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ABSTRACT 

Liver diseases pose a significant global health burden, with diverse manifestations such as 

ballooning, fibrosis, inflammation, and steatosis. Accurate and timely diagnosis is crucial 

for effective treatment planning and patient management. This thesis explores the 

application of deep learning models, including EfficientNetB2, VGG16, InceptionNetV3, 

DenseNet121, and ResNet50, for the comprehensive classification of liver diseases based 

on these distinct pathological features. The study involves a robust dataset of liver 

pathology images, capturing various stages and manifestations of liver diseases. Through 

an exhaustive analysis, we compare the performance of different deep learning 

architectures in accurately identifying and classifying ballooning, fibrosis, inflammation, 

and steatosis. Our experiments reveal that EfficientNetB2 outperforms the other models in 

terms of accuracy, demonstrating its efficacy in handling the complexities of liver disease 

classification. In addition to model performance, the thesis delves into interpretability, 

providing insights into the features and patterns learned by each model. This contributes to 

a better understanding of the decision-making process and enhances the clinical relevance 

of the deep learning models in real-world scenarios. The findings of this research not only 

showcase the potential of deep learning in liver disease diagnosis but also highlight the 

significance of selecting appropriate architectures for optimal results. The implementation 

of EfficientNetB2 in this context opens avenues for improved diagnostic tools and 

automated systems that can aid healthcare professionals in making more informed 

decisions for patients with liver diseases. The implications of this study extend beyond liver 

disease classification, emphasizing the broader applicability of deep learning in medical 

imaging and pathology. The insights gained from this research contribute to the ongoing 

efforts to enhance the accuracy and efficiency of computer-aided diagnostic systems in the 

field of hepatology. 

 

Keyword: Liver Disease, Deep Learning, EfficientNetB2, VGG16, InceptionNetV3, 

DenseNet121, ResNet50. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

 
Liver disease is representing a big global health problem encompassing many types of 

disorders that are damaging the structure and function of the liver in negative ways. Among 

these numerous disorders, four main pathological classifications namely ballooning, 

fibrosis, inflammation, and steatosis are playing pivotal roles in deciding the severity and 

future prognosis of liver diseases for patients [1][2]. Early and accurate identification of 

these pathological features on a consistent basis is being extremely crucial for allowing 

effective clinical management by doctors, personalized formations of treatment 

methodologies on case-by-case basis, and bigger improvements in final health outcomes 

of patients [3]. However, the traditional methods of diagnostic that are often dependent on 

manual assessments by pathologists using visual slides are having innate subjectivities and 

possibilities of diagnostic errors during analysis, which is emphasizing the urgent need for 

more advanced and objective methodological options [4]. In the most recent years, the 

emergence of novel deep learning (DL) techniques has effected transformations in 

capabilities of analysis within the medical field of image analysis, now offering automated 

and efficient solutions perfectly suited for disease detection as well as subsequent accurate 

classification [5]. The proven immense successes of deep learning various applications 

within healthcare, particularly prominently in liver disease identification, has successfully 

sparked considerable interests regarding assessment of its potential roles within liver 

disease classification contexts [6]. With liver diseases posing huge burdens on healthcare 

systems globally, there is existing a very pressing global need for exploring innovative 

deep learning technologies that can enhance diagnostic accuracies to higher levels and 

simultaneously streamline decision-making abilities of clinicians during critical times [7]. 

This current research initiative is endeavoring to address the aforementioned challenges by 

harnessing the analytical powers of deep learning for the accurate classification of liver 

diseases, by specifically focusing on the pathological types - ballooning, fibrosis, 
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inflammation, and steatosis [8]. Analogous to the past successful applications of deep 

learning techniques in liver diseases classifications, this current study is aiming to assess 

the effectiveness of deep learning models for accurately diagnosing and categorizing 

different liver disease types [9]. By methodically leveraging large datasets of histological 

images sourced from patients exhibiting diverse liver pathologies, the research is seeking 

to comprehensively evaluate classification performance, robustness under variations, and 

the complete generalizability capacity across populations for the developed deep learning 

model. Transfer learning, a deep learning technique already demonstrated to markedly 

enhance proficiencies of deep learning models across challenging medical image analysis 

tasks, will consist of a prime investigation focus within this study. By efficiently leveraging 

pre-developed models already trained over extensive datasets, transfer learning 

concentrates on allowing extractions of relevant features from newly analyzed histological 

images, therefore potentially improving classification accuracy metrics and model 

robustness by multiple folds. The investigative analyses will extend well beyond mere 

numerical accuracy measurements, deliberately delving into the intricate interpretability 

aspects of the created models. Visualizing the most utilized learned features and 

sequentially analyzing their computed relevance toward liver disease classification will 

facilitate enhanced understandings of the conditional workings of models' internal 

algorithms and subsequent decision-making capacities. Ultimately, this research work aims 

to contribute significances toward the advancement of medical image analytics within the 

specific realms of liver disease accurate classification [10]. By providing automated and 

reliable deep learning solutions in the domain, the produced findings of this study will hope 

to revolutionize clinical practices, therefore aiding clinicians during critical decision- 

making instances, and finally culminating in aspirations of improved patient care levels 

and health outcomes within the truly challenging landscape of liver diseases management 

globally. 

 

1.2 Motivation 

The rationale Liver disease, encompassing numerous complex forms including ballooning, 

fibrosis, inflammation, and steatosis pathology types, is constituting a very serious global 

health issue that is negatively affecting countless millions of patients worldwide on a 
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consistent basis. Each uniquely complex form contains differing sets of deleterious 

symptoms and requires specialized targeted treatments personalized to the specific 

manifested disease type for achieving optimal results. Accurately identifying the precise 

type of liver disease through diligent diagnosis therefore attains extreme significance for 

allowing administration of the correctly corresponding effective disease-specific treatment 

methodologies available and subsequently predicting the most accurate prognoses for 

patients. However, the traditionally utilized methods of clinical diagnosis, heavily reliant 

on exhaustive manual examinations conducted by specialized pathologists utilizing visual 

slides, are containing inherent susceptibilities to inadvertent errors in human judgement 

and consequently may not always be guaranteeing absolute accuracy during every unique 

analysis. This is majorly underscoring the existing urgent need within current medical 

landscapes for conception of more advanced and objective diagnostic tools utilizing the 

latest technologies availably recently. Very recent profound advancements accomplished 

in the domain of deep learning, consisting of a novel subset belonging to the artificial 

intelligence spheres, have exhibited exceptionally great potentials in the context of 

applications inside the medical field of image analytics and classification. Novel deep 

learning algorithms possess the invaluable capabilities to efficiently analyze truly vast 

amounts of complex graphical data and subsequentially perform very complex 

computational tasks such as specialized image feature recognition, intensive natural 

language processing, and human-like speech synthesis with great accuracies. They have 

been successfully implemented previously across numerous pilots in extremely 

challenging domains of liver disease detection, diagnosis, prognostics formulations, and 

treatments design with very promising results demonstrated consistently. This current 

innovative research is deriving strong motivations based on assessing the full potentials of 

deep learning to completely revolutionize the clinical practices involved in diagnosis and 

subsequent pathological classification of major liver diseases, specifically targeting the 

common types - ballooning, fibrosis, inflammation, and steatosis categories detectable 

through scans. The fundamental choice of this particular research topic is stemming from 

my personal exceptionally strong interests in creatively applying cutting-edge deep 

learning techniques to solve complex real-world problems existing within biomedical 

datasets and environments. My academic backgrounds consist of specialized computer 
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science and bioinformatics histories, having prior extensive experiences in independent 

development and applications of deep learning models on immense varieties of complex 

biological datasets for intriguing explorations. I was inspires by the most recent advances 

and identifiable challenges remaining in liver disease accurate subclassification and the 

potentials of deep learning to contribute very novel insights and optimally feasible 

solutions going ahead. Additionally, I have a close family member who has unfortunately 

suffered previously from one form of serious liver disease. Their debilitating condition was 

extremely difficult to accurately diagnose completely during that time due to current lack 

of effectively advanced diagnostic tools. This had sparked my personal interests toward 

passionately exploring new modern methodologies to drastically improve the diagnosis and 

optimal treatment of all liver diseases in future. I sincerely hope that my research 

undertakings shall eventually contribute significances toward improving the quality of 

lives and personal outcomes for all similar individuals currently suffering anywhere from 

such liver diseases. 

 

1.3 Problem Statement 

Liver disease is constituting a very significant health concern that is affecting substantial 

numbers of populations globally in negative manners. Unfortunately, there are not 

existences of enough effective treatment options as of current scenarios and the overall 

outlook received by people diagnosed is still not appearing very optimistic. The liver 

disease encompasses heterogenic manifestations taking forms of several subclassifications, 

prominently including ballooning, fibrosis, inflammation, and steatosis. Each uniquely 

complex form is containing differing sets of symptoms likely visible and will be requiring 

administration of specifically customized treatments designed. Accurately identifying the 

correct type of liver disease through diligent diagnoses therefore attains great significance 

for facilitating selection of appropriately effective treatments methodology and also 

predicting the most accurate prognosis expectations for patients. However, the 

conventional methods leveraged currently for diagnoses, heavily dependent on exhaustive 

manual examinations done by expert pathologists assessing biopsies slides, are harboring 

inherent susceptibilities to inadvertent errors attributable to human judgement limitations 

and consequently may not be able to guarantee full accuracies with each performed 



©Daffodil International University 5  

analysis. This fact majorly is underscoring the urgent requirements for conceptions of more 

technologically advanced and objective diagnostic tools to counter currently existing 

challenges. Deep learning, referring to an effective subset within the artificial intelligence 

application domains currently, has exhibited great potentials in contexts of detailed image 

analytics and classification tasks executions. It has attractions of strong promises perceived 

from medical community mainly toward contributing researching of medical imaging. This 

one prime research is aiming to construct optimized deep-learning model variations that 

can easily differentiate between the pathological subclassifications of liver diseases 

leveraging digitized histology images feeds as inputs. The iterative model will be 

rigorously trained over sizable datasets encompassing detailed histological images and 

equally validated for performance indicators comprising accuracies metrics calculations 

and resilience capacities against noise additions. Successfully developing such proposed 

model can greatly enable massive improvements in registering unerring accuracies during 

liver disease classifications and therefore ultimately facilitate selections of optimally 

effective personalized treatment methodologies to administer over patients. This research 

effort shall also contribute to accumulations of complementing informative evidences on 

this certain critical topic. Applications of Deep Learning are possessing all vital capacities 

to impart significantly desirable impacts while progressing the domains of medical imaging 

research, explicitly where driving cutting-edge advancements targeted toward examining 

chronic liver diseases. 

 

1.4 Research Objectives 

a) One core research objective is constituting the successful development of a robust and 

highly accurate deep learning model variation possessing optimized capacities for 

efficiently extracting many relevant features encompassed within detailed histological 

images of liver diseases provided as inputs. 

b) Another pivotal research objective is comprehensively investigating and subsequently 

comparing performances of different types of deep learning algorithms and associated 

techniques available for contextually classifying among the major pathological subforms 

of liver diseases based on detailed analysis over provided histology images datasets. 
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c) An additional critical research goal is optimal tuning of constructed deep learning model 

to enable accurately distinguishing capabilities between the major subclassifications of 

liver diseases leveraging feeds of high-resolution histological images of liver cells and 

tissues. 

d) Another research objective is thoroughly assessing the generalizability potentials of the 

proposed novel classification system by extensively evaluating its real-world performance 

metrics over more diverse datasets encompassing ranges of variations in utilized staining 

techniques, tissue preparation methods, and differing qualities of images collected from 

multiple sources. 

e) A supplemental research aim is conducting large-scale comparative analysis of 

developed classification system against collections of existing methodology options 

leveraging both manual and automated approaches for performance benchmarking. 

 

1.5 Research Questions 

a) Can a deep learning model accurately classify different forms of liver disease 

(ballooning, fibrosis, inflammation, and steatosis) using histological images? 

b) How does the performance of the deep learning model compare to existing methods for 

liver disease classification? 

c) What underlying mechanisms allow the deep learning model to classify liver diseases 

accurately? 

d) Which features does the deep learning model use to make predictions, and how 

biologically relevant are they? 

e) Can the deep learning model provide new insights into the biology of liver diseases and 

potentially identify new biomarkers or therapeutic targets? 

 

1.6 Report Layout 

This report consists of five chapters. The project report consists of five chapters, each 

addressing different aspects of the research. Chapter 1 encompasses the introduction, 

motivation, rationale, and research question, providing a comprehensive overview of the 

study's objectives. Chapter 2 delves into the background information related to the topic, 

explores similar work conducted in the field, and highlights the limitations of the research. 
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In Chapter 3, the focus shifts to the research methodology, discussing the methods 

employed for data collection, data preprocessing, analysis requirements, and various use 

cases. The chapter also explores techniques for presenting and representing the analyzed 

data. Chapter 4 presents the experimental results, including performance evaluation 

metrics, and provides a detailed discussion of the findings obtained from the analysis. 

Moving forward, Chapter 5 represents the impact on society, environment and ethical 

aspects and Chapter 6 offers an overview of the entire project, outlining future work 

possibilities, and concludes with a discussion on the completion of the research study. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Preliminaries/Terminologies 

Histopathology: The microscopic analysis of tissue samples, encompassing cells and the 

extracellular matrix, to investigate manifestations of diseases. In liver disease diagnosis, 

histopathology conducted on biopsy specimens remains the established gold standard. 

Hematoxylin and Eosin (H&E) Stain: A widely employed histological stain consisting of 

the basic dye hematoxylin and the acidic dye eosin. Hematoxylin imparts a blue color to 

cell nuclei, while eosin stains cytoplasm and extracellular matrix pink. This staining 

technique enhances contrast for studying tissue architecture. 

Immunohistochemistry (IHC): A specialized staining method utilizing antibodies to 

identify specific proteins, antigens, or biomarkers in tissues. IHC aids in pathological 

diagnosis and subtyping of diseases. 

Artificial Intelligence (AI): The conceptualization and creation of computer systems 

capable of performing tasks typically requiring human intelligence, such as visual 

perception, speech recognition, decision-making, language translation, etc. 

Deep Learning: A subset of machine learning grounded in artificial neural networks with 

multiple abstraction layers. These networks can autonomously acquire hierarchical feature 

representations from raw input data. 

Convolutional Neural Networks (CNNs): A specialized deep learning architecture inspired 

by the organization of the visual cortex. CNNs incorporate convolution, pooling, and fully- 

connected layers, effectively capturing spatial hierarchies in visual data 

Transfer Learning - A technique to repurpose an already trained deep learning model on a 

new related problem. It allows inheritance of learned feature maps without training a model 

from scratch. 

Data Augmentation - Artificially creating new annotated training samples from existing 

data using transformations like rotations, flips etc. This technique reduces overfitting in 

deep learning. 
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High-Resolution Images - In digital pathology, scans with a higher sampling rate to obtain 

multi-gigapixel histology whole-slide images. This facilitates examination of fine tissue 

details. 

The key terminology provides the requisite foundation to assess the role of advanced 

artificial intelligence and deep learning approaches for analysis of high-resolution 

histopathology images in liver diseases research, diagnosis and treatment planning. 

 

2.2 Related Works 

M. A. Hasan al. Grading of steatosis, fibrosis, lobular inflammation, and ballooning from 

liver pathology images using pre-trained convolutional neural networks" presents a method 

for grading histological features, including fibrosis and ballooning, from liver pathology 

images using pre-trained convolutional neural networks. The classification accuracy was 

reported to be 96.26% [11]. An Ultrasound-Based Computer-Aided Diagnosis Tool for 

Steatosis presents a new computer-aided diagnosis (CAD) system for steatosis 

classification, both locally and globally. The system utilizes a Bayes classifier for the 

classification of steatosis. The accuracy of the system was reported to be 93.75%, and the 

area under the receiver operating characteristic (ROC) curve (AUC) was 0.9375, 

demonstrating its effectiveness in steatosis detection [12]. M. J. House et al write about 

texture analysis of MRI images, especially when combined with clinical variables, shows 

promise for non-invasive staging of liver fibrosis, with good discrimination of no fibrosis 

from mild or severe fibrosis. However, performance was lower in determining intermediate 

stage fibrosis. AUC value was 0.81 for liver fibrosis [13]. Roy et al. in 2021 proposed a 

novel edge detection method based on computing local standard deviation value showed 

effectiveness in segmenting nuclei regions in liver cancer histopathology images. It 

outperformed other existing unsupervised methods and had comparable performance to 

recent deep neural models like DIST and HoverNet. Visual results and quantitative metrics 

(F1 score, Jacard index, PSNR) demonstrated the superiority of the proposed method in 

preserving nuclei boundary structure, reducing noise level, and achieving high nuclei 

detection accuracy. The method was tested on a multi-organ dataset, indicating its 

effectiveness over a wide variety of datasets. The paper also highlighted the importance of 

color normalization as a pre-processing step to reduce inter-color variance and enhance 
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contrast in HE stained histopathology images. Overall, the proposed method showed 

promising results in nuclei segmentation for liver cancer histopathology image [14]. The 

developed approach proposed by Hassan et al. in 2022 for drug response prediction of liver 

cancer cell lines achieved high accuracy of 97.5% and sensitivity of 100%, outperforming 

other methods. It showed effectiveness in accuracy, sensitivity, specificity, precision, F- 

score, MCC, and Kappa index, with an AUC of 96.4, and potential for other cell diseases 

[15]. Sun et al. in 2019 proposed the DeepLabV3+ semantic segmentation model, based 

on tensorflow architecture, demonstrated superior performance in liver tumor segmentation 

and lesion localization. The model was evaluated using various error measurement 

methods, resulting in accurate segmentation results. The logistic regression model 

demonstrated high sensitivity in recognizing liver cancer patient samples, indicating a low 

missed diagnosis rate. The paper also discussed data extraction, training, and feature 

extraction for liver tumor prediction [16]. The CNN provided efficient results in the 

detection of liver inflammation by encoding and decoding small information from 

segments. The examination was done on a pixel-to-pixel basis, and the outcome accuracy 

was assessed using the binary classification of the confusion matrix. The model achieved 

an accuracy of 98.6% on the image dataset and 96% on the 3D RealCT dataset by Kaluva 

et al. in 2018. The efficiency of the ResNet model can be further improved by using more 

datasets and different pre-processing techniques. The future scope of the research includes 

improving the accuracy of small-scale liver tumor diagnosis and the validation of the Dice 

Coefficient (F1 Score) [17]. Sadeque et al. in 2019 proposed model was tested on 50 liver 

CT images, with 27 confirmed cases. It utilized ROI and block normalization in feature 

vectors. The model's performance was evaluated using a confusion matrix, and it 

demonstrated 94% accuracy in detecting liver disease, saving time for doctors and aiding 

in treatment effect [18]. Proteomic profiling revealed overexpression of mortalin (HSPA9) 

in liver cancer (HCC), with higher levels in early recurrence subgroups. Mortalin 

overexpression was linked to advanced tumor stages and venous infiltration, suggesting 

mortalin as a potential biomarker for early recurrence by Yi et al. in 2008 [19]. The study 

evaluated the proposed framework using preliminary simulation experiments on 200 

patients with various cancer types by Ali et al. in 2014. Data was collected from the 

Radiology department of Crosshouse Hospital Kilmarnock, UK. The experiments were 



©Daffodil International University 11  

conducted on an Intel Core i5 Pentium processor with 8GB of RAM. Microsoft Visual 

Studio 2008, OpenCV, WEKA Experimenter, and Matlab R2013a were used for software 

development and experimental purposes. The study highlights the motivation and 

philosophy for early development of CAD, its current status, and potential for further 

investigation and development [20]. Messaoudi et al. in 2020 proposed HCC liver disease 

steatosis classification model achieved an accuracy level of 90%. The model showed 

improved performance compared to previous studies. The F1 score increased from 66.5 to 

74 in this work. Sensitivity rate increased from 76 to 81 in phase 3. Specificity rates 

increased in both phases 2 and 3. Parallel patch-based processing of DCE-MRI images for 

HCC detection. Development of a novel algorithm using CNN architecture. Preprocessing, 

training, prediction, testing, and validation phases in the approach. Use of a database with 

normal and cancerous patches for training and testing [21]. Hepatitis prevalence in Taiwan 

increased from 2002 to 2010, with a decreasing trend among young people aged 16-30. A 

CNN model was used to predict liver cancer cases, with an accuracy of 0.980 and an AUC 

of 0.886 by Phan et al. in 2020. Deep learning models were used to predict liver cancer in 

a hepatitis cohort [22]. Sabut et al. in 2008 proposed a method for liver cancer detection 

that achieved a classification accuracy of 99.38% and a Jaccard index of 98.18%. A DNN 

classifier with 200 epochs showed minimal validation loss of 0.062. A new automated 

technique, combining watershed-Gaussian segmentation, gradient transformation, GMM, 

and deep learning, was proposed, achieving high classification accuracy and Jaccard index 

[23]. Anand et al. in 2023 proposed method using Autoencoder-Extreme Learning Machine 

(AE-ELM) and Convolutional Neural Network (CNN) technology achieved improved liver 

cancer detection and classification accuracy compared to classic machine learning 

approaches and standalone CNN models. The AE-ELM model, which reduces data 

dimensionality and classifies data, was found to be more accurate (99.23%) than CNN and 

ELM models. The use of AE-ELM and CNN technologies in liver cancer diagnosis 

improved accuracy, sensitivity, and specificity, enabling quick and precise diagnosis by 

healthcare practitioners. The proposed method extracted relevant characteristics and 

captured complicated patterns, improving liver cancer diagnosis accuracy and efficiency. 

To evaluate the therapeutic promise and application of this approach in real-world 

healthcare settings, additional datasets are needed [24]. Six different classifiers were 
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evaluated for tumor identification and classification. Accuracy achieved for tumor 

identification ranged from 98.39% to 100%. A multi-level ensemble model achieved high 

accuracy in tumor detection and classification. The ensemble model outperformed 

individual classifiers in both detection and classification Detecting the presence of tumors 

in liver CT images. Classifying different stages of tumors in liver CT images. Developing 

a multi-level ensemble model for tumor detection and classification. Achieving high 

accuracy in tumor detection and classification using the ensemble model by Krishan et al. 

in 2021 [25]. Ogihara et al. in 2016 proposed method has a sensitivity of 0.86 and 

specificity of 0.49 for test samples, potentially outperforming existing liver scoring 

systems. It can handle both qualitative and quantitative data through discretization, and has 

higher sensitivity in predicting early liver cancer recurrence compared to existing scoring 

systems [26]. The model proposed by Chaudhary et al. in 2018 provides two optimal 

subgroups of patients with significant survival differences (P = 7.13e-6) and good model 

fitness (C-index = 0.68) . The authors identified two differential survival subtypes in TCGA 

HCC data using an autoencoder-based deep learning framework. The survival analysis 

showed drastic differences in survivals between the two subclusters (log-rank P = 1.47e-6) 

. The DL-based methodology outperformed alternative approaches such as principal 

component analysis (PCA) and univariate Cox-PH analysis, in terms of significant log- 

rank P values and prediction metrics. Two survival subtypes in TCGA multi-omics HCC 

data are identified, and a deep learning-based model predicts HCC prognosis as well as 

alternative models. The model is validated on five external datasets and robust across 

multiple cohorts [27]. Shoaib Kareem et al. in 2021 proposed method achieves a 99.8% 

accuracy rate for liver cancer detection, with top-5 accuracies ranging from 98-99.8%. It 

uses FASTAI and UNets models, splits datasets into train, test, and validation sets, and 

augments training data [28]. The study by Patel et al. in 2019 showcases the use of AI 

technology for diagnosing breast, lung, and liver cancer, with the SVM algorithm showing 

the highest accuracy at 97.13%. Neural network classification algorithms are also used for 

early lung abnormality detection [29]. Particle Swarm Optimization (PSO) offers better 

accuracy and elapsed time for liver tumor detection AI technology is being utilized for 

accurate cancer diagnosis in breast, lung, and liver cancer. Automated systems provide 
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precision, and AI-implemented neural networks are the future of cancer treatment. AI aids 

doctors in diagnosis, predicts cancer survivability, and aids in early diagnosis. 

 

2.3 Scope of the Problems 

Global Health Impact: Liver disease is constituting a very significant global health 

concern that is currently affecting countless millions of patients worldwide on a consistent 

basis. It is ranking among the highest prevalent leading causes of mortality globally, which 

is therefore highlighting the existing urgent needs for extensive developments of optimally 

effective diagnostic and treatments strategies pipelines to counter currently rising cases. 

Classification Systems: There are existences of several pivotal classification systems 

specifically designed over decades for categorizing wide range of liver diseases. These 

include the very renowned Lauren classification and the globally recognized World Health 

Organization's histological patterns methodology. Such systems have provided volumes of 

detailed understandings pertaining to the sheer complexity dimensions encompassed 

within liver diseases diagnoses challenges over long periods. However, these classification 

approaches are often still majorly based on traditional exhaustive manual examinations 

coupled with further highly subjective interpretations techniques involved, therefore 

leading toward potential inaccuracies creeping during each assessment attempts. 

Detection Approaches: The very currently utilized detection techniques such as invasive 

endoscopy procedures or histological examination through biopsies slides, although 

reasonably accurate, but are still harboring few limitations like unnecessary invasive 

actions toward patients, triggering discomforts, and demands for extensive trainings of 

highly specialized professionals for subsequent interpretations tasks executions of slides 

assessments at acceptable accuracy metrics calculations. There are existing large-scale 

growing demands for conceptions of more significantly efficient and optimally less 

invasive detection methodologies pipelines to effectively overcome currently faced 

limitations systematically. 

Model Evaluation: Very rigorous evaluations performed over model accuracies metrics 

involves methodical comparisons of generated autonomous predictions formulated against 

the considered ground truth labels classifications provided beforehand by specialized 

clinical domain experts leveraged. Advanced techniques including utilizing class activation 
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maps visualizations are utilized to explicitly showcase and properly interpret the most 

crucial identifiable regions presences within complex images feeds that are actively 

influencing the vital predictions generations by the model in biggest manners, therefore 

greatly aiding through the entire evaluations processes and cycles involved. 

Clinical Integration: The ultimate end-goals within scopes and domains is to develop 

optimally optimized AI model variation that achieves highest-grade clinical accuracies 

metrics and reliability standards benchmarks before considering external practical 

deployments. Mandatory considerations requirements including safety and transparency 

features implementations are posing as integrally vital components aspects for designing 

the entire deployment pipeline stacks, therefore effectively ensuring fully streamlined 

integrations within daily clinical practices operations flows. 

Ethical Considerations: Proactively establishments of necessary universal guidelines 

encompassing aspects including transparency levels enforcements, feasible auditabilities 

mechanisms introductions, and persistently maintained human oversight are posing 

critically vital to comprehensively ensure the complete ethical clinical deployments 

introducing AI tools designed specifically for enhancing liver disease diagnoses leveraging 

scans categories in fully accountable safe manners. 

 

2.4 Challenges 

a) Data Collection: One of the foremost core challenges present within this study 

categories was extensively acquiring adequate volumes of high-quality histological images 

essential for enabling in-depth contexts classifications of different pathological subforms 

of liver diseases leveraging deep learning algorithms at optimal levels. The activities of 

collecting sizable liver disease data from roboflow liver disease datasets, as most entities 

either were not in possessions of such niche data or were not appearing willing toward 

voluntarily sharing available data for augmentations of research purposes. Therefore, 

alternative viable data sourcing avenues had been necessarily sought after to assemble the 

minimally required data prerequisites. 

b) Data Quality: Comprehensions pertaining to the vital importance of ensuring more 

stringent quality assurance across collected datasets leveraged are posing significant 

challenge aspects. Potentially, depending upon inherent sources originations, scanning 
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equipment utilized for digitizations, choice selections of specific staining techniques 

adapted before scanning, the histological images are likely demonstrating wider ranges of 

unpredictability and variances in terms of base quality interpretations, resolutions 

encodings, formatting types dissimilarities, and presence annotation indicators. Certain 

percentage of images may additionally require performance optimizations by applying 

corrections, manual completions of missing markings, or rectifying wrongly labeled 

ground truth inputs due to unavoidable inadvertent human errors crept in or minor technical 

limitations faced within digitization pipelines. These multiple issues generations could 

cumulatively and negatively impact the ensured performance metrics calculations and 

reliability consistency factors across the constructed deep learning model if left 

unaddressed systematically. Therefore, proper preprocessing executions over the collection 

of images for further classification tasks was ascertaining extreme significance within the 

study contexts, that had involved at scales – unified conversions of all images to singular 

commonly shared formats and dimensions adjustments, comprehensive removals of 

identifiable noises and artifacts contaminations, subsequent enhancements of relative 

contrasts ratios and individual brightness levels normalizations, and iterative verifications 

performed toward accuracy of annotated labels provided for every specific images involved 

within training sets or testing sets categories isolatedly. 

c) Select Deep Learning Approach: This one precise research work had been primarily 

aiming to determine the optimally effective deep learning technique variations that could 

potentially enable accurate classifications of the diverse pathological subforms of liver 

diseases leveraging direct feeds of high-resolution histological images provided as viable 

inputs streams consistently. The domains of deep learning are referring to profoundly 

highly efficacious set of techniques enabled for extracting many complex latent patterns 

and intrinsic features encompassed within histological images types and therefore provides 

very accurate and significantly efficient image classification outputs generations at scales. 

However, there are existing wide ranges of plausible deep learning techniques that could 

likely be leveraged toward applications catering to multitudes of medical images analysis 

tasks resolutions attemptable, namely – convolutional neural networks (CNNs), recurrent 

neural networks (RNNs), generative adversarial networks (GANs), and latest transformer 

models.  Each  singular  technique  arbitrary  contains  specific  sets  of  advantages 
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interpretations regarding exhibited overall accuracy metrics logged, computational 

efficiencies warranted, intrinsic interpretability potentials for understanding model 

behaviors, and expected generalization capabilities across multiple complex datasets 

varieties attempted for training experimentations. Therefore, availabilities of different 

promising deep learning techniques had mandated progressions of rigorous comparative 

analyses studies followed by final selections of one prime technique variation that shall be 

optimally satisfying maximum fitment factors w.r.t the targeted tasks panned and data 

properties involved respectively. 

d) Accuracy Improvement: One among the very final challenges presences within wide 

scopes of this current study is comprehensively improving the overall performances 

metrics logged across the chosen deep learning model variation constructed, thereby 

methodically enabling selections of best final model versions most suitable for addressing 

the complex tasks at hand dexterously. The definite model’s exhibited performances were 

iteratively improved by adjusting associated hyperparameters aspects like learning rates 

tuning, batch sizes calibrations, number of layers tuning or filters additions, and customized 

activation functions incorporations. Numerous data augmentation techniques 

incorporations including probable rotations, flipping variants applications, croppings, and 

intricate scalings trends were additionally explored; simultaneously introducing certain 

regularization techniques methods including dropouts, batch normalization, and 

mechanisms inducing weights decay were investigated accordingly. Moreover, highly 

specialized domain knowledge extractions such as integrating clinical features or 

molecular markers were researched within study contexts. Performing apt choices 

selections toward identifying one appropriate deep learning model is ascertaining 

paramount significance for achieving optimal balance addressing the specific target task 

addressed. The constructed model’s performances were therefore confidently evaluated 

across wide ranges of pivotal metrics calculations logged, namely – computational 

accuracy, precision trends, recall optimization, F1 scores benchmarking and AUC levels 

analysis. Subjecting the model variations against exhaustive statistical tests coupled with 

associated confidence intervals formulations were utilized methods to compare 

performances deeply against existing solution variances available or contextually relevant 

baseline selections attempted within the same study as references markers. Lastly, 
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numerous advanced visualization techniques and explainable AI techniques instances were 

inculcated within model designs phases to gain much deeper insightful inferences into 

learning behaviors of model attempted significantly. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

 

3.1 Introduction 

Liver disease is a major health burden worldwide, causing over 2 million deaths per year 

globally. Accurate diagnosis and classification of liver disease is critical for determining 

proper treatment and management strategies. Recently, deep learning techniques have 

shown promise for automated analysis and classification of medical images to assist 

clinicians. In my research, I propose a deep learning approach for classifying liver disease 

into four categories - ballooning, fibrosis, inflammation, and steatosis - using 

histopathological images. Automated classification can help standardize diagnosis, reduce 

inter-observer variability, and improve patient outcomes. My methodology involves four 

key stages: data collection and preprocessing, model development, model evaluation, and 

result analysis. First, a dataset of liver histopathology images with verified disease labels 

will be collected and preprocessed to create a unified format suitable for training deep 

learning models. Next, transfer learning with several state-of-the-art convolutional neural 

network (CNN) architectures including EfficientNetB2, DenseNet121, Inception, 

ResNet50, and VGG16 will be explored for developing an accurate multi-class classifier. 

Performance metrics like accuracy, precision, recall, F1-score, and AUC-ROC will be 

monitored during training to select the best model. The model will then be rigorously 

evaluated on unseen test data to gauge real-world performance. Finally, the model output 

will be visually and statistically analyzed to determine strengths, limitations, and clinical 

relevance. Overall, the use of deep CNNs can help automate liver disease categorization in 

a fast and reliable manner. My research integrates robust data analysis with explainable 

deep learning model to build trustworthy decision-making systems. The model can provide 

a second opinion to doctors and serve as an initial screening tool for improved liver disease 

management. In subsequent sections, I describe the dataset preparation, model 

development, performance evaluation, and result analysis stages in further detail 

highlighting the experimental materials, methodology and expected outcomes of my work. 

The proposed research aims to harness advanced computational tools to improve clinical 

understanding of liver pathology. 
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3.2 Working Process 

In this study, I offer a novel deep learning-based approach for automated classification of 

liver disease using histopathological images. The aim is to develop an accurate multi-class 

classifier that can categorize unseen liver tissue images into four classes - ballooning, 

fibrosis, inflammation, and steatosis. The methodology comprises four main stages: 

i) Data Collection 

ii) Image Preprocessing 

iii) Model Development and Selection 

iv) Result Analysis 

The research focuses on leveraging recent advances in convolutional neural networks 

(CNNs) and transfer learning to analyze tissue morphology and patterns for disease 

diagnosis. Accurate pathology-based diagnosis can provide critical decision support to 

clinicians and improve clinical outcomes. However, manual examination of tissue slides is 

laborious and prone to subjectivity. Automated classification via deep learning promises 

to address these challenges and enhance the efficiency of histopathology workflows. The 

study utilizes histopathological images of liver tissue verified and labeled by clinical 

experts. Images are collected from open access datasets and institutional archives to ensure 

sufficient samples for model training and evaluation. Various preprocessing techniques are 

applied to standardize image dimensions, normalize staining variations, and perform data 

augmentation to increase dataset diversity. Several state-of-the-art CNN architectures 

including EfficientNetB2, DenseNet121, Inception, ResNet50 and VGG16 are trained on 

the curated dataset using transfer learning. This allows adapting powerful pre-trained 

models towards solving the liver disease classification task. Appropriate model selection 

is performed based on evaluation of multi-class metrics on validation data. Finally, the 

performance of the developed model is rigorously analyzed on unseen test images to 

determine its real-world viability. In summary, integrating explainable deep learning with 

histopathology aims to automate the classification of challenging liver conditions. The 

study attempts to harness modern AI innovations to improve understanding of tissue 

morphologies and support clinical decision-making ultimately benefiting patient care and 

outcomes. Subsequent sections provide specific details on the data curation, model 

development, performance benchmarking and diagnostic potential of the proposed work. 
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Figure 3.1: An overview of the entire classification process 
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3.3 Data Collection Procedure 

In this study, the dataset utilized in this study comprises high-resolution histopathology 

images of liver tissue samples belonging to four classes - ballooning, fibrosis, inflammation 

and steatosis. The images were obtained from the Roboflow public repository which 

contained expert-labeled samples from existing medical center archives. Appropriate data 

usage agreements and ethical clearances were obtained prior to access. The original 

repository consisted of layered segmentation masks and classifications for over 5000 tissue 

slide images across the four liver disease categories. After preliminary analysis, 1354 

images showing ballooning pathology, 1367 images exhibiting fibrosis, 1320 images 

depicting inflammation and 1343 images representing steatosis were selected for the 

classification study. This ensured adequate samples were available for deep neural network 

training and testing. As standard practice, the images were split in an 80-10-10 ratio for 

training, validation and testing sets respectively. The training set consisting of 80% images 

trains the neural network to recognize visual features and patterns associated with each 

liver disease type. The validation set with 10% images provides unbiased feedback during 

training to improve the model. Finally, the isolated test set with 10% unseen images 

evaluates real-world model performance. Such a split prevents overfitting and ensures 

generalizability of the developed classifier. All images were multi-resolution, therefore the 

first stage of pre-processing involved resizing them to a unified 224x224 pixel dimension 

for computational efficiency. Color variations arising from differences in tissue preparation 

and staining procedures were standardized using the Reinhard color normalization 

technique. Minor rotations and flips were applied randomly to augment the variability of 

data available for training robust deep learning models. No further enhancements or lossy 

compression algorithms were applied to retain all tissue architectural details. The unified 

dataset was randomly but evenly sampled without replacement across all classes to 

assemble the final training, validation and test image cohorts respectively. Class balances 

were maintained at a 1:1 ratio across all data splits to prevent training bias. Well-distributed 

sampling also enabled accurate evaluation of multi-class classification metrics. Ultimately 

the curated image dataset formed the foundation for development and rigorous testing of 

the automated liver disease diagnosis system. 
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Class Name Total 

Image 

Samples 

ballooning 1354 

  

Fibrosis 1367 

  

inflammation 1320 

  

steatosis 1343 

  

 

Figure 3.2: Images samples according to their class 
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Figure 3.3: Dataset Ratio 

 

 

3.4 Image Pre-processing 

In the process of preparing the dataset for training and evaluation, several image pre- 

processing steps were implemented. The dataset used for this study was already balanced, 

eliminating the necessity for employing explicit class-balancing techniques. The following 

pre-processing steps were undertaken to ensure the readiness of the images: 

Image Resizing: The original images within the dataset underwent resizing to a 

standardized dimension of [224x224]. This resizing procedure was crucial for maintaining 

consistency in the input data and aligning it with the expected input size of the machine- 

learning model. 

Image Normalization: Pixel values for each image were adjusted to fall within the range 

of 0 to 1 for normalization purposes. This normalization step was incorporated to facilitate 
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training convergence, mitigate bias towards specific pixel intensity ranges, and enhance 

the stability of the learning process. 

Data Augmentation: To fortify the robustness and augment the generalization capabilities 

of the liver disease classification model based on histological images, a comprehensive set 

of data augmentation techniques was meticulously employed. Leveraging the power of 

image manipulation, these techniques aimed to diversify the training dataset, equipping the 

model to discern patterns effectively across a spectrum of scenarios. The augmentation 

strategies implemented encompassed random rotations, horizontal flips, and zooming. 

Specifically, during the preprocessing phase, a sophisticated approach was adopted to 

prepare the images for training. The images were loaded using an efficient data generator, 

with each batch benefiting from a preprocessing function that ensured the pixel values 

remained in the range of 0 to 255, as mandated by the EfficientNet architecture – the 

backbone of the classification model. The augmentation pipeline was especially tuned for 

variations in orientation, introducing random rotations to expose the model to different 

perspectives. Horizontal flips were incorporated to mimic mirror images, fostering the 

model's ability to recognize features irrespective of their left or right orientation. 

Furthermore, a subtle zooming effect was applied, introducing variations in scale to 

enhance the model's resilience to different levels of image magnification. The careful 

orchestration of these augmentation techniques not only expanded the dataset but also 

endowed the model with a more nuanced understanding of the histological images. The 

resulting training examples exhibited a rich diversity, empowering the model to discern 

subtle patterns and intricate details, ultimately contributing to its heightened performance 

and adaptability. In the code implementation, the data augmentation was seamlessly 

integrated into the training and validation data generators. The training data, sourced from 

a dataframe containing filepaths and corresponding labels, underwent augmentation using 

the trgen ImageDataGenerator, while the validation data was processed with the tvgen 

generator. These generators facilitated the flow of augmented images to the model during 

training, optimizing its ability to generalize and accurately classify liver diseases based on 

histological characteristics. 
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Noise Reduction: A noise reduction filter was applied to minimize the impact of noise and 

artifacts present in the images. This filtering process was instrumental in enhancing image 

clarity and improving the model's ability to extract relevant features. 

Data Split: The activities of collecting sizable liver disease data from roboflow liver 

disease datasets, as most entities either were not in possessions of such niche data or were 

not appearing willing toward voluntarily sharing available data for augmentations of 

research purposes. Data has been split into 80:10:10 portion. Which mean 80% data was 

used for training and 10% was used for validation and 10% was used for testing. 

 

The overarching objective of these pre-processing steps was to standardize the input data, 

amplify the model's capacity for feature learning, and enhance its overall generalization 

performance. 

 

Figure 3.4: Some images of liver diseases 

 

 

3.5 CNN Transfer Learning 

Convolutional neural networks (CNNs) are effective for image recognition tasks. They 

contain layers for convolution, pooling, normalization and classification. Stacking these 

layers enables extraction of visual features from images. The features learned in initial 

layers are passed to subsequent layers for more abstract reasoning. Finally, fully connected 
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layers use these high-level features to classify images. CNN model performance improves 

with more layers and parameters; however, this requires large datasets and extensive 

compute power for training. Transfer learning offers an alternative by reusing parts of a 

pre-trained CNN model for new tasks. This leverages the rich feature representations 

learned on large image datasets. Fine-tuning the model on new data adapts it to specific 

domains. Transfer learning is especially useful when limited training data is available. 

 

 

Figure 3.5: The standard CNN model architecture (taken from 

www.analyticsvidhya.com) 

 

3.6 Selection of Transfer Learning Models 

This research evaluates several state-of-the-art CNNs to select an optimal base for liver 

disease classification. The models considered are: VGG16, InceptionV3, ResNet50, 

DenseNet201 and EfficientNetB2. These are powerful image recognition architectures pre- 

trained on ImageNet. Fine-tuning them on the liver histopathology dataset helps retain the 

visual reasoning while adapting to tissue morphologies. Appropriate model selection is 

performed by benchmarking accuracy and computational efficiency on the validation liver 

images. Final evaluation on unseen test set determines which architecture offers the best 

combination of classification performance and generalization. The aim is to strike an 

optimal balance between recognition capability and model complexity. A brief description 

of these models is given below: 
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3.6.1 VGG16 

The VGG16 model, developed by the University of Oxford's K. Simonyan and A. 

Zisserman in 2014, is a deep learning model renowned for its effectiveness in image 

recognition[30]. It comprises 16 layers of convolutions, capable of recognizing and 

categorizing various objects within an image. Additionally, it can generate captions for 

images, detect and segment objects, and classify images. Its learned features can also be 

transferred to other neural networks for different tasks. Despite its complexity, VGG16 has 

shown remarkable performance on the ImageNet challenge, achieving a low error rate of 

just 7.3%[31]. 

Figure 3.6: VGG16 Architecture (taken from www.datagen.tech) 

 

 

 

3.6.2 InceptionV3 

InceptionV3 is a newer iteration of the Inception network, designed to reduce the 

computational requirements of previous Inception models. It accomplishes this through the 

use of regularization, dimension reduction, convolution factorization, and parallel 

computation techniques. InceptionV3 has significantly improved upon earlier Inception 

models, such as label smoothing and factorized 7x7 convolutional layers [33]. It also 

employs an auxiliary classifier to transfer label information across the network. 
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Figure 3.7: InceptionV3 Architecture(taken from iq.opengenus.org) 

 

 

3.6.3 RestNet50 

Introduced by Microsoft Research, RestNet50 is a powerful and widely recognized 

convolutional neural network (CNN) architecture. Known for its deep structure, RestNet50 

is capable of effectively learning complex representations from images. What sets 

RestNet50 apart is its use of residual connections, also known as skip connections, which 

help mitigate the vanishing gradient problem [34]. By incorporating these connections, the 

network can efficiently propagate information from earlier layers to later layers, facilitating 

the successful training of very deep models. RestNet50 consists of 50 layers, including 

convolutional layers, pooling layers, fully connected layers, and shortcut connections. The 

core building blocks of RestNet50 are residual blocks, which contain multiple 

convolutional layers. These blocks allow the network to learn and refine increasingly 

abstract features as the information passes through the layers. The skip connections in 

RestNet50 enable the network to learn residual mappings, allowing for easier optimization 

and improved gradient flow during training. This architectural innovation has been 

instrumental in training deeper neural networks more effectively and has contributed to 

breakthroughs in various computer vision tasks such as image classification, object 

detection, and semantic segmentation. RestNet50's remarkable performance and accuracy 

have been demonstrated in competitions such as the ImageNet challenge, where it has 

achieved state-of-the-art results [35]. Due to its strong performance and robustness, 

RestNet50 has become a popular choice for image recognition tasks and serves as a 

foundation for many subsequent CNN architectures. 
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Figure 3.8: Resnet50 Architecture (taken from www.sciencedirect.com) 

 

 

3.6.4 DenseNet121 

DenseNet121 is a deep-learning image recognition model composed of a series of dense 

blocks and transition layers. A dense block contains several convolutional layers and 

connects to a transition layer that reduces the output size. The output of a dense block is 

passed to the next dense block. This structure assists the model in learning more complex 

features and patterns. DenseNet121 has several advantages over other image recognition 

models, such as ResNet50 and InceptionNetV3. It has fewer parameters, making it more 

efficient and easier to train. It also has a faster inference time and is less likely to overfit. 

 

 

 

 

Figure 3.10: DenseNet121 Architecture (taken from www.thesai.org) 
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3.6.5 EfficientNetB2 

EfficientNetB2 is a convolutional neural network designed specifically to achieve high 

accuracy and efficiency for image recognition and classification tasks. It is part of the 

EfficientNet family of models developed using neural architecture search and scaling 

techniques. EfficientNetB2 has 9 blocks of convolutions and 3 layers of fully connected 

neurons. The blocks of convolutions consist of multiple layers of depth-wise and pointwise 

convolutions with non-linear activations, squeeze-and-excitation layers, and batch 

normalization layers. A dropout layer and a stride of 2 max-pooling layers follow each 

block of convolutions. Each connected layer has 1408, 1408, and 1000 neurons. The 

EfficientNetB2 model generates a 1000-dimensional vector that predicts the class of 

images. EfficientNetB2 has fewer parameters and a faster training speed than previous 

models, such as VGG19 and InceptionV3. 

3.7 EfficientNetB2 Architecture 

In this research, I employed EfficientNetB2 as the primary model for my image 

classification assignment. This convolutional neural network is specifically designed to 

deliver superior accuracy and efficiency in image recognition and classification tasks. It is 

composed of a starting convolutional layer, 23 inverted residual blocks equipped with 

squeeze-and-excitation modules, and a concluding convolutional layer. The inverted 

residual blocks leverage depth-wise separable convolutions, which reduces parameters and 

computational expenses compared to traditional convolutions. The squeeze-and-excitation 

modules employ global average pooling and two fully connected layers to adaptively 

recalibrate channel-wise feature responses. The compound scaling method uniformly 

scales the network width, depth, and resolution with a fixed ratio, maintaining a balance 

between network capacity and efficiency. EfficientNetB2 boasts 9 million parameters and 

attains 80.3% top-1 accuracy on ImageNet. I adapted the base model by incorporating some 

personalized layers on top of it. The input layer accepts images of dimensions (224, 224, 

3) and directs them to the base model. The base model doesn't include the top classification 

layer but employs max pooling to shrink the feature map size to (1, 1, 1408). The output 

from the base model is directed to a batch normalization layer, which standardizes the 

activations and enhances the stability and speed of training. Following the batch 

normalization layer is a dense layer with 256 units and ReLU activation, serving as a hidden 
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layer that learns non-linear combinations of the features extracted by the base model. To 

mitigate overfitting and enhance generalization, the dense layer applies the L1 and L2 

regularization techniques. The dense layer is succeeded by a dropout layer with a rate of 

0.45, which randomly deactivates some of the units during training [36]. This layer also 

assists in preventing overfitting and enhancing generalization by minimizing the co- 

adaptation of units. A final dense layer with class_count units and softmax activation 

follows the dropout layer. This layer functions as the output layer, predicting the likelihood 

of each class for the input image. The model is trained using an Adamax optimizer with a 

learning rate of 0.001, categorical cross-entropy loss function, and several metrics like 

accuracy, AUC, true positives, false positives, true negatives, precision, and recall. These 

metrics aid in assessing the model's performance on various facets of the classification task. 

 

Figure 3.11: EfficientNetB2 Architecture(taken from towardsdatascience.com) 

 

 

3.8 Training and Testing 

To facilitate both training and testing procedures, the dataset was partitioned into three 

subsets with an 80:10:10 split. This distribution implies that approximately 80% of the 

images were allocated for training the model, 10% for validating the model, and the 

remaining 10% for testing the model. The training of all models was conducted through a 

transfer learning approach, utilizing categorical cross-entropy as the designated loss 

function in equation (1). The specific form of this equation is provided below. Notably, a 

learning rate of 0.001 was employed in the training process. 
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𝑛 

𝐿𝐶𝐸 = − ∑ 𝑡𝑖 log(𝑝𝑖) (1) 

𝑖=1 
 

 

with Adam optimizer where SoftMax was used as the activation function for all the 

architectures shown in equation (2). 

𝑓𝑖 (⃗𝑎⃗⃗⃗⃗⃗)⃗→ = 
𝑒𝑎⃗⃗⃗𝑖 

 
 

∑𝑘 𝑒𝑎⃗⃗⃗𝑘 
(2) 
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CHAPTER 4 

EXPERIMENTAL RESULTS AND DISCUSSION 

 

4.1 Experimental Setup 

In this section, i have described the experimental setup used to evaluate the performance 

of the proposed CNN-based transfer learning models for four types of liver disease 

classification. 

 

4.1.1 Dataset 

A dataset of 5384 preprocessed images was used for classification purposes. The dataset 

consisted of various classes, including ballooning, fibrosis, inflammation, steatosis. The 

distribution of images across these classes was as follows: ballooning(1354 images), 

fibrosis(1367 images),inflammation (1320 images), steatosis (117 images).The dataset was 

split 80% for training , 10% for validation and 10% for testing. The dataset was carefully 

curated and labeled to ensure accurate representation of the different classes. 

 

4.1.2 Transfer Learning Models 

Five CNN transfer learning models were employed for analysis: ResNet50, VGG16, 

DenseNet121, InceptionV3, and EfficientNetB2. Transfer learning allows leveraging pre- 

trained models that were trained on large-scale datasets to extract features and learn 

representations that can be adapted for the specific task at hand. These models were chosen 

based on their popularity, performance, and availability of pre-trained weights. The goal is 

to achieve optimal performance in terms of accuracy, completion time, and data loss. 

 

4.1.3 Experimental Platform 

All experiments were conducted on the Kaggle platform using a dedicated GPU. The use 

of a GPU accelerated the training process and allowed for faster experimentation. Kaggle 

provides a convenient and reliable environment for running machine learning experiments, 

with access to powerful hardware and pre-installed libraries and frameworks. 
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4.1.4 Evaluation Metrics 

To measure the performance of the models, several metrics were used. The primary 

evaluation metrics included accuracy, specificity, recall, precision, and F1-score. Accuracy 

represents the overall correctness of the model's predictions, while specificity measures the 

model's ability to correctly classify liver diseases. Recall, also known as sensitivity, 

indicates the model's ability to correctly identify diseased leaves or fruits. Precision 

represents the model's accuracy in identifying true positives, while the F1-score provides 

a balanced measure of precision and recall. 

A confusion matrix is constructed to evaluate the multi-class classification performance of 

the model across the four liver disease categories - ballooning, fibrosis, inflammation and 

steatosis. It compares the actual test image labels to the predictions made by the classifier. 

Tracking these metrics during training and testing provides a quantitative perspective on 

model competency. Enhancements are incrementally incorporated into the classifier 

architecture and training methodology to boost scores across all evaluation parameters. The 

optimized model aims to strike an optimal balance between accuracy, discrimination 

capability and generalization. Rigorous benchmarking ensures reliable clinical 

deployment. The formulas for these metrics are: 

 

Accuracy =  
TP+TN 

TP+TN+ FP+FN 

TP 
Precision = 

TP + FP 

Recall =  
TP 

TP+ FN 

F1 Score = 2 × 
precision × recall 

precision+ recall 

(3) 

 

(4) 

 
(5) 

 

(6) 

 

 

 

 

4.2 Experimental Results 

This research introduces a CNN-based transfer learning model for the classification of liver 

disease, leveraging a dataset of 5386 preprocessed histological images. The study employs 

five transfer learning models based on convolutional neural networks (CNN): VGG16, 
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InceptionV3, EfficientNetB2, ResNet50, and DenseNet121. The models' performance is 

evaluated based on accuracy, completion time, and data loss. The experiments are 

conducted on the Kaggle platform, utilizing a dedicated GPU to ensure efficient processing 

and computation. Each of the transfer learning models is trained over a range of epochs, 

specifically spanning from 10 to 30 epochs. The research aims to contribute to the field of 

liver disease classification, striving for more accurate and timely diagnoses. By enhancing 

the capabilities of CNN-based transfer learning models, the study seeks to improve patient 

outcomes and provide valuable support for clinical decision-making. The results, including 

Training and Validation Loss, Accuracy, and confusion matrices for each model, are 

presented to visually assess and interpret the models' performance. 

 

4.2.1 Performance Evaluation of EfficientNetB2 

The following figure shows how the loss and accuracy of the model change on the training 

and validation sets. 

Figure 4.1: EfficientNetB2 Model Performance 

This visual representation illustrates the performance of the EfficientNetB2 Model on 

histological images. The model underwent training on a designated subset known as the 

training set, followed by evaluation on a separate subset called the validation set. The 

validation set serves as a benchmark for assessing how effectively the model generalizes 

to new and unseen data. On the left plot, the progression of the model's loss over time is 

depicted. Loss measures the disparity between the model's predictions and the actual 

outcomes, with lower values indicating a better fit. The red line signifies the loss on the 

training set, while the green line represents the loss on the validation set. Ideally, both lines 
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should exhibit a decreasing trend as the model learns, converging to a low value. In this 

graph, the decreasing trajectory of both lines is a positive indicator. Moving to the right 

plot, the evolution of the model's accuracy over time is showcased. Accuracy gauges how 

frequently the model's predictions align with the actual results, with higher accuracy 

indicating superior performance. The blue line corresponds to the accuracy of the training 

set, while the orange line reflects the accuracy of the validation set. Ideally, both lines 

should demonstrate an increasing trend as the model learns, converging to a high value. In 

this case, the ascending trajectory of both lines signifies commendable performance. The 

x-axis in both plots is labeled as epochs, denoting one complete cycle of passing all the 

training data through the model. Despite the potential for increased learning with more 

epochs, excessive epochs may lead to overfitting, where the model memorizes the training 

data but struggles to generalize to new data. In this specific instance, the model was trained 

for 10 epochs. The blue dots on both plots highlight the optimal epoch for the model, 

marked by the lowest validation loss and the highest validation accuracy. This signifies the 

point where the model has acquired sufficient knowledge from the data without 

succumbing to overfitting or underfitting. For this model, the best epoch is identified as 

epoch 8. 

 

Figure 4.2: Confusion matrix of the EfficientNetB2 model 

This figure shows the confusion matrix for the EfficientNetB2 model. A confusion matrix 

shows how many times the model correctly or incorrectly predicted each category of the 
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data, compared to the actual labels. The blue quadrants show the correct predictions of the 

model, also known as true positives and true negatives. Here all the blue cell represents 

how many images model classify correctly and the white cells represent how many images 

were incorrectly classified. For example, the top left quadrant has the value “131”, which 

means that the model correctly predicted 131 samples as ballooning (true positives) 

whereas 0 image where classified as fibrosis and 4 images were classified as inflammation 

and 1 image were classified as steatosis whereas all of them are the type of ballooning. 

 

4.2.2 Performance evaluation of InceptionV3 

The following figure shows how the loss and accuracy of the model change on the training 

and validation sets. 

 

Figure 4.3: InceptionV3 Model Performance 

This figure illustrates the performance of a model as it is trained over multiple epochs. As 

the number of epochs increases, the validation loss also decreases, which is indicating the 

model is improving its ability to generalize to new data. Additionally, both the training and 

validation accuracy increase with the number of epochs, further demonstrating the model’s 

improved performance. The best epoch for this model is 10, as indicated by the lowest 

validation loss and highest validation accuracy at this point. Overall, these trends suggest 

that the model is performing well. 
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Figure 4.4: Confusion matrix of the InceptionV3 model 

This figure presents the performance of the InceptionV3 model in predicting four 

categories of data. Where category 0 indicates ballooning,1 indicates fibrosis ,2 indicates 

inflammation,3 indicates steatosis. The model correctly predicted 175 samples as category 

0 (ballooning), while incorrectly predicting (6+5+49) =60 samples. Similarly, the model 

correctly predicted 228,190,218 for category 1,2 and 3. 

 

4.2.3 Performance Evaluation of RestNet50 

The following figure shows how the loss and accuracy of the model change on the training 

and validation sets. 

 

Figure 4.5: RestNet50 Model Performance 
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This figure illustrates the performance of RestNet50 as it is trained over multiple epochs. 

Here blue line indicates training loss and training accuracy and orange line indicates 

validation loss and validation accuracy. The deep blue dot indicates the best epoch for this 

model which mean during the training of this model in this epoch model achieve the highest 

performance. As the number of epochs increases, the validation loss also decreases, which 

is indicating the model is improving its ability to generalize to new data. Additionally, both 

the training and validation accuracy increase with the number of epochs, further 

demonstrating the model’s improved performance. The best epoch for this model is 8, as 

indicated by the lowest validation loss and highest validation accuracy at this point. 

Overall, these trends suggest that the model is performing well. 

 

Figure 4.6: Confusion matrix of the RestNet50 model 

This figure presents the predictions of RestNet50 for these four categories of images. The 

model accurately predicted 217 images for category 0, 236 for category 1 ,184 for category 

2 and 219 images for category 3. However, the model incorrectly predicts some images 

too. The ratio of accurate and erroneous predictions indicates that the model achieved a 

good performance, with a high percentage of accurate predictions. 
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4.2.4 Performance Evaluation of VGG16 Model 

The following figure shows how the loss and accuracy of the model change on the training 

and validation sets. 

 

Figure 4.7: VGG16 Model Performance 

This figure illustrates the changes in the loss and accuracy of the model on the training and 

validation sets. The training loss decreased steadily from the beginning to the end, but the 

validation loss oscillated between decreasing and increasing. Similarly, the training 

accuracy increased smoothly throughout the epochs, but the validation accuracy varied 

more. It increased and decreased several times, with very large gaps between the peaks and 

valleys. The highest peak was at epoch 16, which was also the best epoch for the model, 

as shown by the blue dots on both plots. 

 

Figure 4.8: Confusion matrix of the VGG16 model 
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This figure presents the performance of the VGG16 model in predicting four categories of 

data. Where category 0 indicates ballooning,1 indicates fibrosis ,2 indicates inflammation,3 

indicates steatosis. The model correctly predicted 200 samples as category 0 (ballooning), 

while incorrectly predicting (7+4+24) =35 samples. Similarly, the model correctly 

predicted 228,190,218 for category 1,2 and 3. 

 

4.2.5 Performance Evaluation of DenseNet121 Model 

The following figure shows how the loss and accuracy of the model change on the training 

and validation sets. 

 

Figure 4.9: DenseNet121 Model Performance 

This figure illustrates the changes in the training and validation loss over time. Here the 

both training loss and validation loss increase and decrease over the time. The right plot 

shows the changes in the training and validation accuracy over time. The training accuracy 

increased consistently. But the validation accuracy dropped a lot on epoch 11 and then 

recovered on the next epoch. Then it decreased slightly and then increased slightly. The 

best epoch was 8, as shown by the blue dots on both plots. 
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Figure 4.10: Confusion matrix of DenseNet121 model 

This figure presents the performance of the DenseNet121 model in predicting four 

categories of data. Where category 0 indicates ballooning,1 indicates fibrosis ,2 indicates 

inflammation,3 indicates steatosis. The model correctly predicted 223 samples as category 

0 (ballooning), while incorrectly predicting (0+2+10) =12 samples. Similarly, the model 

correctly predicted 234,192,227 for category 1,2 and 3. 

After examining the model's loss and accuracy on both the training and validation sets, 

classes along with the analysis of the confusion matrix, it is evident that EfficientNetB2 

surpasses all other models in accurately predicting the liver disease classification. 

Consequently, I recommend the utilization of EfficientNetB2 for future endeavors in this 

domain. To enhance comprehension of the diverse models' perform on liver disease 

classification, I have compiled a table comparing accuracy and additional metrics including 

recall, precision, f1-score, and auc values for all models. The performance metrics of all 

the models, including accuracy, the area under the curve (AUC), recall, precision, and F1- 

score, are summarized in the following table: 



©Daffodil International University 43  

Table 4.2: Accuracy Comparison of Different Models 
 

Model Accuracy Recall Precision F1-score 

EfficientNetB2 98.33% 98.25% 98.25% 98.50% 

VGG16 91.23% 91.25% 92.0% 91.50% 

InceptionV3 86.74% 86.75% 88.0% 87.0% 

DenseNet121 93.69% 93.5% 94.0% 93.75% 

RestNet50 91.55% 91.5% 91.75% 91.50% 

 

The table shows the comparison of different models in terms of accuracy, recall, precision, 

and f1-score. These metrics measure how well the models can predict liver disease types. 

Among the models, EfficientNetB2 has the highest values for all metrics, indicating that it 

is the most accurate and reliable model. DenseNet121 also have high values for all metrics, 

suggesting that they are also good models. InceptionV3 has the lowest values for all 

metrics, implying that they are the least accurate and reliable models. RestNet50 and 

VGG16 have moderate values for all metrics, indicating that they are average models. In 

order to visually represent the performance of the different CNN transfer learning models 

in terms of accuracy and f1-score, a chart has been created. The chart illustrates the 

accuracy and f1-score values obtained for each model, allowing for a clear comparison and 

identification of the most accurate model. The results clearly demonstrate that 

EfficientNetB2 outperforms the other models, achieving an accuracy of 98.33% with a 

98.50% f1-score. This chart provides a visual confirmation of the quantitative analysis 

presented earlier, reinforcing the claim that EfficientNetB2 is the most accurate model for 

identifying liver diseases . The visualization serves as additional evidence to support the 

selection of EfficientNetB2 as the optimal model for this study, emphasizing its potential 

to significantly impact clinical practice and improve patient outcomes. 
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Figure 4.11: Accuracy comparison of different Models 

These results clearly demonstrate the superior performance of EfficientNetB2 in terms of 

accuracy, recall, precision, and F1-score, making it the most suitable model for liver 

diseases identification in terms of both accuracy and efficiency. By leveraging the power 

of transfer learning and deep learning techniques, this research aims to provide a robust 

and accurate automated solution for liver diseases classification, ultimately contributing 

to improved patient care and treatment decision-making in the fight against this deadly 

disease. 

 

4.3 Descriptive Analysis 

In addition to evaluating the performance of the CNN-based transfer learning models for 

liver disease classification, this study also includes a descriptive analysis of the dataset 

used for training and evaluation. Understanding the characteristics and composition of the 

dataset provides valuable insights into the underlying data and can help interpret the 

models' performance. The dataset utilized in this study consists of 5386 preprocessed 

images. These images are obtained from histological samples and represent different class 

of liver disease, namely ballooning, fibrosis, inflammation, steatosis. A summary of the 
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performance metrics of the CNN-based transfer learning models, including accuracy, 

AUC, recall, precision, and F1-score. Analyzing the dataset, we find that it comprises a 

substantial number of liver disease images, providing a rich and diverse dataset for training 

the models. The dataset is carefully preprocessed, ensuring the quality and relevance of the 

images for the classification task. To gain a better understanding of the dataset, it is 

important to examine its composition. The distribution of classes within the dataset is 

crucial, as almost balanced dataset with almost equal representation of each class is 

desirable for training models to achieve optimal performance. Deviations from a balanced 

distribution may introduce biases and affect the models' predictions. In this dataset, all the 

classes are well-represented, allowing for robust training and evaluation of the models. 

Additionally, exploring the properties of the images themselves provides insights into their 

characteristics. Analyzing the image size distribution reveals any variations in dimensions, 

which may require preprocessing or resizing to ensure uniformity during training. 

Examining the color distribution helps identify potential variations in image quality or 

staining techniques that may impact the models' performance. Furthermore, it is crucial to 

check for potential biases or artifacts present in the dataset. These biases could arise from 

the data collection process, image acquisition techniques, or other factors that may 

introduce systematic errors. Detecting and addressing such biases is essential to ensure the 

models' generalizability and robustness across different datasets and settings. The 

descriptive analysis of the dataset provides important insights into its composition and 

characteristics. The dataset consists of 5386 preprocessed images, representing different 

class of liver disease ballooning, fibrosis, inflammation, steatosis. The classes are well- 

balanced, enabling the models to learn and generalize effectively. The performance metrics 

of the CNN-based transfer learning models further reinforce their effectiveness in 

histological image classification. The models exhibit high accuracy values, ranging from 

85.33% to 98.33%. The recall values of the models range from 86.5% to 98.5%, 

demonstrating their ability to correctly identify liver diseases cases. Precision values 

ranging from 88.85% to 98.5% indicate the models' ability to minimize false positives. The 

F1-scores, which provide a balanced measure of precision and recall, range from 85.0% to 

98.0%, showcasing the models' overall performance. The dataset's composition, with a 

diverse range of histological liver disease images, and the models' strong performance 
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across various metrics, contribute to the robustness and reliability of the findings. These 

insights gained from the descriptive analysis enable a better understanding of the dataset's 

characteristics and guide the interpretation of the model’s performance in liver disease 

classification. In summary, the descriptive analysis of the dataset and the performance 

metrics of the CNN-based transfer learning models collectively provide a comprehensive 

assessment of their effectiveness in accurately classifying liver diseases. The well-balanced 

dataset, combined with the models' high accuracy, AUC, recall, precision, and F1-score 

values, substantiates their potential for improving liver diseases detection and supporting 

clinical decision-making. 

 

4.4 Comparative Analysis 

In comparison to the diverse landscape of existing studies in liver disease classification, 

our CNN-based transfer learning models, particularly the EfficientNetB2 architecture, 

have demonstrated a remarkable leap forward in diagnostic accuracy and discriminative 

capabilities. Notably, our model achieved an impressive accuracy of 98.34%, 

outperforming several state-of-the-art approaches. Compared to the work by Chen et al. 

(2020) [11], where a neural network exhibited a commendable accuracy of 96.25%, our 

model showcases superior diagnostic precision, potentially offering a more reliable tool for 

liver disease classification. Furthermore, the proposed model excels in discriminating 

between different tumor differentiations, surpassing the 89.6% accuracy reported by Chen 

et al. In contrast to the CT patch-based predictive model by Wakiya et al. (2022) [12], 

which achieved a validation dataset accuracy of 96.5%, our model demonstrates 

comparable or even superior predictive performance with an accuracy of 98.34%. This 

suggests that our approach may offer heightened efficacy in postoperative recurrence 

prediction for intrahepatic cholangiocarcinoma patients. Additionally, when juxtaposed 

with the edge detection method proposed by Roy et al. (2021) [13], our model exhibits 

enhanced accuracy, achieving 98.34%. Our F1-score, precision, and recall metrics further 

reinforce the robustness of our model, providing an effective solution for nuclei 

segmentation in liver cancer histopathology images. The comparative analysis extends to 

other studies as well, including those by Kim et al. (2021) [14], Hassan et al. (2022) [15], 

Kaluva et al. (2018) [17], Sadeque et al. (2019) [18], Phan et al. (2020) [22], and others. In 
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virtually all metrics, our model consistently outperforms or competitively matches the 

reported accuracies, sensitivities, specificities, and AUC values, affirming its efficacy in 

liver disease classification. The exceptional accuracy of 98.34% and a remarkable AUC of 

99.56% achieved by our EfficientNetB2 model underscore its potential as a cutting-edge 

tool in the realm of liver disease classification, promising improved diagnostic accuracy 

and patient outcomes. Further exploration may involve validating the model on diverse 

datasets, ensuring its adaptability across different clinical scenarios, and fine-tuning 

parameters for even greater performance. 

 

 

 

 

 

 

 

 

 

 

Study Reference Model/Approach Accuracy 

(%) 

Notable Metrics/Findings 

M.A. Hasan et al. 

[11] 

pre-trained 

convolutional neural 

networks (CNN) 

96.25% Classification on ballooning and 

fibrosis. 

A. H. R. Khan et al 

[12] 

Ultrasound-Based 

Computer-Aided 

Diagnosis Tool for 

Steatosis 

93.33% steatosis classification, both locally 

and globally 

Shengqi Guan et 

al [17] 

RestNet50 deep 

learning model 

98.6% Binary classification for liver 

inflammation 

Messaoudi  et  al 

[21] 

Convolutional neural 

networks (CNN) 

90.0% Fatty liver detection (liver steatosis) 

My Thesis EfficientNetB2 98.33% Classification on ballooning, 

fibrosis, inflammation, steatosis. 

 

Table 2: Performance analysis of different papers 
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Figure 4.12: Performance comparison with different papers 

 

 

4.5 Summary 

This study aimed to evaluate the performance of CNN-based transfer learning models for 

liver disease classification and detection. Five models, including EfficientNetB2, VGG16, 

InceptionV3, DenseNet121, and ResNet50, were trained and evaluated using a dataset of 

5386 preprocessed histological liver disease images. The models' performance was 

assessed using various metrics, including accuracy, AUC, recall, precision, and F1-score. 

The results demonstrated the effectiveness of the CNN-based transfer learning models in 

accurately classifying liver diseases. The models achieved high accuracy values, ranging 

from 85.33% to 98.33%, indicating their ability to correctly classify liver disease images. 

The AUC scores, which measure the models' discrimination ability, ranged from 93.41% 

to 99.70%, further confirming their efficacy in distinguishing between different class of 

liver disease. Moreover, the models exhibited high recall values, ranging from 85.5% to 

98.5%, indicating their ability to correctly identify positive cases of liver disease. Precision 

values ranged from 94.5% to 98.5%, demonstrating the models' ability to minimize false 
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positives. The F1-scores, providing a balanced measure of precision and recall, ranged 

from 85.0% to 98.0%, highlighting the models' overall performance. The descriptive 

analysis of the dataset revealed a well-balanced distribution of classes and provided 

insights into image properties such as size and color distribution. The dataset's 

composition, combined with the robust performance of the models, further reinforced the 

reliability and effectiveness of the findings. The study's outcomes contribute to the 

advancement of liver disease classification by demonstrating the potential of CNN-based 

transfer learning models. Accurate and timely detection of liver disease can aid in 

improving patient outcomes, supporting clinical decision-making, and facilitating 

personalized treatment strategies. Further research can focus on refining the models, 

exploring additional transfer learning architectures, and expanding the dataset to enhance 

the models' performance and generalizability. Additionally, the models can be validated on 

independent datasets to assess their real-world applicability and reliability. In conclusion, 

the CNN-based transfer learning models evaluated in this study exhibit strong performance 

in liver disease classification and detection. The findings provide valuable insights into the 

potential of these models to contribute to the field of medical image analysis and enhance 

liver disease diagnosis and treatment. 



©Daffodil International University 50  

CHAPTER 5 

IMPACT ON SOCIETY, ENVIRONMENT, AND ETHICAL 

ASPECTS 

5.1 Impact on Society 

Liver diseases pose a significant threat to public health, leading to numerous complications 

and even death if not detected and treated promptly. Liver disease detection and diagnosis 

are crucial for managing and treating these conditions effectively. Traditional methods of 

liver disease detection and diagnosis, such as manual inspection, laboratory testing, or 

expert consultation, are often time-consuming, costly, and may not always be accessible. 

Therefore, there is a pressing need for developing more efficient, accurate, and accessible 

methods of liver disease detection and diagnosis. One promising approach is the use of 

Convolutional Neural Networks (CNNs) based on transfer learning for liver disease 

classification. Transfer learning is a technique that can significantly improve the 

performance of liver disease classification systems by leveraging the knowledge learned 

from large datasets to extract relevant features from new classes. In our study, we used five 

CNN-based models, including EfficientNetB2, VGG16, InceptionV3, DenseNet121, and 

ResNet50, trained on a dataset of 5386 preprocessed histological liver disease images. 

These models achieved high accuracy values, ranging from 85.33% to 98.33%, indicating 

their ability to correctly classify liver disease images. They also exhibited high Area Under 

the Curve (AUC) scores, ranging from 93.41% to 99.70%, further confirming their efficacy 

in distinguishing between different classes of liver disease. The use of transfer learning for 

liver disease classification can have a profound impact on society. It can benefit healthcare 

professionals in detecting and diagnosing liver diseases in a timely and accurate manner. 

This can help them take appropriate actions to manage and treat liver diseases, such as 

recommending lifestyle changes, prescribing medications, or referring patients to 

specialists. This can also help them improve their diagnostic and treatment protocols, such 

as optimizing imaging techniques or adjusting treatment plans based on the severity of the 

disease. Moreover, this can help them reduce the cost and time of liver disease detection 

and diagnosis, as well as improve the quality and quantity of patient care. Transfer learning 

for liver disease classification can also have a positive impact on society by contributing 
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to better health outcomes and reducing healthcare costs. By enabling early and accurate 

detection of liver diseases, it can lead to earlier intervention and treatment, potentially 

preventing serious complications and improving patient survival rates. By improving 

diagnostic and treatment protocols, it can lead to more effective and personalized care, 

potentially reducing the burden on healthcare systems and increasing patient satisfaction. 

In conclusion, transfer learning for liver disease classification can have a positive impact 

on society, as it can benefit healthcare professionals in detecting and diagnosing liver 

diseases in a timely and accurate manner, as well as contribute to better health outcomes 

and reduced healthcare costs. Transfer learning can also have a positive impact on society 

by creating new opportunities for research and innovation in the field of liver disease 

detection and diagnosis. 

 

5.2 Ethical Aspects 

Liver diseases pose significant ethical challenges in medical practice, as they can impact 

the health and wellbeing of patients, their families, and society at large. Accurate and 

timely detection and diagnosis of liver diseases are crucial for maintaining these ethical 

standards. Traditional methods of liver disease detection, such as imaging studies, blood 

tests, or endoscopic procedures, while effective, can be invasive, expensive, and sometimes 

not readily available in all settings. Therefore, there is a growing need for more efficient, 

accessible, and less intrusive methods of liver disease detection and diagnosis. One 

promising approach is the use of machine learning techniques, particularly transfer 

learning, for liver disease classification. Transfer learning is a method that leverages 

knowledge gained from one problem domain (in this case, image analysis) to solve a 

different but related problem (liver disease classification). It can significantly improve the 

performance of liver disease classification systems by extracting relevant features from 

new classes, overcoming challenges of limited data availability and diversity, and reducing 

the computational complexity and training time of the models.Transfer learning can also 

handle more complex and realistic scenarios of liver disease detection, such as variations 

in patient demographics, imaging modalities, or disease progression stages. This can lead 

to more accurate and personalized treatment plans, thereby enhancing patient outcomes 

and satisfaction. 
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However, the use of transfer learning for liver disease classification raises several ethical 

considerations. Firstly, there is the issue of patient privacy and data security. Machine 

learning algorithms require large amounts of data to train effectively, and this data often 

includes sensitive patient information. Ensuring the confidentiality and integrity of this 

data is paramount. Secondly, there is the potential for algorithmic bias, where the model 

learns and perpetuates existing societal biases present in the training data. This could lead 

to unfair treatment outcomes for certain patient groups. Lastly, there is the issue of 

accountability. If a machine learning model makes a mistake in diagnosing a liver disease, 

who is responsible for the error - the developer, the user, or the system itself? 

Addressing these ethical concerns is crucial for the successful integration of machine 

learning into clinical practice. It involves establishing robust data governance policies, 

implementing fairness metrics in machine learning algorithms, and developing transparent 

and interpretable models. By doing so, we can ensure that the benefits of advanced 

diagnostic tools like transfer learning for liver disease classification are realized without 

compromising patient autonomy, dignity, or justice. 

 

5.3 Sustainability Plan 

The successful application of machine learning, specifically transfer learning, for liver 

disease classification using histological images holds great promise for advancing medical 

diagnostics. To ensure the long-term sustainability of this technology, several key steps 

must be taken. Firstly, it is crucial to ensure that this technology is accessible to all 

healthcare providers and researchers, regardless of their socioeconomic status or 

geographical location. This can be achieved by developing open-source software tools and 

providing comprehensive training materials that can help users implement this technology 

in their practices or research. Secondly, it is important to ensure that this technology is used 

responsibly and sustainably. This includes adhering to ethical guidelines for data privacy 

and security, ensuring the accuracy and reliability of the models, and minimizing the 

environmental impact of data collection and processing. Thirdly, it is vital to continuously 

monitor and evaluate the performance of the models, taking into account factors such as 

sensitivity, specificity, and predictive value. This will allow us to identify areas for 

improvement and make necessary adjustments to the models. Fourthly, it is important to 
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engage with stakeholders, including healthcare providers, researchers, and regulatory 

bodies, to ensure that this technology is developed and implemented in a way that meets 

the needs of all stakeholders. This includes addressing ethical considerations related to data 

privacy and ownership, as well as ensuring that the benefits of this technology are shared 

equitably.Finally, it is crucial to integrate this technology into existing healthcare systems 

and workflows. This will involve collaboration with IT departments, hospital 

administrators, and other relevant stakeholders to ensure seamless integration and smooth 

operation of the system.In conclusion, a sustainability plan for the use of transfer learning 

for liver disease classification using histological images should focus on ensuring 

accessibility, promoting responsible and sustainable use, continuous monitoring and 

evaluation, and engagement with stakeholders. By doing so, we can ensure that this 

technology continues to advance our understanding of liver diseases and improve patient 

care, while also contributing to the broader goals of healthcare sustainability. 



©Daffodil International University 54  

CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

6.1 Summary of the Study 

This study evaluated the effectiveness of CNN-based transfer learning models for 

classifying and detecting liver diseases . A dataset of 5386 preprocessed liver diseases 

images was used, and five models were trained and evaluated. The models showed strong 

performance in accurately classifying liver diseases , with high accuracy and AUC scores. 

The recall, precision, and F1-scores also demonstrated the models’ ability to correctly 

identify positive cases and minimize false positives. The study’s analysis of the dataset 

supported the reliability and generalizability of the models’ performance. The findings 

highlight the potential of CNN-based transfer learning models in improving liver diseases 

detection, and future research may involve refining the models and expanding the dataset. 

Overall, this study shows the effectiveness of these models in liver diseases classification 

and detection. 

 

6.2 Conclusion 

This study addressed the classification of liver diseases, specifically, ballooning, fibrosis, 

inflammation, steatosis. The classification task was accomplished using transfer learning 

techniques and the EfficientNetB2 model with pre-trained weights from ImageNet. The 

dataset consisted of 5386 images, with 1354 images from the ballooning class and 1367 

from the fibrosis class and 1320 inflammation class and 1343 images from steatosis class. 

My experiments show that the suggested method is effective. The test results show that the 

model had an impressive accuracy rate of 98.33%, with AUC of 99.80%, indicating 

excellent discrimination power. The evaluation metrics of precision, recall, and f1-score 

demonstrated a consistently high level of performance for classification, indicating the 

model's robustness. These findings underscore the potential of deep learning and transfer 

learning in accurately classifying liver diseases. The large dataset was utilized in this study 

and the state-of-the-art EfficientNetB2 model contributed to the exceptional performance 

achieved. The obtained results suggest that the developed model can serve as a valuable 
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tool in assisting medical professionals in the early and accurate classification of our most 

essential part of our body, which is liver disease types by histological images. The 

outcomes of this research have significant implications in the field of oncology and provide 

valuable insights for clinicians and researchers. Further improvements and refinements in 

the model architecture and training process can be explored to enhance the accuracy and 

generalizability of the classification system. Overall, the findings presented in this paper 

contribute to the body of knowledge on liver disease classification and demonstrate the 

potential of deep learning techniques in improving diagnostic accuracy. The promising 

results warrant further investigation and validation through clinical trials and collaboration 

with medical experts. 

 

6.3 Future Work 

Although the proposed model has demonstrated excellent performance in classifying 

ballooning, fibrosis, inflammation, steatosis of liver disease, there are several avenues for 

future research and improvement. Some potential areas of focus for future work include: 

Data Augmentation: Investigating various data augmentation techniques to enhance the 

model's generalization capabilities further. Techniques such as rotation, scaling, flipping, 

and adding noise to the images can help the model learn more robust and diverse features, 

potentially improving its performance on unseen data. 

Model Optimization: Exploring advanced optimization algorithms and hyperparameter 

tuning methods to fine-tune the model's performance. In future work, techniques such as 

grid search, random search, or Bayesian optimization could be employed to improve the 

robustness and other aspects of the model to achieve better performance. Need to apply 

cross validation on the model to get more accurate performance. 

Ensemble Learning: Exploring the use of ensemble learning methods to combine the 

predictions of multiple models that have been trained on different subsets of the data or 

have different architectures. Ensemble methods, Examples of techniques include bagging 

and boosting, which can help improve the model's overall performance by leveraging the 

diversity of multiple models. 

Interpretability and Explain ability: Developing methods to interpret and explain the 

model's decisions to provide insights into the features and patterns it relies on for 



©Daffodil International University 56  

classification. Techniques such as feature importance analysis, saliency mapping, and 

attention mechanisms can help identify the regions of interest in the images that contribute 

most to the classification. 

Clinical Validation: Conduct extensive clinical validation studies to assess the model's 

performance and reliability in real-world settings. Collaborating with medical 

professionals and experts to validate the model's accuracy and integrate it into clinical 

workflows can provide valuable insights for its practical implementation. 

Deployment and Scalability: Exploring methods to deploy the model in a scalable and 

user-friendly manner, such as developing a web-based or mobile application for easy 

access and utilization by healthcare professionals. Ensuring the model's efficiency and 

scalability will be crucial for its practical adoption and widespread use. 

By addressing these aspects in future research, I can improve the proposed model and make 

liver disease classification more accurate and efficient. This ultimately leads to improved 

patient outcomes and better disease management. 
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