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Abstract

Research in video compression has seen significant advancement in the last several

years. However, the existing learning-based algorithms continue to be plagued by erro-

neous motion compression and ineffective motion compensation architectures, result-

ing in compression errors with a lower rate-distortion trade-off. To overcome these

challenges, we present an end-to-end video compression method through a set of pri-

mary operations (e.g., motion estimation, motion compression, motion compensation,

residual compression, and artifact contraction) differently. A deep residual attention

split (DRAS) block is introduced for motion compression networks to pay more atten-

tion to certain image regions to create more effective features for the decoder while

boosting the rate-distortion optimization (RDO) efficiency. A channel residual block

(CRB) is proposed in motion compensation to yield a more accurate predicted frame,

potentially improving the residual frame. Due to mitigating the compression errors,

an artifact contraction module (ACM) by residual swin convolution UNet block is in-

cluded in this model to improve the reconstruction quality. A buffer is added to fine-

tune the previous reference frames to improve the final frame. These modules combine

with a loss function by assessing the trade-off and enhancing the decoded video qual-

ity. A comprehensive ablation study demonstrates the effectiveness of the proposed

blocks and modules for video compression. Experimental results show the competitive
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performance of the proposed method on four benchmark datasets.

Keywords: Video compression, residual attention, image reconstruction, channel

residual block, artifact contraction

1. Introduction

Video compression is crucial for offering high-quality video services under trans-2

mission networks and storage limitations. For instance, it is around 93 megabytes

(MB) of raw video content (1080p with 30 Hz) for a second using the YUV 4204

format. Maintaining these raw materials with such high data rates is challenging in

real-time. According to the report [1], video content accounts for more than 80% of6

internet traffic, which may rise even more in the future. Therefore, developing an ef-

fective video compression system capable of producing higher-quality frames within a8

specific bandwidth limit is fundamental. Furthermore, video compression approaches

are also beneficial for action identification [2] and model compression [3].10

Many well-known video compression methods, including H.264 [4], H.265 [5],

and VVC [6], have been proposed in the last few decades. These methods rely on12

handcrafted modules such as block motion estimation and Discrete Cosine Transform

(DCT) to decrease the high level of redundancy (spatial or temporal) in video se-14

quences. However, undesirable redartifacts, most notably blocking, ringing, and blur-

ring artifacts, are inevitably produced near the boundaries during block-wise operation16

[7]. This rippling phenomenon adversely impacts video quality degradation and the

user experience. Besides, these methods cannot optimize in an end-to-end manner.18

Therefore, it is essential to increase compression performance, which needs further

investigation. Recently, deep neural network (DNN) based image compression algo-20

rithms [8, 9, 10, 11] received significant research attention for two reasons: (i) they

enable the usage of non-linear transforms, and (ii) they do not require handcrafting22

features. These studies have established a theoretical foundation for deep autoencoders

in image codecs to improve the rate-distortion trade-off (e.g., low MSE or high SSIM).24

It focuses on developing end-to-end optimized frameworks and simultaneously im-

proving all modules (e.g., transformation, quantization, entropy estimation).26
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The use of image compression directly to the video domain may result in diffi-

culties with temporal inconsistency. However, there are three main challenges to de-28

veloping an end-to-end video compression system. Firstly, adding all the modules

(e.g., motion estimation, motion compression, motion compensation, residual com-30

pression, and entropy coding) is challenging to optimize the whole system. Some

works [12, 13, 14, 15, 16, 17, 18], however, substitute one or two modules in the con-32

ventional architecture rather than improving the entire compression system in an end-

to-end manner. Secondly, the performance of video compression algorithms depends34

on generating highly accurate motion vector (MV) information. Optical flow-based

methods may compute motion information. However, motion-compensated algorithms36

may raise extra bits that affect the reconstructed frame owing to inaccurate optical flow

estimation. Thirdly, the rate-distortion optimization strategy is also required for the38

learning-based compression to reduce the temporal redundancy in video sequences.

Recent deep learning-based video compression methods, such as [19, 20, 21, 22,40

23, 24, 25] concentrate on different modules to enhance its overall performance. For

example, to improve the system’s performance and visual quality of the reconstructed42

frame, Lin et al. [19] utilized multi-reference frames and MV fields for a more accurate

current frame and two refinement networks to remove the MV and residual errors. Wu44

et al. [20] introduced a post-processing step in the baseline [26] and Feng et al. [21] fo-

cused on enhancing the residual frame for implementing residual autoencoders. Yang46

et al. [27] proposed a hierarchical technique and a recurrent enhancement module to

improve the overall performance. In contrast, Li et al. [24] and Sheng et al. [25] gave48

priority to improving the residual prediction through the temporal contextual encoder-

decoder network. However, no one explores the motion vector compression network,50

which is the primary factor of the video compression system. The earlier methods em-

ployed the variational autoencoder style network [9], where a new latent vector from52

the encoder is sent to the decoder at each time interval. In this case, the code vec-

tor must include all of the input image features in the decoder, which burdens CNN’s54

memory. Though [23, 21] executed residual blocks to acquire additional deep features,

unfortunately, this is inadequate to reduce the computational load. As a result, the ca-56

pacity of the model was limited. Therefore, a low-cost motion compression network
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is obvious for learning-based video compression. Besides, it is also significant to em-58

phasize the other modules (e.g., motion compensation) and reduce compression errors

(caused by the quantization process in the MV and residual encoder-decoder network).60

Motivated by the issues above, we propose an end-to-end video compression network

with deep residual split attention and a swin-block artifact contraction module capable62

of mitigating the new arrival issues. Our technical contributions are summarized below.

• This paper introduces an end-to-end video compression method including mo-64

tion estimation, motion compression with deep residual attention split (DRAS)

block, motion compensation with channel residual block (CRB), artifact contrac-66

tion module (ACM), residual compression, and entropy coding employed based

on the rate-distortion trade-off with a single loss function. As a result, our pro-68

posed method may readily include new state-of-the-art methodologies for optical

flow estimations, image compression, motion and residual frame prediction, and70

rate control.

• An autoencoder-style network with DRAS blocks is proposed for motion vector72

compression that assigns better attention to certain image regions to create more

relevant features for the decoder and reduce the computational cost with superior74

rate-distortion optimization (RDO) performance.

• A CRB is applied in a motion compensation network to generate an accurately76

predicted frame by capturing abstract features and boosting the system’s effi-

ciency. It also contributes to improving the residual image for the overall visual78

quality improvement of the video frames.

• A new module ACM is included before the decoded frame buffer using the pro-80

posed residual swin convolution UNet (RSwCU) block to enhance the recon-

structed frame while significantly boosting the RDO’s performance.82

• We performed an extensive ablation study and experiments on four datasets (i.e.,

HEVC, UVG, VTL, and MCL-JCV), showing competitive performance. Be-84

sides, it outperforms the first baseline method, DVC, and a recent RLVC, FVC,

and DCVC in terms of PSNR and MS-SSIM at lower bit rates.86
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The remaining paper is structured as below. The earlier works are briefly discussed

in the section 2. Section 3 discussed the proposed video compression method, includ-88

ing all modules and blocks. Detailed information about the datasets and experimental

settings is presented in section 4. The experimental results, analysis, ablation study,90

and comprehensive discussion are carried out in section 5. Finally, we conclude the

work with the future research direction.92

2. Related Works

This section briefly discusses the state-of-the-art image and video compression94

methods.

2.1. Image Compression Methods96

Over the last few decades, JPEG [28], JPEG 2000 [29], and BPG [30] are just a

few of the numerous image compression systems. Conventional codecs have the draw-98

back of individually designed modules of image compression works [28, 29, 30], which

might lead to poor compression results. Deep learning-based image compression algo-100

rithms have recently made significant advances [31, 9, 32, 33, 34]. These approaches

may learn a non-linear transform from data and calculate the probabilities necessary102

for entropy coding in an end-to-end way. For example, to improve image quality, the

autoencoders based on Long Short-Term Memory (LSTM) are utilized in [33, 34, 32]104

to gradually encode the difference between the original image and the reconstructed

image without considering the number of bits utilized for compression. Besides, the106

convolutional neural network (CNN) based autoencoders utilized in [31, 9, 8] for image

compression. For example, a non-linear activation function called generalized divisive108

normalization (GDN) was added to a CNN-based autoencoder and used to compute the

distribution of latent representations [31]. However, the autoencoder of this network110

is simple and does not consider the input-adaptive entropy model. Later, Balle et al.

[9] presented an input-adaptive entropy model with a zero-mean Gaussian distribution112

to characterize each latent representation. Patel et al. [35] conducted a human investi-

gation on perceptual similarity for various image compression algorithms. Blau et al.114
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[36] then presented the rate-distortion trade-off by including the perception component

in the optimization approach. The above-mentioned learning-based image compres-116

sion algorithms surpass traditional image codecs. However, they reduce the amount

of unnecessary spatial information while ignoring the temporal correlation. We would118

suggest the readers to go through the recent survey on image and video compression

[37, 38] for more details.120

2.2. Video Compression Methods

Traditional video codecs such as H.264, H.265, and VVC are designed on a pre-122

dictive coding architecture that requires multiple independent modules’ integration.

There is a limited possibility of improving the whole system simultaneously. Thus,124

DNN-based methods are used to increase the performance of classic codecs, including

entropy coding [15], mode determination [14], intra-prediction, and residual coding126

[13]. They only boost the performance of adjacent blocks, requiring the development

of different end-to-end compression techniques. The model’s border block artifacts128

caused the poor performance. Additionally, motion information is conveyed via block

motion estimation, which is inefficient. [4, 5, 6, 7, 39].130

Recently, deep learning-based approaches have been utilized for creating an end-

to-end video compression [40, 26, 41, 42, 19, 43, 44, 45, 20, 23]. For example, Kin132

et al. [40] proposed an overfitted bidirectional recurrent convolutional neural network

(RCNN). Due to the low feature channel, RCNNs may learn temporal information from134

successive frames without exact motion information for the final reconstructed frame.

As a result, they can not attain state-of-the-art performance and reduction rates. Fol-136

lowing this, Lu et al. [26] introduced the first end-to-end optimal video compression

system to substitute all of the essential modules of the H.264/H.265; in particular, to138

obtain the MV, they employed a pixel-level optical flow network [46], and improved

the rate-distortion trade-off. Then, Djelouah et al. [41] presented a network that in-140

tegrates motion compression with image synthesis using an interpolation-based video

compression technique. Accurate motion estimation has been implemented to achieve142

decent compression performance. The state-of-the-art optical flow estimation networks

[47, 46, 48, 49, 50] have been used to accomplish these networks.144
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On the other hand, Habibian et al. [42] suggested a 3D autoencoder method that

does not rely on optical flow to compensate for motion. Their technique is limited to146

identifying fine-scale movements, and employing an auto-regressive probability model

is time-consuming. To further reduce redundancy, Lin et al.[19] employed multiple148

frames in various modules, utilizing the prior image compression auto-encoder net-

work and pixel-level network to minimize redundancy further. Even for motion com-150

pensation and residual compression, they employed the same architecture as in [26].

Their training technique for many frames was quite tricky, yet they could increase the152

RDO performance. All these methods [26, 41, 42, 19] estimate pixel-level optical flow

maps and compress the residual information by using an image compression autoen-154

coder network. Producing reliable pixel-level flow maps for motion compression via

an autoencoder-style network for generating the predicted frame and residual frame156

may be difficult, reducing video compression performance.

Several researchers [43, 44, 45] utilized deep learning and classical methods in158

an end-to-end manner to alter certain portions for video compression. For example,

in [45], the RaFC block compresses the flow maps like the traditional block-based160

methods. It determines the correct flow map resolution for each local block of motion

feature instead of the pixel-wise optical flow map. Lu et al. [44] focused on improving162

the reconstruction error of the video compression system by changing autoencoder

structures. However, the lost encoder features might be necessary for the predicted164

frame. Later, Agustsson et al. [43] replaced the bilinear warping operation with a scale-

space flow algorithm that learns to blur the reference content adaptively for improved166

warping outcomes. These algorithms [43, 44, 45] are tailored to specific prediction

modes, resulting in a lack of flexibility throughout the whole system and producing168

compression artifact.

Afterward, Wu et al. [20] proposed video compression using a P-frame compres-170

sion architecture that can be learned end-to-end. They claimed that their MV-Residual

prediction network could simultaneously predict the motion vectors and residual in-172

formation. However, they did not test their technique on common benchmark datasets

(i.e., UVG, HEVC) to prove performance as the Rectified Linear Unit (ReLU) (not174

deep rectifiers) optimizes rate-distortion trade-off. Feng et al. [21] investigated residual
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frames instead of motion vector frames or predicted frames in their method. However,176

they only performed their model on an image compression dataset (CLIC). Yang et al.

[22] proposed a hierarchical video compression method with a quality enhancement178

module at the decoder to improve the RD performance and reconstructed frame. The

group-of-picture (GOP) structure was established by the Hierarchical Learning Video180

Compression (HLVC). It has shown excellent efficiency since H.264 scalable coding

was launched. In addition, it uses a weighted recurrent quality improvement at the de-182

coder end. The recurrent auto-encoder and the recurrent probability model were used

in the recurrent learning video compression (RLVC) method described in [27], which184

resulted in better MV and residual compression. Their model [22, 27], however, just

raised the computing cost, and the RDO performance was not spectacular. On the other186

hand, their bit savings rate seems relatively high.

Most recently, Hu et al. [23] proposed a video coding network by performing some188

significant operations (i.e., motion estimation, compression, and compensation) in the

feature space to improve the computing cost (i.e., parameters and time complexity).190

The deformable compensation modules are used instead of optical flow to obtain ac-

curate motion information. Because of it, the feature-level prediction can not adjust192

to video content and manage a variety of motion contexts. Moreover, the multi-frame

feature fusion module utilizes the nonlocal attention mechanism to combine the recon-194

structed frames. As a result, by using deformable convolution and nonlocal attention

mechanisms in every fusion, their suggested video compression model demonstrated196

the computational complexity in terms of parameters (26M). Yet, their coding time

provided remarkable performance overall. Furthermore, to improve the video com-198

pression performance in a better way, the authors proposed a contextual encoder and

decoder with multilevel [25] and single-level [24] temporal contexts are used to gener-200

ate and refine the reconstructed frame. However, while their coding time performance

is satisfactory, they have not placed sufficient emphasis on enhancing the performance202

of the motion vector, which is a crucial factor in increasing RDO performance. In

addition, it impacts the predicted and the residual frame. In contrast, our network ac-204

complishes motion compression and compensation module in a new way through the

deep residual attention mechanisms and channel residual block, respectively, to raise206
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Figure 1: An overview of the proposed video compression architecture. To generate the raw optical flow,

ot, we first send ft along with f̂t−1 to the motion estimation (ME) module. Then it is sent to the motion

vector compression network with a deep residual attention split (MVCDRAS) to compress ot and receive

ôt. Next, ôt is passed through the proposed motion compensation with the channel residual block (MCCRB)

network to obtain f̄t. After that, ft and f̄t are concatenated and obtained as rt. Additionally, rt is fed into

the residual compression (RC) network, which obtains r̂t. Due to artifact from the quantization process,

the concatenated frame, C(f̂t, r̂t), is fed into the proposed artifact contraction module (ACM) to get f̂t. A

decoded frame buffer (DFB) is employed as an online buffer to create a clear reconstructed frame.

the rate-distortion trade-off for the entire compression system. Furthermore, to refine

the decoded or reconstructed frame artifact, we propose a new module ACM using208

the residual swin convolution UNet block that significantly impacts the final frame to

enhance the reconstruction quality.210

3. Proposed Method

Fig. 1 depicts the proposed optimized video compression architecture, which in-212

cludes motion estimation (ME), MV compression (MVC), motion compensation (MC),

and residual compression (RC) network. However, the MVC and MC modules [26] are214

significantly improved through the motion vector compression network with the deep

residual attention split (MVCDRAS) block and motion compensation with the channel216

residual block (MCCRB) to optimize the efficiency of the video compression system.

Furthermore, we proposed the artifact contraction module (ACM) that makes the re-218

construction frame more pleasing. These components are tuned together and utilize a

single rate-distortion loss, as shown via experimental findings and extensive ablation220

studies. These modules are separately discussed below.

9

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4186554

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Notations. Let F = {f1, f2, . . . ft−1, ft}, these symbols represent the original video222

sequences. When the time step t occurs, ft, f̄t, and f̂t represents the original, predicted,

and reconstructed/decoded frame, respectively. The difference between the predicted224

frame f̄t and the original frame ft is represented by rt (the residual frame). The final

reconstructed/decoded 1 residual frame is denoted by r̂t. This work uses the recon-226

structed and decoded words in the same context. Motion information obtained from

pixel-wise optical flow estimation is essential for eliminating temporal redundancy.228

Therefore, motion vector/information (MV) or optical flow value is represented by ot.

The final reconstructed/decoded values of the MV fields at time step t are represented230

by ôt. Since an autoencoder illustrates transformation, consequently, the residual frame

rt and the MV frame ot are transferred to zt and at. After the quantization in MV and232

residual autoencoder, ẑt and ât denotes the quantized forms of zt and at, respectively.

3.1. Motion Estimation234

Video compression performance significantly depends on motion estimation. Op-

tical flow finds the temporal correlation between video sequences. Several recent236

learning-based optical flow estimation algorithms [47, 46, 48, 49, 50] have been pro-

posed. These methods can compute the pixel-level motion information precisely. How-238

ever, more bits are needed to compress motion information for conventional video com-

pression methods because of the higher data capacity. The recent deep recurrent fea-240

ture pyramid-based network, namely DeepPyNet [51] is used to find optical flow. It in-

cludes a pyramid-based feature extractor (not handcrafted), multi-channel cost volume,242

and flow decoder. In this method, the previous reference frame f̂t−1 and current frame

ft are taken as inputs and produce the motion information ot, which is compressed244

later through the autoencoder network. This motion estimation network is correctly

optimized to reduce the rate-distortion trade-off. Adapting the DeepPyNet [51] optical246

flow map with our video compression approach makes it much more efficient.

Fig. 2 shows the optical flow estimation maps of two RaceHorse video sequences248

(sequence 82 in (a) and 83 in (b)) from the HEVC Class C dataset [5] with and without

1The reconstructed and decoded words are used in the same context.
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Figure 2: Optical flow with statistical analysis. (a) and (b) represent two consecutive frames from the HEVC

Class C dataset, (c) and (e) represent the raw optical flow and its flow magnitude, (d) and (f) optical flow in

the video compression system and its flow magnitude.

joint training. The associated probability distributions of the optical flow magnitudes250

are shown in (e) and (f), respectively. The reconstructed optical flow map (d) obtained

by cooperative training of the video compression model includes more pixels with zero252

value than the original optical flow map (c) counterpart. Thus, the reconstructed optical

flow map needs fewer bits for encoding. For example, encoding the optical flow map254

in Fig. 2(c) requires 0.043 Bpp, whereas encoding the optical flow map in Fig. 2(d)

requires just 0.031 Bpp, saving around 27 percent of the bits.256

3.2. MV Compression with Deep Residual Attention Split

The key contributor to improving RDO performance is optical flow compression.258
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Figure 3: (a) The proposed autoencoder-style network with deep residual split attention (DRSA) block to

compress the optical flow. The k3n64s2 denotes the convolution layer with the kernel size of 3× 3, output

feature channel of 64, and stride 2. (b) the proposed DRSA block where ResGDN, SA, and IA define the

residual GDN, split attention, and inner attention blocks, respectively. (c) the ResGDN block. For more

information, please refer to Section III (B).

To compress it, the earlier works [19, 20, 21, 22, 24, 25] employed the variational

autoencoder network [9] for compressing the motion vector. It takes significant time260

to capture abstract features for the decoder. Although residual blocks are utilized by

[23, 21] to acquire more deep features, this was insufficient to lessen the computational262

burden. However, attention mechanisms [52] with residual blocks [53] may perform

better since an attention mechanism is used to assign greater attention to certain image264

regions to create more relevant features for the decoder and reduce the computational

load. Besides, a model with computable linear-nonlinear transformations shows supe-266

rior efficiency in end-to-end optimization architecture.

Inspired by this, we propose an autoencoder-style network with deep residual at-268

tention and split (DRAS) block to compress the optical flow, as shown in Fig. 3 (a).

It consists of four DRAS blocks (2 each encoder and decoder), four convolution and270

deconvolution layers, followed by the Generalized Divisive Normalization (GDN) or

inverse GDN, except for the last layer. The convolution and deconvolution layer sizes272

are considered by the three parameters, k × n × s that represent the size of the ker-

nel, filter maps, and the stride, respectively. At first, the motion representation at is274

generated by the MV encoder, which is then quantized via uniform scalar quantization
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to ât. After that ât is sent to the MV decoder, which rebuilds at ôt. The decoder’s276

architecture is just the reverse of the encoder’s.

DRAS Block. A novel part of our autoencoder network is the DRAS block, as278

shown in Fig. 3 (b). Due to the high computational cost, typical non-local attention

[54] is ineffective for this task. Our proposed DRAS block utilizes both split atten-280

tion (SA) [55] and residual GDN (ResGDN) blocks (in Fig. 3 (c)) to achieve greater

efficiency. Here, the SA can capture cross-channel relationships in the features for282

better representations of the optical flow-based motion vector. On the other hand, the

paradigm of identity shortcut connection in the ResNet [56] is added to certain GDN284

layers, represented by the ResGDN, to enable deeper learning of the network. At first,

the input features go through convolution and ResGDN layers and are fed into the SA286

layer for splitting the features. After that, these features are concatenated and passed

to the inner attention (IA) layer (inside the red dotted line in Fig. 3 (b)). This IA288

layer consists of a Max-Pooling layer, two convolution layers with a 1× 1 kernel, two

types of rectifiers (i.e., GDN and Sigmoid), and one SA block. The output of SA is290

concatenated with the element-wise production features of the previous SA. Before

concatenating the last single 1× 1 convolution layer and input residual connection, the292

last features from SA layers (the initial SA and SA from IA) are concatenated with

some residual skip connections. These residual connections with the IA layer increase294

the channel dimensions and allow the prediction of accurate motion vectors, which can

minimize the bit rate and distortion (please refer to section V (ablation study)).296

3.3. Motion Compensation with Channel Residual Block

The predicted frame f̄t is obtained by the motion compensation (MC) network,

which is supposed to be similar to ft. In the MC module, f̂t−1 is warped to ft depend-

ing on ôt as Eq. 1.

f̂w
t−1 = Warp

(
f̂t−1, ôt

)
(1)

where, f̂w
t−1 represents the warped frame and Warp is the backward warp operation298

[57]. However, there are still artifacts in f̂w
t−1. Therefore, f̂w

t−1 and f̂t−1 are concate-

nated as the input to eliminate the artifact and passed to a CNN model in MC.300
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Figure 4: a) The proposed architecture for the motion compensation module, where CRB, GAP, and PReLU

define the channel residual block, global average pooling, and parametric ReLU, respectively; (b) indicates

the proposed channel residual block (CRB), where Norm and AMP represent normalization and average

max-pooling.

Some works [19, 21, 45, 44] utilized a CNN model from the first baseline paper

[26] that used a modified UNet [58] for artifact reduction. However, we observe that302

the generated predicted frame delivers blurry results because of ignoring the interme-

diate layers in UNet. Therefore, learning may slow down and put the network at risk304

of skipping the layers that capture abstract features. Later researchers [23, 27, 22]

employed multiple reference frames for generating predicted frames and faced time306

complexity issues. Motivated by these, we propose a CNN model with a channel resid-

ual block (CRB) in the MC module, as illustrated in Fig. 4 (a). The MCCRB aims to308

increase the system’s effectiveness and improve compression efficiency while simul-

taneously reducing the number of parameters. In particular, by including a CRB in310

feature maps, additional channels are assigned to the features in the lower layers of the

network, allowing for the equivalent computational cost. Our proposed MCCRB con-312

sists of two convolution layers, two activation functions (PReLU) and global average

pooling layers (GAPs), two up-sampling layers, and six CRB blocks. Some residual314

connections are added to the network, with the final activation after the summation.

Channel Residual Block (CRB). Our special CRB block is depicted in Fig. 4 (b).316

Three sub-blocks are added to CRB to accept the feature maps separately. The first sub-
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block contains a normalization layer, followed by a convolution layer with a kernel size318

of 2×2 and a fixed feature map dimension (64, 128) that executes linear transformation

on the input feature map to retain the channel size. An average max-pooling layer and320

a zero-padding layer are employed in the second sub-block to improve feature map

dimensions and shorten the sequence length of feature maps. In the third sub-block, a322

layer of normalization using a convolution (kernel size of 1 × 1, 32 filters, and stride

of 2 followed by a PReLU) enhances the feature map dimension while decreasing the324

sequence length of feature maps. To better visualize the predicted frame and boost the

RDO performance, we concatenate the outputs of all three sub-blocks using residual326

connections and their updated feature maps. Moreover, this predicted frame is also able

to boost the performance of the residual frame in the system.328

3.4. Residual Compression Network

The rt is derived between ft and f̄t. Then it is encoded and decoded by the image330

compression network [20]. It is significant to map rt to a smaller domain to compress

data with high efficiency using the residual encoder. Besides, the residual decoder is332

employed to rebuild r̂t. Furthermore, on the basis of some convolution layers and a

GDN/IGDN-based autoencoder type network, the rt compresses [9]. Similar to the334

motion compression network, rt is converted to zt after the residual encoder. Through

the quantization procedure, it is transferred to ẑt, and after the residual decoder, it is336

turned into r̂t.

Figure 5: Our artifact contraction module (ACM). The RSwCU represents the proposed residual swin con-

volution UNet block.
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Figure 6: The proposed residual swin convolution UNet (RSwCU) block for ACM. (a) denotes the RSwCU

block, (b) residual swin transfer block (RSTB), and (c) swin transfer block (STB) [59]. The terms RCB,

SwC, C, RC, MSA, and MLP refer to the residual convolution block, swin convolution block, concatenation,

residual connection, multi-head self-attention, and multi-layer perception, respectively. The notations ”SC”

and ”TC” refer to a 2× 2 strided and transposed convolution with stride 2.

3.5. Artifact Contraction Module338

We discovered that there are still compression artifacts in f̂t and r̂t owing to quan-

tization in the encoder-decoder network, which resulted in a low-quality reconstructed340

frame. Aside from that, it is also a key contributor to the enhancement of RDO perfor-

mance. Therefore, we propose a compression artifact contraction architecture capable342

of improving the reconstructed frame while increasing the RDO performance. Fig. 5

depicts the proposed artifact Contraction Module (ACM) module. At first, f̂t and r̂t are344

concatenated and produce C(f̂t, r̂t) which has compression artifact. After that C(f̂t,

r̂t) is fed into our proposed artifact contraction architecture to produce f̂t. Below, the346

proposed artifact contraction architecture is explained in detail.

Residual-Swin-Convolution-UNet. Fig. 6 (a) depicts the proposed artifact con-348

traction architecture, referred to as Residual-Swin-Convolution-UNet (RSwCU). The

RSwCU is primarily composed of two 3× 3 convolution layers, two swin convolution350

blocks (SwCs), and one UNet [58] block. There are four levels of the UNet block in

our proposed RSwCU. Each level consists of a residual link between 2×2 strided con-352

volution (SC) (down-sampling) and transposed convolution (TC) (up-sampling). There

are 16, 32, 64, and 128 channels at each layer from the first to fourth levels.354
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In Fig. 6 (a), a SwC block connects the residual swin transformer block (RSTB)

(see Fig. 6) (b) and the residual convolutional block (RCB) [60] through two 1 × 1

convolutions, split-concatenation processes, and a residual connection. A 1 × 1 con-

volution is first applied to an input feature tensor F of an artifact image. Then, it is

divided into two equal feature map groups: F1 and F2 by split layer. We define such a

procedure as follows.

F1, F2 = Split(Conv1× 1(F )). (2)

Then, F1 and F2 are passed into an RSTB (consists of a convolution layer and swin

transformer block [59], see Fig. 6 (b, c)) and RCB, respectively, resulting in the ap-

pearance of

M1,M2 = RSwinTransformer(F1), RConv(F2). (3)

Subsequently, M1 and M2 are concatenated and utilized as the input of a 1×1 convolu-

tion with a residual link to the original input, F . As a result, the SwC block’s ultimate

output is defined by

N = Conv1× 1(Concat(M1,M2)) + F. (4)

It is worth noting that our suggested RSwCU has several advantages over artifact im-

ages. First and foremost, the SwC block combines the regional capabilities of the RCB356

with the non-regional capabilities of the RSTB. Here, the residual connection of RCB

and RSTB establishes an identity-based link in the SwC block, enabling the aggrega-358

tion of features at multiple levels. Second, the variational UNet enhances RSwCU’s

ability to represent local and non-local phenomena of artifact images. Third, to de-360

crease the computation burden (e.g., parameters), the split and concatenation proce-

dures are employed as group convolution with 2 groups. Please refer to the ablation362

study to see the effectiveness of the proposed RSwCU.

3.6. Loss Function and Entropy Coding364

Loss Function. Our goal is to use the smallest feasible number of bits for video en-

coding while reducing distortion between ft and f̂t. For training, we use the following
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rate-distortion function.

αD+R = αd
(
ft, f̂t

)
+ (N (ât) + N (ẑt)) (5)

where the distortion between ft and f̂t is denoted by d
(
ft, f̂t

)
, and the mean square

error (MSE) or multi-scale structure similarity (MS-SSIM) is utilized to measure this366

distortion. N(.) denotes the number of bits utilized for encoding. The bitstreams en-

code both ât and ẑt representations, and a trade-off between bit numbers and distortion368

is specified by α, the Lagrange multiplier. The quantization step is needed prior to

entropy coding, which needs at and zt. As long as the quantization process is not370

differentiated, end-to-end training is infeasible. To tackle this issue, we employ the

approach in [2] during training where the quantization procedure is substituted by the372

uniform noise, i.e, ât = at + U , and ẑt = zt + U . We directly use the rounding tech-

nique in the predicted step, i.e, ât = round(at), and ẑt = round(zt), respectively.374

Entropy Coding. A bit rate estimation network is needed to improve the network

by considering both distortion and bit numbers to determine the latent representations.376

The entropy of the appropriate latent representation is the most precise way to estimate

the bit rate. Therefore, we employ the hyperprior entropy model in [9] to precisely378

estimate the bit rate (N (ât) and N(ẑt)) of ât and ẑt. In order to ensure that the

decoding procedures are compatible with parallelization, we do not employ the auto-380

regressive entropy model [10].

3.7. Decoded Frame Buffer382

It is significant to use f̂t−1 in the ME and MCCRB networks during ft compres-

sion, as illustrated in Fig. 1. Thus, the encoding operation establishes a chain of384

dependencies. We have implemented an automated update technique, a decoded frame

buffer (DFB), to tackle this issue and make the training process more efficient. More386

specifically, each iteration of the training stores f̂t in a buffer. When encoding ft+1, the

buffer containing f̂t is utilized for the ME and MCCRB networks. As a result, every388

training sample in the DFB will be modified once for each epoch. We can optimize

and save the previous frame at each iteration, which allows us to complete the process390

faster and provide precise reference frames.
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4. Dataset and Experiments392

4.1. Dataset

In training, we utilize the Vimeo-90K dataset [61] comprises 89,800 video clips,394

each with seven frames at a size of 448×256 pixels. The video sequences are randomly

cropped to 256×256 before training. We used the following four datasets to test our396

method’s compression performance.

• HEVC Test Sequences [5]: It is the most common test sequence for assessing398

video compression performance. Our experiment uses Class B (1920 × 1080),

Class C (832× 480), and Class D (352× 288) datasets.400

• MCL-JCV Dataset [62]: It consists of 24 video clips with a 1920× 1080 reso-

lution. This dataset is used to judge the quality of the video.402

• Ultra Video Group (UVG) Dataset [63]: It is a video dataset with a high frame

rate (120fps), in which the motion between adjacent frames is limited. Accord-404

ing to the settings described in [64, 42, 26], we conduct our studies of video

sequences with 1920× 1080 resolutions.406

• Video Trace Library (VTL) Dataset [23]: It comprises many raw YUV se-

quences utilized for low-level computer vision applications. In our studies, we408

employ 20 video sequences with 352× 288 resolutions. The maximum duration

of the video clips is set at 300 frames.410

4.2. Implementation Details

Different α values are utilized for training. For example, α = 64, 128, 256, and412

512 are used for PSNR, and α = 16, 32, 64, and 128 are employed for MS-SSIM. The

proposed model is trained in two steps. Firstly, we set α = 1024 and train the model414

for 2,000,000 steps using mean square error at a high bit rate. We fine-tune the pre-

trained model for a further 500,000 iterations for α = 64, 128, 256, and 512. In the416

second stage, models are further fine-tuned for roughly 80,000 steps using the MS-

SSIM criteria as the distortion term to improve MS-SSIM performance. The previous418
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learning rate for newly added modules is 5e − 5, and the final learning rate is 2e − 5

throughout the fine-tuning phases with batch size 4.420

4.3. Evaluation Metrics and Settings

To analyze the rate-distortion effectiveness between the reconstructed frame and422

the ground-truth frame, we employ the PSNR, MS-SSIM [65], and Bjøntegaard delta

bit rate (BDBR) [66]. The PSNR/MS-SSIM of each video sequence is obtained by av-424

eraging the PSNR/MS-SSIM of all reconstructed frames. The average number of bits

needed for motion and residual coding in each frame is measured using Bpp (bits per426

pixel). The learning-based approaches have a fixed Group of Pictures (GOP) configu-

ration but not traditional codecs. There is no restriction on the GOP size to compare428

the learning-based video codec to the conventional one. For example, the GOP size

for the UVG, MCL-JCV, and VTL datasets is set to 12. Furthermore, the equivalent430

GOP size for H.265/H.264 in these works is 12 or 10. The x265 LDP high-speed

mode is employed for H.265, and the settings are followed from [27]. To provide a fair432

comparison, the results of the methods (i.e., DVC-CVPR19 [26], Djelouah-CVPR19

et al. [41], Hu-ECCV20 et al. [45], M-LVC-CVPR20 [19], Lu-ECCV20 et al. [44],434

FVC-CVPR21 [23], DCVC-NeurIPS21 [24], RLVC-JSTSP21 [27], Sheng-21 [25]) are

obtained from their respective articles. To demonstrate the effectiveness of our method,436

experiments with larger GOP sizes were also carried out in the ablation study.

5. Experimental Results and Analysis438

In this section, we present experimental findings and detailed analysis to illustrate

the efficiency of our method.440

5.1. Computational Performance

Our model is built on PyTorch with CUDA support. Experiments are conducted us-442

ing a Windows 10 workstation with an NVIDIA RTX 2080Ti GPU. The initial training

stage takes around four days, the second training stage takes approximately two days,444

and the fine-tuning step takes 1 day. When encoding videos with a resolution of per

1080P frame, the encoding speed is 0.612s (resp. 0.576s), which is almost 26% faster446
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Figure 7: The MS-SSIM comparison of our method with the state-of-the-art learning-based methods, e.g.,

DVC-CVPR19 [26], Djelouah-CVPR19 et al. [41], Hu-ECCV20 et al. [45], M-LVC-CVPR20 [19], Lu-

ECCV20 et al. [44], FVC-CVPR21 [23], DCVC-NeurIPS21 [24], RLVC-JSTSP21 [27], Sheng-21 [25] and

conventional methods, H.264/H.265 [4, 5] on HEVC Test Sequences (Class B, C, and D) [5], UVG [63],

MCL-JCV [62], and VTL [23] datasets.

than Sheng-21[25] (0.827 vs. 0.612), though the decoding speed has an 18% (0.472 vs.

0.576) gap. On the other hand, in FVC-CVPR21 [23], the authors stated that the over-448

all coding speed is 0.548s. Despite this, they used the auto-regressive entropy model,

which is not GPU-friendly. As a result, the coding performance was estimated to take450

a significant amount of time. They did not mention whether or not the entropy coding

speed is included in their overall coding speed. Meanwhile, there are only 10.1M pa-452

rameters in our model, whereas FVC-CVPR21[23] is 26M and Sheng-21[25] is 10.7M,

which is around 157% and 7% higher than ours, correspondingly.454

5.2. Quantitative Performance

Our video compression method is evaluated using MS-SSIM, PSNR, and BDBR.456
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5.2.1. MS-SSIM Evaluation

Fig. 7 demonstrates the rate-distortion curves of MS-SSIM for our method with458

state-of-the-art methods, e.g., conventional H.264/H.265 [4, 5], deep learning-based

methods e.g., DVC-CVPR19 [26], Djelouah-CVPR19 et al. [41], Hu-ECCV20 et al.460

[45], M-LVC-CVPR20 [19], Lu-ECCV20 et al. [44], FVC-CVPR21 [23], DCVC-

NeurIPS21 [24], RLVC-JSTSP21 [27], and Sheng-21 [25] in all datasets. Our method462

shows state-of-the-art/competitive MS-SSIM performance in the HEVC Class C, UVG,

VTL, and MCL-JCV datasets/HEVC Class B and D datasets. In the HEVC class B and464

D datasets, our method received the same MS-SSIM result (around 0.99) as Sheng-21

[25]. However, in every dataset, our method outperforms the popular recent methods,466

i.e., FVC-CVPR21 [23], DCVC-NeurIPS21 [24], and RLVC-JSTSP21 [27] and the

conventional methods, i.e., [4, 5] by a large margin, which reflects the efficacy of our468

proposed approach.

Figure 8: The PSNR comparison of our method with the state-of-the-art learning-based methods, e.g.,

DVC-CVPR19 [26], Djelouah-CVPR19 et al. [41], Hu-ECCV20 et al. [45], M-LVC-CVPR20 [19], Lu-

ECCV20 et al. [44], FVC-CVPR21 [23], DCVC-NeurIPS21 [67], RLVC-JSTSP21 [27], Sheng-21 [25] and

conventional methods, H.264/H.265 [4, 5] on HEVC Test Sequences (Class B, C, and D) [5], UVG [63],

MCL-JCV [62], and VTL [23] datasets.
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Table 1: Comparing the findings for bjontegaard delta bit rate (BDBR), calculated by the PSNR/MS-SSIM

of our method with state-of-the-art on H.265 (x265 LDP very fast) in different datasets. The bit-rate savings

are shown by negative BDBR values, whereas positive BDBR values indicate higher bit-rate costs. The red

and green colors represent the highest and second highest results, respectively.
Dataset DVC[26] Hu[45] Lu[44] Agustsson[43] HLVC [22] M-LVC[19] RLVC[27] Liu [67] FVC[23] Ours

Class B 5.66/-2.74 -/- -13.35/-7.93 -/- -11.75/-37.44 -36.55/-42.82 -24.20/-50.42 -/- -23.75/-54.51 -37.37/-57.19

Class C 25.88/-6.88 4.94/-32.44 -/- -/- 7.83/-23.63 -/- -4.67/-35.94 -/- -14.18/-43.58 -16.78/-35.94

Class D 15.34/-18.51 -/-32.43 -6.86/- -/- -12.57/-52.56 -13.87/-36.27 -27.01/-48.85 -/- -18.39/-51.19 -19.51/-52.12

MCL-JCV -/- -10.60/-34.10 4.21/- -1.82/-33.61 -/- -/- -/- -/- -22.48/-52.00 -31.32/-58.19

UVG 10.40/8.05 -/- -7.56/-25.49 -8.80/-38.04 -1.37/-30.12 -12.11/-25.44 -13.48/-40.62 -49.42/-30.70 -28.71/-45.25 -53.45/-50.21

VTL -/- -/-6.04 -16.05/- -/- -/- -/- -/- -9.51/2.42 -28.10/-39.44 -40.21/-43.65

Average 8.03/-5.02 -2.83/-26.25 -7.92/-16.71 -5.31/-35.83 -4.47/-35.94 -20.84/-34.84 -17.34/-43.96 -29.4/-14.14 -22.60/-46.66 -33.12/-49.55

5.2.2. PSNR Evaluation470

From the rate-distortion curves of PSNR in Fig. 8, our method also shows the state-

of-the-art/competitive outcomes with the learning-based methods, e.g., DVC-CVPR19472

[26], Djelouah-CVPR19 et al. [41], Hu-ECCV20 et al. [45], M-LVC-CVPR20 [19],

Lu-ECCV20 et al. [44], FVC-CVPR21 [23], DCVC-NeurIPS21 [24], RLVC-JSTSP21474

[27], Sheng-21 [25] and conventional methods, H.264/H.265 [4, 5] in every datasets.

In particular, in the HEVC Class D dataset, H.265 outperforms all methods. How-476

ever, our method overcomes the existing deep learning methods (particularly the re-

cent methods, i.e., FVC-CVPR21 [23], DCVC-NeurIPS21 [24], RLVC-JSTSP21 [27],478

Sheng-21 [25]). Similarly, in the HEVC Class C dataset, our method is able to yield

almost equal performance (around 34.5) to H.265, and Lu-ECCV20 [44]. As a result,480

we can infer that the proposed blocks in the module have a significant influence on the

overall performance of the system.482

5.2.3. BDBR Evaluation

In Table 1, we present the BDBR [66] findings of our method in comparison to other484

state-of-the-art methods (DVC-CVPR19 [26], Agustsson et al. [43], Hu-ECCV20 et

al. [45], M-LVC-CVPR20 [19], Lu-ECCV20 et al. [44], HLVC-CVPR20 [27], FVC-486

CVPR21 [23], RLVC-JSTSP21 [27], Liu [67]) where H.265 is set as an anchor. Our

method saves around 2%, 28%, 8%, 30%, and 11% bit saving rates in terms of PSNR as488

well as 5%, 11%, 10%, 10%, and 6% in terms of MS-SSIM on HEVC Class B, MCL-

JCV, UVG, and VTL datasets, respectively; these results demonstrate the superiority490

23

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4186554

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



of our proposed method. It is also clear that our method surpasses the recent deep

learning methods, i.e., FVC-CVPR21 [23], RLVC-JSTSP21 [27], Liu [67] and also492

other existing deep learning methods. On the other hand, in the HEVC Class B dataset,

regarding PSNR, it exhibits state-of-the-art results; nevertheless, in MS-SSIM, it has494

roughly an 18% gap compared to the FVC-CVPR21 [23]. Additionally, in HEVC Class

D, it achieves the second highest result (approximately 28% less than RLVC-JSTSP21496

[27] and slightly less than HLVC-CVPR20 [27]) in both PSNR and MS-SSIM.

Figure 9: Qualitative comparison between the original and our reconstruction frames on the UVG [63] (a),

HEVC [5] (b), MCL-JCV [62] (c), and VTL [23] (d) datasets.
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Figure 10: The visualization of the reconstruction frame with the proposed RSwCU. (a) represents the orig-

inal frames derived from the HEVC Class C and D dataset [5], (b) the artifact frames after the concatenation

of the predicted and residual frame, and (c) the final reconstructed frame by applying the ACM module with

RSwCU.

Figure 11: The visualization results of the motion compression using our proposed autoencoder-style net-

work. (a), (b), (c), (d), and (e) represent the raw images from HEVC Class C and D datasets, the raw optical

flow from the ME module using DeepPyNet [51], visualization using 1 DRSA, 2 DRSA, and lastly, the vi-

sualization of the compressed optical flow/motion vector, respectively.

5.3. Qualitative Result498

This sub-section provides qualitative results of predicted, residual, and final recon-

structed frames using our proposed blocks (i.e., DRSA, CRB) and the ACM module500

with RSwCU. The qualitative comparison of the original and our reconstructed frames

on all datasets (UVG, HEVC, MCL-JCV, and VTL) is shown in Fig. 9. The Bpp rep-502

resents the average bits per pixel of each video frame. From the MS-SSIM values and

Bpp from Fig. 9, our reconstructed frames exhibit fewer compression artifacts, fewer504

bit rates, and retain more abstract features. As a result, our method has a higher visual
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Figure 12: The visualization of the predicted frame from the MC module utilizing the CRB block. (a)

represents the raw image, (b) and (c) the predicted frame and the residual frame when there is no CRB, and

(d) and (e) the predicted frame and the residual frame when there is CRB, respectively.

quality while creating fewer fuzzy contours. Although the frame in the VTL dataset506

has a lower quality, our proposed method still produces a 0.954 MS-SSIM with 0.211

Bpp.508

Fig. 10 shows the qualitative results of the reconstructed/decoded frame with and

without considering the ACM module with RSwCU in the proposed method. It is510

noticeable that the decoded results without applying the ACM module have more ar-

tifacts with noise and are less smooth. In contrast, the outcomes of our technique (by512

considering the ACM module) are comparatively much smoother (i.e., the grasses in

Fig. 10(c) upper part and the hand Fig. 10(c)) lower part with fewer artifacts and514

better visualization. Besides, the PSNR/MS-SSIM value for (b) is 31.44dB/0.912 (up-

per part) and (b) is 31.67dB/0.927 (lower part), while it is significantly high for (c)516

at 35.11dB/0.981 (upper part) and (c) at 33.98dB/0.976. Thus, our ACM module can

improve more accurate results with the RSwCU network.518

We proposed a DRSA block in the autoencoder network for the MVC module to

boost the system’s performance. The visualization of DRSA blocks with the raw optical520

flows is presented in Fig. 11. Our proposed DRSA can learn optical flow with abstract

features and reduce unnecessary information (see Fig. 11 (c, d)), which can increase522

the RDO performance and make it faster. In Fig.12, we also show the MC module’s
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predicted frame using our proposed CRB block. It can be shown that without the CRB524

block in Fig. 12 (b, c), the objects in the residual frame (c) cannot be identified, and

the predicted frame (b) is also of lower quality. However, the predicted frame (d) gets526

smoother after applying the CRB, while the residual frame becomes more apparent (e),

which assists in optimizing compression performance as well. For a more detailed look528

at the efficacy of DRSA and CRB blocks, please refer to the ablation study in Table 2.

Figure 13: The effectiveness of a variety of GOP configurations on the UVG [63] dataset.

5.4. Ablation Study530

We conduct an extensive ablation study on different modules and GOP sizes to

evaluate the effectiveness of our proposed method.532
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5.4.1. Effectiveness of Different Modules

Table 2 shows the result of the ablation study in terms of PSNR, MS-SSIM, num-534

ber of parameters, and inference time (encoding and decoding speed in second (s)),

on different modules across the entire network on the HEVC Class B dataset. When536

the baseline (RC, entropy coding, and DFB), ME, the proposed DRSA for MVC, CRB

for MC, and ACM module are employed (Case 1) together with joint training, we re-538

ceived the highest PSNR (36.13dB) and MS-SSIM (0.991) of our system with 10.15M

parameters and 0.826s. The PSNR is decreased by 1.35dB (from 36.13 to 34.78) and540

2.15dB (from 36.13 to 33.98), and MS-SSIM is reduced by 3.5% (0.991 vs. 0.956),

and 4% (0.991 vs. 0.951) for omitting the DRSA and CRB separately. However, pa-542

rameters and inference time are also increased by around 14% (10.15 vs. 11.78) and

22% (10.15 vs. 13.01) in case 2 as well as 19% (0.826 vs. 1.026) and 31% (0.826 vs.544

1.196) in case 3, respectively. In contrast, the system delivers too poor performance

without DRSA and CRB, as seen by lowered PSNR and MS-SSIM and dramatically546

higher parameters and inference time (in case 6). To further illustrate the ACM mod-

ule’s effectiveness, we conducted an experiment where the ACM was removed from548

the architecture. As a result, the PSNR and MS-SSIM decreased significantly (in case

4), though the parameters and inference time were also decreased. An additional ex-550

periment is performed with the ME module in case 5. The system would be unable

to provide a satisfying RDO performance without the ME module. In conclusion, we552

can claim that our proposed blocks, DRSA and CRB, as well as the proposed module

ACM, have an unrivaled influence on improving the RDO performance of the system.554

5.4.2. GOP Evaluation

We further analyze the performance of the different group of pictures (GOPs) for556

our proposed method while compressing video. Two distinct GOP configurations are

employed: the bi-directional IPPP (bi-IPPP) and the normal IPPP structure (uni-IPPP)558

[22]. Fig. 13 demonstrates the PSNR performance of our proposed approach utilizing

GOP = 10, 13, and 20 for both bi-IPPP and uni-IPPP. For bi-IPPP configuration, we560

follow the configuration from [22]. We observe that when the GOP size is increased

to 20 (bi-IPPP), the performance remains comparable with that of GOP = 13 (bi-IPPP)562
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Table 2: The effectiveness of different modules with DRSA, CRB blocks on the proposed network in terms

of PSNR, MS-SSIM, number of parameters (Param), and inference time (IT) in second (s) on HEVC Class

B Dataset [5].

Case Baseline ME MVC MC ACM PSNR MS-SSIM Param (M) IT (s)

1 ✓ ✓ with DRSA with CRB ✓ 36.13 0.991 10.15 0.826

2 ✓ ✓ no DRSA with CRB ✓ 34.78 0.956 11.78 1.026

3 ✓ ✓ with DRSA no CRB ✓ 33.98 0.951 13.01 1.196

4 ✓ ✓ with DRSA with CRB × 32.65 0.936 8.45 0.723

5 ✓ × with DRSA with CRB ✓ 30.79 0.926 9.12 0.798

6 ✓ ✓ no DRSA no CRB ✓ 32.01 0.951 13.22 1.401

and GOP = 10 (bi-IPPP), with just a modest impairment efficiency. It happens when

there is a greater gap between the I-frames and the P-frames in bi-IPPP. However,564

for GOP size 20, the PSNR is decreased by only around 2% from GOP 10 (roughly

38.8 vs. 37.9) and around 1.5% from GOP 13 (approximately 38.5 vs. 37.9). On566

the other hand, when we analyze the uni-IPPP in terms of GOP = 10, 13, and 20, the

performance of the uni-IPPP mode is quite comparable over a range of GOP sizes of568

the bi-IPPP mode. For example, by around 0.4dB, 1.1dB, and 1.4dB from GOP 10

(bi-IPPP). To summarize, the proposed method is compatible with a wide range of570

GOP sizes. It is remarkably adaptable to GOP = 20 (bi-IPPP or uni-IPPP) without

significantly reducing compression performance.572

5.4.3. Effectiveness of Output Feature Channels with DRSA

Since our proposed autoencoder network downsamples frames at the encoder and574

then upsamples them in decoded frames, it must make predictions quickly enough to

operate at the frame rate of the video on a low-power edge device. To assess the feasi-576

bility of our model, we measure the end-to-end inference time per frame as a function

of the number of output feature channels with DRSA and without DRSA in the au-578

toencoder network for the encoder, as shown in TABLE 3. The upper part represents

the result without DRSA and the lower part with DRSA. The PSNR, MS-SSIM, infer-580

ence time, and parameters are raised by increasing the feature channel (FC). However,

the inference time and parameters significantly increase at FC of 512, while PSNR582
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Table 3: The effectiveness of output feature channels with DRSA and without DRSA block for the encoder

in MVCA network in terms of PSNR, MS-SSIM, inference time, and the number of parameters on UVG

[63] dataset.

Feature Channel (FC) 32 64 128 256 512 1024 2048

PSNR (dB) 33.15 34.11 35.25 36.18 36.32 36.32 36.36

MS-SSIM 0.931 0.943 0.956 0.969 0.971 0.972 0.972

Inference time (ms) 25 27 29 34 40 55 78

Num. of parameters (M) 1.14 2.29 3.22 4.21 5.67 8.99 11.02

PSNR (dB) 35.50 36.22 37.78 38.06 38.80 38.80 38.81

MS-SSIM 0.951 0.962 0.978 0.989 0.991 0.991 0.991

Inference time (ms) 22 23 24 27 31 50 71

Num. of parameters (M) 0.89 2.03 3.01 3.99 4.97 7.85 9.79

and MS-SSIM improve slightly for both parts of the table. For example, for FC of

1024 and 2048, the parameters are increased by around 37% (5.67M vs. 8.99M) and584

49% (5.67M vs. 11.02M) while expanding the inference time by roughly 27% (40ms

vs. 55ms) and 49% (40ms vs. 78ms), respectively in terms of the upper parts. The586

PSNR and MS-SSIM are improving slightly for the feature channels of 1024 and 2048.

Therefore, we build the autoencoder model up to 512 output feature channels, assuring588

that inference on a single frame takes just 40 ms for encoding. However, in this case,

we proposed the DRSA in an autoencoder network to reduce the computational cost590

further. Along with the DRSA up to 512 feature channels (lower part of the table), the

parameters are minimized by approximately 12% (5.67M vs. 4.97M), and the inference592

time is reduced by roughly 23% (40ms vs. 31ms). Besides, the PSNR and MS-SSIM

are also improved by around 6% (36.32 vs. 38.80) and 2% (0.971 vs. 0.991), respec-594

tively. Thus, we can conclude that the effectiveness of our proposed DRSA in the MVC

module is unparalleled.596

5.5. Limitations

Our proposed approach has not investigated the entropy model and residual com-598

pression module. For entropy coding, [9] is applied in our experiment. As a result, the

overall coding speed is 1.9s (0.712s for the entropy coding). In addition, the current600
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traditional-based approach H.266/VTM [6] surpassed the recent deep learning-based

methods. Therefore, the entropy model needs further investigation in the future in order602

to reduce our overall coding speed, and a performance comparison using H.266/VTM

should be carried out.604

6. Conclusion

This article presented a fully end-to-end deep learning-based video compression606

framework that efficiently reduces temporal redundancy and optimizes the rate-distortion

tradeoff. A deep residual attention split (DRAS) block was proposed in a motion com-608

pression network to generate more valuable features for the decoder while enhancing

RDO efficiency. In motion compensation, a channel residual block (CRB) was sug-610

gested to produce a predicted frame accurately and play a role in boosting the residual

frame. An artifact contraction module (ACM) via the proposed residual swin convolu-612

tion UNet block has been included in this model to increase the reconstruction frame’s

quality. Furthermore, the training phase included an update buffer for the precise ref-614

erence frames. A single rate-distortion loss function was conducted to optimize all of

the modules. Our method received competitive PSNR, MS-SSIM, and bit-saving per-616

formance over others with fewer parameters (10.1M) on four datasets. An extensive

ablation study was also presented to prove the effectiveness of our proposed approach.618
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