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Abstract: A basic urea technique was successfully used to synthesize Mg/Al-Layered double hy-
droxides (Mg/Al LDHs), which were then calcined at 400 ◦C to form Mg/Al-Layered double oxides
(Mg/Al LDOs). To reconstruct LDHs, Mg/Al LDOs were fabricated with different feeding ratios of
Ni by the co-precipitation method. After synthesis, the Ni/Mg/Al-layered double hydroxides (NMA-
LDHs) with 20% and 30% Ni (S1 and S2) were roasted at 400 ◦C and transformed into corresponding
Ni/Mg/Al-layered double oxides (NMA-LDOs) (S1a and S2b, respectively). The physiochemical
properties of synthesized samples were also evaluated by various characterization techniques, such as
X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy
(EDS), Fourier transform infrared (FTIR), and Brunauer, Emmett, and Teller (BET). The adsorption
behavior of methyl orange (MO) onto the synthesized samples was evaluated in batch adsorption
mode under varying conditions of contact time, adsorbent quantity, and solution pH. As the dosage
amount increased from 0.01–0.04 g, the removal percentage of MO dye also increased from 83%
to 90% for S1, 84% to 92% for S1a, 77% to 87% for S2, and 93% to 98% for S2b, respectively. For
all of the samples, the adsorption kinetics were well described by the pseudo-second-order kinetic
model. The equilibrium adsorption data were well fitted to both Langmuir and Freundlich models
for methyl orange (MO). Finally, three adsorption-desorption cycles show that NMA-LDHs and
NMA-LDOs have greater adsorption and reusability performance for MO dye, signifying that the
design and fabrication strategy can facilitate the application of the natural hydrotalcite material in
water remediation.

Keywords: calcination; waste water; characterization; adsorption; isotherm; kinetics

1. Introduction

Water is essential for the development and existence of human society. However,
water pollution has become a serious problem with the increase in global development.
The physiochemical properties of fresh water can be affected by industrial waste water
discharges having color impurities, suspended solids, dissolved organics, and salts [1].
The production of dyes in the United States, Western Europe, and Japan has diminished
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considerably, while production in China, India, and some South Asian countries has in-
creased over the past 25 years [2]. Pigments in water are considered a primary pollutant
in contaminated water. When dyes are discarded into waste water, they become inert,
non-biodegradable, mutagenic, and carcinogenic for humans. Hence, one of the main
environmental concerns is to somehow remove these dye effluents. Therefore, it becomes
important to explore methods that eliminate contaminants from waste water efficiently and
without damaging the environment. Consequently, wastewater treatment of the dyes is a
field of interest for many researchers around the globe in an effort to develop a sustainable
treatment strategy [3]. Many different physiochemical techniques have been established
for this purpose [4,5], i.e., adsorption [6,7], biological oxidation [8], photocatalysis [9,10],
chemical coagulation [11], and ion-exchange [12]. The most popular technique for elim-
inating dyes from wastewater is adsorption. Its advantages over other methods are its
versatility, simplicity of use, low volume of sludge, and easy setup. In recent years, much
attention has been paid to the removal of dyes by using different adsorbents [13].

Methyl orange (MO) is one of the anionic dyes that is mostly used for coloring fabrics
in the textile industry. MO can cause genuine issues in people as well as in animals, i.e.,
skin allergies, and if ingested, it can cause gastrointestinal irritation with nausea, vomiting,
diarrhea, sickness, and respiratory irritation. Many researchers have worked over the
last few decades to investigate various absorbents to remove such toxic dyes, such as
activated carbon [14], graphene [15], fly ash [16], microorganism-graphene oxide [17],
and biomasses [18]. Unfortunately, all of these treatments have drawbacks due to the
difficulty of the regeneration process and their high cost [1]. Therefore, it is very important
to introduce a system that degrades and decolonizes pollutants like dyes from wastewater
before discharge.

One such popular class of material is Layered double hydroxide. The general formula
for layered double hydroxides (LDHs), commonly referred to as hydrotalcite-like anionic
clay, is [M2+

(1−x) M3+
x (OH)2]x+ (An−)(x/n) ×mH2O. Since it has a layered lamellar struc-

ture, is porous, has a high surface area, and has exchangeable interlayer anions, mH2O has
been reported to be an effective adsorbent material for treating wastewater [19]. LDHs are
preferred over other adsorbents due to their low cost, porous structure, stability, and large
adsorption capacity for the removal of pollutants, including wastewater treatment. Hence,
the use of LDHs in wastewater treatment is very beneficial. Different LDHs have been
reported, such as Mg-Al LDH [20], Fe3O4@MgAl-LDH [21], and Mg-Al-CO3−LDH [22],
and have been utilized for the removal of dyes from waste water. For example, Lu et al.
prepared the microsphere Fe3O4@MgAl LDH via the solvothermal route and observed its
adsorptive removal properties for Congo red dye [21]. Purushothaman et al. synthesized
Ni-Al LDH by the co-precipitation method, and adsorption results showed that the cal-
cined Ni-Al LDH can be employed as an adsorbent for the removal of dye from aqueous
solutions [23]. Mg-Fe-CO3−LDH was synthesized by Ahmed et al., who also looked into
the adsorption of anionic reactive dye [24]. Tri-metallic LDHs have been studied to increase
the amount of anions and enlarge host layers. Kowalik et al. synthesized CuZnAl-LDH and
investigated its memory effect by XRD studies [25]. Chagas et al. used the hydrothermal
method to prepare MgCoAl and NiCoAl LDHs and studied the structural characterization
and thermal decomposition of these samples [26]. Ni et al. synthesized Zn/Al-LDH and
used its calcined product for the adsorption of MO dye from its aqueous solution [1]. Ai
et al. used the hydrothermal method to synthesize Mg/Al-LDH to examine the adsorption
of MO dye [27]. Monash et al. prepared Ni/Al-LDH by a simple co-precipitation method
from their nitrate salts and used it as an adsorbent to eliminate methyl orange (MO) dye
from wastewater [23].

In this article, we reported a new approach to fabricating Mg/Al LDH with different
Ni concentrations (20% and 30%) (S1 and S2) and their calcined products (S1a and S2b), as
by inserting Ni into LDHs, MO dye can be removed from aqueous solutions with increased
surface area, chemical affinity, structural stability, and electrostatic interaction than with
simple LDHs. To optimize the sorption process, the effects of several parameters, such as
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solution pH, dye concentration, amount of dosage, and contact duration, were investigated.
The kinetics and isotherm processes were studied through batch adsorption experiments.
Furthermore, the as-prepared samples were characterized by different techniques, i.e., FTIR,
XRD, SEM, EDS, and BET, to carefully examine the structural relationship between porosity
and the adsorption amount of MO in aqueous solution.

2. Experimental
2.1. Materials

Magnesium chloride (MgCl2·6H2O), aluminum chloride (AlCl3·6H2O), urea [CO(NH2)2],
nickel nitrate (Ni(NO3)2·6H2O), sodium hydroxide (NaOH), and MO were purchased from
Xilong Science Co., Ltd. (Tianjin, China). All of the chemical reagents used in the research were
analytical grade and did not require any additional purification. Deionized water was used in
every step of the experiment.

2.2. Synthesis

Triple-metallic Ni/Mg/Al (20% and 30% Ni) LDHs were synthesized by the hydrother-
mal method followed by the co-precipitation method, which is different from the reported
work in which NMA-LDH was synthesized via the single-step hydrothermal method [28].
In detail, first, we prepared carbonated hydrotalcite Mg/Al with a molar ratio of 2:1 by
mixing MgCl2·6H2O, AlCl3·6H2O, and NaOH in 100 mL of deionized water. After mixing
in a ball milling apparatus, the obtained mixture was poured into a 100-milliliter Teflon-
lined stainless steel autoclave containing 0.18 moles of urea. The autoclave was maintained
at 150 ◦C for 12 h, and then the resulting precipitates were left to cool at room temperature.
The resulting precipitates were washed five times with water and ethanol. Finally, it was
dried for 12 h at 80 ◦C and then roasted at 400 ◦C to prepare LDOs [29]. In the process of re-
covery, 20% Ni and 30% Ni were added to prepare tri-metallic LDHs by the co-precipitation
method. The following is a description of the potential reaction mechanism [29,30]:

CO(NH2)2 + 3H2O→ 2OH− + 2NH+
4 + CO2 (1)

CO2 + 2H2O→ CO3
2− + 2H+ (2)

Mg2+ + Al3+ + OH− + CO2−
3 → MgAl − CO2−

3 − LDH (3)

MgAl − CO2−
3 − LDH 400 ◦C→ MgAl − LDO + H2O (4)

Ni2+ + MgAl − LDO + OH− → NiMgAl − LDH (5)

NiMgAl − LDH 400 ◦C→ NiMgAl − LDO + H2O (6)

Under hydrothermal conditions, urea can be broken down into ammonia gas (NH4
+)

and carbon dioxide (CO2), which can subsequently be changed into CO3
2− and OH− by

the addition of water. Finally, NiMgAl-LDH was formed after the interaction between
OH− and metal cations.

A schematic illustration of the synthesis of NMA-LDHs and NMA-LDOs is presented
in Figure 1. The percentages of Ni (20% and 30%) added were determined according to
the proportion of Mg content in LDOs, and the final products were labeled as NMA-LDHs
with 20% Ni as S1, NMA-LDHs with 30% Ni as S2, NMA-LDOs with 20% Ni as S1a, and
NMA-LDOs with 30% Ni as S2b.

2.3. Characterizations

The X-ray diffraction (XRD) pattern of the samples was obtained on an X-ray diffrac-
tometer (Rigaku D8 ADVANCE X-ray, Tokyo, Japan) using a Cu Kα radiation source
(λ = 1.5406 Å). Using a field emission scanning electron microscope (SEM-Hitachis-4800,
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Tokyo, Japan) fitted with an energy-dispersive X-ray spectroscopy (EDX) instrument (EDAX
SDD Octane Super, Wiesbaden, Germany), elemental mapping analyses were carried
out. To calculate the specific surface area, porosity, and pore diameter, nitrogen adsorp-
tion/desorption were performed on the volumetric analyzer(Micrometrics ASAP 2460,
Norcross, GA, USA) at 77 K. Fourier transform infrared spectroscopy (FT-IR Nicolet 8700,
Waltham, MA, USA) was used for functional group analysis. The MO concentration
was quantitatively tested after microfiltration by a UV-Vis spectrophotometer (Shimadzu
UV-2501 PC, Tokyo, Japan).
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2.4. Batch Adsorption Experiment

Adsorption studies were carried out to investigate the effects of contact time, pH, and
adsorbent dosage. These tests were performed using 10 mg of each prepared material
in a 250-milliliter beaker that contained 100 mL of a 25 mg/L MO solution at a solution
pH that ranged from 2 to 12. The pH of the solution was adjusted to suitable values by
adding NaOH (0.1 M) or HNO3 (0.1 M) and measured using a GLP 21 pH meter. The
suspension was collected every five minutes, and the final MO concentration was measured
using a UV-visible spectrophotometer with a maximum 464 nm wavelength. The effect
of dosage was examined by mixing MO solution (25 mg/L) and varying the adsorbent
dosage (10–40 mg) of each prepared sample in a 250-milliliter beaker.

According to the following equation, the adsorption capacity (mg/g) and percent
removal efficiency (%) were determined:

Removal % =
(Co − Ce)

Ce
× 100 (7)

whereas Co is the initial and Ce is the equilibrium concentration of MO solution.
All experiments were performed in triplicate. Experiments were conducted in series

under the same conditions to observe the adsorbent’s reusability. The suspensions were
carried out after equilibrium time, washed with 8% HNO3 to get rid of any remaining MO,
and dried in an oven at 100 ◦C before performing another adsorption cycle.

2.5. Adsorption Kinetics

Adsorption kinetic tests for MO were investigated by adding 10 mg of each sample
individually to 100 mL of MO solution (25 mg/L) at pH 9. The beaker was airtight and
continuously stirred at room temperature. After every 5 min, the aqueous sample was taken
out, and the concentration of MO dye was calculated by using a UV spectrophotometer
(Shimadzu UV-2501 PC, Tokyo, Japan) at a maximum absorption wavelength of MO
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(λmax = 464 nm). The adsorbed quantity (qt) of MO on prepared samples was calculated
using Equation (8).

qt =
(Co − Ct)×V

m
(8)

While Co (mg/L) is the initial concentration and Ct (mg/L) is the concentration of MO
dye at contact time, V (L) is the volume of solution, and m (g) is the mass of the adsorbent,
qt (mg/g) is the quantity adsorbed at contact time.

To understand the controlled mechanism of the adsorption process, the pseudo-first-
order and pseudo-second-order kinetic models were applied [31,32]. These kinetic model
linear expressions are given in Equations (9) and (10), respectively. In these equations,
qe (mg/g) represents the amount adsorbed at equilibrium, qt (mg/g) represents the amount
adsorbed at contact time t, k1 (min−1) represents the pseudo-first-order constant, and
k2 (g/mg min) represents the pseudo-second-order kinetic rate constant.

ln(qe − qt) = ln qe − k1t (9)

t
qt

=
1

k2qe2 +
t
qe

(10)

2.6. Adsorption Isotherm

For the calculation of the remaining MO concentration using a UV spectrophotometer.
An 0.01 g aliquot of each sample was dispersed in 100 mL of MO solutions (5–25 mg/L)
at pH 9 for 80 min at constant stirring, and at 25 ◦C, a sample of 2 mL of the resultant
suspension was obtained in order to determine the remaining concentration of MO by
using a UV spectrophotometer. Equation (8) was used to calculate the corresponding
removal capacity of each sample for MO. Using Equations (11) and (12), the acquired data
were fitted to the Langmuir and Freundlich isotherm models, where Ce (mg/L) denotes
the equilibrium concentration, qe (mg/g) is the amount adsorbed at equilibrium, and
qmax is the possible maximum amount adsorbed (mg/g). Theoretically, KL denotes the
Langmuir constant (L/mg), KF denotes the Freundlich constant [(mg/g) (L/mg)1/n], and
the heterogeneity factor is denoted by 1/n [33]. The maximum removal capacity for the
Freundlich model can be calculated from Equation (13).

Ce

qe
=

Ce

qmax
+

1
qmaxKL

(11)

ln qe = ln KF +
1
n

ln Ce (12)

KF =
qm

Co1/n (13)

The shape of the Langmuir isotherm and nature of adsorption can be studied by using
the separation factor RL, which has the following expression:

RL =
1

1 + KLCo
(14)

where Co (mg/L) is the initial MO concentration and KL denotes the Langmuir isotherm
adsorption constant (L/mg).

2.7. Regeneration Cycle

The reusability study of the adsorbents is an important aspect of their practical appli-
cation. Adsorption-desorption treatment cycles were performed to assess the reusability of
the prepared samples. 1 g of the samples was added to 50 mL of 25 mg/L MO solutions, and
the reaction was shaken at 150 rpm. Samples were collected after the MO dye adsorption;
they were cleaned to remove any remaining MO using 20 mL of 8% HNO3. To eliminate
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excess acid, the samples were washed many times with distilled water and then dried
at 100 ◦C before being applied in the next adsorption cycle. The adsorption-desorption
operations were carried out again with the same adsorbent [34].

3. Results and Discussion
3.1. Crystal Structure

The powder XRD pattern shows strong reflections of hydrotalcite for samples S1 and
S2, with seven significant peaks placed at approximately 11.3◦, 22.98◦, 34.6◦, 39.12◦, 46.3◦,
60.62◦, and 62.3◦ with the series of 003, 006, 012, and 015 planes of Mg/Al hydrotalcite
(JCPDS 35-0965) and planes of takovite (JCPDS 15-0087) with the series of 018, 110, and
113, respectively (Figure 2). The obtained values are also in good agreement with the
literature [35]. No peak of another phase was found, indicating the purity of the synthesized
samples. After calcination, the S1 and S2 change into their corresponding multi-metal
oxides, or LDOs. S1a and S2b samples exhibit a series of reflections at 111, 200, and 220,
located at approximately 36.8◦, 43.0◦, and 62.5◦ [36]. Moreover, the XRD patterns for S1a
and S2b are in accordance with the corresponding Ni/Mg/Al LDOs [28].
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3.2. Morphology and Elemental Composition

Figure 3a–d displays the SEM images and associated mappings of the samples, high-
lighting the ultrathin, layered hexagonal structure [37]. The S1 and S2 are homogeneously
grown in a lamellar structure (Figure 3a,b). No other morphology can be found from
the SEM images, which suggest Ni2+ inserts into the hydrotalcite crystal successfully.
One observes the hierarchical abundance of porous structures for S1a and S2b (Figure 3c,d),
which is favorable for enhancing the adsorption. The lamellar sheet’s various pore densities
produce a range of pore diameters, which likely helps to increase removal capacity and
improve surface area utilization. The difference in pore density of the lamellar sheet results
in different pore sizes, which probably enhances the removal capacity and particularly
improves the utilization efficiency of the surface area. More active sites for the adsorption
of MO dye can be provided by the lamellar mesoporous structure’s high surface area and
hierarchical pore structure, and the interconnected pore structure system can increase the
adsorption. Moreover, the presence of Ni in LDHs may be more effective in eliminating
anions with lower ionic radii since these can more easily fit into the interlayer gap of LDHs.
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The EDS spectrum (Figure 4a,b) shows S1a and S2b to be composed of Ni, Mg, Al, and
O, containing the equivalent weight percentages of 10.8, 26.1, 13.7, 49.3, and 17.1, 23.4, 13.0,
and 46.5, respectively. In the S2b sample, the amount of Ni is higher as compared to the
S1a sample. Therefore, the S2b sample is Ni-enriched in the core.
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The elemental mapping of S1 and S2 in Figure 4c,d shows that Ni occupies the gaps
between the initial Mg-Al structures.
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3.3. Pore Properties

The corresponding N2 adsorption-desorption isotherms and pore size distribution
(PSD) curves of samples are displayed in Figure 5. The prepared samples (S1, S1a, S2, and
S2b) clearly display a type IV isotherm with the obvious H3 hysteresis loop representing
mesoporous structure (Figure 5a) [38]. At a relative pressure P/Po of 0 to 0.3, the amount
of adsorbed nitrogen increases gradually, and the two lines of adsorption and desorption
almost practically merge into one. The adsorption isotherm of the samples slowly increases
with the increase of P/Po, whereas the BET surface areas of S1, S1a, S2, and S2b are 59, 66,
19, and 78 m2/g, respectively, showing an increasing trend. The PSD curves (Figure 5b)
show the adsorption pore size distributions in the range of 3–100 nm with a broad peak in
the range of 3–20 nm, which demonstrates the presence of a mesoporous surface according
to Groen’s report [39]. Table 1 summarizes the results of the pore structure parameters.
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Figure 5. Nitrogen adsorption-desorption isotherms (a) and pore size distribution curves (b) of the
prepared samples.

Table 1. Pore diameter, pore volume, and BET surface area of samples.

Samples dpore (nm) Vpore (cm3/g) SBET (m2/g)

S1 15.26 0.001 59
S1a 19.92 0.001 66
S2 15.77 0.002 19

S2b 23.90 0.003 78

According to the findings (Table 1), S2b has the highest BET surface area (78 m2/g)
and a mesoporous structure, which can be attributed to the removal of water from the
interlayers during the process of calcination. More active sites for adsorption may be
provided by the porous hierarchical structure and high surface area.

3.4. FTIR Spectra

Figure 6 displays the FTIR spectra of the prepared materials. The hydroxyl group
present in the interlayer and the presence of water molecules on the surface can be at-
tributed to the stretching vibrations that cause the absorption bands at 3497, 1634, and
1641 cm−1, respectively [20,40]. The peaks at 1370 and 1382 cm−1 indicate the co-existence
of nitrates [35] and carbonate species [41], respectively, in the galleries of LDHs. The new
broad and intense bands appear at low frequency, i.e., 627 and 669 cm−1 in S1a and S2b,
as compared to S1 and S2, and can be ascribed to the lattice vibrational modes of M–O
and O–M–O (M = Mg2+, Ni2+, or Al3+), as these are composed of positively charged layers
of metal oxides with interlayer oxygen atoms due to the large number of metal-oxygen
bonds [42], which is also in agreement with the XRD characterization.
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3.5. Adsorption of Methyl Orange
3.5.1. Effect of Initial pH on Dye Adsorption

The pH is an important factor in the control of the adsorption process. The effect of
pH in the range of (2–12) on MO dye adsorption is shown in Figure 7. MO adsorption by
synthesized samples is not significantly affected by a change in pH from 2–10. After pH 10,
a reduction in adsorption was seen, which is due to the increased competition between
excess OH− and MO anions for the surface sites, decreasing the adsorption of MO on the
surface [43,44].
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Furthermore, the maximum adsorption capacities of samples S1a and S2b (LDOs)
were higher than samples S1 and S2 (LDHs) for MO dye. This was due to the reconstruction
of S1 and S2 with the interaction of MO dye with S1a and S2b in solution [45].
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3.5.2. Effect of Dosage

Figure 8 shows the effect of the dosage of adsorbents on the percent removal efficiency
(%) of prepared samples. The results indicated that as adsorbent dosage was increased, the
percent removal efficiency (%) increased from 83% to 91% for S1, 84% to 93% for S1a, 76% to
87% for S2, and 93% to 98% for S2b, respectively. However, the maximum amount adsorbed
(mg/g) decreased. This decrease is due to the unviability of adsorption sites because of
aggregation, which reduces the total surface area accessible for further dye adsorption.
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A 0.01 g sample of adsorbent dosage was chosen as the optimum dosage to perform
experiments [46].

3.6. Adsorption Kinetics

Kinetic study is a vital factor in evaluating the effect of time and the mechanism of
sorption reactions [47]. The impact of contact time on MO adsorption by prepared samples
S1, S1a, S2, and S2b is illustrated in Figure 9. Figure 9a,b shows the pseudo-first-order
model and the pseudo-second-order kinetic model fitting the samples for the adsorption of
MO dye under specific conditions. Table 2 lists the constants that were determined from
the linear forms of kinetic models, which shows that The obtained correlation coefficients
(R2) are larger than 0.9, the values of the estimated qe from the pseudo-second-order model
are almost comparable to the experimental qe, and the kinetic adsorption fits better to the
pseudo-second-order model. These findings clarify that the pseudo-second-order sorption
mechanism predominates and that a chemisorption process appears to be in control of the
overall rate constant of the sorption process. The MO removal capacity of four samples
is shown in Figure 9c as a function of contact time, and the removal efficiency (%) of the
samples is shown in Figure 9d. From Figure 9c, one can observe that within the first 40 min
of the adsorption process, adsorption occurs continuously and speedily, and it took almost
the same amount of time (80 min) for all four samples to achieve adsorption equilibrium.
The low MO dye removal values found for S1 and S2 can be used to explain the strong
carbonate affinity for LDH compounds. However, it is significantly higher for calcined
products S1a and S2b because the adsorption is likely caused by both surface adsorption
and reconstruction mechanisms [48]. The same equilibrium time for S1a and S2b for S1 and
S2 is due to reconstruction phenomena (memory effect) [25].
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Figure 9. Adsorption kinetics, pseudo-first-order model (a), and pseudo-second-order model (b).
Effect of time on the removal capacity of MO for prepared samples (c) and removal efficiency (%) of
prepared samples (d) when MO = 25 mg/L, m = 0.01 g, V = 0.1 L, T = 25 ± 1 ◦C, and pH = 9 ± 0.2.

Table 2. Pseudo-first-order and pseudo-second-order kinetic model constants of the as-prepared samples.

Samples qe,exp (mg/g) Pseudo-First-Order Model Pseudo-Second-Order Model

qe,cal (mg/g) k1 (×10−2 min−1) R2 qe,cal (mg/g) k2 (×10−3 g/mg min) R2

S1 211.4 1.636 7.47 0.9043 246.0 2.51 0.970
S1a 220.6 1.646 7.54 0.7531 250.0 4.50 0.991
S2 185.5 1.483 3.70 0.9700 222.2 2.82 0.972

S2b 228.3 1.719 6.70 0.8166 256.4 2.89 0.980

3.7. Adsorption Isotherm

The adsorption isotherms for the uptake of MO onto S1, S1a, S2, and S2b at MO
concentrations of 5–25 mg/L, m = 0.01 g, V = 0.1 L, T = 25 ± 1 ◦C, and pH = 9 ± 0.2
(without changing the initial pH) are shown in Figure 10a–d.
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Figure 10. The equilibrium adsorption isotherms, effect of MO concentration on removal capacity (a),
Langmuir isotherm model (b), Freundlich isotherm model (c), and maximum removal capacity of
prepared samples (d) when the MO concentration was 5–25 mg/L, m = 0.01 g, V = 0.1 L, T = 25 ± 1 ◦C,
and pH = 9 ± 0.2 (without adjusting the initial pH).

The MO dye adsorption isotherms of the four prepared samples after 80 min. of contact
time are presented in Figure 10a with different MO concentrations (5 to 25 mg/L). The Lang-
muir isotherm theory is based on adsorbate monolayer coverage across a homogeneous
adsorbent surface. The fundamental assumption is that adsorption occurs at specified,
homogenous locations within the adsorbent. Once a dye molecule has occupied a site, no
subsequent adsorption may occur there. Figure 10b represents the Langmuir adsorption
isotherm model for all samples. The Langmuir model is appropriate for modeling the MO
adsorption equilibrium onto the S1, S1a, S2, and S2b. The Langmuir isotherm-determined
monolayer maximum adsorption capacity is 322.5 mg/g for S2b, as shown in Table 3. The
value of RL determines whether the isotherm has an unfavorable (RL > 1), linear (RL = 1),
favorable (RL = 1), or irreversible (RL = 0) shape [14]. The calculated RL values for various
initial MO concentrations range from 5 to 25 mg/L, which lie between 0 and 1, indicating
that adsorption is a useful process. Furthermore, the low RL values suggested that the
interaction of dye molecules with samples was quite strong [49]. The obtained values
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of qmax and KL are calculated from the linear Langmuir plot. The values for Langmuir
constant KL (0.1410–0.1787) are within the range of 0–1, which specifies the favorable intake
of MO. The isotherm correlation coefficient is relatively high (R2 = 0.9996), indicating that
the Langmuir model is adequate for explaining the adsorption equilibrium of MO onto the
prepared samples. According to Table 3, the maximal removal capacity for S1 is 250 mg/g,
S1a is 270.2 mg/g, S2 is 232.55 mg/g, and S2b is 322.58 mg/g.

Table 3. Langmuir isotherm and Freundlich isotherm model constants of the as-prepared samples.

Samples Langmuir Isotherm Model Freundlich Isotherm Model

qmax (mg/g) KL (L/mg) R2 RL qmax KF (mg/g) (L/mg)1/n n R2

S1 250.0 0.1562 0.993 0.169–0.359 5.674 1.285 1.55 0.991
S1a 270.2 0.1787 0.999 0.156–0.528 5.130 1.320 1.54 0.988
S2 232.5 0.1410 0.993 0.154–0.369 5.620 1.248 1.57 0.991

S2b 322.5 0.1527 0.993 0.171–0.567 5.813 1.331 1.41 0.985

After calcination, specific surface areas of S1a and S2b are increased, which in turn
is responsible for producing more active sites and enhanced adsorption capacity for the
pollutant. The adsorption capacity values for S1 and S2 are lower than the calcined samples.
The possible reason is that it is difficult to dislocate the carbonate anion position from the
interlayers of hydrotalcite compounds, as these structures have strong carbonate anion
binding affinity [36]. After adsorption of MO, the adsorption isotherms of samples S1
and S2 were more dispersed due to the complexity created by intercalated ions, while
the reconstructed structures of samples S1a and S2b did not include interlayer carbonate
anions [50]. Furthermore, from the Langmuir isotherm model equation, the calculated qmax
of S2b for MO is greater than that of used materials as adsorbents, as recently stated in the
past work in Table 4. The inconsistency might be attributed to the unique and different
structures and physical or pore properties.

Table 4. Comparison of the removal capacities of different adsorbents for MO removal.

Adsorbents Surface Area (m2/g)
qmax

(mg/g)/Removal% References

Zn/Al-LDO ----- 181.9 [1]
C-NiAl 90 291.9 [38]

NiFe-LDH ----- 246.9 [43]
CaAl-LDH ----- 96.6 [51]

Mg/Fe-LDH 48.7 194.9 [27]
Ni/Mg/Al-LDO 77.8 322.5 This work

The Freundlich isotherm is an empirical equation that assumes adsorption occurs
on heterogeneous surfaces and that adsorption capacity is related to dye concentration
at equilibrium. The plot between lnqe and lnCe (Figure 10c) provides the Freundlich
isotherm constants KF and n. The Freundlich constant n indicates the adsorption process’s
favorability. For optimal adsorption conditions, n should be less than 10 and greater than
unity. In this case, the value of n for the Freundlich model was greater than one, indicating
that the adsorption of MO onto S1, S1a, S2, and S2b was favorable. Moreover, the correlation
coefficient (R2 = 0.991) indicates that the experimental data coincide with the Freundlich
model. The isotherm parameters investigated for the Langmuir and Freundlich models are
presented in Table 3.

The evaluated values of RL are in the range of 0–1 (Table 3), which illustrates the
efficient adsorption of MO by NMA samples [43].
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3.8. Regeneration Cycles

Regeneration tests were carried out in order to assess the effectiveness, stability, and
possibility of repeated application of the prepared samples. The removal of MO from
the adsorbent after each cycle was performed by using 8% HNO3 as a desorption agent.
Figure 11 displays the removal efficiency (%) decrease from cycle 1 to cycle 3. In the first
cycle, the percentage adsorption for adsorbents S1, S1a, S2, and S2b was 83%, 84%, 76%,
and 93.3%, respectively. Whereas 62%, 63%, 58%, and 72% removal percent were observed
for adsorbents S1, S1a, S2, and S2b, respectively, in the third cycle. This decrease in removal
percent can be attributed to the influence of surface area and the gradual collapse of the
porous structure into a more compact structure [30]. The feasibility of reuse for the prepared
samples with complete adsorption of MO dye molecules has been established, which is
useful in its practical waste water treatment applications [44].
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adsorption capacity following the order: S2b > S1a > S1 > S2. Furthermore, the adsorp-
tion-desorption cycles indicate beĴer reusability and stability of the prepared samples. 
All outcomes showed that NMA-LDHs and NMA-LDOs were efficient and cheap alter-
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Figure 11. Reusability of adsorbents for the adsorption of MO in three adsorption-desorption cycles
when MO = 25 mg/L, m = 1 g, V = 0.1 L, T = 25 ± 1 ◦C, and pH = 9 ± 0.2.

4. Conclusions

We synthesized Mg/Al LDH by the urea method and converted it into Mg/Al LDOs by
roasting it at 400 ◦C. These metal oxides reformed (memory effect) finally into tri-metallic
Ni/Mg/Al layered double hydroxides (NMA-LDHs) when we added Ni in different
percentages (S1 and S2) by the co-precipitation method. S1 and S2 were changed into
Ni/Mg/Al layered double oxides (S1a and S2b) after being calcined at 400 ◦C. These
prepared samples have a hierarchically porous structure, with the lamellar sheet’s mor-
phology having various pore densities. The characteristic XRD studies accessible in this
work are accompanied by valuable mechanistic and kinetic interpretations. The adsorp-
tion performance of MO is strictly related to the feeding ratio of Ni2+ in NMA-LDOs,
as the insertion of nickel ions into the LDH lattice results in additional surface defects
and positively charged sites, which increase MO’s chemical affinity. The S1, S2, S1a, and
S2b have mesoporous structures, which account for the greater specific surface area and
broader pore size dispersion (3–100 nm). The calcined samples (S1a and S2b) showed a
large percentage of MO removal (84% and 93%, respectively) as compared to the uncalcined
samples (S1 and S2). The optimal dosage and contact time of prepared samples were 0.01 g
and 80 min, respectively. pH was found to have an insignificant effect on the adsorption
capability of all samples in the pH range of 2 to 10. The adsorption kinetics of all samples ad-
sorbing MO were established to follow the pseudo-second-order model. Both the Langmuir
and Freundlich models were well-fitted to the data, with Langmuir adsorption capacity
following the order: S2b > S1a > S1 > S2. Furthermore, the adsorption-desorption cycles
indicate better reusability and stability of the prepared samples. All outcomes showed that
NMA-LDHs and NMA-LDOs were efficient and cheap alternatives for the removal of dyes
from wastewater.
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