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ABSTRACT 

 

In coastal areas where agriculture is often constrained by salinity, cultivating specific 

crops like Luffa Aegyptiaca (sponge gourd) becomes crucial for local sustenance. 

Identifying these diseases is challenging and time-consuming when no domain specialists 

are present accurately, and the information needs to be more consistent. Effective disease 

detection and management play a pivotal role in ensuring the viability of these limited yet 

vital crops, impacting crop yield, fertilization strategies, and overall food security for 

coastal communities. This groundbreaking study focuses on detecting and classifying leaf 

diseases within Luffa Aegyptiaca leaves, prevalent crops in coastal regions. Leveraging 

the cutting-edge capabilities of Convolutional Neural Networks (CNN) and Vision 

Transformer algorithms, our research achieves unparalleled accuracy. The CNN 

algorithm boasts an impressive accuracy of 98.32%, while the Vision Transformer 

algorithm surpasses expectations with an exceptional accuracy of 99.85%. Notably, this 

study utilizes an original dataset, a unique contribution to the field given the absence of 

publicly available datasets or prior research specific to Luffa Aegyptiaca. Beyond mere 

accuracy metrics, our findings illuminate profound insights into the nuanced landscape of 

leaf disease detection and classification, affirming the remarkable efficacy of both CNN 

and Vision Transformer algorithms. In conclusion, this research advances our 

understanding of plant pathology, and underscores the unparalleled potential of state-of-

the-art machine-learning techniques in agricultural research. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Introduction 

The agricultural landscape is undergoing a significant transformation fueled by 

integrating state-of-the-art technologies. As the global demand for sustainable crop 

management and food security intensifies, the role of advanced methodologies in 

agriculture becomes increasingly pivotal. In this context, identifying and managing plant 

diseases are critical components to ensure optimal crop yield and quality. Luffa 

Aegyptiaca, commonly known as sponge gourd or sponge cucumber, emerges as a 

prominent vegetable crop with its own challenges, particularly in disease classification 

and management. The unique characteristics of Luffa Aegyptiaca make it a noteworthy 

subject of study. As a widely cultivated vegetable crop, its susceptibility to various 

diseases can significantly impact agricultural productivity. Despite its agricultural 

importance, research on diseases affecting Luffa Aegyptiaca is notably sparse. This 

research seeks to address this gap by employing advanced machine learning techniques, 

specifically Convolutional Neural Network (CNN) and Vision Transformer (ViT) 

models, to classify diseases in Luffa Aegyptiaca based on image data accurately. 

The primary objectives of this study are twofold. The research aims to develop robust 

disease classification models that provide accurate diagnoses based on image inputs. This 

involves applying sophisticated deep learning techniques, which have shown 

extraordinary success in image classification tasks across various domains. Secondly, the 

study contributes to the limited knowledge of diseases afflicting Luffa Aegyptiaca. By 

meticulously cataloging and classifying diseases, the research enhances our 

understanding of the factors impacting the health of this vegetable crop. 

What sets this research apart is its application of state-of-the-art deep learning models and 

the scarcity of available datasets and research studies dedicated to diseases specific to 

Luffa Aegyptiaca. Comprehensive datasets pose a unique challenge, requiring innovative 

approaches to dataset creation and model training. Consequently, the study navigates 

uncharted territory, offering valuable insights that can reshape our understanding of 
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diseases affecting this crop. The following sections delve into the intricacies of the 

methodology, unveiling the architectural nuances and parameter configurations of both 

the CNN and ViT models. The methodological exploration provides a roadmap for 

researchers and practitioners aiming to apply similar techniques in the context of 

agricultural image analysis. The experimental results and analysis form the core of the 

research, offering a comprehensive evaluation of the models' performance. Key metrics 

such as accuracy, precision, recall, and F1-score undergo meticulous scrutiny, providing a 

nuanced understanding of the models' efficacy. Beyond a mere quantitative assessment, 

the analysis aims to unearth patterns, trends, and potential areas of improvement, 

fostering a deeper comprehension of the models' behavior in the specific context of Luffa 

Aegyptiaca diseases. 

In conclusion, this research serves a dual purpose: addressing the immediate need for 

accurate disease classification in Luffa Aegyptiaca and laying the foundation for future 

studies in agricultural image analysis. The intersection of technology and agriculture, as 

explored in this study, has the potential to revolutionize traditional practices and 

contribute to a sustainable and secure global food supply. As we explore the intricate 

realm of identifying plant diseases, the outcomes of this research are poised to impact not 

only Luffa Aegyptiaca cultivation but also set the stage for innovative approaches to 

agricultural challenges on a broader scale. 

 

1.2 Motivation 

The coastal expanses of Bangladesh narrate a tale of resilience and challenges following 

the aftermath of Cyclone Aila in 2009. The breached embankments welcomed saline 

waters, reshaping the agricultural landscape and limiting opportunities for the local 

populace. In this remote setting, where the absence of agricultural expertise exacerbates 

hardships, a unique reliance on a handful of robust crops, including Luffa Aegyptiaca, 

Calabash Gourd, Ladyfinger, and Malabar Spinach, emerged. 

 This on-the-ground experience unveiled a stark reality: the pressing need for tailored 

agricultural solutions in the face of salinity-induced constraints. The scarcity of fruit and 
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vegetable crops accentuated the community's dependence on hardy plants, prompting 

contemplation on how technology might catalyze change. The idea took shape — an 

application designed to detect leaf diseases in Luffa Aegyptiaca, offering a beacon of 

hope to a community navigating the complexities of a post-cyclone agricultural reality. 

The essence of this research lies in its commitment to bridging the gap between academic 

inquiry and real-world impact. Focusing on luffa Aegyptiaca, a staple in these coastal 

regions, aims to craft a model that addresses immediate agricultural challenges and serves 

as evidence of technology's revolutionary potential in fostering resilience. This academic 

endeavor is grounded in the belief that by providing nuanced, substantiated solutions, we 

can contribute to the broader discourse on precision agriculture and offer tangible support 

to communities navigating the delicate balance between tradition and innovation. 

  

1.3 Rationale of the Study 

In the coastal regions of Bangladesh, the aftermath of Cyclone Aila in 2009 has left an 

indelible mark on the agricultural landscape. Saline waters infiltrated the once-fertile 

land, presenting a formidable challenge for traditional crops. Consequently, the local 

populace turned to resilient cultivars such as Luffa Aegyptiaca, calabash gourd, 

ladyfinger, and Malabar Spinach, demonstrating a remarkable ability to endure the 

inhospitable conditions. 

This research is prompted by the realization that, despite the critical role of these hardy 

crops, a need exists for more scientific inquiry into the specific challenges they face, 

particularly concerning the detection of leaf diseases. The unique environmental 

conditions and the reliance on limited crop varieties in the coastal areas of Bangladesh 

amplify the need for a targeted investigation into disease dynamics within this context. 

Existing literature must address the intricacies of disease detection in Luffa Aegyptiaca, 

leaving a conspicuous void in the scientific understanding of agricultural practices in 

saline-affected regions. The absence of research employing advanced algorithms, 

including Convolutional Neural Networks (CNN) or Vision Transformers, adds to this 
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knowledge gap. With the ongoing advancement of technology, using such algorithms in 

the agricultural sector becomes increasingly pertinent, necessitating research that bridges 

the gap between cutting-edge technology and the specific needs of marginalized farming 

communities. 

This study is driven by the conviction that developing a model for automated leaf disease 

detection in Luffa Aegyptiaca, particularly employing Vision Transformer architecture, 

can offer innovative solutions to the agricultural challenges faced by communities in 

saline-affected coastal regions. The potential outcomes of this research extend beyond the 

immediate context of the coastal areas of Bangladesh, contributing to the broader 

scientific discourse on precision agriculture and technological interventions in 

challenging agricultural environments. 

The study aspires to provide actionable insights for agricultural practitioners, 

policymakers, and researchers working in similar contexts globally by addressing this 

research gap. The rationale underscores the urgency of investigating this neglected aspect 

of agricultural science, anticipating that the findings will enhance local agrarian practices 

and contribute substantively to advancing knowledge in precision agriculture. The 

absence of domain experts and the challenging conditions in the coastal regions further 

emphasize the significance of this research, highlighting its potential to fill critical gaps 

in expertise and technology integration. 
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1.4 Research Questions 

The study questions aim to investigate the intricacies involved in creating our dataset, 

model architecture, and the ethical considerations that permeate our scientific journey as 

we embark on this ground-breaking investigation. 

• Can our custom model architecture revolutionize the field of disease detection in 

Luffa Aegyptiaca and establish new standards for accuracy and flexibility as we 

forge ahead without the aid of transfer learning? 

 

• How can variability add to the robustness of the model through the rainbow of 

varied viewpoints that our painstakingly assembled dataset captures? Could this 

variation hold the key to revealing subtle symptoms within the complex web of 

disorders caused by Luffa Aegyptiaca? 

 

• How can the ethical foundation improve our model's credibility with the scientific 

community in our diligent curation of datasets, considering ethical considerations 

and obtaining permissions? How does it help ensure agricultural technology is 

more open and morally based in the future? 

 

• Stepping outside of controlled surroundings, what is the way our model handles 

the rough terrain of agricultural landscapes, especially in difficult coastline areas? 

Could it sustain its supposed toughness in the face of the practical difficulties of 

agricultural fields? 

 

 

• How can our organized and accessible dataset support research and collaboration 

on Luffa Aegyptiaca diseases? How does it contribute to a collective 

understanding of these diseases in the scientific community? 
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1.5 Report Layout 

Chapter 1: This chapter sets the stage for the research, introducing the focus on disease 

detection in Luffa Aegyptiaca leaves in salinity-affected coastal areas of Bangladesh. It 

delves into the motivation, rationale, research questions and outlines the report's 

structure. 

Chapter 2: The background chapter provides a comprehensive understanding of the 

context surrounding the research. It covers terminologies, related works, a comparative 

analysis, the scope of the problem concerning disease detection in Luffa Aegyptiaca, and 

the challenges posed by salinity in coastal agriculture. 

Chapter 3: This chapter elaborates on the chosen methodology, data collection 

procedures, statistical analysis methods, the development of the disease detection model, 

and the practical requirements for implementing the model in the field. 

Chapter 4: This chapter presents the experimental setup, results, and analysis of the 

disease detection model's performance. It dives into the implications of the model's 

accuracy and its potential application in addressing the challenges faced in coastal 

agriculture. 

Chapter 5: This chapter highlights the broader implications of the research. It discusses 

the societal and environmental impacts and ethical considerations in the research process 

and outlines plans for sustainability to ensure continuous positive effects on society and 

the environment. 

Chapter 6: The final chapter consolidates the study's essence. It summarizes key 

findings, conclusions drawn from the research, recommendations for further study, and 

implications for future research directions, emphasizing potential areas for improvement 

or expansion. 
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        CHAPTER 2: BACKGROUND 

 

2.1 Preliminaries/Terminologies 

This section explores crucial terminologies for plant disease classification through 

advanced machine-learning models. A profound grasp of these terms is imperative for 

navigating the intricacies of this research endeavor. 

• Vision Transformer (ViT): 

The operational paradigm of Vision Transformers initiates with image patching, wherein 

input images are segmented into fixed-size, non-overlapping patches, each serving as a 

token. These patches undergo linear embedding, transforming them into flattened vectors. 

The subsequent transformer encoder, equipped with self-attention mechanisms, processes 

these embedded patches, allowing the model to focus on relevant spatial correlations and 

capture long-range dependencies crucial for image understanding. The resultant output is 

then directed to a classification head, where final predictions are made, determining the 

class to which the image belongs. In essence, ViT leverages the transformer architecture 

to process image information effectively through a series of stages, showcasing its 

adaptability to various visual tasks (Smith et al., 2022). 

 

Figure 2.1.1: ViT Standard Configuration 
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• Convolutional Neural Network (CNN): 

Conversely, Convolutional Neural Networks (CNNs) utilize a distinctive 

approach, commencing with convolutional layers that apply adaptable filters to 

localized regions of the input image. These filters progressively recognize 

hierarchical features, evolving from basic patterns to intricate structures. 

Following convolutional layers, pooling layers reduce spatial dimensions while 

retaining essential information. The parts are then flattened into a vector, serving 

as input for fully connected layers that amalgamate high-level features. The 

ultimate predictions are derived from the output layer, employing activation 

functions like SoftMax for multi-class classification. CNNs, with their 

hierarchical feature extraction and spatial hierarchy recognition, demonstrate 

efficacy in image-related tasks, showcasing a different yet impactful architectural 

design compared to Vision Transformers (Johnson et al., 2021). 

 

 

 

 

Figure 2.1.2: CNN Standard Configuration 
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● Luffa Aegyptiaca: 

Luffa Aegyptiaca, commonly known as sponge gourd or Egyptian cucumber, is a 

resilient and widely cultivated plant species that resists saline water. This versatile 

plant, renowned for its robust nature, thrives in various climates and is specifically 

recognized for its ability to withstand saline water conditions. Additionally, Luffa 

Aegyptiaca is celebrated for its agricultural significance and diverse uses, ranging 

from culinary applications to the creation of natural sponges. 

 

● Leaf Diseases: 

Leaf Diseases encompass a spectrum of pathologies afflicting plant leaves, 

including fungal infections, bacterial diseases, and viral pathogens. These maladies 

often manifest in discernible deformities or discoloration. 

 

• Precision: 

Precision embodies the finesse of a model in accurately predicting positive 

instances, providing a nuanced evaluation of the model's precision concerning 

optimistic predictions. 

  

● Recall: 

Recall illuminates the model's capacity to recapture actual positive instances as a 

metric of its ability to grasp all relevant occurrences. 

 

 

● F1-Score: 

F1-Score harmonizes precision and recall, presenting a balanced assessment of a 

model's proficiency in binary classification tasks. 

  

 

  Precision = True Positives / (True Positives + False Positives) 

Recall = True Positives / (True Positives + False Negatives) 

         F1 = 2 * (Precision * Recall) / (Precision + Recall) 
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● Support: 

Support signifies the real-world occurrences of a class within a specified dataset, 

furnishing essential context for precision, recall, and F1-score metrics. 

 

● MLP Head: 

MLP Head alludes to the Multilayer Perceptron head, a pivotal facet of the Vision 

Transformer model responsible for tasks such as classification and regression. 

 

● Train, Test, Validation: 

Train, Test, and Validation humanize the components of machine learning 

datasets. The "train" set cultivates the model's understanding, the "test" set 

rigorously evaluates its mettle against unseen challenges, and the "validation" set 

meticulously refines its acumen during the learning journey. 

 

● Dataset Augmentation: 

Dataset Augmentation embodies strategic methodologies employed to organically 

enrich the size and diversity of a dataset, fortifying machine learning models with 

resilience during the learning process. 

 

● Hyperparameters: 

Hyperparameters refer to the external configuration settings guiding a model's 

learning trajectory, encompassing learning rates, batch sizes, and optimization 

algorithms. 

 

● Performance Metrics: 

Performance Metrics encompass a spectrum of quantitative measures — accuracy, 

precision, recall, and F1-score — serving as the evaluative compass for the 

efficacy of machine learning models in the classification realm. 
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● CNN Loss Function: 

The CNN Loss Function, specifically the Cross-Entropy Loss, signifies the metric 

employed to gauge the error between predicted probabilities (p) and actual labels 

(y) in the reference of Convolutional Neural Networks (CNN). 

 

 

 

● Early Stopping: 

Early Stopping is a regularization technique implemented during training to 

forestall overfitting. It involves halting the training process when a monitored 

metric, such as validation loss, ceases to improve, optimizing the model's 

generalization. 

 

● Learning Rate: 

Learning Rate dictates the step size during optimization, influencing convergence 

speed and model stability. 

  

 

● Batch Size: 

Batch Size represents the quantity of training samples utilized in one iteration, 

impacting memory consumption and training efficiency. 

 

● Epochs: 

Epochs determine the complete iteration of the entire dataset during training. An 

epoch concludes when the model has processed all training samples once. 

 

 

Cross-Entropy Loss = -1/N * Σ [ y_i * log(p_i) + (1 - y_i) * log(1 - p_i) ] 

     New Weights = Old Weights - Learning Rate * Gradient 
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2.2 Related Works 

In recent agricultural research, the integration of Vision Transformers (ViT) and Convolutional 

Neural Networks (CNN) has propelled significant advancements in leaf disease detection. This 

literature review aims to synthesize key findings from diverse studies, highlighting the efficacy of 

these models in offering precise and efficient solutions for the early identification and treatment 

of crop diseases. 

Vision transformers, exemplified by models like ConvViT and FormerLeaf, utilize transformer 

structures to extract local features of disease regions, enhancing CNNs' ability to perceive crucial 

details (X. Li & Li, 2022) (Thai et al., 2023). Notably, these models exhibit promising results, 

often surpassing classic detection models such as SSD, Faster R-CNN, YOLOv4-tiny, and 

YOLOx (Shukla et al., 2023). The integration of optimization methods, including Least Important 

Attention Pruning (LeIAP) and sparse matrix-matrix multiplication (SPMM), further contributes 

to efficient model size reduction without compromising performance (H. Li et al., 2023). 

Recent studies underscore the potential of deep ensemble learning, combining CNNs and vision 

transformers, as a robust strategy for detecting and categorizing diseases across various plant 

species. This approach, demonstrated in studies on olive and rice leaves, highlights the 

significance of synergizing the strengths of both architectures for improved predictive capabilities 

(Chougui et al., 2022). 

When applied independently, CNNs prove to be a reliable method for the accurate and efficient 

diagnosis of plant diseases (Prabavathy et al., 2023) (Jouini et al., 2023). The methodology 

involves preprocessing collected images, employing pre-trained CNN models to extract relevant 

features (Prabavathy et al., 2023), and training classification models based on the extracted 

features. This approach demonstrates promising results, achieving high accuracy and ease of 

identification across various plant diseases. 

In many studies, CNN and other deep learning models like VGG, ResNet, and Densenet169 were 

used to classify different types of leaf diseases with high accuracy (H.C et al., 2023) (Sarkar et 

al., 2023). These models have effectively identified disease in leaves, managed yields, detected 

weeds, and evaluated plant nutrient status (Khanam & Mehta, 2023). Using CNN in combination 

with image processing techniques is beneficial in obtaining clear images and valuable information 

for disease detection (Akbar et al., 2023). Overall, the combination of CNN and image processing 

techniques, along with deep learning models, has shown great potential in the accurate and early 

detection of plant leaf diseases. 

https://www.zotero.org/google-docs/?BA7JPa
https://www.zotero.org/google-docs/?7MFFPS
https://www.zotero.org/google-docs/?aboDRw
https://www.zotero.org/google-docs/?HqPaUW
https://www.zotero.org/google-docs/?YSjsrv
https://www.zotero.org/google-docs/?bH2gNF
https://www.zotero.org/google-docs/?WsS4f3
https://www.zotero.org/google-docs/?NTMLLB
https://www.zotero.org/google-docs/?XA1Qou
https://www.zotero.org/google-docs/?VlUEWH
https://www.zotero.org/google-docs/?VlUEWH
https://www.zotero.org/google-docs/?Bcc8iD
https://www.zotero.org/google-docs/?8BXUwm
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Vision Transformers have gained attention in agriculture, offering a unique perspective for early 

diagnosis and detection of plant diseases (Prabavathy et al., 2023) (Harakannanavar et al., 2022) 

(Kumar et al., 2023) (Pal & Kumar, 2023). These methodologies encompass preprocessing 

images, extracting features using pre-trained CNN models, and training classification models 

such as KNN, SVM, Decision Trees, Random Forest, and CNN. The focus on achieving high 

accuracy, less complexity, and easy identification emphasizes the potential of machine learning 

and image processing techniques, including Vision Transformers, in improving plant leaf disease 

detection in agriculture. 

Recent research showcases the remarkable performance of Vision Transformers in accurately 

identifying plant diseases at the leaf stage. Utilizing pre-trained ViT architectures, fine-tuning for 

plant disease classification, and incorporating techniques like GradCAM for interpretation and 

visualization contribute to high precision and outperforming previous state-of-the-art results (Pal 

& Kumar, 2023) (Boukabouya et al., 2022) (Yu et al., 2023). The integration of ViT models into 

automated systems facilitates reliable and early detection, enabling timely interventions and 

maintenance of plant health. 

CNN technology proves to be reliable and time-efficient in plant disease identification (Pankaj 

Kumar et al., 2022). Various CNN techniques, including clustering, color-based image analysis, 

classifiers, and artificial neural networks, contribute to the identification and categorization of 

leaf diseases (Yadav et al., 2022). Transfer learning with pre-trained models like ResNet50 and 

XGBoost classifier enhances the accuracy of the detection method (Kawatra et al., 2020). The 

proposed methodology, involving image preprocessing, feature extraction using pre-trained CNN 

models, and training classification models, offers a dependable and efficient diagnosis  

(Prabavathy et al., 2023), empowering farmers to prevent disease outbreaks and ensure healthy 

crop growth. 

In summary, the amalgamation of Vision Transformers and CNNs emerges as a promising avenue 

for advancing the field of leaf disease detection in agriculture. The collective findings emphasize 

the complementary strengths of these models and their potential to revolutionize disease 

identification and management practices. 

 

 

https://www.zotero.org/google-docs/?OM4hcE
https://www.zotero.org/google-docs/?KGJO3s
https://www.zotero.org/google-docs/?taROmb
https://www.zotero.org/google-docs/?yQSm0Q
https://www.zotero.org/google-docs/?Zb6GO4
https://www.zotero.org/google-docs/?Zb6GO4
https://www.zotero.org/google-docs/?3lMiGR
https://www.zotero.org/google-docs/?6eQkM9
https://www.zotero.org/google-docs/?L2SsUn
https://www.zotero.org/google-docs/?L2SsUn
https://www.zotero.org/google-docs/?2WuQeg
https://www.zotero.org/google-docs/?DGFJsz
https://www.zotero.org/google-docs/?qgcEMx
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2.3 Comparative Analysis and Summary 

 

Table 2.3: Comparative Analysis of Literature reviews 

 Paper Name Model/Algorithm Findings Accuracy 

 

 

Wheat leaf disease detection 

using CNN in Smart 

Agriculture (2023) 

 

 

CNN, KNN, SVM, 

Decision Trees, 

Random Forest 

Focus: On wheat leaf disease 

detection and classification using a 

Convolutional Neural Network 

(CNN) model. 

Limitations: Computational 

resource requirements for training 

and deploying the CNN model are 

not detailed. 

 

 

94.00% 

 

 

Plant leaf disease detection 

using CNN with transfer 

learning and XGBoost (2022) 

 

 

 

ConRXG 

 

Dataset: PlantVillage 

Focus: On plant leaf disease 

detection at an early stage to 

prevent economic and agricultural 

losses. 

 

 

 

98.65% 

 

 

 

Leaf Disease Detection Using 

Neural Network Hybrid Models 

(2020) 

 

  AlexNet, SVM 

Focus: On leaf disease detection 

using neural network hybrid 

models. The paper aims to compare 

different CNN models. 

 

99.9986% 
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Performance Evaluation of 

Deep Learning Models for Leaf 

Disease Detection: A 

Comparative Study (2023) 

 

    Densenet169 

Focus: On performance evaluation 

of deep learning models for leaf 

disease detection. 

 

 

  97.2% 

A New Approach for Leaf 

Disease Detection Using 

Multilayered Convolutional 

Neural Network (2023) 

 

           CNN 

Focus: On tackling the problem of 

leaf disease diagnosis using a basic 

strategy while utilizing minimal 

computer resources. 

 

 

   98.5% 

 

Vision Transformer Based 

Models for Plant Disease 

Detection and Diagnosis (2022) 

 

 

              ViT 

Focus: To achieve a stable and 

robust classification performance 

with high precision to outperform 

previous state-of-the-art results 

while contributing to the early 

automatic detection of diseases in 

leaf plants, enabling necessary 

treatments and maintaining the 

natural cycle. 

 

 

   99.7% 

Salinity-Resilient Crop Health 

Monitoring: Automated Disease 

Detection in Luffa Aegyptiaca 

Leaves using Vision 

Transformer & CNN 

 

           ViT, CNN 

Focus: Utilizing CNN and ViT for 

automated leaf disease detection in 

Luffa Aegyptiaca to address 

agricultural challenges in saline-

affected coastal regions. 

 

ViT: 

99.85% 

CNN:    

98.32% 
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2.4 Scope of the Problem 

This research delves into the intricate challenges faced by the resilient plant species Luffa 

Aegyptiaca, cultivated in the coastal regions of Bangladesh. The primary focus is on the 

automated detection of leaf diseases using Vision Transformer models and CNN, thereby 

contributing to precision agriculture in salinity-affected coastal areas. The following 

aspects encapsulate the scope of the problem: 

1. Environmental Context: 

The research explores the specific environmental conditions prevalent in salinity-affected 

coastal regions, where Luffa Aegyptiaca is a vital crop. The impact of elevated salinity 

levels resulting from natural disasters like cyclones or tidal surges is vital to the problem 

addressed. 

2. Crop-Specific Disease Detection: 

The scope encompasses detecting leaf diseases, specifically in Luffa Aegyptiaca, 

acknowledging the unique challenges posed by these environmental conditions. The 

study aims to contribute insights and solutions tailored to this resilient crop's distinctive 

disease dynamics. 

3. Technology Integration: 

Integrating Vision Transformer and CNN models in automated disease detection is a 

pivotal part of the scope. The research seeks to assess the efficacy of this advanced 

technology in addressing the specific challenges faced by Luffa Aegyptiaca in coastal 

agriculture. 

4. Global Relevance: 

While the immediate focus is on the coastal regions of Bangladesh, the outcomes of this 

research have broader implications for precision agriculture globally. The findings will 

contribute to understanding technology-driven solutions for addressing crop diseases in 

challenging environmental conditions. 
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5. Practical Implementation: 

The research extends beyond theoretical exploration by considering practical 

implications. The scope includes recommendations for implementing automated disease 

detection solutions in real-world agricultural practices, with a particular emphasis on the 

potential positive impact on the livelihoods of coastal communities. 

By delineating these dimensions, the scope of this research endeavors to offer a 

comprehensive understanding of the challenges faced by Luffa Aegyptiaca in specific 

environmental contexts. Moreover, it aims to contribute valuable insights into the 

application of Vision Transformer and CNN models for crop disease detection, focusing 

on enhancing agricultural resilience in coastal regions. 

 

2.5 Challenges 

Pursuing automated leaf disease detection in Luffa Aegyptiaca using Vision Transformer 

and CNN models is challenging. This section delineates the hurdles and complexities 

encountered during the research, providing a comprehensive overview of the following 

key challenges: 

1. Unique Dataset Collection: 

The absence of readily available datasets necessitated an exhaustive on-the-ground data 

collection effort in the agrarian landscapes of Jalkuri, Narayanganj, and Khagan, 

Ashuliya, within the Dhaka district of Bangladesh. Collecting representative and diverse 

data directly from these areas introduced challenges in terms of logistics and ensuring 

data quality. 

2. Preprocessing Complexity: 

The raw data obtained from field collection in Jalkuri and Khagan introduced noise, 

variability, and inconsistencies complexities. It was preprocessing the data to ensure its 

cleanliness, relevance, and compatibility with the Vision Transformer model, particularly 

with the MLP head, adding a layer of challenge. 
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3. Logistical Hurdles in Submission: 

Submitting the meticulously compiled "Luffa Aegyptiaca 480" dataset to platforms that 

faced logistical challenges. Overcoming issues related to connectivity and data transfer 

and ensuring the integrity of the dataset during submission required meticulous attention. 

4. Environmental Variability: 

The dynamic and unpredictable nature of environmental conditions in the Dhaka district 

introduces challenges in ensuring the robustness and adaptability of the model. Factors 

such as varying weather patterns, soil conditions, and other regional nuances contribute to 

the complexity of disease dynamics. 

5. Algorithmic Optimization: 

Fine-tuning and optimizing the Vision Transformer and CNN algorithm for the specific 

nuances of Luffa Aegyptiaca's leaf diseases demands a thorough exploration of 

hyperparameter settings and model architectures, including the configuration of the MLP 

head. Balancing precision, recall, and overall model efficiency is a delicate task. 

6. Integration with Agricultural Practices: 

It takes time and work to close the gap between actual technological advancements and 

their application to practical agricultural practices.  

7. Interpretability and Explainability: 

While not employing traditional "black boxes," ensuring the interpretability and 

explainability of the Vision Transformer model, especially with the inclusion of the MLP 

head, is essential. The research grapples with making the model's decision-making 

process transparent and understandable for end-users. 

8. Validation in Diverse Environments: 

Ensuring the model's effectiveness across diverse agricultural environments, with varying 

conditions and diseases, presents challenges in generalizing the findings beyond specific 

locations. 
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CHAPTER 3: RESEARCH METHODOLOGY 

 

3.1 Research Subject and Instrumentation 

The research focuses on advancing disease classification for Luffa Aegyptiaca, a plant 

species vital for culinary and medicinal purposes. Employing cutting-edge deep learning 

models, namely the Convolutional Neural Network (CNN) and Vision Transformer 

(ViT), this study delves into image classification to identify diseases based on visual 

patterns within images. 

A unique dataset of 6,533 images showcasing various diseases affecting Luffa 

Aegyptiaca was meticulously compiled for data acquisition. This dataset includes 

Cucumber Mosaic Virus, Downy Mildew, and Leaf Spot instances. Notably, the scarcity 

of datasets on Luffa Aegyptiaca diseases underscores the originality and significance of 

this research. 

 

3.2 Data Collection Procedure  

The data collection process for this groundbreaking research project employed a 

meticulous and strategic sampling approach. Over six months, 6,533 images of Luffa 

Aegyptiaca leaves were systematically sampled from diverse crop fields. This extensive 

sampling duration aimed to capture the nuances of seasonal variations in disease 

prevalence, ensuring a comprehensive and representative dataset. 

3.2.1 Data Collection Tools 

To ensure the highest quality and diversity in the dataset, various mobile cameras from 

different manufacturers were systematically utilized as the primary data collection tools. 

Positioned at varying heights and angles, these cameras facilitated the capture of Luffa 

Aegyptiaca leaves from many perspectives, enriching the dataset with valuable 

variability. Using mobile cameras, carefully chosen for their specifications, guaranteed 

the authenticity of the visual data captured under natural lighting conditions. 
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3.2.2 Dataset Characteristics and Source 

The dataset utilized in this research project stands as a remarkable collection, comprising 

6,533 distinct images meticulously curated to represent the diverse manifestations of 

diseases affecting Luffa Aegyptiaca leaves. Categorized into three prevalent diseases—

Cucumber Mosaic Virus, Downey Mildew, and Leaf Spot—the dataset serves as a unique 

and unparalleled resource in the scientific community. 

Notably, as of the current state of research and exploration, this is the only publicly 

available dataset or research explicitly focusing on Luffa Aegyptiaca diseases that has yet 

to be identified. Therefore, this dataset holds a distinctive position in contributing to 

understanding plant pathology in this particular crop. 

 

Figure3.2.3.1: Luffa Aegyptiaca diseases 
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3.2.4 Timeline for Data Collection 

The data collection timeline spanned six months, commencing in May and concluding in 

October. This deliberate timeline ensured the capture of Luffa Aegyptiaca leaves at 

various growth stages and under diverse environmental conditions. Periodic visits to 

selected crop fields facilitated the acquisition of images that authentically represent the 

plant's health throughout its lifecycle. 

3.2.5 Relevance to the Research Question 

With 6,533 distinct images, this dataset serves as the backbone of the research, directly 

addressing the central question of elucidating the manifestations of diseases affecting 

Luffa Aegyptiaca. Notably, the absence of other publicly available datasets or dedicated 

research projects on this crop emphasizes this endeavor's pioneering nature and 

uniqueness. The dataset's relevance lies in its potential to significantly advance the 

understanding of plant diseases in Luffa Aegyptiaca and, by extension, contribute to more 

effective crop management practices. 

3.3 Statistical Analysis 

A thorough statistical analysis is essential to assessing the developed models' 

performance indicators. Metrics like recall, F1-score, precision, and accuracy give a 

detailed picture of how well the models classify data. Confusion matrices are 

incorporated to visualize the model's possible areas of improvement and its strengths 

across various disease classifications. 

3.4 Proposed Methodology/Applied Mechanism 

The proposed methodology utilizes two advanced deep learning models: CNN and ViT. 

Designed for image classification tasks, these models were trained on the Luffa 

Aegyptiaca dataset to discern features indicative of different diseases. The CNN 

leverages convolutional layers for feature extraction, while the ViT employs transformer-

based architectures for capturing long-range dependencies within images. 
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Data preprocessing entails dividing the dataset into training, validation, and test sets, 

scaling photos to a uniform 32x32 pixel size, and normalizing pixel values. Both models 

undergo training with specified loss functions, optimizers, and regularization techniques 

to ensure optimal learning. 

 

Figure 3.4.1: 32 X 32 sized pixelized image 

 

3.5 Implementation Requirements 

Successful implementation of the proposed methodology necessitates vital requirements: 

● Hardware: No GPU resources were utilized, emphasizing the research's 

accessibility without high-end computational infrastructure. 

● Software: TensorFlow and Keras libraries facilitated model development, with 

Python as the primary scripting language. 

● Dataset: The Luffa Aegyptiaca Image Dataset, consisting of 6533 images, served 

as the foundational input for model training. 
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Table 3.5: Experimental Setup 

Component Details 

Platform Google Colab 

GPU None (Deliberately omitted) 

Deep Learning Models CNN and ViT 

Frameworks TensorFlow, Keras 

Dataset Luffa Aegyptiaca Image Dataset (6533 images) 

Preprocessing Resize to 32x32 pixels, normalization 

The convolution operation in the CNN model is defined as: 

 

 

Here, Y[i,j] represents the output feature map, X[i+h,j+w] denotes the input image, 

F[h,w] signifies the convolutional filter, and K is the filter size. This equation elucidates 

the convolutional process, wherein the filter slides over the input image, computing the 

convolved feature map. The methodology encompasses a carefully chosen research 

subject, advanced deep learning models, an accessible experimental setup, thorough 

statistical analyses, and a meticulously defined methodology for disease classification in 

Luffa Aegyptiaca. The deliberate exclusion of GPU resources highlights the study's 

adaptability to varying computational environments. Including tables and equations 

enriches the depth and clarity of the methodology, laying a solid foundation for 

subsequent experimental results and discussions. 

Y[i,j] = ∑ ℎ=0 K−1 ∑ w=0 K−1 X[i+h,j+w]⋅F[h,w] 
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CHAPTER 4: EXPERIMENTAL RESULTS AND DISCUSSION 

 

4.1 Experimental Setup 

Our experimental framework was meticulously crafted to ensure robust evaluations of 

Convolutional Neural Network (CNN) and Vision Transformer (ViT) models in the 

context of plant disease classification. The dataset, comprising instances of "Cucumber 

Mosaic Virus," "Downy Mildew," and "Leaf Spot," was preprocessed with care, and 

stratified sampling ensured representative training, validation, and test sets. The 

hyperparameters were tuned to optimize model performance. For CNN, the architecture 

included convolutional layers, max-pooling, and dense layers. ViT, on the other hand, 

utilized transformer-based attention mechanisms and MLP head. Taking all factors into 

consideration, the research incorporated the following experimental setup components: 

4.1.1 Computing Environment 

● Google Colab Integration: 

● The experimentation leveraged the Google Colab platform, providing 

access to CPU resources for accelerated model training. 

● Colab's integration facilitated seamless collaboration and version control 

through Google Drive. 

4.1.2 Dataset Management 

● Data Storage on Google Drive: 

● The entire dataset, consisting of images categorized by disease type, was 

stored on Google Drive. 

● This cloud-based approach ensured accessibility, versioning, and ease of 

data sharing. 

4.1.3 Package Installation 

● TensorFlow Add-ons and Visualkeras: 

● Essential packages, including TensorFlow Add-ons for advanced 

optimizers and Visualkeras for model visualization, were installed. 
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4.1.4 Data Preprocessing 

● Image Resizing and RGB Conversion: 

● Images were resized to a standard 32x32 dimension to ensure uniformity 

across the dataset. 

● RGB conversion was applied, converting images from the native BGR 

format for compatibility with model input requirements. 

4.1.5 Data Exploration 

● Visualization and Analysis: 

● Data exploration involves using visualization libraries like Matplotlib and 

Seaborn to gain insights into class distributions and sample images. 

● Class distribution plots and sample images provided a comprehensive 

overview of the dataset. 

4.1.6 Data Splitting 

● Stratified Sampling: 

● By employing stratified sampling to divide the dataset into training, 

validation, and test sets, a proportionate representation of each disease 

class was guaranteed within the subsets. 

● We stratified sampling guards against biases introduced during the 

splitting process. 

The detailed experimental setup encompasses the computational environment, dataset 

management strategies, package installations, data preprocessing steps, and the rationale 

behind data exploration and splitting. This comprehensive overview ensures transparency 

and reproducibility in the experimental workflow. 

4.2 Experimental Results & Analysis 

The rigorous experiments carried out in this research are presented in Experimental 

Results and Discussion, which assesses the effectiveness of Vision Transformer (ViT) 

and Convolutional Neural Network (CNN) models for disease detection in Luffa 

Aegyptiaca. An academic conversation is promoted by the analysis, which offers nuanced 

insights into the advantages and disadvantages of each model. This section presents 
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empirical findings to create the foundation for wise decision-making in precision 

agriculture. The centerpiece of this insightful chapter is the comparison of CNN and ViT 

results, which drives the search for novel approaches in agricultural research. 

4.2.1 CNN Performance 

● CNN Model Architecture: 

Figure 4.2.1.1: CNN Tailored Configuration 

This model design represents a Convolutional Neural Network (CNN) explicitly tailored 

for image classification. It includes three successive convolutional layers with increasing 

filter dimensions (32, 64, and 128) coupled with max-pooling layers to reduce spatial 

dimensions. The final fully connected layers consist of a Dense layer with 512 units and 

Rectified Linear Unit (ReLU) activation, supplemented by dropout regularization for 

overfitting prevention. The output layer utilises the softmax activation function for 

effective multiclass classification across three distinct classes. Model training uses the 

Adam optimizer with a structured learning rate schedule, and an early stopping 

mechanism is integrated to prevent unnecessary training. This architectural setup 

leverages CNN's hierarchical feature extraction capabilities, making it well-suited for 

nuanced image classification tasks. 
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● Training and Validation Insights: 

● The CNN model demonstrated rapid convergence during training, with 

validation accuracy reaching 98.32%. 

● The robustness of the model is reflected in its ability to generalize well to 

unseen data. 

● Metrics and Confusion Matrix: 

● Evaluation metrics, including precision, recall, F1-score, and additional 

metrics such as specificity, sensitivity, and accuracy, showcase CNN's 

proficiency. 

● The confusion matrix visually illustrates the model's accuracy in 

classifying each plant disease. 

 

 

 

 

 

 

 

 

 

 

        

Figure 4.2.1.2: CNN confusion matrix 

 

● Comparative Analysis with ViT: 

● CNN emerges as a strong performer, showcasing competitive metrics 

compared to ViT. 

● Noteworthy precision and recall values underscore its efficacy in disease 

classification. 
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4.2.2 ViT Performance 

● ViT Model Architecture: 

 

 

Figure 4.2.2.1: ViT Tailored Configuration 

 

The Vision Transformer (ViT) utilizes a single dense layer for class predictions, 

incorporating transformer blocks with multi-head self-attention, layer normalization, and 

skip connections for enhanced representational power. The model employs a feedforward 

network with GELU activation and dropout, featuring one transformer layer, nine 

attention heads, and two units in the feedforward network. These architectural elements 

ensure effective capture of local and global dependencies, ideal for image classification 

tasks. 
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● Training and Validation Insights: 

● ViT exhibited remarkable training stability, achieving an impressive 

99.85% accuracy on the test set. 

● The model showcases robust learning capabilities, emphasizing its 

suitability for plant disease classification. 

● Metrics and Confusion Matrix: 

● Precision, recall, F1-score, specificity, sensitivity, and accuracy metrics 

highlight ViT's accuracy and reliability. 

● A thorough analysis of the model's performance across disease classes is 

given via the confusion matrix. 

 

 

 

 

 

Figure 4.2.2.2: ViT confusion matrix 
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4.2.3 Comparative Analysis 

● Key Observations: 

● While CNN and ViT excel, ViT is the winner with slightly superior 

accuracy and precision. 

● ViT showcases a remarkable ability to discern between diseases, 

particularly excelling in precision for the "Cucumber Mosaic Virus." 

● In-Depth Comparison: 

● Delving into specific metrics, ViT's top-5 accuracy of 100% signals its 

robustness in capturing subtle patterns. 

 

 

Table 4.2.3: In depth comparison of CNN & ViT’s value 

Metric CNN Value ViT Value 

Accuracy 98.32% 99.85% 

Precision (Weighted) 98.68% 99.92% 

Recall (Weighted) 98.32% 99.85% 

F1-Score (Weighted) 98.33% 99.86% 

Specificity (Weighted) 98.95% 99.92% 

Sensitivity (Weighted) 98.33% 99.85% 
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Additional Comparisons: 

● Beyond accuracy, precision, recall, and F1-score, further metrics, such as 

specificity and sensitivity, solidify ViT's commendable performance. 

● The confusion matrix illuminates ViT's ability to distinguish between classes, 

emphasizing its robustness. 

 

Analytical Perspective: 

● CNN's loss function, cross-entropy, is complemented by ViT's Sparse Categorical 

Crossentropy, showcasing the nuanced differences in their training objectives. 

● The superiority of ViT is grounded in its transformer architecture, leveraging 

attention mechanisms for holistic image understanding. 

 

Equations and Formulas: 

● CNN Loss Function: 

 

 

 

 

Figure 4.2.3.1: Loss & Accuracy graph of CNN 

Cross-Entropy Loss = -Σ_i^C y_i * log(p_i) 
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● ViT Loss Function: 

 

 

 

Figure 4.2.3.2: Loss & Accuracy graph of ViT 

 

In summary, the comparative analysis of Convolutional Neural Networks (CNN) and 

Vision Transformer (ViT) reveals robust performances in plant disease classification. 

Particularly, ViT, harnessing attention mechanisms, showcases transformative 

capabilities, leading to notable accuracy. These findings contribute to the current 

understanding of plant disease classification and lay a solid foundation for 

comprehending the distinctive strengths and potential future directions in the field. The 

nuanced differences and advantages demonstrated by each model underscore the richness 

of possibilities in advancing artificial intelligence applications for plant pathology. 

 

 

Sparse Categorical Crossentropy = -Σ_i^C y_i * log(p_i) 
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4.3 Discussion 

Experimental results play a pivotal role in validating the efficacy of models, providing 

insights into their generalization, interpretability, computational efficiency, impact of 

hyperparameters, and potential future directions. In this section, we delve into the 

findings, drawing comparisons between Convolutional Neural Networks (CNN) and 

Vision Transformers (ViT) across various dimensions. 

4.3.1 Model Generalization 

ViT and CNN demonstrate commendable generalization, reflected in their high accuracy 

on the test set. However, a nuanced comparison reveals that ViT slightly outperforms 

CNN in capturing essential features across varying instances of diseases. The Vision 

Transformer's attention mechanism proves advantageous in discerning intricate patterns 

within the images, contributing to its robust generalization. 

4.3.2 Interpretability 

Interpreting confusion matrices provides valuable insights into models' specific 

challenges in distinguishing between certain diseases. These insights are crucial for 

informing future data augmentation or feature engineering efforts—understanding where 

the model's struggles help refine their architecture and training strategies. Incorporating 

interpretability into the model development process ensures that the end-users, such as 

agricultural practitioners, can trust and comprehend the model's decision-making. 

4.3.3 Computational Efficiency 

Considering resource utilization is vital, especially in contexts with limited computing 

resources. CNN demonstrates a comparatively lighter computational load, providing an 

advantage in constrained resource availability. On the other hand, ViT, while more 

resource-intensive, compensates with superior accuracy. This trade-off highlights the 

importance of choosing a model based on accuracy and computational feasibility in real-

world applications. 
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4.3.4 Impact of Hyperparameters 

The impact of hyperparameters on model performance cannot be overstated. The decision 

of learning rate, batch size, and other hyperparameters significantly influences model 

convergence. Robust tuning is imperative, and this study ensures optimal configurations 

for both CNN and ViT. Understanding the sensitivity of models to hyperparameter 

choices contributes to the broader knowledge of effectively training deep learning models 

for agricultural applications. 

 

4.3.5 Future Directions 

Exploring ensemble approaches that combine the strengths of CNN and ViT could yield a 

model with enhanced predictive capabilities. This avenue holds promise for improving 

overall model performance and reliability. Additionally, integrating explainability 

techniques, such as attention maps for ViT and layer-wise relevance propagation for 

CNN, can shed light on the decision-making processes of these models. Improved 

Interpretability enhances user trust and facilitates refinement of the models based on 

domain-specific insights. 

In conclusion, the comprehensive analysis of CNN and ViT models reveals nuanced 

insights into their performance on plant disease classification. While both models exhibit 

high accuracy, ViT demonstrates a slight edge, particularly in precision. The choice 

between CNN and ViT should consider factors like computational resources, 

interpretability needs, and the potential for ensemble strategies. This discussion lays the 

groundwork for informed decisions and points toward avenues for further exploration in 

plant disease classification. 
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CHAPTER 5: IMPACT ON SOCIETY, ENVIRONMENT AND 

SUSTAINABILITY 

ABSTRACT 

 

The investigation into automated leaf disease detection in Luffa Aegyptiaca using 

advanced algorithms holds substantial implications for society, the environment, and 

long-term sustainability. This chapter explores the multifaceted impact of the proposed 

research, addressing its influence on the environment, ethical considerations, and the 

formulation of a sustainability plan. 

 

5.1 Impact on Society 

The study for detecting leaf disease significantly impacts society, affecting various 

sectors. The potential impacts include: 

Agriculture and Economy: 

The timely detection of diseases serves as a source of empowerment for farmers, enabling 

swift and informed responses to mitigate the spread of ailments and improve the overall 

yield of crops. By employing precision-targeted treatments, the study promises to 

significantly reduce expenses linked to the excessive use of pesticides, thereby fostering a 

more economically efficient approach to agriculture. Moreover, integrating this 

innovative solution encourages the astute utilization of water, fertilizers, and pesticides. 

This approach optimizes resource allocation and cultivates sustainable and 

environmentally conscious farming practices, ultimately contributing to the broader 

benefit of society. 

Food Security: 

The augmentation of food security is realized through enhanced production facilitated by 

minimizing crop losses. This reduction in losses contributes to heightened food 

production and holds the promise of stabilizing prices. The improved production levels, 

coupled with the concurrent decrease in losses, possess the potential to foster greater 
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price stability within the food market. This, in turn, has a meaningful impact on the 

accessibility of food resources, creating a more stable and secure environment for 

ensuring a consistent food supply. 

 

5.2 Impact on Environment 

The agricultural practices in the coastal regions of Bangladesh, particularly in the 

aftermath of Cyclone Aila, have undergone significant changes with the adoption of 

resilient cultivars like Luffa Aegyptiaca. The automated disease detection model 

developed in this research is poised to positively impact the environment by contributing 

to sustainable agricultural practices. By enabling early and accurate detection of leaf 

diseases, the model aids in the timely implementation of targeted interventions, reducing 

the need for widespread pesticide use. This, in turn, minimizes the environmental 

footprint associated with conventional disease management strategies. Furthermore, 

promoting precision agriculture through technology-driven solutions aligns with global 

efforts toward environmentally conscious farming practices. 

 

5.3 Ethical Aspects 

The ethical considerations of this research play a crucial role in its societal impact. The 

study underscores the need to address the challenges communities face in saline-affected 

coastal regions, where the absence of domain experts compounds the difficulties in 

agricultural practices. Implementing an automated disease detection model facilitates the 

cultivation of resilient crops and aligns with the ethical imperative of ensuring food 

security for vulnerable populations. These ethical considerations extend to providing the 

equitable distribution of technological advancements, ensuring that marginalized farming 

communities have access to innovative solutions that enhance their agricultural 

productivity. 
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5.4 Sustainability Plan 

A vital component of the sustainability plan is forging solid alliances with regional 

agricultural communities and associations. This collaborative approach ensures that the 

automated disease detection model aligns with farmers' specific needs and practices in 

saline-affected coastal regions. The plan aims to foster a sense of ownership and 

commitment among farmers by actively involving the community in the development and 

implementation process. 

Furthermore, the sustainability plan emphasizes continuous training and support for 

farmers to utilize the automated system effectively. Workshops, training sessions, and 

educational materials will be developed to empower farmers with the knowledge and 

skills needed to integrate the technology seamlessly into their daily routines. This 

educational component enhances the adoption of the disease detection model and 

contributes to building a knowledgeable and resilient farming community. 

In addition to technological integration and community engagement, the plan recognizes 

the importance of ongoing monitoring and evaluation. Regular assessments will be 

executed to measure the effectiveness of the automated disease detection model and 

gather feedback from farmers. This iterative process allows for continuous 

improvements, ensuring that the technology remains responsive to emerging challenges 

in agriculture. As the sustainability plan unfolds, it envisions creating a ripple effect 

beyond disease detection. The goal is to catalyze a broader transformation in agricultural 

practices, encouraging environmentally sustainable methods and resource-efficient 

approaches. By promoting holistic farming strategies, the plan aims to contribute to the 

resilience and adaptability of coastal communities in the face of changing agricultural 

landscapes. 

Ultimately, the sustainability plan is not just a blueprint for integrating a disease detection 

model; it is a dynamic strategy that seeks to weave technological innovation into the 

fabric of community life. The plan aspires to orchestrate a harmonious blend of 

technology, knowledge sharing, and community empowerment through collaboration, 

education, and adaptability, creating a lasting impact on agriculture in saline-affected 

coastal regions. 
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CHAPTER 6: SUMMARY, CONCLUSION, RECOMMENDATION, 

AND IMPLICATION FOR FUTURE RESEARCH 

 

6.1 Summary of the Study 

In this research, we investigated the performance of Convolutional Neural Network 

(CNN) with Vision Transformer (ViT) models for plant disease classification. The 

experimental setup involved meticulous attention to detail, including dataset 

preprocessing, model architecture, and hyperparameter tuning. Leveraging the 

computational resources of the Google Colab platform, our study demonstrated the 

effectiveness of both CNN and ViT in accurately classifying Luffa Aegyptiaca leaf 

diseases, with a focus on "Cucumber Mosaic Virus," "Downy Mildew," and "Leaf Spot." 

The experimental results highlighted the robustness of both models, with CNN exhibiting 

rapid convergence during training and ViT showcasing remarkable stability and accuracy. 

Comparative analyses, including precision, recall, and specificity metrics, revealed 

nuanced differences between the two models. While CNN performed admirably, ViT 

emerged as the slightly superior model, particularly excelling in precision for the 

"Cucumber Mosaic Virus." 

The discussion delved into various aspects, including model generalization, 

interpretability, computational efficiency, and the impact of hyperparameters. CNN's 

resource utilization efficiency and ViT's transformative capabilities were scrutinized. 

Equations and formulas elucidated the differences in their loss functions, providing 

insights into the models' training objectives. 
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6.2 Conclusions 

In conclusion, both CNN and ViT proved to be robust models for plant disease 

classification. With its transformer architecture and attention mechanisms, ViT 

demonstrated a slight edge in accuracy and precision. The choice between the two models 

should consider computational resources and interpretability needs. 

The study's success in addressing class imbalances and achieving high generalization 

underscores the effectiveness of the chosen methodologies. Implementing interpretability 

tools, such as confusion matrices, laid the groundwork for future improvements through 

data augmentation or feature engineering. 

 

6.3 Implication for Further Study 

The successful classification of diseases in Luffa Aegyptiaca images opens further 

research and exploration avenues. The implications extend to the agricultural domain, 

where early disease detection can contribute to improved crop management practices. 

This research also holds relevance beyond the specific context of plant disease 

classification. 

Future research could explore dataset scaling for richer insights and delve into the impact 

of larger datasets on model performance. Investigating uncharted territories and 

considering diverse datasets may unveil additional nuances in model behavior. 

Furthermore, the study's success in leveraging cloud-based platforms like Google Colab 

for resource-intensive tasks suggests the potential for similar approaches in other 

domains, broadening the applicability of the findings. 

The research implications extend to the broader computer vision and machine learning 

field, providing a foundation for exploring novel architectures and methodologies in 

diverse applications. Future investigations may consider the following areas: 

1. Augmentation Techniques: Consider exploring advanced data augmentation 

methodologies to enhance model robustness, particularly in scenarios with limited 

available data. 
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2. Ensemble Models: Future investigations may delve into the effectiveness of 

ensemble models, combining the architectural strengths of both CNN and ViT. 

Such explorations could lead to a more comprehensive understanding of the 

synergies between these models, potentially resulting in improved accuracy. 

3. Disease Progression Analysis: Expanding the scope of research to include a 

detailed analysis of disease progression in Luffa Aegyptiaca could provide 

valuable insights into the temporal dynamics of disease development. This avenue 

of study could contribute to a more nuanced understanding of the evolution of leaf 

diseases in the targeted crop. 

4. Transfer Learning: Evaluating the performance of transfer learning techniques is 

recommended. Leveraging pre-trained models on larger datasets may enhance the 

models' generalization capabilities to new and unseen data, offering potential 

improvements in disease detection. 

5. Integration with Precision Agriculture: The exploration of integrating disease 

classification models with precision agriculture technologies is a promising 

avenue. This integration could pave the way for real-time farm monitoring and 

decision-making, contributing to advancements in precision agriculture tailored to 

the specific needs of Luffa Aegyptiaca cultivation. 

In conclusion, the implications of this research set the stage for future investigations into 

the fascinating intersection of artificial intelligence and agriculture. The study's success 

provides a launching pad for researchers to advance further the understanding of model 

performance, interpretability, and application in real-world scenarios. 
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