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A B S T R A C T   

Potatoes are the third-largest food crop globally, but their production frequently encounters difficulties because 
of aggressive pest infestations. Early classification those potato pests plays an important role in the detection and 
prevention of their notorious attack. The aim of this study is to investigate the various types and characteristics of 
these pests and propose an efficient PotatoPestNet AI-based automatic potato pest identification system. To 
accomplish this, we curated a reliable dataset consisting of eight types of potato pests. We leveraged the power of 
transfer learning by employing five customized, pre-trained transfer learning models: CMobileNetV2, CNAS-
LargeNet, CXception, CDenseNet201, and CInceptionV3, in proposing a robust PotatoPestNet model to accu-
rately classify potato pests. To improve the models’ performance, we applied various augmentation techniques, 
incorporated a global average pooling layer, and implemented proper regularization methods. To further 
enhance the performance of the models, we utilized random search (RS) optimization for hyperparameter tuning. 
This optimization technique played a significant role in fine-tuning the models and achieving improved per-
formance. We evaluated the models both visually and quantitatively, utilizing different evaluation metrics. The 
robustness of the models in handling imbalanced datasets was assessed using the Receiver Operating Charac-
teristic (ROC) curve. Among the models, the Customized Tuned Inception V3 (CTInceptionV3) model, optimized 
through random search, demonstrated outstanding performance. It achieved the highest accuracy (91%), pre-
cision (91%), recall (91%), and F1-score (91%), showcasing its superior ability to accurately identify and classify 
potato pests.   

1. Introduction 

Food security around the world is a serious concern. According to the 
report of the director general of FAO [1], 50% of food demand will in-
crease by 2050. To face the challenge, the production of crops must be 
increased. Among the crops, potato is the third largest food crop after 
rice and wheat across the world [1]. It is a globally indispensable crop 
with considerable economic, nutritional, and food security value [2,3]. 
In 2019, the value of global potato exports was estimated to be around 
$6.2 billion USD, with the largest exporters being France, the 
Netherlands, and Germany. It is grown in more than 125 countries, of 
which China and India are the largest producers [4]. A statistic on the 

amount of potato production and area of land based on cultivation all 
over the world is shown in Figs. 1 and 2, respectively [4]. 

However, potato production is severely hampered by pests and dis-
eases, which cause major output losses and diminish crop quality. 
Nineteen types of potato pests were recorded in a study of Bangladesh 
[5]. Among them, eight types of pests are more harmful. They are 
Agrotis ipsilon (Hufnagel), Amrasca devastans (Distant), Aphis gossypii 
Glover, Bemisia tabaci (Gennadius), Brachytrypes portentosus Lichten-
stein, Epilachna vigintioctopunctata (Fabricius), Myzus persicae 
(Sulzer), and Phthorimaea operculella (Zeller). 

For effective management and control, detection and identification 
of pests at an early stage are crucial. At the outset of this study, it was 
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required to determine farmers’ knowledge of potato pests and their 
methods for treating diseases caused by potato or potato leaf pests. 
Okonya et al. [6] conducted research in Uganda, where they surveyed 
agricultural households to determine the farmers’ awareness of potato 
pests. This study was conducted in Uganda’s six districts in August and 
September 2013. The survey question was designed so that they could 
identify the most susceptible pests based on interview responses. The 
study allowed the researchers to identify the most severe and moder-
ately severe pests. Only 5% of the 204 farmers were able to accurately 
answer questions about insect pests, according to the results of the 
study. That means the farmers are not well-versed in pest identification. 
They need to go to the nearest agriculturist, which is time consuming 
and a hassle. To solve this issue, artificial intelligence (AI) is one of the 
best ways to diagnose and identify potato pests. With the development of 
technology, machine learning algorithms have been created to identify 
and classify pests, making the procedure more efficient and precise [7]. 
Algorithms for machine learning can analyze huge volumes of data 
rapidly and precisely [8], enabling farmers to make informed decisions 
regarding crop management and resource allocation. This can lead to 
better efficiency in the use of resources, including water, fertilizer, and 
pesticides, which can ultimately result in larger yields and lower costs. 
Using those algorithms, it is possible to detect and categorize crop ill-
nesses and pests, enabling early intervention and the reduction of crop 
losses. This can improve the crop’s quality and reduce waste. Also, 
machine learning algorithms can aid farmers in adopting more sus-
tainable agricultural methods [9], such as precision agriculture and in-
tegrated pest management. This can decrease the environmental impact 
of farming and increase long-term sustainability. 

This study investigated the application of machine learning algo-
rithms in potato pest recognition and analyzed the maximum level of 
precision. Using five customized tuned (CT), and pre-trained machine 
learning techniques, which are CTDenseNet201, CTMobileNetV2, 
CTNASLargeNet, CTXception, and CTInceptionV3, on our prepared 
dataset, this paper proposes a PotatoPestNet model that has the highest 
efficiency and robustness in detecting and identifying various forms of 

potato crop pests. The findings of this study will assist potato farmers 
and researchers in the development of efficient and effective pest 
management measures, ultimately resulting in increased potato yields 
and enhanced crop quality. The main contribution of this study can be 
summarized as follows:  

• Preparation of Potato Pest dataset. 
• Increasing the size of dataset and reducing using different augmen-

tation techniques.  
• Modifying five pre-trained model.  
• Replacing fully connected layer and dropout layer to reduce further 

level of overfitting.  
• Application of random search technique for hyper parameters tuning 

of the models.  
• Comparing the performance of the models to find the best model.  
• Proposing PotatoPestNet by fine tuning the CTInceptionV3-RS based 

transfer learning model.  
• Performance evaluation of PotatoPestNet model and comparing with 

the earliest research. 

Section 2 of this paper has detailed other related research effort. 
Section 3 contains the method and materials. Section 4 depicts the 
experimental setup. Sections 5, 6, 7, and 8 exhibit the result analysis, 
discussion, limitation, and conclusion, respectively. 

2. Literature review 

The food demand of a growing global population is making agri-
culture more important than ever. Scientists are working on various 
aspects at once to find ways to increase agricultural production and 
guarantee a constant supply of fresh crops. Potatoes are one of the most 
extensively consumed crops in the world, which means that their pro-
duction is necessary in almost every region. As a result, scientists are 
always looking for new hardware and software methods in agriculture 
that may help to make larger production. 

Five years ago, the researchers did AI research in the agricultural 
field, detecting different plant diseases and nutrient deficiencies by leaf 
image processing. Many of the traditional machine learning algorithms 
like SVM, random forest, decision tree, k-means clustering, and so on 
were more popular [10,11]. Some researchers tried to use ANN tech-
niques in leaf disease classification [12]. Due to the huge number of 
training parameters and large computation time, ANN is replaced by 
CNN. However, many comparative studies have revealed that the 
traditional models are less effective in plant disease classification. 
Sujatha et al. [13] showed a comparative study between the traditional 
ML model and deep learning models for citrus leaf disease detection. 
VGG16, VGG19, and InceptionV3 were the most prominent in classifi-
cation accuracy. Similarly, Harakannanavar et al. [14] also summarized 
the effectiveness of CNN machine learning techniques in detecting to-
mato leaf disease. Further, Jackulin et al. [15] found that the deep 
learning models performed better in plant disease diagnosis. But the 
problem is the requirement for a large dataset. To avoid the problem of a 
limited dataset and to get better performance, the researchers started to 
apply the transfer learning concept. 

Since our study was related to potato pest identification, we tried to 
focus on the studies on AI in potatoes. Many research studies have been 
conducted on potato leaf diseases recognition. Mahum et al. [16] pro-
posed an efficient DenseNet201 by adding an extra transition layer to 
classify five types of potato leaf diseases. A reweighted cross entropy loss 
function was used to make the model more robust. Regularization was 
used to reduce the overfitting. The efficient DenseNet201 models had an 
accuracy of 97.2%. The authors did not focus on data preprocessing 
widely here. But Kumar et al. [17] did it and proposed a hierarchical 
deep learning convolutional neural network (HDLCNN) model to iden-
tify the potato leaf disease. The median filtering method was applied to 
remove noise in dataset preprocessing. The author introduced the 

Fig. 1. Potato production/ yield quantities in the world [Source: FAOSTAT, 
May 6, 2023]. 

Fig. 2. Production share of potatoes by region [Source: FAOSTAT, May 
6, 2023]. 
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intuitionistic fuzzy local binary pattern (IFLBP) to extract features and 
applied HDLCNN to classify the potato leaf diseases. The accuracy of 
HDLCNN was approximately 4% greater than that of VGG-INCEP, Deep 
CNN, Random Forest methods (RF), and other spiking neural networks 
(SNN) methods. Transfer learning may not always perform the best. 
Arshaghi et al. [18] showed it. He designed a convolutional neural 
network (CNN) to detect five classes of potato diseases and compared it 
with Alexnet, Googlenet, VGG, R-CNN, and transfer learning models. 
The CNN model outperformed the other models and contributed 99% 
accuracy. Many scientists tried to modify pre-train models in potato 
disease classification for better performance. Al-Adhaileh et al. [19] 
customized a convolutional neural network (CNN) to detect early blight, 
late blight, and healthy leaves of potatoes. It outperformed the existing 
work with 99% accuracy. The author did not use any tuning techniques. 
Anim-Ayeko et al. [20] proposed the ResNet-9 model for detecting the 
blight disease state of potato and tomato leaf images, where hyper-
parameter optimization was used in their work that gave 99.25% test 
accuracy. 

Most of the studies are on the diagnosis of potato leaf diseases. We 
have tried to review some of the previous work on crop pest identifi-
cation as well as potato pest diagnosis. Huang et al. [21] utilized deep 
learning for feature extraction of the tomato pest’s dataset and classified 
it using conventional machine learning models named discriminant 
analysis (DA), support vector machine, and k-nearest neighbor method 
(KNN). Bayesian optimization was used for hyperparameter tuning. 
VGG16 after the augmentation exhibited 94.95% accuracy. But 
ResNet50 with the discriminant analysis model achieved 97.12% accu-
racy. Loti et al. [22] used six traditional feature-based approaches and 
six deep learning feature-based approaches to extract the significant 
features, which were then classified by SVM, RF, and ANN for the chili 
plant diseases and pest infestation. The outcome of this research was 
that the deep learning feature-based approaches performed better, and 
the SVM classifier achieved the best accuracy of 92.10%. That means the 
studies used a hybrid concept of traditional machine learning and deep 
learning models. In consideration of time as well as performance, Cheng 
et al. [23] employed a convolutional neural network (CNN) model and 
Xie’s research database to classify images of 10 agricultural pests. They 
utilized the visual geometry group 16 (VGG16) model, which achieved 
an accuracy rate of 95.33%. Additionally, they developed a pest detec-
tion system using a faster R-CNN model that was capable of processing 
images with complex backgrounds and accurately detecting and 
tracking pests, even those with protective coloring. In just pest identi-
fication, Sourav et al. [24] suggested a transfer learning model named 
VGG19 to identify the most vital four types of jute pests. His-proposed 
model provided 95.86% accuracy. He did not check the response of 
another pre-trained models. 

From the literature review, it is clearly found that no study has been 
accomplished on potato pest identification by using machine learning. 
Most of the research works are executed in the disease diagnosis of 
potatoes by leaf image processing. Previously, though traditional ML 
models were preferred, they are being replaced by CNN models, transfer 
learning models, hybrids of them, and many other approaches for better 
performance. Some of the research was on pest identification in different 
plants. In our study, we successfully prepared a dataset of potato pests 
and proposed a CTInceptionV3-RS-Based PotatoPestNet model to iden-
tify potato pest efficiently and robustly. 

3. Materials and methodology 

Automatic early diagnosis of potato pests is a significant develop-
ment in the field of agriculture that has been accomplished through this 
research. We have proposed a robust and efficient PotatoPestNet ma-
chine learning model to detect potato pests. The work flow and the 
entire process are presented below. 

3.1. Dataset preparation 

With the advent of artificial intelligence in agriculture, a new field of 
research has emerged to enhance its application and performance. But 
preparing a dataset of sufficient size is the ultimate obstacle. In this 
study, we did not get any publicly available datasets on potato pests. 
There was also no recognized institution or source from which we could 
collect the data. That’s why our team prepared the dataset by web 
scraping using the open-source Python library named downloader. 
download (). According to the report of agriculture ministry of 
Bangladesh, there are 19 pests for potato cultivation [5]. But due to the 
limitations of images in Google Images, online portals, newspapers, and 
publicly shared samples, we have focused on the eight most commonly 
deleterious types of potato pests. Those eight types of pests are more 
harmful compared to others. That’s also a reason to choose them. The 
name of the pest and number of finally collected images are listed in 
Table 1 and shown in Fig. 3. The collected images were checked 
manually by an agriculturist before being placed in the proper class. In 
the last steps, data pre-processing operations such as enhancing the 
contrast, cropping to remove unnecessary portions, background removal 
were applied. Thus, ultimately, we prepared the whole dataset, which 
has a total of 495 images in eight classes. The dataset was split into 
training, testing, and validation data with a ratio of 70:15:15, as shown 
in Table 2. 

3.2. Data augmentation 

In many fields, like medical, agriculture, and so on, the collection of 
large numbers of images is very arduous. In image classification using 
machine learning, the larger the dataset, the greater the effectiveness of 
the model [25]. Data augmentation is a technique by which the number 
of images can be increased. It greatly contributes to reducing the over-
fitting of models [26,27]. According to many studies, this augmentation 
technique not only reduces overfitting but also improves the accuracy of 
the model and deals with regularization problems [28]. In our work, we 
used the augmentation method due to the smaller number of images in 
the dataset. During the training phase, we utilized six different 
augmentation techniques on the training dataset. The augmentation 
procedures used in our work are summarized in Algorithm 1. Moreover, 
the number of iterations in our work was one. After augmentation, the 
number of training images was 2268. 

3.3. Transfer learning 

For the effective design of a new CNN model, a large dataset is always 
required. But there is no massive, labeled dataset of potato pests. 
Transfer learning (TL) is one of the solutions to this challenge. It is a 
process by which the knowledge gained in solving a problem is used to 
solve similar types of problems [29]. The concept of transfer learning is 
depicted in Fig. 4. The TL models trained on a large ImageNet dataset 
with 1000 classes can be used for feature extraction on the small dataset. 
The It reduces the training time, overfitting the model, and enhances the 
model’s accuracy [30]. In our work, we have used five prominent 

Table 1 
Name of the potato pests and corresponding number of images.  

Name of potato pest Number of images 

Agrotis ipsilon (Hufnagel) 139 
Amrasca devastans (Distant) 62 
Aphis gossypii Glover 37 
Bemisia tabaci (Gennadius) 35 
Brachytrypes portentosus Lichtenstein 35 
Epilachna vigintioctopunctata (Fabricius) 70 
Myzus persicae (Sulzer) 75 
Phthorimaea operculella (Zeller) 42  

Total= 495  
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pre-trained models, such as DenseNet201, MobileNetV2, NASNetLarge, 
Xception, and InceptionV3. The trainable, non-trainable, and total pa-
rameters are listed in Table 3. It is obvious that the trainable parameters 
are reduced, thereby reducing the computational time. 

3.4. Random search 

Random search algorithm (RSA) is a method to find the optimal set of 
hyperparameters for machine learning models [31]. The parameters that 
are set before the training of the models are called hyperparameters. 
Learning rate, dropout rate, optimizer, and so on are examples of 
hyperparameters. In the random search technique, the values of 
hyperparameters are specified in a definite range. The algorithm picks 
randomly a set of parameters and analyzes the model with this param-
eter. It continues to the end and finally chooses the best-performing 
parameters [32]. If Θ is the search space, θi are the hyperparameters 

Fig. 3. Visual presentation of our dataset.  

Table 2 
Training, testing and validation dataset.  

Training data Testing data Validation data 

342 81 71  

Fig. 4. Transfer Learning approach.  

Table 3 
Trainable and non-trainable parameters of customized TL models.  

Name of Models Total 
Parameters 

Non-trainable 
parameters 

Trainable 
parameters 

CTMobileNetV2 2268,232 2257,984 10,248 
CTNASNetLarge 84,949,082 84,916,818 32,264 
CTXception 20,877,872 20,862,480 16,392 
TCDenseNet201 18,337,352 18,321,984 15,368 
CTInceptionV3 

(PotatoPestNet) 
21,819,176 21,802,784 16,392  
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(i = 1, 2, 3…. n), n is the set of hyperparameters and Θ∗ are the best 
performing parameter of a function f(θ), the mathematically it can be 
expressed like the Eq. (1). 

Θ∗ = argmax/min (f (θi)) (1)  

Where max/min denotes the maximization or minimization of the 
function. 

The whole procedures are summarized in Algorithm 2. 

3.5. Proposed framework 

The main intention of the proposed robust PotatoPestNet model is to 
identify potato pests automatically, reducing time and human effort, and 
thereby improving the treatment and production of potatoes. In our 
study, the first challenge was the limited size of the data. By using the 
augmentation technique, we have increased the size of our dataset. But 
still, it is small for the CNN model. To avoid the problem of the small size 
of the dataset, we have used the TL concept. Five well known pre-trained 
models, such as DenseNet201, MobileNetV2, NASNetLarge, Xception, 
and InceptionV3, are used in the study. The TL models are already 
trained on a large ImageNet dataset with 1000 classes. The models are 
not directly used in our work. The layers of feature extraction in the 
models are kept unchanged, but the classification layers are changed, as 
shown in Fig. 5. The fully connected layer is replaced by a global average 
pooling layer to minimize the overfitting of the model. In addition to 
regularization, a drop out layer was also applied to reduce model 

overfitting at another level, and finally, a dense layer with the SoftMax 
activation function was added to classify the potato pest images. 

For the training of the models, we have used categorical cross- 
entropy loss function to measure the differences between the pre-
dicted probability distribution and the true probability distribution. The 
other parameters are listed in Table 4. Since our dataset is small, there is 
a high probability of overfitting and bad performance. That’s why we 
tuned the hyperparameters using random search techniques. It is 

Fig. 5. Customized pre-trained models.  

Table 4 
The synopsis of the parameters used in the models.  

Performance Measures Customized DenseNet201 

No of epochs 50 
Batch Size 16 
Image Size 224×224 
Activation function SoftMax 
Loss Categorical cross-entropy  

Table 5 
Random search space.  

Parameters Values 

Optimizers [’adam’, ’rmsprop’, ’sgd’] 
Learning rate [1e-1, 1e-2, 1e-3, 1e-4, 1e-5] 
Dropout rate [0.2, 0.3, 0.4, 0.5]  
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preferred over grid search due to its computational efficiency. We 
selected three hyperparameters for random search: optimizer, dropout 
rate, and learning rate. The random search method is already described 
in Algorithm 1. The search space is given in Table 5. After getting the 
tuned parameters, the models are named hyper-parameter tuned 
modified models, which are pre-trained models that are trained with 
training data and validation data. Then the models are tested with our 
test dataset. The CTInceptionV3 model outperforms the others, and it is 
chosen and named after PotatoPestNet. The whole procedure is depicted 
in Fig. 6. 

3.6. Model evaluation 

Model evaluation is the way to assess the performance of a model. It 
is a measure of how well the model is able to classify the new data. There 
are qualitative and quantitative methods to evaluate. In our work, both 
are used to assess the models. The performance metrics that are used, are 
precision, recall, f1-score, accuracy, ROC, and confusion matrix. 

Precision: It is the proportion of true positive sample to the all- 
positive prediction. It is given by- 

Precision =
TP

TP + FP
∗ 100 (2) 

Recall: The proportion of true positive instance among the actual 
positive instances is call recall and given by- 

Recall =
TP

TP + FN
∗ 100 (3) 

F1-score: It is the harmonic mean of precision and recall. It can be 
defined by- 

F1 score = 2 ∗

(
Precision ∗ Recall
Precision + Recall

)

∗ 100 (4) 

Accuracy: It indicates how many instances are classified perfectly by 
the model. It can be calculated by the following equation. 

Accuracy =
TP + TN

TP + TN + FP + FN
(5) 

ROC: ROC (Receiver Operating Characteristic) is a graphical repre-
sentation of the performance of a binary classification model, which 
shows the trade-off between the true positive rate (TPR) and the false 
positive rate (FPR) as the discrimination threshold of the model is 
varied. 

Confusion Matrix: A confusion matrix is a table that summarizes the 
performance of a machine learning model on a classification task, by 
comparing the predicted class labels with the actual class labels in the 
test dataset. 

N.B. TP denotes the true positive; TN is the true negative; FP denotes 
the false positive; FN denotes the false negative. 

4. Experimental setup 

To implement and evaluate the proposed model, we used Collabo-
ratory, which runs on a virtual machine (VR). In our session, VR used 
multiple CPU cores and was GPU-backed. The available disk storage was 
around 100 GB, and the RAM was 12 GB. In our experiment, we utilized 
the Python 3.7 programming language along with specific versions of 
various libraries. The versions used were Keras 2.3.1 and TensorFlow 
2.0. These libraries provided us with essential tools and functions for 
building and training our machine learning models. For data visualiza-
tion purposes, we employed the Matplotlib and Seaborn libraries. These 
libraries enabled us to create insightful plots, charts, and graphs to 
visualize our data, model performance, and other relevant information. 
Internet with 100 Mbps speed was connected without interruption. 

Fig. 6. Proposed PotatoPestNet framework for potato pest identification.  

Table 6 
The outcome of CDenseNet201 with different hyperparameters combinations.  

Model Name Combination of the hyper parameters Validation Accuracy 
(%) 

Dropout 
rate 

Learning 
rate 

Optimizer 

CDenseNet201 0.4 0.00001 SGD 14.08 
0.5 0.01 Adam 28.16 
0.4 0.1 Adam 28.16 
0.4 0.0001 SGD 28.21 
0.3 0.001 Adam 30.98 
0.5 0.0001 SGD 42.25 
0.3 0.001 RMSprop 43.66 
0.3 0.00001 Adam 85.91 
0.4 0.0001 Adam 92.95 
0.3 0.0001 Adam 95.77  

Table 7 
The outcome of CMobileNetV2 with different hyperparameters combinations.  

Model Name Combination of the hyper parameters Validation Accuracy 
(%) 

Dropout 
rate 

Learning 
rate 

Optimizer 

CMobileNetV2 0.4 0.1 RMSprop 28.16 
0.3 0.01 RMSprop 28.16 
0.4 0.01 RMSprop 28.16 
0.2 0.01 RMSprop 28.16 
0.4 0.0001 SGD 33.80 
0.4 0.001 Adam 35.21 
0.5 0.00001 RMSprop 54.92 
0.4 0.001 SGD 64.78 
0.5 0.0001 RMSprop 69.01 
0.4 0.0001 Adam 80.28  
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5. Result analysis 

The objective of our study was to develop an artificial intelligence 
expert system for accurately identifying potato pests. To achieve this, we 
employed five prominent pre-trained models, namely CTInceptionV3, 
CTXception, CTNASNetLarge, CTMobileNetV2, and CTDenseNet201. 
These models were customized and fine-tuned using different combi-
nations of hyperparameters obtained through the random search (RS) 
technique. The RS technique involved conducting 10 trials, each 

consisting of 20 epochs, to explore various hyperparameter configura-
tions. The goal was to identify the optimal combination of hyper-
parameters that maximized the validation accuracy. The results of the 
RS technique, including the best hyperparameter configurations, are 
presented in Tables 6, 7, 8, 9, and 10. The most effective combination of 
hyperparameters for each pre-trained model is highlighted, bolted, and 
underlined in the last row of the respective table. To summarize the 
tuned parameters, Table 11 provides an overview of the selected 
hyperparameters for each model. The CDenseNet201, CMobileNetV2, 
and CNASNetLarge models achieved better accuracy when trained with 
the Adam optimizer, employing a learning rate of 0.0001 and dropout 
rates of 0.3, 0.4, and 0.3, respectively. On the other hand, the CXception 
and CInceptionV3 models performed optimally with the SGD optimizer, 
utilizing a learning rate of 0.1 and dropout rate of 0.4, respectively. 

Following the determination of the best hyperparameters, we indi-
vidually trained each model using our training and validation datasets. 
The analysis of the trained models is presented in Fig. 7, which displays 
the validation loss, validation accuracy, training loss, and training ac-
curacy curves for all five pre-trained models. As the number of epochs 
increased, we observed a consistent decrease in the loss curves and an 
increase in the accuracy curves. This behavior indicates that the models 
progressively learned from the data and converged to a well-fitted state. 
Notably, CTInceptionV3 (PotatoPestNet) exhibited the highest accuracy 
and the most precise fitting of the accuracy and loss curves. 

After the training phase, we assessed the models’ performance using 
an independent testing dataset. The evaluation involved visually 
analyzing the confusion matrices, as depicted in Fig. 8. These matrices 
provide a detailed overview of the models’ accurate classifications and 
misclassifications. While each model displayed different strengths and 
weaknesses across various classes, all models performed well overall. 
CTInceptionV3 (PotatoPestNet) demonstrated superior classification 
performance with only 7 misclassifications, compared to 8, 11, 13, and 
14 misclassifications for CTDenseNet201, CTXception, CTNASNetLarge, 
and CTMobileNetV2, respectively. 

To comprehensively evaluate the models and assess their robustness 
in handling unbalanced classes, we utilized classification metrics such as 
precision, recall, F1-score, and accuracy. These metrics were calculated 
for each class individually, resulting in eight precision, recall, and F1- 
score values for each model. To present a consolidated performance 
assessment, we employed both macro average and weighted average 
methods. The macro average treats all classes equally, while the 
weighted average accounts for class imbalances by assigning more 
weight to classes with a greater number of instances. The aggregated 
metrics for all models are presented in Table 12. CTInceptionV3 (Pota-
toPestNet) outperformed the other models across all metrics, as indi-
cated by the highlighted and underlined values in Table 12. 

To further evaluate the models’ performance, we utilized receiver 
operating characteristic (ROC) curves, as shown in Fig. 9. These curves 
illustrate the true positive rates against the false positive rates for all 
classes. ROC curves provide a comprehensive assessment of the models’ 
classification performance across different thresholds. Ideally, a model’s 
performance is considered favorable when the curve is closer to the 
point (1, 0), indicating higher true positive rates and lower false positive 
rates. 

Based on our analysis, CTInceptionV3 (PotatoPestNet) demonstrated 
the highest classification performance among the considered models. Its 
ROC curve consistently exhibited superior performance across all 

Table 8 
The outcome of CNASNetLarge with different hyperparameters combinations.   

Combination of the hyper parameters Validation Accuracy 
(%) 

Dropout 
rate 

Learning 
rate 

Optimizer 

CNASNetLarge 0.5 0.0001 SGD 9.85 
0.2 0.00001 SGD 9.85 
0.2 0.0001 SGD 22.53 
0.5 0.1 RMSprop 28.16 
0.3 0.1 RMSprop 28.16 
0.2 0.1 RMSprop 29.57 
0.2 0.001 RMSprop 36.61 
0.2 0.00001 RMSprop 67.6 
0.3 0.1 SGD 80.28 
0.3 0.0001 Adam 84.5  

Table 9 
The outcome of CInceptionV3 with different hyperparameters combinations.  

Model Name Combination of the hyper parameters Validation Accuracy 
(%) 

Dropout 
rate 

Learning 
rate 

Optimizer 

CInceptionV3 0.4 0.1 Adam 28.16 
0.2 0.01 Adam 28.61 
0.4 0.01 RMSprop 32.39 
0.3 0.001 SGD 40.84 
0.5 0.00001 RMSprop 53.52 
0.5 0.00001 Adam 61.97 
0.4 0.00001 Adam 67.6 
0.5 0.01 SGD 76.05 
0.2 0.01 SGD 80.28 
0.4 0.1 SGD 91.54  

Table 10 
The outcome of CXception with different hyperparameters combinations.  

Model 
Name 

Combination of the hyper parameters Validation Accuracy 
(%) 

Dropout 
rate 

Learning 
rate 

Optimizer 

CXception 0.4 0.1 Adam 28.16 
0.2 0.01 Adam 28.61 
0.4 0.01 RMSprop 32.39 
0.3 0.001 SGD 40.84 
0.5 0.00001 RMSprop 53.52 
0.5 0.00001 Adam 61.97 
0.4 0.00001 Adam 67.6 
0.5 0.01 SGD 76.05 
0.2 0.01 SGD 80.28 
0.4 0.1 SGD 91.54  

Table 11 
Summary of the tuned hyper parameters.  

Performance Measures Customized 
DenseNet201 

Customized 
MobileNetV2 

Customized 
NASNetLarge 

Customized 
Xception 

Customized 
InceptionV3 

Optimizers Adam Adam Adam SGD SGD 
Learning rate 0.0001 0.0001 0.0001 0.1 0.1 
Dropout rate 0.3 0.4 0.3 0.4 0.4  
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Fig. 7. Accuracy and loss curve.  
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Fig. 8. Confusion Matrix of the customised tunned models.  
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classes, indicating its ability to accurately differentiate between pest and 
non-pest instances. The implementation on Gradio API is shown in 
Fig. 10. 

6. Discussion 

In the result analysis, it is clearly shown that the customized tuned 
pre-trained models performed well. Since Sujatha et al. [13] concluded 
that CNN performed better than traditional ML, On the other hand, large 
training parameters as well as more computational time are in ANN 
[14], so we focused on the CNN. But the main challenge was the limited 
size of our dataset. That’s why we changed our research methodology to 
move to deep transfer learning based on the research outcome of Jack-
ulin et al. [15]. Another problem named overfitting appeared in transfer 
learning. We started to solve this issue and modified the most prominent 
of the five pre-trained models. The replacement of the fully connected 
layer with a global average pooling layer and the addition of a dropout 
layer were the magical solutions in our work. But at that time, the 
question was how much dropout rate, how much learning rate, and what 
kinds of optimizers we would use. We applied the random search tech-
nique with 10 trials and 20 epochs in each trial to find the best combi-
nation of targeting to get the best validation accuracy. The results in 
Tables 6–10 is a great reflection of different combinations of the pa-
rameters. The best parameters summarized in Table 11 are used in our 

Table 12 
Performance evaluation of the models.  

Types of Average Model Precision Recall F1- 
core 

Accuracy 

Macro Average CTMobileNetV2 79 84 80 81 
CTNASNetLarge 79 90 82 `84 
CTXception 84 89 85 86 
CTDeseNet201 88 93 87 90 
CTInceptionV3 
(PotatoPestNet) 

92 90 91 91 

Weighted 
average 

CTMobileNetV2 84 81 82 81 
CTNASNetLarge 87 84 84 84 
CTXception 87 86 86 86 
CTDeseNet201 91 90 91 90 
CTInceptionV3 
(PotatoPestNet) 

91 91 91 91  

Algorithm 1 
Augmentation procedures.  

Algorithm 2 
Random Search Technique for hyper parameter tunning.  
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modified models, which is another remarkable solution to avoiding 
overfitting and getting better performance. The loss curve, accuracy 
cure in Fig. 7, and confusion matrix in Fig. 8 presented the performances 
of the models at the learning stage and testing phase. All the models are 
optimally fitted to the loss curve and accuracy curve. There is no over-
fitting. The difference between validation loss and training loss of 

CTInceptionV3 (PotatoPestNet) is (0.4930–0.1922) = 0.3008, which is 
minimal, and the difference between training accuracy and validation 
accuracy is (0.9621–0.9155) = 0.0466, which is also minimal among the 
other models. It indicates that the PotatoPestNet model learned very 
well. From this point on, we paid extra attention to the testing phase of 
this model. The models obviously outperformed the other models. In the 

Fig. 9. ROC curve of the customized tuned models.  
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confusion matrix, the number of exact classifications by this model is 74, 
which is the highest accurate classification value. Table 12 also explores 
its superior performance to the others. The precision, recall, f1 score, 
and accuracy in macro average are 90%, 90%, 91%, and 91%, which are 
well balanced and highest in terms of values. Since our dataset is un-
balanced, we also cross-checked the weighted average precision, recall, 
f1 score, and accuracy, which have the same value of 91%. That means 
our proposed PotatoPestNet models worked well. 

In our work, the ROC curve in Fig. 9 provided valuable insights into 
the performance analysis and robustness of the unbalanced dataset. We 
observed that all models exhibited curves that approached the point 
(1,0), indicating excellent classification performance. Notably, CTIn-
ceptionV3 stood out as the best-performing model, with its ROC curve 
consistently positioned closer to the upper-left corner. This suggests a 
higher TPR and lower FPR, indicating a superior ability to accurately 
classify positive instances while minimizing false positives. These find-
ings align with the higher area under the ROC curve (AUC) value ach-
ieved by CTInceptionV3, further validating its superior overall 
performance. The ROC curve analysis has provided valuable insights for 
selecting the most suitable model and has implications for practical use, 
as it enables informed decisions on selecting an optimal classification 
threshold based on the relative costs of false positives and false 
negatives. 

7. Limitations 

Limitations are very common parts of any research. Similar to this 
research, this one also faced some limitations while conducting the ex-
periments, which are discussed below.  

• Limited Dataset: For training, validation, and testing, pre-trained 
models require a big and diverse dataset. We used a small size of 
dataset that’s leads out model to be overfitted and narrows the scope 
of diversity of dataset.  

• Only eight types of potato pests have been considered in our work.  
• Different phase of the life cycle of pests are not taken into account.  
• Only five pre-trained models are examined in our research. 
• Inadequate hardware: Running pre-trained models demands sub-

stantial processing resources, such as high-end CPUs and GPUs. If the 
hardware is inadequate, it may take longer for the models to process, 
or the results may be impacted. 

8. Conclusion and future work 

This study is intended to identify and classify potato pests. This 
experiment began with an identification of relevant research publica-
tions, a comparison of how other researchers recognized these types of 

issues, and an analysis of their methods for identifying and classifying 
relevant problems. This study devised its own methodology in which 
five CT-pre-trained machine learning models were used to classify po-
tato pests and an efficient, robust PotatoPestNet model was proposed. 
The dataset was prepared very carefully and with the help of experts. 
Modification of the pre-trained models by replacing the fully connected 
layer with a global average pooling layer, adding a dropout layer, and 
finally tuning with a random search technique was the ace in the hole in 
potato pest detection. The CTInceptionV3-RS-Based approach consid-
erably outperforms in terms of classification accuracy, precision, recall, 
and F1-score at 91% and saves training time compared to training from 
scratch, as demonstrated in the test results. This study has enormous 
implications for the agriculture business, as accurate and efficient 
identification of pests enables farmers to take prompt and targeted 
measures to prevent or control infestations. Our proposed PotatoPestNet 
model can also eliminate the need for costly and time-consuming data 
gathering and annotation during training. 

In the future, this research could be investigated in more detail by 
adding the other 11 types of pests. Other deep learning approaches and 
techniques can be applied to enhance the precision of pest recognition 
models. In addition, applying these models to real-world settings and 
evaluating their effectiveness under varied climatic conditions might be 
a fruitful avenue for future research. Overall, our study has been suc-
cessfully implemented, and we hope it paves the way for future research 
and activities by farmers. 
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