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In recent years, improvements in wireless communication have led to the development of microstrip or patch 
antennas. The article discusses using simulation, measurement, an RLC equivalent circuit model, and machine 
learning to assess antenna performance. The antenna’s dimensions are 1.01 𝜆0 × 0.612𝜆0 with respect to the 
lowest operating frequency, the maximum achieved gain is 6.76 dB, the maximum directivity is 8.21 dBi, 
and the maximum efficiency is 83.05%. The prototype’s measured return loss is compared to CST and ADS 
simulations. The prediction of gain and directivity of the antenna is determined using a different supervised 
regression machine learning (ML) method. The performance of ML models is measured by the variance score, R 
square, mean square error (MSE), mean absolute error (MAE), root mean square error (RMSE), and mean squared 
logarithmic error (MSLE), etc. With errors of less than unity and an accuracy of roughly 98%, Ridge regression 
gain prediction outperforms the other seven ML models. Gaussian process regression is the best method for 
predicting directivity. Finally, modeling results from CST and ADS, as well as measured and anticipated results 
from machine learning, reveal that the suggested antenna is a good candidate for LTE.
1. Introduction

Wireless cellular network technology has advanced significantly in 
recent years, paving the way for the creation of numerous new appli-
cations beyond basic phone conversations [1]. The data transfer rate, 
connection quality, and functionality of mobile devices have all im-
proved with each new generation of technology [2]. Because of its high 
spectrum efficiency, high-speed transmission, and high data rate capa-
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bilities, the current mobile communication technology, known as Long 
Term Evolution (LTE), is being used in a significant number of mobile 
devices, including smartphones, laptops, and tablets [3]. LTE has an op-
erational frequency that spans from 400 MHz all the way up to 4 GHz 
[4]. To fulfill the requirements of LTE applications Yagi-Uda antennas 
have been incorporated into a variety of unidirectional designs [5–7]. 
According to research [8,9], the end-fire gain and front-to-back ratio 
(FBR) of the Yagi antenna were both enhanced by applying the method 
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Fig. 1. Quasi-Yagi antenna structure.

of maximum power transmission efficiency (MMPTE). The design of 
the patch antenna can also be derived from a conventional dipole Yagi-
Uda antenna, which is made up of two main elements: supply-driven 
and non-driven parasitic elements that consist of reflector and direc-
tor elements, as shown in Fig. 1. A Yagi-Uda antenna is known for its 
high gain and narrower bandwidth, which can be controlled by manip-
ulating its simple dipole array structure. Different design techniques of 
a Quasi-Yagi antenna have been presented with different performance 
levels and radiation characteristics [10,11]. In [12], a Quasi-Yagi an-
tenna is proposed. Although the antenna has a very compact electrical 
size, the fractional bandwidth (FBW) is only 5.06%. A microstrip-fed 
millimeter-wave Yagi-Uda 1 × 2 array antenna is introduced in [13]. It 
provides a gain of 10 dB, but the size of the antenna is electrically large 
due to the array structure.

In this research work, a microstrip Quasi-Yagi antenna for 4G appli-
cations is proposed. The achieved gain is 6.32 dB, and the bandwidth 
is 0.377 GHz, while the size of the antenna is 130 × 119.30 mm2. A 
comparison of numerous concurrently relevant works is shown in Ta-
ble 1. Although the reflection coefficients in the cited works [14–20]
are reported to be -18 dB, -31.55 dB, -35 dB, -25.02 dB, -32 dB, and 
-16 dB, respectively, in the suggested Yagi antenna, it is observed to 
be -50.44 dB in CST. In contrast to the 2.5 dBi, 6.0 dBi, 4.27 dBi, 5.02 
dBi, 5 dBi, 2.5 dBi, and 2.0 dBi indicated in the comparison table, the 
proposed design has a peak gain of 6.76 dBi. The radiation efficiencies 
of the reference works [15,16] and [18,19] are 73%, 80%, and 96%, 
66% respectively; however, the efficiency of the proposed Quasi-Yagi 
antenna is 83.05%. Even though machine learning-based investigations 
are not used in the aforementioned references in the table, they are 
heavily utilized in the design that has been provided. The optimization 
process can be sped up with the help of regression methods because 
their ML evaluation is considerably faster than the numerical solution 
of a physical simulation model such as CST, HFSS, and ADS. Regression 
models also help isolate the role of each design element in producing 
the desired results. The results of the simulation and the predictions are 
identical to one another. Additionally, our work includes the analysis 
of the equivalent RLC circuit of the proposed design, which is not in-
cluded in the previously cited literature. Finally, we obtained extremely 
good agreement between the findings of the designed equivalent circuit 
and those obtained through simulation and measurement. Our proposed 
Yagi antenna is economical due to the use of low-cost material and pos-
sesses excellent performance in the intended operational LTE band. This 
paper is unique in that it combines the integration of simulation, mea-
surement, and construction of the RLC equivalent circuit model with a 
comparison of the CST result with Agilent ADS, as well as the use of 
multiple regression models to evaluate the performance and errors of 
the proposed antenna.

The antenna is modeled in a 3D electromagnetic simulation envi-
ronment using a tool such as CST, HFSS, FEKO, ADS, and so on, each 
of which uses a slightly different computational method. Researchers 
have found that using machine learning (ML) techniques to optimize 
antenna design, predict results, and choose antennas for wireless ap-
plications [21–27], which helps to alleviate some of the restrictions. 
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Modeling an antenna with ML can boost its performance and preci-
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sion. The predictive model is obtained in the form of a data set by 
training ML models to actualize the linkage between input and output 
parameters. Through trial and error, the training process determines 
which model parameters will yield the most accurate predictions for 
the data being analyzed [28]. Antenna modeling with CST Microwave 
Studio yields a data set including return loss, resonant frequency, re-
flector, director, and driving element length of the Yagi antenna. The 
resonance frequency used in the simulation is between 1 and 3 GHz 
[29]. To achieve the desired dimensions and resonance frequencies, the 
authors of [30] proposed using an ANN to design a microstrip patch an-
tenna. However, error percentages such as MSE, MAE, MSLE, and MAPE 
were not considered. The proposed ANN model’s prediction outcomes 
were not validated against other ML models. The resonant frequency of 
a patch antenna is predicted by artificial neural networks in [31,32]. 
In this research, the error percentage was computed by dividing the 
actual value by the anticipated value. Notably, the percentage of er-
ror in terms of MSE, MAE, MSLE, MAPE, and RMSLE was not analyzed 
in the state-of-the-art studies conducted recently. Furthermore, most of 
the existing publications on ML-based antenna design do not assess the 
accuracy in terms of variance score or R squared. Different methods, 
including linear regression, random forest regression, decision tree re-
gression, lasso regression, ridge regression, extreme gradient boosting 
regression, bayesian linear regression, and ridge regression, are then 
used to make predictions. To examine the performance of proposed re-
gression analysis approaches, simulation, measurement, and computed 
resonant frequency values were compared with performance metrics. 
Mean absolute error (MAE), median error (ME), mean squared error 
(MSE), mean absolute percentage error (MAPE), and mean squared log-
arithmic error (MSLE).

The antenna performance is designed and optimized with the help 
of CST MWS simulation software. Furthermore, the same antenna is 
fabricated for measurement and verified with the simulation result. Re-
turn loss and bandwidth are verified using the Advance Design System 
(ADS) circuit simulation tool by employing the R-L-C equivalent circuit. 
Multiple supervised regression algorithms implemented in the electro-
magnetic (EM) simulation tool CST have recently been investigated as 
a means of predicting the directivity and gain. In order to verify this, 
a survey of Quasi-Yagi antennas developed specifically for LTE applica-
tions is shown in Table 1, and this survey is compared to the suggested 
design.

2. Research gap and contribution

As highlighted earlier, the Quasi-Yagi antenna majority of available 
designs incorporate machine learning. Our proposed, designed antenna 
can perform to the capabilities in terms of gain, return loss, and ef-
ficiency. This article combines various regression models to simulate, 
measure, and build the RLC equivalent circuit model.

The main contribution of this study is summarized as follows:

• Regression methods are useful for optimizing processes since their 
ML assessment is much quicker than the numerical solution of a 
physical simulation model.

• Regression models also help isolate the role of each design element 
in producing the desired results. The results of the simulation and 
the predictions are identical to one another.

• The results of the constructed RLC equivalent circuit were found to 
be in excellent agreement with those obtained from simulation and 
experiment.

3. Antenna design and configuration

The CST (Computer Simulation Technology) tool is used to develop 

and simulate the dual-band Quasi-Yagi antenna. Antenna components 
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Table 1

Performance comparisons with the published state of the art.

Parameters Ref. [14] Ref. [15] Ref. [16] Ref. [17] Ref. [18] Ref. [19] Ref. [20] Proposed

Technique Reconfigurable Quasi-Yagi 
antenna

Dielectric 
resonator 
antenna

Slotted 
array 
antenna

Finite 
integration 
technique

Planar 
antenna

Planar 
antenna

Quasi-Yagi 
antenna

Application LTE LTE 5G 
Communi-
cation

28 GHz 
5G mobile

WLAN, 
WiMAX

LTE, GSM, 
UMTS

WLAN, 
LTE

LTE

Return Loss (dB) -18 -65.23, 
-31.55

-35 -25.02 -32 -32 -16 -50.44

Bandwidth (GHz) 1.85 - 2.6 1.65 - 1.95 
2.5 - 2.72

3.3 - 4.2 27.03 -
28.82

2.2 - 8 1.37 - 4 1.98 - 2.1
2.71 - 2.82

1.78 - 1.95 
2.52 - 2.85

Max Gain (dBi) 2.5 6 4.27 5.02 5 2.5 2 6.76

Efficiency % — 73 80 — 96 66 — 83.05

ML Investigation No No No No No No No Yes

RLC Equivalent Circuit Analysis Yes No No No No No No Yes

Size (W×L) (mm2) 0.30 𝜆0×
0.152 𝜆0

1.08 𝜆0×
0.59𝜆0

0.29 𝜆0×
0.19 𝜆0

13.63 𝜆0×
6.36 𝜆0

0.7 𝜆0×
0.467 𝜆0

0.089 𝜆0×
0.203 𝜆0

0.192 𝜆0×
0.192 𝜆0

1.01 𝜆0×
0.612 𝜆0

Substrate Material FR4 FR-4 FR-4 Arlon/ 
AD430

FR-4 FR-4 FR-4 FR-4

Fig. 2. (a)The Geometry of Quasi-Yagi Antenna. (Front) (b) Quasi-Yagi Antenna. (Back).
include a driving element, three director elements, and copper metal, 
which is used as the ground plane in this implementation. As substrate 
properties, FR-4 features a dielectric constant of 4.3 and a loss tangent 
of 0.025, while the thicknesses of the copper metal and the substrate are 
0.035 mm and 1.56 mm, respectively. A Microstrip (MS) to Co-planar 
Strip Line (CPS) feeding technique is used for impedance matching, 
where a balun phase shifter and a quarter-wave transformer are con-
structed at the input port of the antenna. In order to match the power 
lines between the microstrip line and the balun phase shifter for this 
feeding technique, the quarter-wave transformer line with a character-
istic impedance of Z1 is used [33].

𝑍1 =

√
𝑍0
𝑍𝐿

(1)

Where, 𝑍0 = inductance per unit length of line, and 𝑍𝐿 = capaci-
tance per unit length of line.

The balun phase shifter is used to balance the feeding for the CPS at 
both operating frequencies of 1.85 GHz and 2.64 GHz by generating a 
180◦ phase difference between the MS and the CPS [34]. The parame-
ters of the antenna, such as the length of the driven element, number 
of director elements, and dielectric thickness, are studied to design the 
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antenna to operate at the proposed frequency band. The geometry con-
figurations of the proposed antenna are shown in Fig. 2 (a), and the 
back view is introduced in Fig. 2 (b).

4. Working principle

The simulated current distribution is analyzed and explained to pro-
vide light on the attributes and operating principles of the proposed 
antenna.

4.1. Current distribution

The distribution of the current at a number of different frequencies 
is shown in Fig. 3. At 1.85 GHz, the highest surface current is 42.6429 
A/m, while at 2.64 GHz, the peak surface current is 41.4156 A/m. The 
production of the first operational band can be traced back to the in-
creased current density that can be found in the feed line’s lowermost 
segment. The production of the second working band of the Yagi an-
tenna is attributable to the increased current density that may be found 
at the top part of the feed line of the directors.

5. Parametric study

The subsequent sections show the effect of the structure’s primary 

characteristics to help readers better grasp its workings.
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Fig. 3. Simulated current distribution of the proposed antenna at (a) 1.85 GHz 
and (b) 2.64 GHz.

Fig. 4. Simulated reflection coefficient for different directors (a) Without di-
rector 1 (b) Without director 2 (c) Without director 3 (d) With all directors 
(proposed antenna).

5.1. Director of Yagi antenna

Due to its capacitive nature, the element on the right side of the 
Yagi antenna called the director, is responsible for focusing the radiated 
power along the director components [35]. The multiband operation of 
the proposed antenna is displayed in Fig. 4, both in the absence and 
presence of directors. When using three directors at once, the antenna 
clearly displays the optimal S11 curve. Moreover, the gain of the an-
tenna is proportional to the number of directors placed after the dipole 
[36]. Fig. 5 shows the proposed antenna operating in dual bands, both 
without and with directors. Gains of about 5 dB are possible when Direc-
tor 1 is removed, while gains of around 6 dB are possible when Directors 
2 and 3 are removed. The maximum gain is about 7 dB when all three 
directors are considered.

5.2. Balun microstrip feed

A microstrip line (MS) or other unbalanced transmission line is con-
verted into a balanced coplanar stripline through a balun (CPS). Many 
scientists are interested in developing a realistic, high-performance MS-
to-CPS balun (or transition) [37]. A good dominance of the reflection 
coefficient of the Quasi-Yagi antenna is seen when the length of the 
balun microstrip feed line, represented by (Lb), is increased from 36 to 
41 mm, as shown in Fig. 6. The S11 value does not extend to the res-
onant frequencies needed for the LTE applications requested for Lb = 
36 mm, 38 mm, and 41 mm. For Lb = 39.5 mm, the antenna provides 
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the expected coverage.
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Fig. 5. Simulated gain for different directors (a) Without director 1 (b) Without 
director 2 (c) Without director 3 (d) With all directors (proposed antenna).

Fig. 6. Simulation of the reflection coefficient for several lengths of microstrip 
baluns.

Fig. 7. Simulation of the reflection coefficient for different dipoles of the Quasi-
Yagi antenna.

5.3. Driven element of Yagi antenna

Because it links the Yagi antenna to its power supply and acts as 
the feed via which the antenna is activated, the driver element is often 
regarded as the most crucial part of the antenna. The Yagi antenna’s in-
put impedance and primary resonance frequency are both within the 
control of the antenna’s geometry [15]. It has been discovered that the 

return loss increases with the driven element’s length. The proposed 
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Fig. 8. Measurement setup.

value of return loss is significantly lower than the actual value for the 
length of the driven element (Ld) = 60 mm and 65 mm. For Ld = 
77, the return loss is extremely large, but the second desirable reso-
nance frequency is not obtained, as depicted in Fig. 7. However, the 
recommended Ld = 72.13 has been found to be superior to alterna-
tive solutions in terms of desired resonant frequencies, such as 1.85 and 
2.64 GHz.

6. Result analysis

This section discusses the proposed MPA’s simulated and measured 
results. Additionally, the simulated S11 utilizing CST is compared to 
the measured result and the equivalent circuit model from Advanced 
Design System (ADS). Finally, alternative machine-learning learning ap-
proaches for predicting the proposed antenna’s resonance frequency are 
briefly examined. Return loss (S11) indicates the amount of power re-
flected in a transmission line. An antenna must have a minimum of -10 
dB in order to function efficiently [38].

A vector network analyzer (VNA) is used to test the port proper-
ties, as shown in Fig. 8, while an anechoic chamber is used to assess 
the radiation properties. Fig. 9 depicts a simulated return loss graph for 
the optimized antenna, with two resonance frequencies offered by the 
Yagi antenna: 1.85 GHz and 2.64 GHz, with corresponding return loss 
magnitudes of S11 of -50.44 dB and -35.67 dB, respectively. A vector 
network analyzer (VNA) can be used to measure an antenna’s S11. The 
measured return loss of the fabricated antenna is shown in Fig. 9. Res-
onance at 1.88 GHz and 2.62 GHz has been reported to be as low as 
-37.90 decibels (dB) and as high as -22.74 decibels (dB). The resonance 
shifts from 1.85 GHz to 1.80 GHz and from 2.64 GHz to 2.76 GHz when 
the simulation and the experimental results are compared. In the sim-
387

ulation, the antenna is energized using a waveguide port; in practice, 
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Fig. 9. Simulated and Measured Reflection coefficient of the proposed Antenna.

Fig. 10. Simulated and Measured Gain & Efficiency for the proposed antenna.

the SMA connector is utilized. It demonstrates that the simulated and 
measured resonance frequencies are not too far apart from one another.

When analyzing the performance of an antenna, two essential as-
pects that need to be taken into consideration are the antenna’s gain as 
well as its directivity. The term “gain” refers to the amount of energy 
that is transmitted to the primary beam, while “directivity” refers to 
the amount of energy that is focused in a single direction [39]. The sug-
gested Yagi antenna system’s radiation efficiency and gain are measured 
and compared to their simulated counterpart. According to Fig. 10, the 
recommended antenna achieves a simulated maximum gain of 6.76 dB 
while also maintaining a maximum efficiency of 83.05%. Measurements 
of the prototype’s peak gain in an anechoic chamber came in at 7.64 dB, 
with optimum efficiency of around 88%.

Fig. 11 illustrates the Z-matrix, which is still another essential el-
ement of the impedance characteristics of the proposed Yagi antenna. 
According to this figure, the real portion of the Z-parameter is close to 
50 at 1.85 GHz and 2.64 GHz frequencies, while the imaginary part of 
the Z-parameter is close to 0 at both of those frequencies.

Fig. 12 shows the simulated and measured 2D radiation patterns at 
1.85 and 2.64 GHz, respectively. At the first operating frequency, in the 
E-field, the main lobe magnitude at 𝜑 = 0 degree is 14.2 dBV/m, and 
the 3 dB angular beam width at 𝜑 = 90 degree is 151.4◦ at 1.8 GHz. In 
the case of H-field, the main lobe magnitude at 𝜑 = 0 degree is -37.3 
dBA/m, and the 3 dB angular beam width at 𝜑 = 90 degree is 93◦ at 
1.8 GHz.

At the second operating frequency, in the E-field, the prime lobe 
magnitude at 𝜑 = 0 degree is 14.4 dBV/m, and the 3 dB angular beam 

width at 𝜑 = 90 degree is 59.3◦ at 2.6 GHz. In the case of H-field, the 
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Fig. 11. Z-parameter of the studied antenna.

Fig. 12. Simulated and Measured Normalized Radiation patterns.

main lobe magnitude at 𝜑 = 0 degree is -37.1 dBA/m, and the 3 dB 
angular beam width at 𝜑 = 90 degree is 59.3◦ at 2.6 GHz.

The measured and simulated both E field (yz plane) and H field (xz 
plane) radiation patterns of the Yagi antenna are projected at angles 
between 0 and 90 degrees. However, due to measurement setup re-
strictions and faults in the 3D Yagi antenna, a minor disparity between 
simulated and measured findings is studied in both planes.

6.1. Equivalent circuit modeling and simulation

The equivalent circuit of the antenna is derived from the impedance 
analysis tools of the designed antenna using CST Studio simulation and 
circuit design tools in Agilent ADS software. Maximum power transfer 
(at least 90%) from the input port to the antenna structure and radiation 
into free space is guaranteed by a return level of less than -10 dB at 
the resonance frequency. When the impedance of the antenna circuit is 
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matched to the characteristic impedance of 50 Ω, the maximum amount 
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of power can be transferred. According to the principle of maximum 
power transmission, for a network to be considered “matched,” the load 
impedance and the input resistance (Z𝑙𝑜𝑎𝑑 = R𝑖𝑛) should be as close to 
equal as possible [40].

The approach relies on locating a lumped element model (RLC cir-
cuit) with close enough characteristics to the proposed Yagi antenna 
to be helpful. An equivalent circuit is suggested for each component of 
the designed antenna, as depicted in Fig. 13 (a), (b), (c), and the an-
tenna is then reassembled as depicted in Fig. 13 (d) [41,42]. In the final 
step, a simulation is performed using the R L C parameters to cover the 
complete frequency range using the equivalent circuit model of the pro-
posed antenna, as shown in Fig. 14. This model reproduces, to a close 
approximation, the behavior of the proposed Yagi antenna. Fig. 15 com-
pares the analogous circuit simulation results with the CST simulation 
outcomes for the S11 parameters.

6.1.1. Equivalent circuits of feed line of Yagi antenna

The Yagi antenna under consideration was constructed using trans-
mission lines, as depicted in Fig. 13 (a), as an integral component of 
its equivalent circuit. As a result, the feedline of the antenna replicates 
a circuit consisting of a parallel combination of R1, L1, and C1, with 
values of 48 Ω, 20 nH, and 2.4 pF, respectively.

6.1.2. Equivalent circuits of balun resonator and driving element

Fig. 13 (b) illustrates that the right side of the balun resonator is 
represented by the parallel components of R2 (30 Ω), L2 (11 nH), and 
C2 (1 pF), while the left side of the balun resonator is indicated by the 
shunt components of R3 (60 Ω), L3 (2 nH), and C3 (1 pF). The capac-
itance value of the internal gap separating the two balun resonators is 
C9=0.001 pF. As a result, the right dipole element of the antenna em-
ulates a parallel circuit with values of R4=35 Ω, L4=7 nH, and C4=1 
pF. Similarly, the left dipole element of the proposed antenna gener-
ates a parallel circuit with values of R5=35 Ω, L5=7 nH, and C5=1 
pF. The capacitance values C11=4.2 pF and C12=4.2 pF indicate the 
separation between the dipole and director1, while C10=0.01 pF rep-
resents the internal gap between the dipoles, as illustrated in Fig. 13
(d).

6.1.3. Equivalent circuits of directors

As shown in Fig. 13 (c), the combination of C6=0.99 pF and L6=3 
nH represents the first director, C7=0.97 pF and L7=3.5 nH represents 
the second director, and C8=0.95 pF and L8=4 nH represents the third 
director. All three of these combinations are used in conjunction with 
one another to represent the respective directors. As can be seen in 
Fig. 13 (d), the distance between directors 1 and 2 is represented by 
the symbol C13 = 0.9 pF, while the gap between directors 2 and 3 is 
represented by the letter C14 = 0.9 pF.

6.2. Machine learning methodology

Since ML techniques may be trained with either real-world or sim-
ulated antenna data, they have been the subject of extensive study and 
implementation in antenna design during the past decade. ML-assisted 
optimization (MLAO) involves constructing a computationally efficient 
model with ML approaches to predict the designated features at the 
potential places in the design space by using the training set obtained 
at the sampled points based on the initial computationally expensive 
model. Some examples of ML techniques used in MLAO strategies for 
antenna design are Gaussian process regression (GPR), support vector 
machine (SVM), and artificial neural networks analyzed in [43]. To 
present a high-level perspective, we might say that machine learning is 
the process of gaining insight from data by creating reliable prediction 
algorithms. These methods may be effective in optimization settings, 

but their performance will depend on the depth and breadth of the 



Alexandria Engineering Journal 80 (2023) 383–396M.A. Haque, M.A. Zakariya, S.S. Al-Bawri et al.

Fig. 13. Evolution of equivalent circuit of Yagi antenna: (a) Circuit model for feedline (b) Circuit model for box resonator (c) Circuit model for three directors 
(d) Final obtained equivalent circuit model.

Fig. 14. Final equivalent circuit model after adjusting resistance, capacitance, and inductance values.
information available to them. This is why many people mistakenly be-
lieve that machine learning and statistical analysis are the same thing 
[44]. Since regression methods’ ML assessment is significantly faster 
than the numerical solution of a physical simulation model, they are 
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helpful for speeding up the optimization process. Regression models 
are also useful for pinpointing which specific design decisions led to 
the desired outcomes [45].

There are two parts to the methodology. The first phase involves 
using CST, a piece of simulation software, to construct an antenna that 

operates in the LTE frequency band and to extract the dataset generated 



M.A. Haque, M.A. Zakariya, S.S. Al-Bawri et al.

Fig. 15. Simulated reflection coefficient of the equivalent circuit in ADS and 
CST.

Fig. 16. Data acquisition workflow for Machine Learning.

by a parametric sweep. To determine which machine learning model 
will yield the best results, it must first be trained on the dataset.

Fig. 16 depicts the methods that will now be explored in further 
depth. First, choose an LTE frequency range between 1.85 and 2.64 
GHz. At frequencies where the antenna’s capability is adequate, use CST 
to design the antenna. Parametric sweeps allow for the export of sim-
ulated CST characteristics such as director length, dipole size, ground 
and reflector length, and so on. Regression machine learning methods 
may benefit from larger datasets in some circumstances, but this is not 
always the case. The extent to which a larger dataset influences a regres-
sion model depends on a number of parameters, including the difficulty 
of the problem, the dimensionality of the input characteristics, and the 
complexity of the model. Finally, 90 data samples are gathered via the 
simulation with the help of CST MWS, and a number of regression ma-
chine learning (ML) techniques are used to make predictions about the 
gain and resonant frequency of the proposed Yagi antenna. Using the 
train-test split strategy, the dataset can be segmented for use in both 
development and verification. This strategy uses a statistically-sound 
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random partitioning of the data set into training and testing subsets.
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Fig. 17. Schematic depicting the steps required to develop a machine learning 
algorithm.

Eight different machine-learning algorithms are used to make pre-
dictions in this study. Linear Regression, Random Forest Regression, 
Decision Tree Regression, Lasso Regression, Ridge Regression, XGB Re-
gression, Bayesian Linear Regression, and Gaussian Process Regression 
are only a few of the regression models being considered. These algo-
rithms are chosen because of their proficiency in non-linear regression 
analysis. Since the end goal of implementing predictions is numbering, 
regression is the best method to use. The term “error” refers to the most 
commonly used statistic in regression analysis. Fig. 17 illustrates the 
steps in creating a machine learning algorithm as a flowchart. Para-
metric sweeps run on the CST simulation software were used to divide 
the dataset into two separate subsets for analysis. All of the machine 
learning research was carried out in Google Colab, Google’s Python sim-
ulation. Using the sci-kit learn machine learning framework, we were 
able to build the Regression models quickly. Every study and visualiza-
tion, but especially the conclusion, made use of Matplotlib.

The first portion of the study followed the recommendation in [46]
and set aside 80% of the dataset for training, whereas the second half set 
aside 20% of the dataset for testing. Then, a machine-learning algorithm 
that takes into account the features and labels is applied to the train-
ing dataset. Once model training and cross-validation are complete, the 
model may be used to reliably predict inputs such as realized gain and 
directivity. Machine learning (ML) allows for more rapid and precise 
forecasting than may be achieved with computer simulation technology 
(CST). Gain prediction is best served by Ridge Regression model, while 
directivity is best served by Gaussian Process Regression.

6.3. Machine learning model selection

Using many different models can help assure the highest level of 
performance possible. Regression analysis [47] is a statistical method 
for assessing the relationship between variables with a cause-and-effect 

relationship. Although our problem is addressed through regression 
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Fig. 18. Splitting of Regression Algorithms.

analysis, So, we used the eight most practical machine learning regres-
sion models, such as linear, tree, ensemble, and Gaussian process-based 
methods shown in Fig. 18. Each of these is described briefly below.

6.3.1. Linear regression

Linear regression [48] aims to model the relationship between two 
variables by fitting a linear equation to observable data. The first vari-
able is an explanatory variable, whereas the second is the dependent 
variable.

6.3.2. Random forest regression

An ensemble system called Random Forest [49] can address both 
classification and regression issues. It achieves this by combining a tech-
nique known as Bootstrap and Aggregation, often known as bagging, 
with several decision trees.

6.3.3. Decision tree regression

Decision tree develops regression or classification methods using a 
tree structure. In decision tree regression [50], the properties of an item 
are analyzed, and a model is trained to fit inside the structure of a tree. 
This model is then used to predict data that will occur in the future and 
continuously produce meaningful output.

6.3.4. Lasso regression

As an approach to regression analysis in the disciplines of machine 
learning algorithms, lasso [51] (an acronym for least absolute shrinkage 
and selection operator) is commonly used. Combining variable selection 
with regularization, this strategy enhances the resultant statistical mod-
el’s predictive power and human explainability.

6.3.5. Ridge regression

A method known as Ridge Regression [52] is used to analyze the re-
sults of multiple regressions when those results contain multicollinear-
ity. In this manner, the L2 regularization procedure is executed. The 
projected quantities and actual numbers might diverge significantly 
when multicollinearity problems occur, least-squares approaches pro-
vide unbiased findings, and variances are significant.

6.3.6. XGB regression

XGBoost [53] is a powerful realization of the gradient-boosting al-
gorithm with several useful applications, one of which is predictive 
regression modeling. An efficient application of XGBoost is in the cre-
ation of supervised regression analysis.

6.3.7. Bayesian linear regression

Bayesian linear regression [54] is a type of conditional modeling in 
which the mean of one variable is described by a linear combination of 
other variables. The prior probability of the regression analysis, depen-
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dent on the observed data of the regressors, is the goal of this modeling 
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approach. It will also enable the out-of-sample forecast of the regres-
sion.

6.3.8. Gaussian process regression

Nonparametric kernel-based probabilistic models are known as 
Gaussian process regression (GPR) [55] models. It is a general-purpose 
supervised learning method with the purpose of resolving issues involv-
ing regression and probabilistic classification.

6.4. Performance measurement metrics

Error is the most commonly used metric in regression. We compared 
all the algorithms using numerous statistical metrics for measuring, 
evaluating, and analyzing their performance. We will go through each 
of them in depth in the following paragraphs.

The mean absolute error (MAE) figures out the average difference 
between the calculated and the found values. Equation (2) depicts the 
MAE [56] formulation.

𝑀𝐴𝐸 = 1
𝑛

𝑛∑
𝑖=1

||𝑦𝑖 − 𝑦̂𝑖
|| (2)

Where n is the total number of observations, 𝑦̂𝑖 and 𝑦𝑖 represent the 
predicted and actual values.

The most common form of the regression loss function is the mean 
squared error (MSE). The loss is calculated as the average over all data 
points of the squared disparities between the actual and forecasted val-
ues. The MSE [57] formulation is shown in Equation (3).

𝑀𝑆𝐸 = 1
𝑛

𝑛∑
𝑖=1

(
𝑦𝑖 − 𝑦̂𝑖

)2
(3)

The mean squared logarithmic error (MSLE) can be regarded as a 
ratio of the true and predicted values. The MSLE [58] equation is shown 
in Equation (4).

𝑀𝑆𝐿𝐸 = 1
𝑛

𝑛∑
𝑖=1

(
log

(
𝑦𝑎
)
− log

(
𝑦𝑝
))2

(4)

Root Mean Squared Logarithmic Error (RMSLE) restores the unit to 
its original value by taking the Root of MSLE. The equation of RMSLE 
[59] is shown in Equation (5).

RMSLE =
√(

log
(
𝑦𝑖 + 1

)
− log

(
𝑦̂𝑖 + 1

))2
(5)

The mean absolute percentage error (MAPE) can be computed by 
first determining the difference between the actual value and the pre-
dicted value and then dividing it by the actual value. Equation (6)
depicts the MAPE [60] formula.

MAPE = 100%
𝑛

𝑛∑
𝑖=1

|||| 𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖

|||| (6)

The R-squared value indicates the accuracy of the model fit. When 
R2 is close to 1, it indicates that the model provides a good fit for the 
data, whereas when it is closer to 0, it is a sign that the model is not 
very accurate. When a model predicts an absurd outcome, R-squared 
can be negative. R-squared [61] is expressed in equation (7).

𝑅2 = 1 −
∑𝑁

𝑖=1
(
𝑦𝑖 − 𝑦̂𝑖

)2
∑𝑁

𝑖=1
(
𝑦𝑖 − 𝑦̂𝑖

)2 (7)

The explained variance score [62] describes the error dispersion in 
each dataset. It is defined as in equation (8).

Var(𝑦− 𝑦̂)

explained varience (𝑦, 𝑦̂) = 1 −

Var(𝑦)
(8)
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Table 2

Gain prediction performance.

Algorithms MAE MSE MSLE RMSLE MAPE R-Square VarScore

Linear Regression 4.8250% 1.0547% 0.0957% 3.0934% 1.8435% 97.7871% 97.7897%
Random Forest Regression 9.4133% 1.7247% 0.1231% 3.5080% 3.3104% 96.3814% 96.3909%
Decision Tree Regression 11.1350% 3.0525% 0.2788% 5.2801% 4.1149% 93.5958% 93.7402%
Lasso Regression 13.7971% 2.8673% 0.1845% 4.2958% 4.5357% 93.9843% 94.0102%
Ridge Regression 4.7062% 1.0002% 0.0904% 3.0066% 1.7944% 97.9015% 97.9078%
XGB Regression 10.1547% 2.0270% 0.1806% 4.2496% 3.6217% 95.7472% 95.7781%
Bayesian Linear Regression 4.7272% 1.0440% 0.0948% 3.0788% 1.8166% 97.8096% 97.8129%
Gaussian Process Regression 4.7842% 1.0471% 0.0950% 3.0821% 1.8302% 97.8031% 97.8058%

Table 3

Simulated and predicted gain comparison on the test set using Ridge Regression.

No. Simulated Gain Predicted Gain Error Percentage No. Simulated Gain Predicted Gain Error Percentage

1 3.42909 3.45668 0.80% 10 3.77284 3.78143 0.23%
2 3.71054 3.75020 1.07% 11 3.18975 3.21559 0.81%
3 3.91600 3.92045 0.11% 12 3.96585 3.96424 0.04%
4 4.57052 4.54707 0.51% 13 3.43816 3.43816 0%
5 3.78020 3.75045 0.79% 14 2.43987 2.51473 0.307%
6 2.32203 2.40160 3.43% 15 2.07540 2.17423 0.476%
7 3.75053 3.74762 0.08% 16 4.09692 4.09908 0.05%
8 3.69627 3.69188 0.12% 17 2.50593 2.11448 1.562%
9 4.37569 4.35639 0.44% 18 3.47866 3.49136 0.36%

Table 4

The Directivity prediction performance.

Algorithms MAE MSE MSLE RMSLE MAPE R-Square VarScore

Linear Regression 5.0002% 1.4057% 0.0352% 1.8752% 0.9674% 96.8752% 96.8928%
Random Forest Regression 6.8659% 1.3553% 0.0378% 1.9447% 1.3387% 96.9872% 97.3368%
Decision Tree Regression 13.7062% 7.6193% 0.2073% 4.5531% 2.7260% 83.0630% 85.0300%
Lasso Regression 14.5382% 3.2877% 0.0779% 2.7915% 2.6144% 92.6918% 92.8456%
Ridge Regression 4.7999% 1.1393% 0.0282% 1.6801% 0.9008% 97.4674% 97.5155%
XGB Regression 10.4854% 2.8428% 0.0829% 2.8784% 2.0460% 93.6808% 93.9304%
Bayesian Linear Regression 4.8859% 1.3409% 0.0335% 1.8301% 0.9419% 97.0194% 97.0426%
Gaussian Process Regression 5.9301% 0.7943% 0.0190% 1.3770% 1.0612% 98.2343% 98.3110%
6.5. Gain prediction

Table 2 summarizes the relative merits of various regression meth-
ods, including linear, random forest, decision tree, lasso, ridge, XGB, 
Bayesian linear, and Gaussian process approaches. The accuracy per-
formance of each algorithm is measured using the mean absolute error 
(MAE), mean squared error (MSE), mean root-mean-squared error (RM-
SLE), mean absolute percentage error (MAPE) R-squared, and variance 
score. Moreover, the performance comparison of these models is pre-
sented using a bar diagram in Fig. 19. It is shown that the RR model 
produces small errors for MAE, MSE, MSLE, RMSLE, and MAPE, with 
scores of 4.7062%, 1.0002%, 0.0904%, 3.0066%, and 1.7942%, re-
spectively. In contrast, Ridge Regression has the best R-squared and 
variance score accuracy (97.9015% and 97.9078%, respectively). The 
simulated and predicted gains for 18 test samples using ridge regres-
sion (RR) are displayed in Fig. 20. In the study, we tune the frequency 
between 1.6 GHz and 3 GHz. Table 3 displays that the difference be-
tween the observed and expected gain for RR is negligible (very near to 
0). Additionally, the error rate is typically less than 1%. Therefore, as 
can be seen in Fig. 20, the predicted outcome closely tracks the simu-
lated result. Therefore, RR is chosen since it outperforms competing ML 
models in terms of gain prediction.

6.6. Directivity prediction

Table 4 summarizes the relative merits of various regression meth-
ods, including linear, random forest, decision tree, lasso, ridge, XGB, 
Bayesian linear, and Gaussian process approaches. The accuracy per-
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formance of each algorithm is measured using the mean absolute er-
ror (MAE), mean squared error (MSE), mean root-mean-squared error 
(RMSLE), mean absolute percentage error (MAPE) R-squared, and the 
variant score. It has been demonstrated that the GPR model generates 
relatively insignificant errors for MSE, MSLE, and RMSLE, with scores 
of 0.7943 percent, 0.019 percent, and 1.37 percent, respectively. When 
evaluating at MAE, bayesian linear regression gives the lowest error. 
However, when considering MAPE, linear regression displays the low-
est error. However, the Gaussian Process Regression has the highest 
accuracy for both the R-squared and the variance score (98.23% and 
98.11%, respectively). Moreover, the performance comparison of these 
models is presented using a bar diagram in Fig. 21. Each of the 18 
test samples was run through the Gaussian Process Regression (GPR) 
method, and the simulated and predicted directivity is shown in Fig. 22. 
We customize the frequency to be somewhere between 1.6 and 3 gi-
gahertz for the study. According to what is shown in Table 5, there 
is hardly any deviation between the actual and predicted levels of di-
rectivity for the GPR model (very near to 0). In addition to that, the 
percentage of errors is often lower than 1%. As a result, the simu-
lated result and the predicted outcome are depicted in Fig. 22 in a very 
similar manner. Therefore, given its superior performance compared to 
other ML models in directivity prediction, GPR has been selected.

6.7. Statistical tests

In the Wilcoxon test, the p-value indicates the likelihood of observ-
ing the test statistic (the sum of ranks) or a more extreme number when 
the null hypothesis is accepted [63]. No significant difference exists be-
tween the two samples or observations, as stated by the null hypothesis. 

How likely it is that the test statistic (F-value) or a more extreme result 
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Table 5

Simulated and predicted directivity comparison on the test set using Gaussian Process Regression.

No. Simulated Directivity Predicted Directivity Error Percentage No. Simulated Directivity Predicted Directivity Error Percentage

1 5.54311 5.60121 1.05% 10 6.23284 6.23176 0.02%

2 6.24775 6.12147 2.02% 11 5.60286 5.66676 1.14%

3 6.28841 6.24887 0.63% 12 6.29931 6.25179 0.75%

4 6.94375 6.98022 0.53% 13 5.54853 5.63823 1.62%

5 6.19702 6.21144 0.23% 14 4.87025 4.83760 0.67%

6 4.75591 4.84679 1.91% 15 4.49189 4.47738 0.32%

7 6.17642 6.17988 0.06% 16 6.37744 6.28637 1.43%

8 6.18115 6.21868 0.61% 17 5.15692 5.45115 5.71%
9 6.77792 6.79011 0.18% 18 5.91079 5.89689 0.24%

Fig. 19. Performance comparative bar chart of ML regressors (Gain). Fig. 21. Performance comparative bar chart of ML regressors (Directivity).
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Fig. 20. Simulated vs predicted gain using Ridge Regression.
 Fig. 22. Simulated vs predicted directivity using Gaussian Process Regression.
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will be found in an analysis of variance (ANOVA) is indicated by the 
p-value. Under the null hypothesis of ANOVA, the means of the groups 
being compared will be found to be the same.

Whether or whether an observed difference is statistically signifi-
cant is often assessed by comparing the p-value to a preset significance 
level (such as 0.05) [64]. Evidence against the null hypothesis, in the 
form of a p-value below the significance level, would show that the 
paired observations or samples are significantly different from one an-
other. However, if the p-value is larger than the significance level, it 
indicates that there is not enough evidence to reject the null hypothe-
sis and that there is no difference. Our p-values for the Wilcoxon test of 
the ridge regression are 0.303794, and the p-values for the analysis of 
variance test are 0.9817, so there is no significant difference between 
the two tests. We find no statistically significant difference between 
the Wilcoxon test’s p-value of 0.5798 and the ANOVA test’s p-value of 
0.9348 for the Gaussian Process Regression.

6.8. Limitations of this work

To achieve a high gain level, a long Yagi antenna is required, but it 
also has a number of drawbacks. A high-gain Yagi antenna requires a 
combination of some directors and some other types of elements in or-
der to work. Although the antenna in the suggested design is quite large 
(130 × 119.30𝑚𝑚2), its gain and efficiency have been greatly improved. 
A larger number of director elements in an array reduces the available 
bandwidth. Although a long antenna might enhance reception, it also 
raises the possibility of interference. We have designed and analyzed 
an equivalent RLC circuit for the proposed Yagi antenna using the ADS 
simulation tool. The regression model is another contributing part of 
this work. For the simulation, 90 data samples are collected using CST 
MWS, and these data are then subjected to a number of regression ma-
chine learning (ML) approaches. Due to a lack of training data, we do 
not apply deep learning models like CNN or ANN.

7. Conclusion and future directions

To assess the performance for the expected LTE applications, this 
study effort incorporates a Quasi-Yagi antenna design, modeling, mea-
surement of the produced antenna prototype, equivalent RLC circuit 
analysis, and various machine learning techniques. The proposed an-
tenna was first designed using the CST simulation tool, and it has a 
maximum gain of 6.76 dB, a maximum directivity of 8.21 dBi, and a 
maximum efficiency of 83.05% for cellular communication in the LTE 
frequency spectrum at 1.85 GHz and 2.64 GHz. Additionally, the RLC 
equivalent circuit model of the antenna developed by ADS Agilent and 
the CST-simulated antenna design offers nearly identical performances. 
Furthermore, eight different regression models have also been applied 
to determine the gain and directivity of the antenna. The data samples 
are strikingly comparable when anticipated and simulated results are 
compared. To validate the prediction made by the supervised regres-
sion algorithms, multiple performance measures, including MAE, MSE, 
MSLE, RMSLE, and MAPE, as well as R square and variance scores, are 
computed. These metrics are referred to as “performance metrics”. Ac-
cording to extensive analyses and acquired results, the ridge regression 
model outperforms other models’ accuracy for gain prediction, whereas 
the gaussian process regression model performs best for directivity pre-
diction. The results from simulation and measurement are quite com-
patible with one another, and the developed Quasi-Yagi antenna covers 
the desired LTE frequency spectrum. The simulation, measurement, and 
predicted results corroborate the proposed Quasi-Yagi antenna’s suit-
ability for LTE applications. By utilizing low-loss dielectric material, the 
antenna might eventually be further reduced in size without sacrificing 
a greater efficiency level. To ensure further performance improvement, 
multi-substrate techniques and an increase in the number of directors 
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could be used.
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