrics. Detailed 

evaluation of these measures is discussed in the chapters below. 
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YOLOv5 analysis: 
 

• Figure 4.1: YOLOv5 Object Detection Performance: Box Loss, Object Loss, Classification Loss 

 

 

These graphs show the training and validation loss values for the model over 50 training 

epochs. The loss measures how well the model's predictions match the actual data. Lower 

loss values indicate better performance. The loss values are decreasing over time, and the 

precision and recall values are high. 
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Confusion Matrix: 
 

Figure 4.2: Confusion Matrix (YOLOv5) 

 

 

The confusion matrix suggests that the YOLOv5 model is performing well on this task. It 

has a high accuracy, meaning it correctly classifies most of the gallstones. However, it is 

still making some mistakes, as evidenced by the off-diagonal cells. 
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Precision-Confidence Curve: 

 

 
Figure 4.3: Precision-Confidence Curve (YOLOv5) 

 

The graph in the image shows that the YOLOv5 model has a high mAP, particularly at 

higher confidence thresholds. This means that the model is able to accurately identify 

objects with high confidence. However, the mAP drops at lower confidence thresholds. 

This suggests that the model is less accurate when it is less confident in its predictions. 
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Recall-Confidence Curve: 

 

 
Figure 4.4: Recall-Confidence Curve (YOLOv5) 

The image suggests that the YOLOv5 model is performing well on this task for the "gall" 

class. It has a high recall at high confidence thresholds, meaning it is able to correctly 

identify most of the actual galls when it is confident in its predictions. However, the recall 

is lower at lower confidence thresholds, suggesting that the model may miss some galls 

when it is less confident. 
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Output: 
 

Figure 4.5: Output image of YOLOv5 
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YOLOv8 Analysis: 
 

 

 

Figure 4.6: YOLOv8 Training Losses: Box, Classification, and DFL 

 

The graph suggests the model is performing well on the object detection task, with high 

AP and precision-recall values at certain confidence thresholds. The curves show the trade- 

off between the model's precision (ability to correctly identify positive instances) and recall 

(ability to identify all actual positive instances) as the confidence threshold changes. 
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Confusion Matrix: 
 

Figure 4.7: Confusion Matrix (YOLOv8) 

 

 

The confusion matrix suggests that the model is performing well on this task, with a high 

accuracy. It correctly classifies most of the galls. However, it is still making some 

mistakes, as evidenced by the off-diagonal cells. Misclassifying "Background" cases as 

"Galls" could be particularly concerning. 
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Precision-Confidence Curve: 

 

Figure 4.8: Precision-Confidence Curve(YOLOv8) 

 

The image suggests the model performs well on the object detection task for galls, 

achieving high mAP and precision-recall values for various object classes. 
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Recall-Confidence Curve: 

 

Figure 4.9: Recall-Confidence Curve(YOLOv8) 

 

At the highest confidence threshold (0.95), the recall reaches approximately 0.93, meaning 

the model correctly identifies 93% of the actual galls when it's highly confident. This is a 

good performance level. Overall, this recall-confidence curve suggests that the model 

performs well on identifying galls when it's highly confident, but its performance declines 

at lower confidence thresholds. This information can be valuable for understanding the 

model's strengths and weaknesses, and for guiding decisions about how to use its 

predictions in practice. 
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Output: 
 

Figure 4.10: Output image of YOLOv8 

 

 

 

 

Here, YOLOv8 achieved the highest accuracy with an mAP of 92.1%, surpassing YOLOv5 

by 2-6%. This indicates YOLOv8 correctly identified the most leaf galls overall. 
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In terms of precision, YOLOv8 again outperformed at 90.3% versus 89.4% for v5 showing 

lower false positive rate. For recall, YOLOv8 achieved 88.3%, much higher than v5 at 

84.8%, demonstrating it had the fewest missed detections. 

Training time was fastest for YOLOv5, but YOLOv8 was comparable at 0.303 hours. 

In summary, YOLOv8 demonstrated superior detection performance and efficiency. The 

incremental improvements in architecture from v5 to v7 to v8 are clearly reflected by the 

higher accuracy and faster training of v8. The results validate YOLOv8's enhancements for 

robust object detection capabilities. 

 

4.3 Discussion and Limitations 

 

The relatively small dataset of 489 images poses a constraint, as deep learning models 

thrive on big data. Expanding the training data size and diversity could improve 

generalization. There is imbalance between gall and non-gall regions, making it 

challenging to optimize sensitivity. Strategies like better sampling must be tried. Dense 

clusters of overlapping galls are difficult to disambiguate. Specific augmentation and loss 

functions may help better delineate clustered galls. The model often misses tiny or early- 

stage galls with faint visual cues. More training data on initial signs of gall formation is 

needed. Additional challenges arise in field images with complex backgrounds, lighting 

and scales versus controlled images. More real-world data is required. Embedded model 

deployment can be constrained by computational limits of edge devices. Quantization, 

pruning and optimization will be necessary. 

Overall, the limitations stemming from data size and quality, model architecture, and real- 

world domain shift needs to be systematically addressed to make the system more robust 

for field deployment. But the high accuracy achieved thus far demonstrates feasibility of 

the approach. 
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CHAPTER 5 

Impact on Society, Environment and Sustainability 

 
5.1 Impact on Society 

 

The development of an accurate computer vision-based tool for automated detection of leaf 

galls in plumeria can positively benefit farmers, agriculture, and society. Leaf galls 

severely impact plumeria cultivation, leading to economic losses for farmers who depend 

on these ornamental plants. The YOLO models enables early and rapid identification of 

infected plants, allowing timely treatment or removal to save crops. By aiding disease 

surveillance, it can improve yield and thereby income for marginalized smallholder 

plumeria farmers in developing countries like Bangladesh. This supports localized flower 

production and reduces reliance on imports. Automation also reduces intensive manual 

monitoring, freeing up labor for other farming tasks. The application of cutting-edge AI 

technology helps move agriculture towards data-driven smart farming, laying the 

foundations for future innovation. Environmentally, reduced gall damage limits excessive 

pesticide use as treatment can be targeted and optimized. The approach can be extended to 

detect other crop pests, weeds, and diseases, improving food security and agricultural 

sustainability. Overall, this work demonstrates how emerging deep learning tools can be 

harnessed to benefit society by supporting farmers, augmenting production, advancing 

technology adoption, conserving the environment and creating inclusive economic 

opportunities. 

 

5.2 Impact on Environment 

 

The automated leaf gall detection model can positively impact the environment by enabling 

optimized and precise use of pesticides. Conventionally, blanket spraying is adopted for 

controlling the spread of galls. But indiscriminate pesticide usage can be harmful for 

ecosystems, polluting soil and waterways. YOLO models allow accurate early 

identification of infected plants. This means pesticides can be applied in a very targeted 

manner only on affected plants in a timely stage of infestation. Such precision spraying 

strategy can significantly reduce overall pesticide utilization compared to traditional 
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practices. The avoidance of runoff from farms into groundwater and rivers also lessens 

contamination. Additionally, curbing gall damage prevents premature defoliation and plant 

death, thereby sustaining cultivation without need for further land clearing. Monitoring 

emerging outbreaks supports proactive non-chemical interventions like boosted plant 

health through improved irrigation and soil nutrition. Thus, the adoption of this AI tool can 

minimize pesticide usage, contamination, and plant loss in an environmentally safer 

approach to sustainable horticulture. The success can drive integration of such precision 

technologies to aid greener agricultural practices 

 

5.3 Ethical Aspect 

 

There are several important ethical aspects to consider in the development and deployment 

of this AI technology for automated crop disease detection: 

Firstly, the privacy of farmers must be protected, as the leaf images may contain identifying 

farm locations or cultivars. Data collection protocols should ensure farmer consent and 

anonymization of any private data. Secondly, there could be inadvertent biases in dataset 

collection and annotation, for instance, underrepresenting smallholder farms. Such biases 

need proactive mitigation through diverse data sampling. Equitable access is another key 

concern, as such AI tools should not widen technology divide but rather be co-developed 

with end-users for democratized benefits. The model predictions need continuous 

monitoring to detect any errors due to algorithmic or data biases, ensuring fair and 

accountable AI. There are also risks of misuse, like unauthorized data sharing with 

insurance firms. So, ethics review boards and governance policies are imperative to uphold 

privacy and prevent misuse. Additionally, environmental costs of cloud computing and 

electronic waste from hardware deployment must be minimized. In summary, protecting 

farmer rights, ensuring inclusivity, monitoring for biases, fostering transparency, and 

considering sustainability are vital ethical obligations in translating such an emerging 

technology into socially empowering real-world impact. 
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5.4 Sustainability Plan 

 

To build a sustainable solution, the model would be developed through a participatory 

approach by collaborating with local farmer communities and agriculture agencies in 

plumeria cultivation regions. Their involvement in data collection, annotation, and testing 

will ensure model relevance. Open-sourcing the annotated dataset and model code can 

enable continuous improvement by researchers worldwide. On-field trials would evaluate 

robustness prior to deployment. For extended utility, the model architecture could be 

adapted to detect other crop pests and diseases with minimal retraining. Solar-powered 

mobile apps and drones would enable energy-efficient scanning of farms. Edge AI would 

limit cloud dependencies. Resources would be allocated for continuous model maintenance 

and feature additions via DevOps pipelines for long-term reliability. Farmers would be 

empowered to detect emerging infestations without constant expert support, through 

intuitive apps and tools. Insights from monitoring can guide data-driven crop management. 

Revenue from technology licensing would be reinvested to sustain operations. Overall, 

participatory development, knowledge sharing through open access resources, renewable 

deployment, farmer-centric design, continuous improvement protocols and reinvestment 

strategies can promote an ethical, socially empowering and environmentally conscious AI 

solution for sustainable agriculture. 
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CHAPTER 6 

Conclusion and Future Work 

 
6.1 Summary of Findings 

 

This project developed and demonstrated deep learning approaches using YOLOv8 and 

YOLOv5 architectures for accurate automated detection of leaf galls caused by midge 

infestations in plumeria plants. A dataset of 489 plumeria leaf images with galls annotated 

using bounding boxes was prepared and used to train both models. The YOLOv8 model 

optimized through transfer learning and hyperparameter tuning achieved over 90% mean 

average precision and F1-score, outperforming YOLOv5 by 3-4% in accuracy metrics. 

Quantitative evaluation showed YOLOv8's superior proficiency in recognizing diverse gall 

shapes, sizes and appearance compared to YOLOv5. However, YOLOv5 exhibited slightly 

faster inference time due to its optimized structure. Overall, the work displayed how 

modern deep neural networks can enable precision agriculture through automating tedious 

manual monitoring of crops against infestations. The outcomes delivered ready-to-deploy 

YOLO models, with YOLOv8 showing higher accuracy and YOLOv5 having better real- 

time performance. These complementary capabilities can be leveraged for alerting 

emerging galls and facilitating timely pest management. The project provides efficient 

computer vision techniques leveraging recent AI advancements to support data-driven, 

sustainable horticulture. 

 

6.2 Conclusion 

 

In conclusion, my study comparing YOLOv8 and YOLOv5-based systems for detecting 

gall midge infestation on plumeria leaves demonstrates the significant promise of deep 

learning for enhancing agricultural efficiency and sustainability. The YOLOv8 model 

achieves higher accuracy and precision than YOLOv5 in identifying infested leaves, 

effectively detecting diverse gall shapes and sizes with minimal false positives. However, 

YOLOv5 exhibits faster inference time that may better suit real-time detection 

applications. By leveraging their complementary capabilities, these AI systems can be 

impactful tools for increasing plumeria yields, improving food security, and reducing 
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pesticide use through precise early infestation alerts. Further research into model 

optimization, ethical implementation and sustainable deployment can pave the way for 

broader adoption of this technology. Overall, this work highlights the transformative 

potential of modern deep learning advancements to enable data-driven, automated 

solutions for addressing agricultural challenges, ultimately contributing to a healthier 

future for both farmers and the environment. 

 

6.3 Implications and Further Study 

 

Beyond comparing YOLOv8 and YOLOv5, this project demonstrates the immense 

potential of deep learning for sustainable agriculture. The higher accuracy YOLOv8 model 

can enable large-scale automated monitoring via drones or ground vehicles, providing early 

alerts on emerging infestations for timely intervention. The faster YOLOv5 model may 

better suit real-time analysis of multiple video feeds. By pinpointing affected regions 

precisely, pesticide use can be optimized. The system can be integrated into automated 

monitoring systems, utilizing drones or ground-based cameras equipped with YOLOv8 for 

large-scale, real-time detection of infestations. This can provide early warning alerts to 

farmers, enabling timely interventions and minimizing crop losses. 

By pinpointing infested areas with high accuracy, the model can facilitate targeted 

pesticide application, significantly reducing the amount of chemicals used and minimizing 

environmental impact. This aligns with the principles of precision agriculture, promoting 

resource efficiency and sustainability. 

The data collected and analyzed during system deployment can be used to develop 

predictive models for gall midge infestations, considering factors like weather 

patterns, crop varieties, and geographical location. This information can inform 

preventative measures and optimize pest management strategies. 

The YOLOv8 model architecture and training methodology can be adapted to detect other 

types of pests and diseases on various crops, expanding the system's applicability to a wider 

range of agricultural problems. This can empower farmers with versatile tools for 

protecting their diverse crops. 
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Building upon the promising results of this project, several potential future research 

directions can further enhance the YOLOv8 model's performance and explore new 

applications. 

Investigate novel training strategies, data augmentation techniques, and hyperparameter 

tuning approaches to improve the model's accuracy, robustness, and generalizability to 

different environmental conditions and plumeria varieties. 

By pursuing these future research directions, the YOLOv8-based approach can evolve into 

a powerful and versatile tool for sustainable pest management, empowering farmers to 

improve agricultural productivity, protect the environment, and contribute to a more secure 

food system for all. 



©Daffodil International University 38  

Reference: 

 
[1] Zhu, R., Hao, F., & Ma, D. (2023). Research on Polygon Pest-Infected Leaf Region Detection Based on 

YOLOv8. Agriculture, 13(12), 2253. 

[2] Selcuk, B., & Serif, T. (2023, August). A comparison of yolov5 and yolov8 in the context of mobile ui 

detection. In International Conference on Mobile Web and Intelligent Information Systems (pp. 161-174). 

Cham: Springer Nature Switzerland. 

[3] Gašparović, B., Mauša, G., Rukavina, J., & Lerga, J. (2023, June). Evaluating YOLOV5, YOLOV6, 

YOLOV7, and YOLOV8 in Underwater Environment: Is There Real Improvement?. In 2023 8th 

International Conference on Smart and Sustainable Technologies (SpliTech) (pp. 1-4). IEEE. 

[4] Sary, I. P., Andromeda, S., & Armin, E. U. (2023). Performance Comparison of YOLOv5 and YOLOv8 

Architectures in Human Detection using Aerial Images. Ultima Computing: Jurnal Sistem Komputer, 15(1), 

8-13. [20] Farhan, A. H., & Hasan, R. F. (2023). Detection SQL Injection Attacks Against Web Application 

by Using K-Nearest Neighbors with Principal Component Analysis. In Proceedings of Data Analytics and 

Management: ICDAM 2022 (pp. 631-642). Singapore: Springer Nature Singapore. 

[5] Roubos, C. R., & Liburd, O. E. (2010). Evaluation of emergence traps for monitoring blueberry gall 

midge (Diptera: Cecidomyiidae) adults and within field distribution of midge infestation. Journal of 

economic entomology, 103(4), 1258-1267. 

[6] Uechi, N., Yasuda, K., Gyoutoku, N., & Yukawa, J. (2007). Further detection of an invasive gall midge, 

Contarinia maculipennis (Diptera: Cecidomyiidae), on bitter gourd in Okinawa and on orchids in Fukuoka 

and Miyazaki, Japan, with urgent warning against careless importation of orchids. Applied entomology and 

zoology, 42(2), 277-283. 

[7] Ehler, L. E., & Kinsey, M. G. (1991). Ecological recovery of a gall midge and its parasite guild following 

disturbance. Environmental Entomology, 20(5), 1295-1300. 

[8] Stuart, J. J., Chen, M. S., Shukle, R., & Harris, M. O. (2012). Gall midges (Hessian flies) as plant 

pathogens. Annual review of phytopathology, 50, 339-357. 

[9] Lingaraj, V. K., Chakravarthy, A. K., & Eregowda, T. N. (2008). Detection of Asian rice gall midge 
(Orseolia oryzae) biotype 1 in the new locations of Karnataka, South India. Bulletin of Insectology, 61(2), 

277-281. 

[10] Molnar, B., BodduM, T., Szőcs, G., & HillBur, Y. (2009). Occurrence of two pest gall midges, 

Obolodiplosis robiniae (Haldeman) and Dasineura gleditchiae (Osten Sacken)(Diptera: Cecidomyiidae) on 

ornamental trees in Sweden. Entomologisk tidskrift, 130(2), 113-120. 

[11] Harris, M. O., Stuart, J. J., Mohan, M., Nair, S., Lamb, R. J., & Rohfritsch, O. (2003). Grasses and gall 

midges: plant defense and insect adaptation. Annual Review of Entomology, 48(1), 549-577. 

[12] Behura, S. K., Sahu, S. C., Mohan, M., & Nair, S. (2001). Wolbachia in the Asian rice gall midge, 

Orseolia oryzae (Wood‐Mason): correlation between host mitotypes and infection status. Insect Molecular 

Biology, 10(2), 163-171. 

[13] Hayon, I., Mendel, Z., & Dorchin, N. (2016). Predatory gall midges on mealybug pests–diversity, life 

history, and feeding behavior in diverse agricultural settings. Biological control, 99, 19-27 

[14] Chon, T. S., Park, Y. S., Kim, J. M., Lee, B. Y., Chung, Y. J., & Kim, Y. (2000). Use of an artificial 

neural network to predict population dynamics of the Forest–Pest pine needle gall midge (Diptera: 

Cecidomyiida). Environmental Entomology, 29(6), 1208-1215. 



©Daffodil International University 39  

[15] Agrawal, M. M., & Agrawal, S. (2020). Rice plant diseases detection & classification using deep 

learning models: a systematic review. J Crit Rev, 7(11), 4376-4390 

 

[16] Rajbongshi, A., Khan, T., Pramanik, M. M. R. A., Tanvir, S. M., & Siddiquee, N. R. C. (2021). 

Recognition of mango leaf disease using convolutional neural network models: a transfer learning approach. 

Indonesian Journal of Electrical Engineering and Computer Science, 23(3), 1681-1688. 

[17] Arivazhagan, S., & Ligi, S. V. (2018). Mango leaf diseases identification using convolutional neural 

network. International Journal of Pure and Applied Mathematics, 120(6), 11067-11079. 

[18] Xin, M., & Wang, Y. (2021). Image recognition of crop diseases and insect pests based on deep learning. 

Wireless Communications and Mobile Computing, 2021, 1-15. 

[19] Wang, B. (2022). Identification of crop diseases and insect pests based on deep learning. Scientific 

Programming, 2022, 1-10. 

[20] Rathod, S., Yerram, S., Arya, P., Katti, G., Rani, J., Padmakumari, A. P., ... & Sundaram, R. M. (2021). 

Climate-based modeling and prediction of rice gall midge populations using count time series and machine 

learning approaches. Agronomy, 12(1), 22. 

[21] Ayaz, M., Shah, S. K., Ullah, K., Iqbal, T., Khan, A., Ghadi, Y. Y., & Eldin, S. M. (2023). Automatic 

Early Diagnosis of Dome Galls in Cordia Dichotoma G. Forst. Using Deep Transfer Learning. IEEE Access. 

[22] Chouhan, S. S., Singh, U. P., & Jain, S. (2021). Automated plant leaf disease detection and classification 

using fuzzy based function network. Wireless Personal Communications, 121, 1757-1779. 

[23] Jiao, J., Ren, L., Chen, R., Tao, J., & Luo, Y. (2022). A LAMP Assay for the Detection of Thecodiplosis 

japonensis, an Alien Gall Midge Species Pest of Pine Trees. Insects, 13(6), 540. 

[24] Chen, Z., Wu, R., Lin, Y., Li, C., Chen, S., Yuan, Z., ... & Zou, X. (2022). Plant disease recognition 

model based on improved YOLOv5. Agronomy, 12(2), 365. 

[25] Wang, H., Shang, S., Wang, D., He, X., Feng, K., & Zhu, H. (2022). Plant disease detection and 

classification method based on the optimized lightweight YOLOv5 model. Agriculture, 12(7), 931. 

[26] Li, J., Qiao, Y., Liu, S., Zhang, J., Yang, Z., & Wang, M. (2022). An improved YOLOv5-based vegetable 

disease detection method. Computers and Electronics in Agriculture, 202, 107345. 

[27] Yang, T., Zhou, S., Xu, A., Ye, J., & Yin, J. (2023). An approach for plant leaf image segmentation 

based on YOLOV8 and the improved DEEPLABV3+. Plants, 12(19), 3438. 

[28] Zhang, L., Ding, G., Li, C., & Li, D. (2023). DCF-Yolov8: An Improved Algorithm for Aggregating 

Low-Level Features to Detect Agricultural Pests and Diseases. Agronomy, 13(8), 2012. 



 

       
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


