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Abstract. In recent days, the number of technology enthusiasts is in-
creasing day by day with the prevalence of technological products and
easy access to the internet. Similarly, the amount of people working be-
hind this rapid development is rising tremendously. Computer program-
mers consist of a large portion of those tech-savvy people. Codeforces,
an online programming and contest hosting platform used by many com-
petitive programmers worldwide. It is regarded as one of the most stan-
dardized platforms for practicing programming problems and participate
in programming contests. In this research, we propose a framework that
predicts the performance of any particular contestant in the upcoming
competitions as well as predicts the rating after that contest based on
their practice and the performance of their previous contests.
Keywords: Codeforces, Programming Contest, Performance Analysis
and Prediction.

1 Introduction

Codeforces is an online programming practice and contest hosting platform main-
tained by a group of competitive programmers from ITMO University, led by
Mikhail Mirzayanov. According to Wikipedia, there were more than 600,000 reg-
istered users on this site. There are several certain features of Codeforces as fol-
lows. This site has been developed specially for competitive programmers while
preparing for the programming contests. A registered user of this platform can
use it in terms of practicing anytime and participating in the contests running
at that time with the facility of the internet. There is a rating system commonly
known as divisions of each contestant taking part in the contests based on their
performance, i.e. capability to solve the problems according to their difficulty
level of that contest as well as the previous ones. The rating system, divisions
and titles are shown in Table [I} The contestants can try to solve the unsolved
problems of any contests, even after the contest, also known as upsolve. There
are several types of contests that can be hosted in Codeforces. Among them,
the most popular one is short contests held for two hours, which is also known
as Codeforces Round. It can be conducted once a week. Another one is a team
contest, where any registered user can invite any other registered users (at most
two) for a contest. The users can also get connected (follow- following) with
each other in order to watch updates of them. The trainers or institutions who



2 Rahman et al.

organize the contests usually do this to track the progress of the trainees and
students. One of the important and effective features of this widely used plat-
form is, there is a community platform like Stack overflow, to get the solutions of
the problems faced during the contest and in practice. However, this difference
between this community platform and others is, it is dedicated for the compet-
itive programmers trying to solve any programming problems while practicing
independently or the problems after the contests. The users can also get a list
of tagged problems, e.g. dynamic programming problems, greedy problems, etc.
to practice and get experts or work on the weak parts of him or her on specific

types of problemspape 1. Codeforces User Rating and Divisions

lRating Bounds“ Color “Division“ Title ‘

>=3000 ||Black & Red 1 Legendary
Grandmaster
2600 — 2999 Red 1 International
Grandmaster
2400 — 2599 Red 1 Grandmaster
International
2300 — 2399 Orange 1 Master
2100 — 2299 Orange 1 Master
. Candidate
1900 — 2099 Violet 1/2 Master
1600 — 1899 Blue 2 Expert
1400 — 1399 Cyan 2/3 Specialist
1200-1399 Green 2/3 Pupil
<= 1199 Gray 2/3 Newbie

In this research, we propose a framework which predicts the performance of
each individual programmer in upcoming contests based on his or her previous
contests. The performance of the contestants is performed in two perspectives.
First, we predict whether the rating of the contestant will increase or decrease,
second, the rating itself of that corresponding contestant. The performance track-
ing of the contestants in order to recommend him to improve his performance
in the impending ones. The main contributions of this paper is as follows.

1. We predict the performance of each contestant by analyzing his or her per-
formances in the previous contests and practice problems.

2. The ratings of the programmers will also be predicted along with the per-
centage of increase or decrease of their ratings.

3. This experimental research is conducted on a real-world dataset obtained
from Codeforces.

The remaining sections are organized as follows. The section 2 covers rele-
vant works in this topic. In sections 3 and section 4, we explain the problem
definition and proposed methodology respectively.The experimental outcomes
are presented in section 5. In section 6, we conclude the paper.

2 Literature Review
To identify the gap in the available research, we have conducted extensive
searches and investigations of numerous related studies. However, a very little
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amount of research work has been accomplished on this topic. Using the stu-
dents’ data of secondary school, Amra et. al [I7] applied KNN and Naive Bayes
classifiers to predict the students’ performance. The obtained result showed that
Naive Bayes outperformed KNN by attaining the accuracy of 93.6%. Babié et.
al. [I5] tried to imbed the links between student academic motivation and their
behaviour in the learning management system (LMS) course. Three different ma-
chine learning (ML) classifiers namely neural networks, support vector machines,
and decision trees were applied to classify the students. Though the performance
of all the classifiers were significant but the neural network was more promising
than others applied models in detecting the student academic motivation based
on the behaviour.

2.1 Academic Performance Prediction

Waheed et al. attempted to develop a system that can predict students’ academic
success based on clickstream data and assessment results in a virtual learning
environment. They used the artificial neural network (ANN) to classify the stu-
dent performance into different classes and compared the obtained result of ANN
with two baseline methods namely support vector machines and logistic regres-
sion [I4]. It is observed that ANN outperformed the baseline methods. Several
works related to student performance prediction have also been accomplished
[16], [18],[19],]20].

2.2 Contest Performance Prediction

Sudha et al. [8] worked on the classification and recommendation of competi-
tive programming problems using Convolution Neural Network (CNN). The goal
of their proposed system is to determine the required approach for solving the
problem. W. Looi analyzed single C++ source code submission on Codeforces
and tried to predict a user’s rank and country [9]. Among all the applied models,
the neural network attained the highest accuracies of 77.2% in rank prediction
(within one rank) and 72.5% in the country’s prediction. A. Alnahhas et al. in-
vestigated ML techniques to develop a system that can predict the contestant’s
future performance by dissecting their past rating record [10]. Here, they applied
five different baseline machine learning approaches. Besides this, they proposed a
new deep learning model for result comparison with baseline. To conduct this re-
search, they collected public data from the Codeforces website. They found that
most of the applied techniques attain an acceptable result but the deep learn-
ing model performed better than the baseline. Chowdhury et al. [11] trained a
Kohonen Self organizing feature map (KSOFM) neural network on log data re-
garding programmers’ performance. Here, programmers are grouped into three
distinct clusters ie. ‘at risk’, ‘intermediate’, and ‘expert’. The proportional rules
made classification with an accuracy of 94.00%. Besides this, three more models
namely multilayer neural networks, decision tree, and support vector machine
were trained using the same dataset. Among them, feedforward multi-layer neu-
ral networks and decision trees have achieved an accuracy of 97.00% and 96.00%
respectively. The precision of the support vector machine was about 88.00%,
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but it attained the highest recall of 99.00% in terms of distinguishing ‘at risk’
students. By investigating ten years of TopCoder algorithm competitions, J. R.
Garciaa et al. reported on the learning curves [12]. They also discussed how
these learning curves are employed in university courses. Later, it can aid them
to explain the impact of competitive programming in a class.

Ishizue et al. [I3] employed machine learning models to try to simplify the process
of predicting placement outcomes outside of the conventional, time-consuming
placement examination and the level of programming competence outside of a
programming contest. The explanatory variables consist of psychological assess-
ments, programming tasks, and student-completed surveys.

Ohashi et al. proposed a unique feature extraction technique and convolu-
tional neural networks to classify the source code. To demonstrate the proposed
algorithm, they have used data of an online judge system. It is shown that the
model performed well in predicting the right category with high accuracy. Intisar
et al. [T1] tried to classify the programming problems. For this, they made use
of the two topic modeling techniques namely Non-negative Matrix Factoriza-
tion (NMF) and Latent Dirichlet Allocation (LDA) for extracting the relevant
features. Then, by utilizing these topic modeling features and Naive TF-IDF
features, six classifiers were trained. It is found a series of beneficial trade-offs
between the applied models in terms of dimensionality and accuracy.

3 Proposed System

The proposed system gets started with the collection of dataset from online
programming practice platform Codeforces using its public Application Pro-
grammable Interface (APT). Then some pre-processing tasks had been performed
on the collected data to convert them into sequences. Then some state-of-the art
sequence to sequence models had been trained and tested on the collected data.

3.1 Dataset Collection

Our proposed framework includes two phases. At first, we collected the data of
100 contestants from Codeforces using codeforces public API. The dataﬁincludes
contestant’s ratings, competition ranks, problem submissions, and submission
verdicts. After collecting the data, we did some pre-processing. We considered
each contest as a timestamp. Each timestamp has four types of features.

1. Rating: Each contest represents a timestamp. The rating is a metric to eval-
uate an user/contestant. The more the rating is, the better performer the
contestant is. This changes after each contest based on the rank of the user
in that contest. We are going to predict this feature.

2. Rank: This is the rank/position of the contestant in that contest. The rank
is decided by the solve rating of the contestant in that contest. The more
the solve rating is, the better rank the contestant gets.

3. Solve Rating: Each contest has several problems and each problem has a
different point based on its difficulty. The point of each problems decreases
with time. The quicker a contestant solves a problem, the better points he

* https://cutt.ly /nL120M9
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gets. A contestant’s solve rating is calculated by adding the points of each

problem he solved during that competition.

4. Practice Features: This is the information of a contestant about how much
practices he did after the previous contest and before the current contest.

(a) Accepted(AC): It represents the number of problems that the contestant
solved before the current contest and after the previous contest.

(b) Wrong Answer(WA): It denotes the number of problems that were at-
tempted by the contestant but failed to solve it correctly before the
current competitions and after the previous competitions.

Finally, we built a dataset of sequences where each continuous 16 timestamps of a
user are considered as a sequence. Among the 16 timestamps, first 15 timestamps
were used as the input and 16th timestamp was used as the target. 80% of the
sequences were used to train the models and the rest of the 20% of the sequences
were used to test/evaluate the performance of the trained models.

3.2 Frameworks

In the second phase of our proposed system, we apply several state-of-the-art
neural network models to predict the performance of each contestant in the im-
pending programming contests based on previous contests. First, we describe the
concepts of Recurrent Neural Network (RNN), since Long Short Term Memory
(LSTM), and Gated Recurrent Unit (GRU) both are categorized into that one.
Then we describe Bidirectional LSTM (Bi-LSTM), and a combination of LSTM
with an attention layer (LSTM+AL).

a. Recurrent Neural Network RNN is a special class of ANN, which was orig-
inally proposed by Hopfield [4]. There is a basic difference between the conven-
tional simple feed-forward neural network and RNN. Whereas in a feed-forward
network, information flows in a single direction from the input nodes to the out-
put nodes via the hidden nodes, RNN remembers the past sequences as well as
being operated by the present node i.e. the system comes back to its previous
node while running the current note. As a result, cycles or loops happen in the
network. As it visits its previous nodes in every iteration, these RNN approaches
perform well in sequence tasks and are widely used in prediction tasks e.g. stock
market prediction, language translation, etc.

b. Long Short-Term Memory As mentioned earlier, RNN remembers the
past sequences and puts on the proper context. Moreover, it remembers that
information for a small duration of time. As a result, RNN falls short in terms
of long sequences of data needed to process. Long Short Term Memory, which is
commonly known as LSTM is a particular type of RNN, proposed by Hochreiter
et. al. in 1997 [5], which can mitigate this issue. While putting new information
RNN transforms the existing information once applied a function. As a result,
the entire information gets modified, on the whole, it fails to infer any such
consideration for important or less important information. On the other hand,
LSTM makes little modification to the information. In LSTM, this information
flow is called cell states. In this way, LSTMs can selectively remember or forget
things as per the context. The LSTM Architecture varies a little in terms of its
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internal components. Unlike RNN] it contains four internal cells inside a single
LSTM block. In order to build the LSTM model, we used four LSTM layers
with 256 neurons. After each LSTM layer, we used a dropout layer with a drop
rate of 0.5. Then, we added a dense layer of 100 neurons with the activation
function Relu. At last, a dense layer was used to output the features of the next
timestamp of the sequence.

c. Bi-LSTM In RNN, Bidirectional LSTM is commonly known as Bi-LSTM
where Bidirectional RNN are just putting two independent RNNs together. Sim-
ilarly, Bidirectional LSTM is putting two independent LSTMs together so that
the networks can have both backward and forward information about the se-
quence at every time stamp. Bi-LSTM processes inputs in both the past-to-
future and future-to-past directions. The thing that differentiates this approach
from the unidirectional one is LSTM runs backward it’s preserved information
from the future and uses the two hidden states combined which is able to pre-
serve information from both the past and future at a given time. The simple

building block of bidirectional LSTM has been shown in Fig. [f}
@ @  ® ®

Fig. 1. Bi-Directional LSTM block
d. LSTM with Attention Mechanism The Attention Mechanism is one
of the most widely used methods in the Deep Learning research area. It was
first proposed by Bahdanau et. al. in 2014 [7]. The main bottleneck of the earlier
methods of Attention Mechanism such as encoder-decoder-based RNNs/LSTMs,
fall apart to deal with long sequences. Moreover, those fail to emphasize any
important sequences or patterns. Then, the idea of Bahdanau et. al. was not
only to keep track of long sequences but also to put more weight on the patterns
which would be much needed to predict the outcome.
3.3 Models Configuration
In this paper, for all the models described above, we have configured four cor-
responding model layers with 256 neurons. After each layer, we used a dropout
layer of drop rate 0.5. Then, we added a dense layer of 100 neurons with acti-
vation function Relu. Finally, a dense layer was used to output the features of
the next timestamp of the sequence. In order to train the models, we used ‘mae’
and ‘adam’ as the loss function and optimizer respectfully. We trained all of the
models for 1000 epochs with batch size 256. During training, weights of the best
accuracy for each of the models were saved using the checkpoint. To check the
efficacy of all the models with the test dataset, we used the saved weights of each
of the trained models. The test dataset was sent through each of the models and
accuracy was calculated to evaluate the models.

4 Experiment and Result Discussion

4.1 Evaluation Metrics
Metrics such as Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE), which are often used to determine correctness for continuous
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data, have been employed to evaluate our proposed framework. These two met-
rics have been increasingly utilized by researchers to demonstrate the efficacy of
their method [I], [2], [3].

Mean Absolute Error (MAE): It is a terminology that provides the
measurement of flaws in the assessment compared with original values. It is also
referred to Absolute Accuracy Error (AAE). MAE represents the average
of all AEs. The MAE is denoted as,

MAE(y.y) = Z 1)

Yk _yk

Here, yj, and y}, denote the actual rating of k'h sample and the predicted rating
of them from the models mentioned respectively. N refers the number of samples.
Root Mean Squared Error (RMSE): It is a measurement of standard
deviation that indicates how far the predicted value deviates from the actual
value. Typically, this approach is suitable for finding the residuals’ standard
deviation. Residuals are the prediction errors, or the distance between the re-
gression line and the actual data points. Equation I 2| shows how RMSE(t) is
calculated. Where the notations are th d in Equation

RMSE(y,y') = (2)
Mean Squared Error (MSE): It is also known as Mean Squared Devia-
tion (MSD), which is another well known evaluation metric userd for prediction

tasks.
MSE(y,y') NZ {yk - yk} (3)

R-squared (R?): R-squared is a statlstlcal metric that represents the pro-
portion of the variance for an observed variable that’s explained by a predicted
variable or variables in a predictive model. The correlation describes the strength
of the association between the observed and predicted values. It also describes
the degree to which the variance of one variable explains the variation of the
second variable. R-squared measure is ranged between 0 to 1 and usually men-
tioned as percentages. The more the value of this metric is, we consider the
more precise the predictive model to be. Equation [4] shows how R-squared is

calculated [21]. N /12
=1 Yk — Yg
Ry y) =1 - St DV (@
D=1 Yk — ¥l

1N
- N Z Yk (5)
k=1

4.2 Experimental Results

Does considering contestants’ practice as an input feature helpful for better ac-
curacy during the contestants’ performance prediction? To answer this question,
at first, we ran the models without the contestant’s practice feature. Then, we
ran the models without the contestant’s practice features. Result of the different
models to predict the performance of the programmer on Codeforces is presented
in Table 2 and Table
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Table 2. Experiments results of different models for different evaluation metrics with-
out considering contestant’s practice features.

Performance| p oy |LgTM + Attention| GRU [Bi-LSTM
Metrics
RMSE 73.133 69.629 85.968 | 75.024
MSE 5348.436 4848.302 7390.642| 5628.728
MAE 57.523 54.243 66.324 | 59.069
R? 0.906 0.930 0.40 0.7942

Table 3. Experiments results of different models for different evaluation metrics con-
sidering the contestant’s practice features.

Performance| ; ¢\ 1 ly oM 4 Attention| GRU [Bi-LSTM
Metric
RMSE 59.287 51.325 72.312 | 62.244
MSE  |3948.436 3243.234 6089.834| 4467.907
MAE 12.67 39.217 53.219 | 45.989
R? 0.946 0.97 0.884 0.928

Table 2 presents the performance of different models for different evaluation
metrics without considering the contestant’s practice features. Among all the
four models, the LSTM with attention achieved the lowest RMSE value (69.629)
outperforming other three models: LSTM (73.133), GRU (85.968), and Bi-LSTM
(75.024). The LSTM with attention model also outperformed other three models
in terms of other three evaluation metrics: MSE, MAE and R2. On the other
hand, when the contestant’s practice information is used as a feature, the perfor-
mance of all models significantly improves (Table 3). The values of RMSE, MSE,
and MAE decrease, and R? increase significantly for all models. From the above
two tables, we can see that the LSTM with Attention model provides better
accuracy than others in both cases. By analyzing the four-evaluation metrics,
it is observed that LSTM with the Attention model performed better than the
other three applied models, and GRU performed worst among the applied four
models. So, the sequence (from best to worst) of the performance of the models
is LSTM with the Attention model, LSTM model, Bi-LSTM model, and GRU
model.

5 Discussion
In this work, we showed how contestants’ future performance could be pre-

dicted by employing deep learning models. We also found that using previous
details practice information as input features improves the model’s accuracy sig-
nificantly. When the practice information is included as an input feature, LSTM
with Attention performs best. The RMSE, MSE, MAE and R? of LSTM with the
Attention model were 51.325, 3243.234, 39.217, and 0.97 respectively (Table 3).
Then the second-best model is LSTM which got RMSE 59.287, MSE 3948.436,
MAE 42.67, and R? 0.946. We can see that LSTM with Attention provides at
least 8% better performance in every metric than the second-best model. On the
other hand, LSTM with Attention also achieved the highest efficacy excluding
the practice information as the input feature as per our experiment. The RMSE,
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MSE, MAE, and R? of LSTM with the Attention model were 69.629, 4848.302,
54.243, and 0.93 respectively while the values of the second-best model LSTM
are 73.133, 5348.436, 57.523 and 0.906 respectively (Table 2). LSTM with Atten-
tion shows at least 5% better performance in every metric than the second-best
model. We found LSTM with Attention as the best model in both cases. We can
see that the performance of LSTM with the Attention model improves signifi-
cantly when the practice information is used as the input features. The RMSE,
MSE, MAE, and R? values of LSTM with Attention model improve about 26%,
33%, 24%, and 10% respectively. It proves that the more a contestant practices,
the better he/she does well in the future. In other words, we can conclude that
practices make a big difference in the upcoming competitions. Therefore, without
practice information, the prediction is not as accurate as when the prediction is
done with practice information. Here, we collected the practice information only
from CodeForce’s website. What if the contestant practices on other platforms
or offline? In that case, our models will fall short to provide this performance.
In the real world, these participants can get alert about their signs of progress
by the predictions of our proposed method and they can improve their skills to
perform well in their next contests. In the future, we are planning to include
practice information from other platforms too. Besides, we calculated the prac-
tice information by summing the number of problems solved before the contest
whereas we didn’t consider the difficulty level of the problems. What if the con-
testant solves only the easier problems? It won’t help him to perform better but
the model will predict that he will do better.

6 Conclusion and Future Work

In this research, we provide a method for predicting participant ratings and an-
alyzing their performance. We used a real-world Codeforces dataset to validate
our methodology. The experiments had been conducted by considering the con-
testants’ practice features as well as without considering them. In the future, we
aim to consider each problem’s (solved before the next competition) difficulty
level as a feature and employ the data from other platforms also.
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