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A B S T R A C T

Corona virus disease (COVID-19) has been emerged as pandemic infectious disease. The recent epidemiological
data suggest that the smokers are more vulnerable to infection with COVID-19; however, the influence of
smoking (SMK) on the COVID-19 infected patients and the mortality is not known yet. In this study, we aimed
to discern the influence of SMK on COVID-19 infected patients utilizing the transcriptomics data of COVID-19
infected lung epithelial cells and transcriptomics data smoking matched with controls from lung epithelial cells.
The bioinformatics based analysis revealed the molecular insights into the level of transcriptional changes and
pathways which are important to identify the impact of smoking on COVID-19 infection and prevalence. We
compared differentially expressed genes (DEGs) between COVID-19 and SMK and 59 DEGs were identified
as consistently dysregulated at transcriptomics levels. The correlation network analyses were constructed for
these common genes using WGCNA R package to see the relationship among these genes. Integration of DEGs
with network analysis (protein–protein interaction) showed the presence of 9 hub proteins as key so called
"candidate hub proteins" overlapped between COVID-19 patients and SMK. The Gene Ontology and pathways
analysis demonstrated the enrichment of inflammatory pathway such as IL-17 signaling pathway, Interleukin-6
signaling, TNF signaling pathway and MAPK1/MAPK3 signaling pathways that might be the therapeutic targets
in COVID-19 for smoking persons. The identified genes, pathways, hubs genes, and their regulators might be
considered for establishment of key genes and drug targets for SMK and COVID-19.
1. Introduction

The latest human coronavirus is SARS-CoV-2 causes respiratory
illness termed COVID-19. This COVID-19 was emerged in the Wuhan
city of China in 2019. Research has shown that SARS-CoV-2 viruses
currently referred to as COVID-19 may cause health issues such as
fever, vomiting, and fatigue in patients infected with this virus. In
severe cases, viral respiratory infections may cause the death of a
patient due to serious acute respiratory syndrome (SARS) [1–3]. The
pandemic has been steadily growing since its first emersion in Decem-
ber 2019. There are some studies reported in the literature on the
association of COVID-19 and smoking [4–10]. Among them, Vardavas
et al. [4] concluded with their research study that, smoking most
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certainly contributes to COVID-19’s bad course and unfavorable results.
In 2021, Umnuaypornlert et al. [5] conducted a meta-analysis among
1248 studies and concluded that smoking greatly raises the chance of
COVID-19 severity and mortality. A recent work conducted by Ram
Poudal et al. [9] reported that smoking increases the risk of severe
COVID-19, including deaths. Findings have also been reported with
some evidence of the correlation of variations in incidence and severity
of COVID-19 diseases with sex and of smoking with increased ACE2
expression (the recipient for extreme SARS-CoV-2), which may also be
a cause of this type [11].

It has been hypothesized from the above reports that smoking might
make more vulnerable to COVID-19 infection and smoking increased
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Fig. 1. Flowchart used in this study. Using edgeR package on RNAseq data of COVID19 and SMK, DEGs of these diseases were identified, After that, common significant DEGs
between diseases were identified. Correlation analysis using WGCNA for the common genes to see the characteristics of common genes. Then, identify common significant pathways
and GO analysis through the pathway and go analysis on the common significant DEGs. Then, to identify the hub proteins, PPI network was constructed around the common genes,
and to identify regulatory TFs and miRNA, DEGs–TFs and DEGs–miRNA networks were also constructed. Finally, the protein drug interaction network was constructed around the
hub genes.
the high expression of ACE2 expression making it more prone to
COVID-19 infection. In addition, a study of meta-analysis observed
the significant effect between smokers and no-smokers, where they
suggest an increased risk for viral binding and entry of SARS-CoV-2 in
lungs epithelial cells of smokers due to significantly and substantially
increased pulmonary ACE2 expression [11]. Rao et al. [12] reported
some significant genes associated with smoking, alcohol and COVID-19.
But, the molecular agents (differentially expressed genes) and pathways
related to smoking and COVID-19 have not been identified yet. Thus,
identifying the molecular associations at the level of transcriptional
changes and pathways is important to identify the impact of smoking
on COVID-19 infection prevalence.

Lately, transcriptional signatures of lung epithelial cells infected
with COVID-19 have been identified [13]. We have taken this data and
analyzed it to identify differentially expressed genes (DEGs) in infected
lung epithelial and non-infected cells. Then, we identified DEGs in
smokers’ epithelial lungs compared to non-smokers. The weighted gene
coexpression network analysis (WGCNA) is used to detect the correlated
genes in a cluster [14]. It has been widely used for checking the
strengthened relationship among the genes [15]. In this research, the
network biology approach for the identification of commonly dereg-
ulated pathways and molecular signatures in smokers and COVID-19
was adopted. We utilized gene expression data of COVID-19-infected
lung epithelial and another dataset of smoking lung epithelial cells
to identify common DEGs and pathways overlapped in COVID-19 and
smokers. We also constructed the correlation network analysis for these
common genes using WGCNA to see the relationship among these
genes.

2. Materials and methods

In this research, we employed a series of analysis methods (see
Fig. 1). At first, DEGs of these diseases were identified using edgeR
2

package on RNAseq data of COVID19 and SMK. After that, we iden-
tified the common significant genes between COVID19 and SMK to
find out the disease–gene associations among them. Next, we applied
WGCNA correlation analysis on common genes of COVID-19 and SMK
datasets separately to see the characteristics pattern of common genes.
Considering these common significant DEGs, we performed signaling
pathways and GO analysis and then we constructed PPI network and
used the topological analyses to identify hub proteins. To identify regu-
latory TFs and miRNA, DEGs–TFs and DEGs–miRNA networks were also
constructed. Finally, using the identified hub genes obtained from PPI
network analysis, a protein–drugs interaction network was constructed.

2.1. Datasets employed and statistical methods

RNAseq datasets of COVID-19 and SMK with accession numbers
GSE147507 (COVID-19) and GSE47718(SMK) were downloaded from
NCBI Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/
geo/) database and were analyzed them to identify the shared sig-
nificant genes between COVID-19 and SMK [16,17]. The GSE147507
(COVID-19) was RNA-seq transcriptomics data from lung cells infected
with SARS-CoV-2 and controls (called mock). The gene expression data
was profiled from A549 and NHBE cell within 24-h of infection. Then
the samples infected for 24-h were considered and matched mock
(controls). While the dataset GSE47718 is RNAseq data derived from
the airway epithelium of healthy nonsmokers (𝑛 = 10) and smokers (𝑛 =
7) patients. We used edgeR package on RNAseq data of COVID19 and
SMK to identify the DEGs of these diseases. We considered |𝑙𝑜𝑔𝐹𝐶| >=
1, and 𝑝-value < 0.05 was considered statistically significant to identify
DEGs.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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2.2. Analysis methods

For comparing gene expression data of COVID-19 with the SMK
dataset, global transcriptomic analysis was applied using RNAseq tech-
nologies. By comparing disease to normal, these datasets were pro-
duced to identify DEGs associated with their respective pathology.
COVID19 and SMK datasets are RNAseq data. We applied edgeR [18]-
R Bioconductor package-in raw RNAseq data to identify the DEGs of
COVID19 and SMK. After that, by comparing two datasets of DEGs,
we identified common DEGs between COVID-19 and SMK. For getting
more shared information at the molecular level between COVID-19
and SMK, pathway and GO analyses were performed on shared genes
between them by using online visual bioinformatics tools Enrichr (http:
//amp.pharm.mssm.edu/Enrichr/). We used Reactome and KEGG path-
way databases for pathway analysis. To identify the significant path-
ways, we considered 𝑝-𝑣𝑎𝑙𝑢𝑒 < 0.05 as statistically significant. Then,
using these common genes, we reconstructed a PPI network utilizing
the STRING database [19] via Network Analyst [20]. To identify hub
genes from the PPI network topological analysis was applied where
degree and betweenness centrality were used.

We know that the TFs and miRNAs affect the expression of transcript
levels. So, to see these affect, TF-common significant genes network
from the JASPAR database [21] and miRNA-common significant genes
network from TarBase [22] and miRTarBase [23] were constructed
using NetworkAnalyst tools [20]. For finding significant TFs and miR-
NAs, the degree and betweenness centrality (BC) filters were used and
identified top 10 TFs and miRNAs. Degree centrality can be defined as
the following equation:

𝐷𝐶(𝑣) =
∑

𝑗∈𝐺

𝑎𝑣𝑗
𝑛 − 1

Here, 𝑛 indicates the number of nodes in the network and 𝑎𝑣𝑗 represents
that node v and j are directly connected. BC is also defined as follows:

𝐵𝐶(𝑣) =
∑

𝑖≠𝑗≠𝑣∈𝑉

𝜎𝑖𝑣𝑗
𝜎𝑖𝑗

Where 𝜎𝑖𝑗 = total number of shortest paths from node 𝑖 to node 𝑗, and
𝜎𝑖𝑣𝑗 = total number of paths through node 𝑣.

2.2.1. Weighted gene co-expression networks construction
To see the clustering nature of the detected common gene between

COVID-19 and Smoking datasets, we used weighted gene co-expression
network analysis (WGCNA) package [14] of 𝑅 to find the weighted gene
co-expression network among these genes. For this purpose, firstly we
remove the outlier samples (if there exist) by constructing the sample
cluster dendrogram by hclust 𝑅 function for both of the datasets. Then
using this 𝑅 in this study, we used the pickSoftThreshold function
for finding numerous soft thresholding powers 𝛽 over 𝑅2 and picking
the value of 𝛽 for which the 𝑅2 value is higher. Then we construct
the adjacency matrix and Topological Overlap Matrix (TOM) by using
the transformed gene expression matrix. The dissimilarity of TOM
(dissTOM) was also conducted to construct a network heatmap plot and
for further analysis.

3. Results

3.1. Identification of differentially expressed genes

To identify the influence of smoking and COVID-19, we analyzed
RNA seq datasets of COVID-19 and SMK obtained from the NCBI-GEO
database. We detected there were 739 DEGs (353 up-regulated and
386 down-regulated) in COVID-19 and 3866 DEGs (1916 up-regulated
and 1950 down-regulated) in SMK. Then, we performed the cross-
comparative analysis to identify common DEGs between COVID-19 and
SMK, identified 33 upregulated DEGS common in COVID-19 and SMK,
and 26 downregulated DEGs common in COVID-19 and SMK. These
common DEGs indicated that they are comorbid.
3

Fig. 2. Protein–protein interaction network around 59 common significant genes in
COVID-19 and SMK.

Fig. 3. The gene–TFs interaction network obtained from JASPAR database.

3.2. Functional enrichment of differentially expressed genes common to
COVID-19 and SMK

Because of the underlying molecular or biological mechanisms,
different diseases are related to each other that can be understood by
pathway-based analysis [24]. For these reasons, we find out the com-
mon pathways using the common significant genes between COVID-19
and SMK from Enrichr, where we used KEGG and Reactome data as
preferred data annotation for enrichment analysis. Significant common
pathways are summarized in Table 1. To get further insight into the
biological significance of the DEGs, we performed gene ontology analy-
sis (Biological process, Molecular Function and Cellular component) on
commonly significant genes for getting the more biological significance
of these genes. Identified gene ontologies are summarized in Table 2.

http://amp.pharm.mssm.edu/Enrichr/
http://amp.pharm.mssm.edu/Enrichr/
http://amp.pharm.mssm.edu/Enrichr/
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Table 1
Molecular pathways enriched by the common differentially expressed genes shared by COVID-19 and SMK diseases. These
include significant pathways common to COVID-19 and SMK.
Fig. 4. The gene–microRNAs interaction network obtained from miRTarbase and
Tarbase databases.

3.3. Hub proteins from protein–protein interaction analysis

We built PPI network around the common 59 significant genes in
COVID-19 and SMK (Fig. 2) using the online visual software Network-
Analyst. We identified nine hub genes namely ITGB3, GLI2, GRIN1,
DLG2, SH3GL3, SRC, AKT1, RAC1 and CBL (see Fig. 2).
4

Fig. 5. The Protein–Drug interaction network analysis.

3.4. Regulators of the DEGs

We constructed the DEG–TFs interactions network (Fig. 3) and the
DEG–miRNA interactions network(Fig. 4.). The top ten TFS (PRSS35,
FOXC1, ACVR1C, GATA2, YY1, VNN2, FOXL1, NFIC, DLG2 and PRSS27)
and miRNA (mir-27a-3p, mir-335-5p, mir-1-3p, mir-27a-5p, let-7b-
5p, mir-124-3p, mir-1343-3p, mir-129-2-3p, mir-16-5p and mir-21-3p)
were identified based on topological analysis (see Fig. 5).
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Table 2
Gene ontology (biological processes) common to COVID-19 and SMK diseases.
3.5. Drug protein interaction

To predict possible drugs, we performed a protein–drugs interaction
analysis. The analysis showed that GRIN1 protein had interactions
with 21 drugs (Acamprosate, Atomoxetine, Gabapentin, L-Glutamic
Acid, Memantine, Pentobarbital, Pethidine, Secobarbital, Agmatine,
D-Serine, Gavestinel, Orphenadrine, Ifenprodil, Acetylcysteine, CNS-
5161, Milnacipran, Dehydroepaindrosterone, Cycloleucine, Dcka, 5,
7-Dichlorokynurenic Acid, ketobemidone and Phenobarbital). The de-
scription of the drugs is summarized in Table 3.

3.6. Significant genes identification using WGCNA analysis

In Fig. 6, the gene co-expression network analysis has been exe-
cuted with 59 DEGs for the COVID-19 dataset including 23 disease
samples as well as the Smoking dataset including 7 disease samples.
Fig. 6A to Fig. 6C for COVID-19 and Fig. 6D to Fig. 6F for SMK.
Fig. 6A visualized the cluster dendrogram of the sample and no outlier
samples were detected. To identify the modules through WGCNA, we
found the optimized soft thresholding powers 𝛽 = 6 as the scale-free
topology criteria (Fig. 6B). With this power value, we constructed the
co-expression network and detect 2 modules through the Dynamic Tree
Cut technique using deepSplit = 2 and minClusterSize = 20 parameters.
We found 12 and 47 genes for gray and turquoise modules respectively
for COVID-19. The network heatmap of all genes with these 2 modules
has been shown in Fig. 6C. Fig. 6D visualized the cluster dendrogram
of the sample and no outlier samples were detected. To identify the
modules through WGCNA, we found the optimized soft thresholding
powers 𝛽 = 16 as the scale-free topology criteria (Fig. 6E). With this
power value, we constructed the co-expression network and detect 2
5

modules through the Dynamic Tree Cut technique using deepSplit =
2 and minClusterSize = 20 parameters. We found all 59 genes are in
the gray module for SMK. The network heatmap of all genes with this
module is shown in Fig. 6F.

4. Discussion

COVID-19 has been emerged as one of the worst pandemics and
impacting health worldwide. SMK are more susceptible to COVID-19 in-
fection and higher fatality was reported. In this research, we identified
the molecular alterations at the level of transcriptome dynamics that
occur in COVID-19-infected lung epithelial and shared transcriptional
elements detected in the lung epithelial of SMK. When compared,
discovered identified 33 upregulated DEGS common in COVID-19 and
SMK and 26 downregulated DEGs common in COVID-19 and SMK.
The WGCNA analysis identifies that the common genes showed the
exact nature in both COVID-19 and Smoking datasets. The functional
annotation of these common transcriptional signatures revealed several
molecular pathways enriched by the DEGs. Some of the prominent
pathways namely, the Hippo signaling pathway, Amyotrophic lateral
sclerosis, Rap1 signaling pathway, Hypertrophic cardiomyopathy, IL-
17 signaling pathway, Hematopoietic cell lineage, Salmonella infection,
Amoebiasis, TNF signaling, MAPK1/MAPK3 signaling, and Interleukin-
6 signaling pathways. It may be possible to consider the drugs that
interfere in these pathways to repurpose drugs for COVID-19 infection.
Rap1 signaling and MAPK signaling pathways have significant associ-
ations with COVID-19 [25]. Another Pathways Hippo signaling has a
strong association with COVID-19 infection [26]. One significant path-
way common between COVID-19 and SMK is the Interleukin-6 signaling
pathway which has a significant impact on the COVID-19 patients as
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Table 3
Descriptions of drugs.
well as the patients of SMK [27,28]. From some studies, it was reported
that the L-17 signaling pathway has significant rules with the patients
of COVID-19 and SMK [29–31]. Exposing to tobacco smoke contributes
to the inflammatory lung phase, increased activation of the mucosa, the
release of inflammatory cytokines, tumour necrosis factor 𝛼, epithelial
ermeability, excess mucous and compromised clearing [32]. However,
large number of research has to date shown that the most significant

ause of COVID-19 patient death is a moderate or extreme cytokine
excessive immune response) floods. Interleukin-6 (IL-6) has a great
ole in cytokine excess release. As the signal transduction pathway of
L-6 can be disrupted, it will potentially evolve into a new method of
reating serious COVID-19 patients [33,34]. Nasir et al. described the
esearch results from cellular and experimental investigations defin-
ng the function of IL-6 as a therapeutic target in COVID-19 [35].
rotein–protein interaction network topological analysis provides criti-
al proteins and signaling molecules, and drug targets. The PPI analysis
as performed to determine the hub proteins — ITGB3, GLI2, GRIN1,
LG2, SH3GL3, SRC, AKT1, RAC1 and CBL. These hub proteins might
e considered as drug targets. Tin Wang et al. [36] reported RAC1
rotein as a therapeutic target in Acute Lung Injury induced by severe
neumonia of COVID-19. Another hub protein CBL was reported as
potential drug target for COVID-19 [37]. The hub gene AKT1 is

ssociated with SMK and COVID-19 [36]. In the replication of viruses,
articularly those connected to SARS-CoV-2, several SRC family kinases
ave been found to be active [38]. Another paper suggested that SRC
rotein is a potential targeted drug for COVID-19 [39]. The hub protein
TGB3 was declared as a potential therapeutic target for COVID-19-
elated stroke [40]. GLI2 variants play a role in the pathogenesis of
6

nonsyndromic cleft lip with or without cleft palate [41] and hazra
et al. [42] found possible interaction of GLI2 with COVID-19. GRIN1
involved in neurodevelopmental disease [43]. DLG2 is involved in the
developmental and intellectual disability [44].

Lack of lab facilities, the qRT-PCR analysis was not performed for
the further validation of our identified significant hub proteins which is
the limitation of our work. To provide insights into the transcriptional
regulations at the level of transcriptional and post-transcriptional lev-
els, we built a DEGs–TFs and DEGs–miRNAs interaction network. We
need to test our findings in the laboratory. Otherwise, covid-19 research
is ongoing and still, no research finding is concrete or absolute.

5. Conclusions

The present study was intended to decipher the influence of smoking
on COVID-19 infection using High-throughput RNA-Seq gene expres-
sion data. Our employed methodologies showed the 59 DEG shared
between COVID-19 and SMK. Further pathway analysis of the iden-
tified DEGs demonstrated the inflammatory pathways are crucial in
COVID-19 infections and smoking. The hub genes ITGB3, GLI2, GRIN1,
DLG2, SH3GL3, SRC, AKT1, RAC1 and CBL were detected from PPI
analysis that might be candidate genes. The network-based further reg-
ulomics data showed the TFS (PRSS35, FOXC1, ACVR1C, GATA2, YY1,
VNN2, FOXL1, NFIC, DLG2 and PRSS27) and miRNAs (mir-27a-3p,
mir-335-5p, mir-1-3p, mir-27a-5p, let-7b-5p, mir-124-3p, mir-1343-3p,
mir-129-2-3p, mir-16-5p and mir-21-3p) may regulate the identified
DEGs. Since the above results are based on in silico analysis, thus
we propose to conduct experimental studies to evaluate the molecular

functions of the identified genes and molecules.
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Fig. 6. Correlation analysis using WGCNA for the common significant genes in COVID-19 and SMK.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han, Y. Qiu, J. Wang, Y. Liu,
Y. Wei, et al., Epidemiological and clinical characteristics of 99 cases of 2019
novel coronavirus pneumonia in Wuhan, China: a descriptive study, Lancet 395
(10223) (2020) 507–513.

[2] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X.
Gu, et al., Clinical features of patients infected with 2019 novel coronavirus in
Wuhan, China, Lancet 395 (10223) (2020) 497–506.

[3] D. Wang, B. Hu, C. Hu, F. Zhu, X. Liu, J. Zhang, B. Wang, H. Xiang, Z. Cheng,
Y. Xiong, et al., Clinical characteristics of 138 hospitalized patients with 2019
novel coronavirus–infected pneumonia in Wuhan, China, JAMA 323 (11) (2020)
1061–1069.

[4] C.I. Vardavas, K. Nikitara, COVID-19 and smoking: A systematic review of the
evidence, Tob. Induc. Dis. 18 (March) (2020) http://dx.doi.org/10.18332/tid/
119324.

[5] A. Umnuaypornlert, S. Kanchanasurakit, D.E.I. Lucero-Prisno, S. Saokaew, Smok-
ing and risk of negative outcomes among COVID-19 patients: A systematic review
and meta-analysis, Tob. Induc. Dis. 19 (2021).

[6] J. Baker, N. Krishnan, L.C. Abroms, C.J. Berg, The impact of tobacco use on
COVID-19 outcomes: A systematic review, J. Smok. Cessat. 2022 (2022).

[7] A.K. Clift, A. von Ende, P. San Tan, H.M. Sallis, N. Lindson, C.A. Coupland, M.R.
Munafò, P. Aveyard, J. Hippisley-Cox, J.C. Hopewell, Smoking and COVID-19
7

outcomes: an observational and mendelian randomisation study using the UK
Biobank cohort, Thorax 77 (1) (2022) 65–73.

[8] N. Ismail, N. Hassan, M.H.N. Abd Hamid, U.N. Yusoff, N.R. Khamal, M.A.
Omar, X.C. Wong, M.D. Pathmanathan, S.M. Zin, F.M. Zin, et al., Association of
smoking and severity of COVID-19 infection among 5,889 patients in Malaysia:
a multi-center observational study, Int. J. Infect. Dis. 116 (2022) 189–196.

[9] R. Poudel, L.B. Daniels, A.P. DeFilippis, N.M. Hamburg, Y. Khan, R.J. Keith,
R.S. Kumar, A.C. Strokes, R.M. Robertson, A. Bhatnagar, Smoking is associated
with increased risk of cardiovascular events, disease severity, and mortality
among patients hospitalized for SARS-CoV-2 infections, PLoS One 17 (7) (2022)
e0270763.

[10] Y. He, Y. He, Q. Hu, S. Yang, J. Li, Y. Liu, J. Hu, Association between
smoking and COVID-19 severity: A multicentre retrospective observational study,
Medicine 101 (29) (2022).

[11] G. Cai, Y. Bossé, F. Xiao, F. Kheradmand, C.I. Amos, Tobacco smoking increases
the lung gene expression of ACE2, the receptor of SARS-CoV-2, Am. J. Respir.
Crit. Care Med. (ja) (2020).

[12] S. Rao, A. Baranova, H. Cao, J. Chen, X. Zhang, F. Zhang, Genetic mechanisms
of COVID-19 and its association with smoking and alcohol consumption, Brief.
Bioinform. 22 (6) (2021) bbab284.

[13] D. Blanco-Melo, B. Nilsson-Payant, W.-C. Liu, R. Møller, M. Panis, D. Sachs, R.
Albrecht, et al., SARS-CoV-2 launches a unique transcriptional signature from in
vitro, ex vivo, and in vivo systems, BioRxiv (2020).

[14] P. Langfelder, S. Horvath, WGCNA: an R package for weighted correlation
network analysis, BMC Bioinformatics 9 (1) (2008) 1–13.

[15] M.R. Auwul, M.R. Rahman, E. Gov, M. Shahjaman, M.A. Moni, Bioinformatics
and machine learning approach identifies potential drug targets and pathways
in COVID-19, Brief. Bioinform. 22 (5) (2021) bbab120.

[16] D. Blanco-Melo, B.E. Nilsson-Payant, W.-C. Liu, S. Uhl, D. Hoagland, R. Møller,
T.X. Jordan, K. Oishi, M. Panis, D. Sachs, et al., Imbalanced host response to
SARS-CoV-2 drives development of COVID-19, Cell (2020).

http://refhub.elsevier.com/S0010-4825(23)00350-5/sb1
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb1
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb1
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb1
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb1
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb1
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb1
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb2
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb2
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb2
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb2
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb2
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb3
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb3
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb3
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb3
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb3
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb3
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb3
http://dx.doi.org/10.18332/tid/119324
http://dx.doi.org/10.18332/tid/119324
http://dx.doi.org/10.18332/tid/119324
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb5
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb5
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb5
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb5
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb5
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb6
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb6
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb6
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb7
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb7
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb7
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb7
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb7
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb7
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb7
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb8
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb8
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb8
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb8
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb8
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb8
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb8
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb9
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb9
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb9
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb9
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb9
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb9
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb9
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb9
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb9
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb10
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb10
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb10
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb10
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb10
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb11
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb11
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb11
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb11
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb11
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb12
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb12
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb12
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb12
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb12
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb13
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb13
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb13
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb13
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb13
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb14
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb14
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb14
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb15
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb15
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb15
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb15
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb15
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb16
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb16
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb16
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb16
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb16


Computers in Biology and Medicine 159 (2023) 106885Md. Ali Hossain et al.
[17] D.M. Ryan, T.L. Vincent, J. Salit, M.S. Walters, F. Agosto-Perez, R. Shaykhiev, Y.
Strulovici-Barel, R.J. Downey, L.J. Buro-Auriemma, M.R. Staudt, et al., Smoking
dysregulates the human airway basal cell transcriptome at COPD risk locus
19q13. 2, PLoS One 9 (2) (2014) e88051.

[18] M.D. Robinson, D.J. McCarthy, G.K. Smyth, edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data, Bioinformatics 26
(1) (2010) 139–140.

[19] D. Szklarczyk, J.H. Morris, H. Cook, M. Kuhn, S. Wyder, M. Simonovic, A. Santos,
N.T. Doncheva, A. Roth, P. Bork, et al., The STRING database in 2017: quality-
controlled protein–protein association networks, made broadly accessible, Nucleic
Acids Res. (2016) gkw937.

[20] J. Xia, E.E. Gill, R.E. Hancock, NetworkAnalyst for statistical, visual and
network-based meta-analysis of gene expression data, Nat. Protoc. 10 (6) (2015)
823.

[21] A. Khan, O. Fornes, A. Stigliani, M. Gheorghe, J.A. Castro-Mondragon, R. van der
Lee, A. Bessy, J. Cheneby, S.R. Kulkarni, G. Tan, et al., JASPAR 2018: update
of the open-access database of transcription factor binding profiles and its web
framework, Nucleic Acids Res. 46 (D1) (2017) D260–D266.

[22] P. Sethupathy, B. Corda, A.G. Hatzigeorgiou, TarBase: A comprehensive database
of experimentally supported animal microRNA targets, Rna 12 (2) (2006)
192–197.

[23] S.-D. Hsu, F.-M. Lin, W.-Y. Wu, C. Liang, W.-C. Huang, W.-L. Chan, W.-T.
Tsai, G.-Z. Chen, C.-J. Lee, C.-M. Chiu, et al., miRTarBase: a database curates
experimentally validated microRNA–target interactions, Nucleic Acids Res. 39
(suppl_1) (2010) D163–D169.

[24] L. Jin, X.-Y. Zuo, W.-Y. Su, X.-L. Zhao, M.-Q. Yuan, L.-Z. Han, X. Zhao, Y.-D.
Chen, S.-Q. Rao, Pathway-based analysis tools for complex diseases: a review,
Genom., Proteom. Bioinform. 12 (5) (2014) 210–220.

[25] P. Khanal, Y.N. Dey, R. Patil, R. Chikhale, M.M. Wanjari, S.S. Gurav, B. Patil, B.
Srivastava, S.N. Gaidhani, Combination of system biology to probe the anti-viral
activity of andrographolide and its derivative against COVID-19, RSC Adv. 11
(9) (2021) 5065–5079.

[26] G. Garcia Jr., Y. Wang, J.I. Irudayam, A.V. Jeyachandran, S.C. Cario, C. Sen, S.
Li, Y. Li, A. Kumar, K. Nielsen-Saines, et al., Hippo signaling pathway activation
during SARS-CoV-2 infection contributes to host antiviral response, BioRxiv
(2022).

[27] G. Magro, SARS-CoV-2 and COVID-19: is interleukin-6 (IL-6) the’culprit lesion’of
ARDS onset? What is there besides tocilizumab? SGP130fc, Cytokine: X (2020)
100029.

[28] A. Jamil, A. Rashid, A.K. Naveed, M. Asim, Effect of smoking on interleukin-6
and correlation between IL-6 and serum amyloid A-low density lipoprotein in
smokers, J. Postgrad. Med. Inst. (Peshawar-Pakistan) 31 (4) (2017).

[29] O. Pacha, M.A. Sallman, S.E. Evans, COVID-19: a case for inhibiting IL-17? Nat.
Rev. Immunol. 20 (6) (2020) 345–346.

[30] K.-H. Lee, C.-H. Lee, J. Woo, J. Jeong, A.-H. Jang, C.-G. Yoo, Cigarette smoke
extract enhances IL-17a-induced IL-8 production via up-regulation of IL-17R in
human bronchial epithelial cells, Mol. Cells 41 (4) (2018) 282.
8

[31] M.Z. Hasan, S. Islam, K. Matsumoto, T. Kawai, SARS-CoV-2 infection initiates
interleukin-17-enriched transcriptional response in different cells from multiple
organs, Sci. Rep. 11 (1) (2021) 1–11.

[32] A. Strzelak, A. Ratajczak, A. Adamiec, W. Feleszko, Tobacco smoke induces and
alters immune responses in the lung triggering inflammation, allergy, asthma and
other lung diseases: a mechanistic review, Int. J. Environ. Res. Public Health 15
(5) (2018) 1033.

[33] C. Zhang, Z. Wu, J.-W. Li, H. Zhao, G.-Q. Wang, The cytokine release syn-
drome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist
tocilizumab may be the key to reduce the mortality, Int. J. Antimicrob. Ag.
(2020) 105954.

[34] M. Shirvaliloo, The unfavorable clinical outcome of COVID-19 in smokers is
mediated by H3K4me3, H3K9me3 and H3K27me3 histone marks, Epigenomics
14 (3) (2022) 153–162.

[35] A. Nasirzadeh, J. Bazeli, J. Hajavi, N. Yavarmanesh, M. Zahedi, M. Abounoori,
A. Razavi, M.M. Maddah, P. Mortazavi, M. Moradi, et al., Inhibiting IL-6 during
cytokine storm in COVID-19: Potential role of natural products, 2021.

[36] T. Wang, M. Yegambaram, C. Gross, X. Sun, Q. Lu, H. Wang, X. Wu, A. Kangath,
H. Tang, S. Aggarwal, et al., RAC1 nitration at Y32 IS involved in the endothelial
barrier disruption associated with lipopolysaccharide-mediated acute lung injury,
Redox Biol. 38 (2021) 101794.

[37] G. Selvaraj, S. Kaliamurthi, G.H. Peslherbe, D.-Q. Wei, Identifying potential drug
targets and candidate drugs for COVID-19: biological networks and structural
modeling approaches, F1000Research 10 (2021).

[38] E. Weisberg, A. Parent, P.L. Yang, M. Sattler, Q. Liu, Q. Liu, J. Wang, C. Meng,
S.J. Buhrlage, N. Gray, et al., Repurposing of kinase inhibitors for treatment of
COVID-19, Pharm. Res. 37 (9) (2020) 1–29.

[39] M. Zou, X. Su, L. Wang, X. Yi, Y. Qiu, X. Yin, X. Zhou, X. Niu, L. Wang,
M. Su, The molecular mechanism of multiple organ dysfunction and targeted
intervention of COVID-19 based on time-order transcriptomic analysis, Front.
Immunol. (2021) 3366.

[40] G. Cen, L. Liu, J. Wang, X. Wang, S. Chen, Y. Song, Z. Liang, Weighted gene
co-expression network analysis to identify potential biological processes and key
genes in COVID-19-related stroke, Oxidative Med. Cellular Longev. (2022).

[41] P. Meng, H. Zhao, W. Huang, Y. Zhang, W. Zhong, M. Zhang, P. Jia, Z. Zhou, G.
Maimaitili, F. Chen, et al., Three GLI2 mutations combined potentially underlie
non-syndromic cleft lip with or without cleft palate in a Chinese pedigree,
Molecular Genet. Genom. Med. 7 (9) (2019) e714.

[42] S. Hazra, A.G. Chaudhuri, B.K. Tiwary, N. Chakrabarti, Candidate genes associ-
ated with neurological manifestations of COVID-19: Meta-analysis using multiple
computational approaches, BioRxiv (2022).

[43] K. Platzer, J.R. Lemke, GRIN1-related neurodevelopmental disorder, in:
GeneReviews®[Internet], University of Washington, Seattle, 2019.

[44] C. Reggiani, S. Coppens, T. Sekhara, I. Dimov, B. Pichon, N. Lufin, M.-C. Addor,
E.F. Belligni, M.C. Digilio, F. Faletra, et al., Novel promoters and coding first
exons in DLG2 linked to developmental disorders and intellectual disability,
Genome Med. 9 (1) (2017) 1–20.

http://refhub.elsevier.com/S0010-4825(23)00350-5/sb17
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb17
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb17
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb17
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb17
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb17
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb17
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb18
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb18
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb18
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb18
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb18
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb19
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb19
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb19
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb19
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb19
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb19
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb19
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb20
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb20
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb20
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb20
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb20
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb21
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb21
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb21
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb21
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb21
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb21
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb21
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb22
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb22
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb22
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb22
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb22
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb23
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb23
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb23
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb23
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb23
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb23
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb23
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb24
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb24
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb24
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb24
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb24
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb25
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb25
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb25
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb25
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb25
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb25
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb25
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb26
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb26
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb26
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb26
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb26
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb26
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb26
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb27
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb27
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb27
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb27
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb27
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb28
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb28
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb28
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb28
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb28
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb29
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb29
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb29
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb30
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb30
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb30
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb30
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb30
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb31
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb31
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb31
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb31
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb31
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb32
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb32
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb32
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb32
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb32
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb32
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb32
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb33
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb33
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb33
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb33
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb33
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb33
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb33
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb34
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb34
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb34
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb34
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb34
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb35
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb35
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb35
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb35
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb35
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb36
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb36
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb36
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb36
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb36
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb36
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb36
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb37
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb37
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb37
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb37
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb37
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb38
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb38
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb38
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb38
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb38
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb39
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb39
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb39
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb39
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb39
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb39
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb39
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb40
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb40
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb40
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb40
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb40
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb41
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb41
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb41
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb41
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb41
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb41
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb41
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb42
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb42
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb42
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb42
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb42
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb43
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb43
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb43
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb44
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb44
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb44
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb44
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb44
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb44
http://refhub.elsevier.com/S0010-4825(23)00350-5/sb44

	The pathogenetic influence of smoking on SARS-CoV-2 infection: Integrative transcriptome and regulomics analysis of lung epithelial cells
	INTRODUCTION
	MATERIALS AND METHODS
	Datasets employed and statistical methods
	Analysis methods
	Weighted gene co-expression networks construction


	Results
	Identification of differentially expressed genes
	Functional enrichment of differentially expressed genes common to COVID-19 and SMK
	Hub proteins from protein–protein interaction analysis
	Regulators of the DEGs
	Drug protein interaction
	Significant genes identification using WGCNA analysis

	Discussion
	Conclusions
	Declaration of Competing Interest
	References


