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ABSTRACT

Glioma,  a  prevalent  and  devastating  brain  tumor,  presents  formidable  challenges  in

diagnosis and prognostication. This study endeavors to enhance glioma grading accuracy

by leveraging 3D MRI data and a comprehensive array of medical  features extracted

through the PyRadiomic framework. Given the diverse manifestations of glioma tumors

and their profound impact, an advanced approach is imperative for precise grading. This

investigation  meticulously extracts  six distinct  medical  features,  including First  Order

Statistics, Shape-based (3D), Gray Level Co-occurrence Matrix, Gray Level Run Length

Matrix, Gray Level Size Zone Matrix, Neighboring Gray Tone Difference Matrix, and

Gray Level Dependence Matrix. These features, computed based on tumor annotation,

provide detailed characterizations of glioma tumors, elucidating their intricacies.

To augment glioma grading accuracy further, various machine learning algorithms are

employed.  A  pivotal  contribution  is  the  introduction  of  the  Radiomic  Graph  Neural

Network (RGNN) model, tailored for graph-based data, where nodes symbolize entities,

and edges denote intricate relationships between them. The core objective of the RGNN

model  is  to  generate  low-dimensional  vector  representations  (embeddings)  for  nodes

within  the  graph,  preserving  underlying  structural  and  relational  information.  This

innovative  RGNN  model  significantly  enhances  precision  in  differentiating  between

various glioma grades. Specifically,  for the Native T1 stage of MRI and T2-weighted

(T2) stages, the proposed RGNN model achieves an unprecedented accuracy of 99.00%.

This outperforms existing methods and sets a new benchmark in glioma tumor grading

based on medical features, leveraging 4 stages of 3D magnetic resonance imaging.
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CHAPTER 1
Introduction

1.1 Introduction

The widespread primary brain tumors, gliomas, have a catastrophic impact on people's
health. These sneaky growths originate from the glial cells that support the nerve cells,
unlike the prominent neurons in the nervous system's orchestra. The delicate ballet of
electrical  signals  that  controls  our  thoughts,  motions,  and very  existence  is  disrupted
when these backstage workers go rogue, leading to uncontrollable growth and mutations.
This essay explores the intricacies of gliomas, including their impact, frequency, and the
continuous fight against this formidable adversary. Neurons are backed both physically
and chemically by glial cells, in addition to uphold their surroundings. Glial cells reside
within both the peripheral and central nervous systems, and are sometimes referred to as
the "glue" of the nervous system. A tumor of the central nervous system that develops
from glial cells is called a glioma [1]. Gliomas are primary brain tumors that are believed
to  originate  from  progenitor  or  neuroglial  stem  cells.  Usually,  they  are  cancerous.
Gliomas rarely spread to other parts  of the body. However,  they pose a threat to life
because they can spread swiftly through the spine and brain. Gliomas afflict individuals
across the age spectrum, though their grip tightens around adults between 45 and 55 years
old [1]. Each year, an estimated 5-7 per 100,000 individuals fall victim to this unwelcome
guest  in  their  cranium,  with  males  facing  a  slightly  higher  risk  than  females  [2].
However, the prognosis varies greatly, a complex tango between the tumor's grade, its
chosen  location  within  the  intricate  landscape  of  the  brain,  and  the  body's  valiant
response to treatment [3]. The aggressive conductors of this discordant tune, high-grade
gliomas, proudly display their malignancy with a median survival of only 12–15 months.
These nimble and inconspicuous intruders are distinguished by their quick, infiltrative
growth, which allows them to blend in with the brain's structure and elude treatment
measures  [4].  On  the  other  hand,  low-grade  gliomas  proceed  more  slowly  and
methodically. Five to ten years may pass while they are present, and in some lucky cases,
remission  or  a  protracted  ceasefire  may  even  be  feasible  [5].  Gliomas  are  primarily
dangerous not just because of their physical presence but also because of the way they
interfere with brain function. These unwanted tumors squeeze and deform healthy brain
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tissue as they grow, causing havoc to spread across the fragile neural network. Numerous
neurological symptoms are indicative of this disturbance, which highlights the tumor's
effect on the mind's orchestra  [6]. The growths compose a discordant symphony that
includes  a  variety  of  symptoms,  including  headaches,  seizures,  speech  and  language
difficulties, vision impairments, muscular weakness or paralysis, cognitive decline, and
personality abnormalities [7]. In addition to the short-term consequences, these tumors
may result in long-term complications like a higher chance of developing additional brain
tumors,  side  effects  from  radiation  therapy,  difficulties  from chemotherapy,  and  the
mental and psychological anguish that comes with facing such a strong opponent.

The  majority  of  glioma  patients  require  multiple  therapies.  These  could  consist  of
chemotherapy, radiation treatment, or surgery. Young individuals have the best chance of
surviving when their gliomas are low-grade, or slow-growing [8]. Glioma causes upward
of about 28% of all primary brain tumors as well as is a rare but highly fatal disease with
a yearly frequency of 2-3 cases per 100,000 individuals in the United States of America
[9-12]. All ages are susceptible to gliomas, although the probability rises with age. Low-
grade gliomas can happen to adolescents, but these tumors are more common in older
adults.Gliomas  have  precise  causes  that  have  not  yet  been  determined.  However,
exposure to ionizing radiation and specific genes are potential contributors to risk.The
standard course of treatment entails a mix of radiotherapy, chemotherapy, and surgery.
Even with more aggressive treatment plans, the end result for more advanced tumors is
still uncertain.

Radiomics is an innovative feature transformation approach that extracts features from
radiological imaging data that's hard for the individual's eye to see but are in practice
pertinent. With the goal to boost diagnosis and  planning of treatment machine learning
models are being studied The distinction between feature extraction and feature selection
should be noted. Finding as many features as possible that describe the gathered data is
the aim of feature extraction. The goal of feature selection is to prevent overfitting of the
data while  reducing the large number of  extracted  features  to  a  manageable  number,
which can then be generalized as patterns that reliably identify the concepts concealed
within the data. Overfitting of data is an issue in the field of machine learning whereby
the model performs poorly when new data is presented for analysis, despite the analysis
yielding outstanding outcomes when applied to the training data [13]. When it comes to
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describing the form, texture, and various other attributes of tumors, radiomics can do a
remarkable job. It is possible to forecast the nature, rage, and effect of medication for a
tumor using the retrieved data. Radiomics has the ability to track developments in tumor
properties over a period of time, which is useful in evaluating how well treatments like
chemotherapy and radiotherapy are working.By evaluating alterations in the brain, it may
be  used  for  timely  identification  and  tracking  of  neurological  disorders  such  as
Alzheimer's disease. Through analyzing coronary artery images, radiomics can figure out
the chemical makeup of plaque and evaluate the risk of cardiac occurrences.It  can be
applied to the detection, prognosis, and examining of malignancies of the lungs. It aids in
determining  the  nature  of  lung  disorders  like  pulmonary  fibrosis  (PF)  and  chronic
obstructive pulmonary disease (COPD).To gain a deeper understanding of the correlation
between a patient's genetic composition and the radiomic characteristics of their tumors,
radiomics and genomics are combined.

In this paper, graph neural networks have been used in conjunction with radiomic feature
extraction  on  3-dimensional  magnetic  resonance  imaging  (MRI)  images  to  predict
gliomas.Typically, image processing and graph theory techniques are used to represent
relationships  or  connections  between  images  in  a  graph  network  created  with  MRI
images.Years of training are needed for the tedious, time-consuming process of manually
evaluating  medical  images,  such as brain  tumor MRI scans,  which is  also frequently
prone to inter-annotator variation. One long-standing problem that aims to address these
is  the  automatic  segmentation  of  medical  images,  which  has  significant  potential
advantages for both patients and doctors. Convolutional Neural Networks (CNNs) have
become the de facto state-of-the-art methodology for this task in the last few years. In the
deep learning community, graph-based neural networks, or GNNs, have received a lot of
attention lately. By aggregating data over connected nodes, GNNs take advantage of the
structural information found in graphical data, which enables them to efficiently capture
relation information between data elements. In this work, we suggest segmenting brain
tumors using a GNN-based method. We use a graph representation of 3D MRI scans of
the brain, with nodes representing different regions and edges connecting neighboring
regions [14].
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1.2 Motivation
Glioma brain tumors pose a significant threat to human health, demanding accurate and
efficient diagnostic tools for precise classification and prognosis. The motivation behind
this research lies in addressing the critical need for advanced methods that can enhance
our  understanding  and  clinical  management  of  gliomas.  Traditional  diagnostic
approaches often fall short in providing the intricate details necessary for personalized
treatment strategies. The utilization of 3D imaging data from the BraTS dataset offers a
novel avenue to delve deeper into the complex architecture of gliomas. By leveraging
cutting-edge technologies, such as pyradiomics, I aim to extract rich radiomic biomarkers
from segmentation images, unlocking hidden patterns that may hold the key to robust
tumor grading.

The significance of this research extends beyond conventional grading methodologies.
The integration of machine learning algorithms serves as a powerful tool to analyze and
interpret the vast array of radiomic features. Through rigorous evaluation, my goal is to
establish a reliable and accurate classification system that surpasses existing standards,
providing  clinicians  with  a  more  nuanced  understanding  of  glioma  heterogeneity.
Furthermore, the introduction of graph neural networks (GNNs) represents a pioneering
step  in  the  fusion  of  advanced  imaging  and  artificial  intelligence.  GNNs  inherently
capture the spatial relationships within the 3D tumor data, offering a holistic perspective
that aligns with the intricacies of glioma growth patterns. This novel approach not only
aims  to  achieve  state-of-the-art  results  in  tumor  grading  but  also  contributes  to  the
evolving landscape of medical image analysis.

Ultimately, this research strives to redefine the benchmarks in glioma grading, fostering
advancements in precision medicine. The outcomes hold promise not only for improving
diagnostic  accuracy  but  also  for  informing  tailored  treatment  strategies,  ultimately
leading  to  enhanced  patient  outcomes  and  a  deeper  understanding  of  the  underlying
biology of gliomas.

1.3 Rationale of the Study

The rationale behind the study of glioma grading lies at the intersection of pressing 
clinical needs and the advancement of medical science. Gliomas, being a heterogeneous 
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group of brain tumors, exhibit diverse molecular profiles and clinical behaviors. Accurate
grading of gliomas is paramount for determining prognosis, guiding treatment decisions, 
and predicting patient outcomes. However, the inherent complexity and variability of 
gliomas pose a formidable challenge to traditional grading methods.

The motivation for this study arises from the imperative to transcend the limitations of
conventional diagnostic approaches. The utilization of 3D imaging data from the BraTS
dataset allows for a comprehensive analysis of the spatial and morphological intricacies
of gliomas. This rich dataset provides an opportunity to explore novel avenues in glioma
grading that capture the full spectrum of tumor characteristics, from subtle variations in
texture to complex structural patterns.

By employing state-of-the-art techniques such as pyradiomics, the study seeks to extract
radiomic biomarkers from segmented images, translating intricate visual information into
quantifiable features. This not only enhances the granularity of glioma characterization
but also lays the foundation for a more robust and reproducible grading system. Machine
learning algorithms play a pivotal  role in this  research,  serving as intelligent  tools to
discern patterns within the vast radiomic landscape. The integration of these algorithms
aims to surpass the limitations of manual grading and establish a more objective and data-
driven approach.

Furthermore, the incorporation of graph neural networks (GNNs) adds a novel dimension
to the study. GNNs, designed to capture spatial relationships within complex networks,
are particularly apt for modeling the intricate architecture of gliomas in 3D space. This
innovative application of GNNs seeks to elevate the accuracy of glioma grading, thereby
contributing to a paradigm shift in neuro-oncological diagnostics.

In essence, the rationale for this study is rooted in the urgent clinical need for improved
glioma  grading  methodologies.  Through  the  amalgamation  of  advanced  imaging,
radiomics, and machine learning, this research aspires to redefine our understanding of
gliomas,  ushering in  a  new era of precision medicine  with profound implications  for
patient care and treatment strategies.
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1.4 Research Questions

(a)How do the identified limitations in mapping selected features with significant
medical relevance impact the robustness and reliability of the proposed glioma
grading model?

(b)From the perspective of the higher computational complexity associated with the
model, how can the research address or mitigate potential  resource constraints,
ensuring practical implementation and scalability in real-world clinical settings?

(c)What  strategies  and  methodologies  can  be  employed  to  rigorously  test  for
overfitting  and  underfitting  in  the  machine  learning  models,  ensuring  their
generalizability and effectiveness across diverse patient populations?

(d)How do various factors, such as imaging noise, variations in acquisition protocols,
and the inherent complexities of 3D MRI images, impact the overall quality of
service in glioma grading?

(e)What steps can be taken to enhance the robustness of the model under such real-
world conditions?

(f) Considering the potential challenges in translating research findings into clinical
practice,  what  steps  can  be  taken  to  facilitate  the  seamless  integration  of  the
proposed glioma grading model into routine diagnostic workflows, ensuring its
practical utility for healthcare professionals?

(g)What measures are in place to tailor the grading system to individualized clinical
needs, considering the heterogeneous nature of gliomas?

(h)How can it ensure interpretability and provide transparent insights to clinicians,
facilitating informed decision-making in the diagnosis and treatment planning for
glioma patients?

1.5 Expected Output

(a)The  research  is  expected  to  identify  clinically  significant  imaging  biomarkers
associated with glioma grading, providing insights into the nuanced characteristics
of different tumor grades.
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(b)The  introduction  of  RGNN,  a  hybrid  deep  learning  model,  is  anticipated  to
enhance the accuracy of glioma grading through the capture of intricate patterns
within 3D MRI images.

(c)The  output  includes  the  successful  integration  of  multiple  open-access  BraTS
databases  of  3D  MRI  images,  accompanied  by  a  detailed  explanation  of
computational  requirements  and  a  rigorous  evaluation  for  overfitting  and
underfitting, ensuring model robustness.

(d)The developed model is envisioned to assist neurophysicians in accurately staging
glioma  tumors  by  incorporating  clinical  radiomic  features  into  the  diagnostic
process.

(e)The  ultimate  output  aims  to  showcase  the  strengths  and  advantages  of  the
proposed  method,  demonstrating  a  significant  improvement  in  diagnostic
accuracy and reliability in glioma grading through the innovative use of critical
imaging biomarkers and the RGNN model.

1.6 Report Layout

Chapter 1 offers an overview of the research, covering the motivation, rationale, research
questions, expected outputs, and the report's layout.
Chapter  2  delves  into  a  comprehensive  review  of  related  literature,  featuring  a
comparative analysis, summarizing key findings, outlining the scope of the problem, and
identifying challenges.
Chapter 3 has proposed the methodology, encompassing the data collection procedure,
the dataset utilized, statistical analysis, and implementation requirements for the research.
Chapter 4 explains the experimental setup, presents the results analysis, and engages in a
thorough discussion of the findings, providing valuable insights into the efficacy of the
proposed model.
Chapter 5 concludes the study by addressing its impact on society and the environment,
discussing  ethical  aspects,  and  presenting  a  sustainability  plan  for  the  proposed
methodology.
This final chapter provides a concise summary of the study, outlines key conclusions
drawn from the research, and suggests implications for further studies in the field.
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Chapter 2 

Background

2.1 Related Work

Radiomics  has  been  used  recently  to  uncover  information  that  is  hidden  in  medical
images. It has greatly aided researchers in their efforts, particularly in the identification
and classification of tumors [9,10]. Radiomics  works step by step likely:  splitting the
region of interest,  collecting the features from the ROIs, choosing and decreasing the
dimensions  of  the  characteristics  extracted,  and  building  the  model.  Because  of  its
outstanding efficacy, precision, and effectiveness when compared to traditional clinical
examination methods,  computer-aided diagnosis technology is often referred to as the
physician's  "third  eye"  and  is  essential  for  the  identification  and  classification  of
numerous diseases.[15-18]

Hafeez et. all proposed a lightweight convolutional neural network (CNN) is proposed
for  the  classification  of  glioma  grading,  demonstrating  superior  performance  on
benchmarked  datasets  (Brats-2017,  Brats-2018,  Brats-2019)  and  a  locally  developed
dataset from Bahawal Victoria Hospital, Pakistan. The model outperforms state-of-the-art
pre-trained  CNNs,  including  resnet18,  squeezenet,  and  alexnet,  achieving  maximum
accuracy, specificity, and sensitivity at 97.85%, 98.88%, and 99.88% on benchmarked
data and 98.89%, 99.28%, and 99.77% on the local dataset. These results establish the
proposed CNN as a highly effective tool for glioma grading, surpassing recent state-of-
the-art studies in the field [19]. Rizwan et. all [20] introduces a Gaussian Convolutional
Neural Network (GCNN) for Brain Tumor (BT) detection using Magnetic  Resonance
Imaging.  The  model  achieves  99.8%  accuracy  in  classifying  pituitary,  glioma,  and
meningioma tumors and 97.14% accuracy in distinguishing glioma grades (Grade-two,
Grade-three,  and  Grade-four).  With  datasets  comprising  3064  and  516  images,  the
proposed  approach  demonstrates  robust  performance,  emphasizing  its  efficiency  for
accurate multi-class categorization in BT diagnosis. Özkaya et.  all  [21] presented two
novel approaches for brain tumor classification and segmentation using Convolutional
Neural Networks (CNNs). The first approach achieves 99.85% accuracy in distinguishing
High-Grade Glioma (HGG) and Low-Grade Glioma (LGG) tumors. The second approach
©Daffodil International University                                                                                                16
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integrates normalization, modality fusion, and CNN models for HGG-LGG classification,
while  a  segmentation  algorithm yields  a  70.58% Dice  Similarity  for  complete  tumor
segmentation. Results suggest the algorithm's potential for robust brain tumor diagnosis
and feature extraction. Chaddad et. all [22] proposed novel multimodal image features
based on Joint Intensity Matrix (JIM) for fine-grained texture analysis in lower-grade
glioma (LGG) tumors.  Utilizing T1-weighted,  post-contrast,  FLAIR, and T2-weighted
MR images, the expanded JIM features show significant associations with genetic status
(IDH1, ATRX, TP53, and 1p/19q codeletion) and patient  survival outcomes. Random
Forest classification achieves a maximum AUC of 78.59% for IDH1 status and 86.79%
for predicting short and long LGG patient survival, with JIM features emerging as highly
informative predictors. Sultan et. all conducted [23] a deep learning (DL) model based on
a convolutional neural network for the classification of various brain tumor types using
two distinct datasets. The first dataset classifies tumors into meningioma, glioma, and
pituitary  tumor  categories,  while  the  second  differentiates  between  the  three  glioma
grades (Grade II, Grade III, and Grade IV). Leveraging T1-weighted contrast-enhanced
images,  the  DL  model  achieves  remarkable  performance  with  overall  accuracies  of
96.13%  and  98.7%  for  the  respective  datasets,  highlighting  its  efficacy  in  multi-
classifying  brain  tumors.  Al-saffar  et.  all  [24]  introduced  a  novel  method,  Mutual
Information-Accelerated Singular Value Decomposition (MI-ASVD), for efficient feature
selection  in  brain  image  classification.  The  proposed  system,  encompassing  pre-
processing,  clustering,  tumor  localization,  feature  extraction,  MI-ASVD,  and
classification stages, demonstrates superior performance in classifying MRI brain images
into healthy,  high-grade glioma,  and low-grade glioma categories.  By integrating MI-
ASVD into the feature selection process, the simplified residual neural network achieves
an accuracy of 94.91%, outperforming standard dimensionality reduction methods and
state-of-the-art  techniques  in  brain  image  classification.  Tupe-Waghmare  et.  all  [25]
introduced  a  novel  method,  Mutual  Information-Accelerated  Singular  Value
Decomposition (MI-ASVD), for efficient feature selection in brain image classification.
The  proposed  system,  encompassing  pre-processing,  clustering,  tumor  localization,
feature  extraction,  MI-ASVD,  and  classification  stages,  demonstrates  superior
performance in classifying MRI brain images into healthy, high-grade glioma, and low-
grade glioma categories. By integrating MI-ASVD into the feature selection process, the
simplified  residual  neural  network  achieves  an  accuracy  of  94.91%,  outperforming
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standard dimensionality reduction methods and state-of-the-art techniques in brain image
classification. Ullah et. all [26] presented an evolutionary lightweight model, a modified
Multimodal  Lightweight  XGBoost,  for  brain cancer  detection  and classification  using
MRI scans. Utilizing BraTS 2020 dataset,  the model achieves impressive results with
93.0% accuracy, 0.94 precision, 0.93 recall, and a 0.94 F1 score. The proposed approach
demonstrates  potential  as  a  valuable  tool  for  early  diagnosis  and  effective  treatment
planning of brain tumors, showcasing promise for aiding in early cancer detection and
treatment.

Xiaokang Liang et. all proposed a Diabetic Foot(DF) prediction model through fundus
images  by  19  kinds  of  radiomics  features.  They  achieved  92%  accuracy  in  their
prediction  model  using  2184  fundus  images  (2D)[27].  Radiomics  features  capture
different aspects of the image, such as texture, orientation, phase, and gradient, offering
an extensive overview of the visual data. A two-step feature selection technique is used to
find the best-suited radiomics features, and finally, 19 features are chosen and employed
to train  a  support  vector  machine  model,  which  is  evaluated  using a  five-fold  cross-
validation approach on an extensive set containing healthcare data.

Vanessa  De  Araujo  Faria  et.  All  used  an  ANN  model  with  105  extracted

statistical/morphological  image  features  of  the  teeth  using  PyRadiomics.  The  current

investigation uses features taken from a panoramic radiograph to introduce ANN for the

prediction and identification of radiation-related caries (RRC) or regular caries in head

and neck cancer (HNC) patients receiving radiation therapy (RT). 420 teeth images (3D)

were labeled  for  two purposes,  one  for  detection  and another  for  prediction.  For  the

detection approach (the first label map), each healthy tooth was labeled “one” (class 1)

and tooth with caries with “two” (class 2) [28].

Pan Sun et.  all  [29] assessed the effectiveness  of 15 classification techniques  and 16

feature selection techniques for radiomics-based glioma grade prediction. The aim of this

research is to evaluate the accuracy of predictions of different radiomics feature selection

and  classification  techniques  in  the  glioma  tumor  grading  process,  with  a  focus  on

differentiating between low-grade gliomas (LGG) and glioblastoma (GBM). MRI images

were used in  the  process  to  gather  data  from 210 GBM and 75 LGG patients.Using

various types of MRI, they gathered radiomics features from different parts of the tumor.
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The investigation  demonstrated  that  the  selection  of  machine  learning  classifiers  and

feature selection techniques had a substantial impact on the predictive performance of

glioma grading. The pairing of MLPC and L1-SVM performed better than the others.The

results  provide  information  about  how  to  increase  the  precision  of  radiomics-based

predictions  in  glioma grading,  which may have important  ramifications  for  treatment

choices.  The effectiveness of radiomic features taken from two-dimensional  (2D) and

three-dimensional (3D) regions of interest (ROIs) in characterizing gastric cancer (GC)

was compared by Lingwei Meng et al[18]. The investigation analyzes their role in three

tasks  associated  with gastric  cancer:  i  determining the metastasis  of  lymph nodes  (T

LNM), and predicting lymphovascular invasion (T LVI) and identifying pT4 or other pT

stages (T pT). 539 GC patients from four separate healthcare institutions were enrolled in

the investigation.  For  analysis,  the  patients  were split  up into  validation  and training

cohorts. After radiologists annotated the 2D and 3D ROIs, radiomic characteristics were

collected.In order to assess the effectiveness of 2D and 3D radiomic features, three tasks

(T  LNM,  T  LVI,  and  T  pT)  were  defined.Specific  selection  of  features  and  model

building techniques were applied to every combination of the three tasks and the two

modalities (2D or 3D). A total of six machine learning models (Model LNM 2D, Model

LNM 3D, etc.) were developed for various combinations and assessed according to how

well they could characterize gastric cancer.

2.2 Comparative Analysis and Summary

A  comprehensive  survey  [30]  of  machine  learning-based  approaches  for  Glioma
classification,  emphasizing  the  challenging  nature of  this  medical  task.  The proposed
approach  introduces  a  hybrid  ensemble  learning  model  and hybrid  feature  extraction
method,  combining  Discrete  Wavelet  Decomposition,  Central  Pixel  Neighborhood
Binary Pattern, and Gray Level Run Length Matrix for accurate Glioma classification
into Low and High grades from fused MRI sequences. Utilizing the Improved eXtreme
Gradient  Boosting classifier,  the proposed method achieves  a high accuracy of above
90%  on  a  local  dataset  and  is  compared  with  existing  approaches,  showcasing  its
effectiveness across various MRI fusion combinations on global datasets  like BRATS
2013 and BRATS 2015. A radiomics [31] approach utilizing various machine learning
classifiers was employed to determine glioma grading using 285 cases from the Brain
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Tumor Segmentation 2017 Challenge. The multi-modal data included T1-weighted, T1-
contrast  enhanced,  T2-weighted,  and  FLAIR  images,  with  manual  annotations  for
enhancing  tumors,  non-enhancing  tumors,  necrosis,  and  edema.  The  minimum
redundancy maximum relevance algorithm was utilized for feature selection, resulting in
five significant features. Logistic regression, support vector machine, and random forest
classifiers demonstrated robust performance, achieving an average AUC of 0.9400 for
training  cohorts  and  0.9030  for  test  cohorts,  showcasing  the  effectiveness  of  the
radiomics-based  approach  in  glioma  grading.  This  study  [32]  aimed  to  assess  the
diagnostic  accuracy of machine learning-based radiomics  in distinguishing high-grade
gliomas  (HGG)  from  low-grade  gliomas  (LGG)  and  identify  potential  covariates
influencing  diagnostic  accuracy.  A  comprehensive  literature  search  yielded  five
retrospective  original  articles,  encompassing  LGG  and  HGG  subjects.  The  pooled
sensitivity  for  diagnosing  HGG was  notably  higher  at  96%,  with  a  95% confidence
interval of 0.93 to 0.98, surpassing the specificity for diagnosing LGG at 90% with a 95%
CI of 0.85 to 0.93. The results emphasize the promising potential of ML-based radiomic
analysis in glioma classification.

2.3 Scope of the Problem

(a)Implementation of thorough testing for overfitting and underfitting to enhance 
model robustness.

(b)Optimization of computational complexity for improved efficiency in processing 
benchmark 3D BraTS images.

(c)Integration of feature importance analysis and testing to provide insights into the 
significance of extracted radiomic biomarkers.

(d)Comprehensive performance comparisons between the developed model and 
existing methods to establish benchmarking.

(e)Exploration of similarities between selected radiomic features and clinically 
relevant medical features for better interpretability.

2.4 Challenges

Brain  cancers  collectively  are  not  as  prevalent  as  other  cancers,  their  impact  is
significant. They represent almost 2% of all adult cancers and 8% of childhood cancers
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globally, with GBM accounting for over half of adult cases [33]. The danger lies in the
brain's critical role in all bodily functions, and tumors can cause devastating neurological
deficits, impacting movement, speech, cognition, and even personality. Early diagnosis
and intervention  are crucial,  as  GBM is  highly invasive  and rapidly  progressing.  An
estimated 296,000 new GBM cases were diagnosed worldwide in 2020, with a higher
prevalence in developed countries [34]. Age is a significant risk factor, with incidence
increasing  after  50.  While  GBM  isn't  the  most  common  cancer,  its  location  and
aggressive nature make it a major public health concern. espite advancements in surgical
techniques,  radiation  therapy,  and  chemotherapy,  GBM  remains  largely  incurable.
Median overall survival is only 15 months, and the five-year survival rate hovers below
10% [35]. This stark reality underlines the need for innovative diagnostic and therapeutic
strategies.
Glioblastoma presents  a  formidable  challenge  in  the  realm of  glioma tumor  grading,
demanding innovative solutions to address its complex nature. Below are some of the key
challenges faced in this endeavor:

(a)The absence of exploration into the medical relevance or similarity of selected
radiomic  features  poses  a  challenge,  potentially  limiting  the  clinical
interpretability of results.

(b)This limitation hinders a comprehensive understanding of the clinical significance
of extracted biomarkers.

(c)Existing  studies  on  glioma  grading  often  lack  attention  to  overfitting  and
underfitting concerns, revealing potential gaps in model validation.

(d)The  processing  of  3D  BraTS  images  poses  a  challenge  due  to  higher
computational complexity, urging the need for streamlined approaches.

(e)There is a notable gap in studies concerning radiomic biomarker features, with
insufficient focus on feature importance analysis.

(f) A significant challenge lies in the absence of rigorous performance benchmarking
against  other  models,  making  it  difficult  to  assess  the  proposed  model's
comparative effectiveness.

(g)Enhancing  the  interpretability  of  radiomic  biomarkers  is  crucial  for  their
integration into an effective clinical support system for glioma grading.
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Chapter 3 

Research Methodology

3.1 Research Subject and Instrumentation

The focus of this research is to advance the field of glioma brain tumor grading through a
comprehensive  and  innovative  approach,  leveraging  state-of-the-art  techniques  in
medical  imaging,  radiomics,  and  machine  learning.  The  objective  is  to  enhance  the
accuracy and efficacy of glioma grading classification,  particularly in the challenging
context of glioblastoma (GBM), a highly aggressive and prevalent form of brain cancer.

Gliomas, encompassing various grades and types, pose a significant challenge in clinical
settings due to their diverse characteristics and the critical need for accurate grading. The
research primarily centers on glioblastoma, a malignant and fast-growing glioma variant,
accounting  for  a  substantial  portion  of  global  glioma  cases.  The  urgency  to  address
glioblastoma stems from its grim prognosis, with a median survival of only 15 months
and a five-year  survival  rate  below 10%. The lack of a  cure underscores  the critical
importance of precise grading and early diagnosis.

The  instrumental  backbone  of  this  research  involves  a  sophisticated  integration  of
cutting-edge  technologies  and  methodologies,  each  playing  a  crucial  role  in  the
comprehensive analysis and classification of gliomas grading.

 3D Image Utilization:  The foundation of the research lies in the utilization  of
three-dimensional  (3D) images  derived from the  BraTS dataset.  These images
provide a detailed and holistic representation of the glioma structures, allowing
for a nuanced understanding of their spatial intricacies.

 Radiomic  Biomarker  Extraction:  Pyradiomics,  a  powerful  Python  library
specialized in radiomic feature extraction, serves as a pivotal  instrument in the
research.  Through  Pyradiomics,  a  diverse  array  of  radiomic  biomarkers  is
extracted from the segmented images, capturing intricate details that may not be
discernible through traditional imaging analysis.

 Machine Learning Algorithm: A robust machine learning algorithm is employed
to scrutinize and validate the performance of the radiomic biomarkers. This step is

©Daffodil International University                                                                                                22

Rectangle

FreeText
14



critical  for  discerning  the  discriminatory  power  of  the  extracted  features  and
ensuring the model's ability to accurately classify different glioma grades.

 Graph  Neural  Network  (GNN):  Introducing  innovation  into  the  classification
process, a Graph Neural Network is incorporated into the research framework.
GNNs  are  adept  at  capturing  complex  relationships  within  data,  particularly
beneficial in the intricate landscape of glioma structures. The integration of GNNs
aims to push the boundaries of classification accuracy, contributing to the state-of-
the-art results expected from this research.

This  research,  with  its  focus  on  glioblastoma  and  the  integration  of  advanced
instrumentation,  aspires  to  contribute  substantially  to  the field  of  glioma grading.  By
enhancing accuracy and reliability in classification, the outcomes of this research hold the
potential  to  significantly  impact  clinical  decision-making,  treatment  planning,  and
ultimately improve the survival rates and quality of life for patients affected by gliomas.

3.2 Data Collection Procedure

The BraTS’2019 [36] and BraTS’2020 [37] challenges leverage a comprehensive dataset
consisting of clinically  acquired pre-operative  multimodal  MRI scans of glioblastoma
(GBM/HGG)  and  lower-grade  glioma  (LGG)  from  diverse  institutions.  These  scans,
obtained through routine clinical procedures, serve as the training, validation, and testing
data  for  the  challenges,  ensuring  a  multi-institutional  representation.  The  dataset
comprises NIfTI files (.nii.gz) containing mpMRI scans, encompassing native (T1), post-
contrast  T1-weighted  (T1Gd),  T2-weighted  (T2),  and  T2  Fluid  Attenuated  Inversion
Recovery (T2-FLAIR) volumes.  Notably,  these scans exhibit  variations  in acquisition
protocols  and  originate  from  different  scanners  across  various  medical  facilities,
contributing to the richness and diversity of the dataset.
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Fig 1: Different Stages of 3D MRI with Corresponding Annotation

In the Fig 1,  The different  MRI stages employed in the BraTS'2019 and BraTS'2020
challenges provide a comprehensive view of gliomas through distinct imaging modalities:
a)  Native  (T1):  The  native  T1-weighted  MRI  scan  captures  the  baseline  anatomical
structure of the brain, highlighting differences in tissue density. It is particularly useful
for visualizing the overall brain morphology. b) Post-contrast T1-weighted (T1Gd): This
stage involves acquiring T1-weighted images after the administration of a contrast agent.
The contrast-enhanced T1-weighted scan emphasizes areas with increased vascularization
and blood-brain barrier disruption, aiding in the identification of abnormal tissue, such as
glioma lesions. c) T2-weighted (T2): The T2-weighted MRI scan emphasizes differences
in water content and is sensitive to pathological changes in tissues. T2-weighted images
provide  detailed  information  about  edema,  cysts,  and  other  tissue  abnormalities,
contributing to a more comprehensive understanding of the glioma's characteristics. d) T2
Fluid Attenuated Inversion Recovery (T2-FLAIR): The T2-FLAIR sequence is designed
to suppress signals from cerebrospinal fluid, thereby enhancing the visibility of lesions
and  abnormalities.  This  modality  is  particularly  effective  in  highlighting  areas  of
hyperintensity associated with glioma, facilitating the assessment of tumor boundaries
and  surrounding  edema.  The  combination  of  four  MRI  stages  offers  a  multifaceted
perspective, allowing for a thorough evaluation of gliomas at different levels, from basic
anatomical structures to specific pathological features associated with the disease. In this
study, these two datasets are merged and investigated to gain the glioma grading diversity
with  medical  radiomic-based  features  to  assist  in  glioma’s  clinical  decision.  Table  1
illustrates  the  composition  of  the  dataset  utilized  in  our  research,  delineating  the
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distribution of Higher Grade Glioma (HGG) and Lower Grade Glioma (LGG) across the
BraTS'2019 and BraTS'2020 datasets, as well as their combined representation.

Table 1: Composition of Glioma Dataset

Dataset HGG LGG Total

BraTS’2019 293 76 369

BraTS’2020 259 76 335

Combined BraTS 552 152 704

In the BraTS'2019 dataset, 293 subjects were identified with higher grade glioma (HGG),
and 76 subjects exhibited lower grade glioma (LGG), resulting in a cumulative total of
369 subjects. Similarly, the BraTS'2020 dataset consisted of 259 HGG subjects, 76 LGG
subjects,  and  a  total  of  335  subjects.  Upon  merging  the  two  datasets  to  create  the
Combined  BraTS  dataset,  our  comprehensive  compilation  incorporated  552  HGG
subjects and 152 LGG subjects, yielding a grand total of 704 subjects. It is imperative to
note that each subject in the dataset was meticulously characterized by a set of four-stage
MRI  3D  images,  encompassing  native  (T1),  post-contrast  T1-weighted  (T1Gd),  T2-
weighted (T2), and T2 Fluid Attenuated Inversion Recovery (T2-FLAIR) sequences, as
outlined  in our  previous  description.  Additionally,  annotations  corresponding to  these
imaging modalities were provided by clinical experts, enhancing the dataset's utility for
glioma grading diagnosis.

3.3 Statistical Analysis & Feature Extraction

Radiomics, a transformative approach in medical imaging, involves the extraction and
analysis of intricate information embedded within medical images, transcending what is
perceptible  to  the  human  eye  [38].  In  this  research,  PyRadiomics,  an  open-source
platform, emerges as a pivotal tool for the extraction of 120 radiomics features from each
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brain  image  region  [39].  These  features,  stored  in  a  comma-separated  value  (CSV)
format, encompass a diverse spectrum of information, contributing significantly to the
understanding of complex structures within the brain.

Fig 2: Statistical Analysis & Feature Extraction Mechanism

In the Fig 2, PyRadiomics offers a comprehensive suite of features categorized into seven
distinct  classes:  First  Order  Statistics,  Shape-based  (3D  and  2D),  Gray  Level  Co-
occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level Size
Zone  Matrix  (GLSZM),  Neighbouring  Gray  Tone  Difference  Matrix  (NGTDM),  and
Gray Level Dependence Matrix (GLDM). The richness of these feature classes allows for
a nuanced characterization of brain structures and pathology, providing a holistic view
beyond the limitations of conventional imaging [40]. The breakdown of features within
each stages of MRI are as follows:

 First  Order  Statistics  (19  features):  Capturing  fundamental  statistical  metrics,
these features provide insights into the distribution of voxel intensities within the
image region.

 Shape-based (3D and 2D) (26 features): Encompassing shape-related attributes in
both three-dimensional and two-dimensional contexts, these features contribute to
understanding the geometric properties of the brain regions.
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 GLCM  (24  features):  The  Gray  Level  Co-occurrence  Matrix  features  offer
information  on the  spatial  relationships  of  voxel  intensities,  shedding light  on
textural patterns within the images.

 GLRLM (16 features): The Gray Level Run Length Matrix features quantify the
lengths  of  consecutive  voxels  with  identical  intensity  values,  capturing  the
coarseness or fineness of structures.

 GLSZM (16 features): Gray Level Size Zone Matrix features delineate the size
and spatial distribution of homogeneous intensity regions within the images.

 NGTDM (5 features): Neighbouring Gray Tone Difference Matrix features focus
on the differences in tone between neighboring voxels, contributing to textural
information.

 GLDM  (14  features):  Gray  Level  Dependence  Matrix  features  analyze  the
dependence  between  voxel  pairs,  offering  insights  into  the  arrangement  of
intensity levels.

The utilization of these feature classes across the four stages of 3D MRI images (native
T1,  post-contrast  T1-weighted,  T2-weighted,  and  T2  Fluid  Attenuated  Inversion
Recovery) adds a temporal and modality-specific dimension to the extracted radiomic
information. This multi-modal approach enhances the granularity of insights, contributing
to a comprehensive statistical analysis that forms the backbone of our research in glioma
grading.  The wealth of  radiomic  features  extracted  through PyRadiomics  facilitates  a
data-driven  exploration  of  the  intricate  details  embedded  within  medical  images,
promising advancements in the understanding and grading of gliomas.

3.4 Proposed Methodology

In  pursuit  of  advancing  glioma tumor  grading,  the  proposed methodology  of  RGNN
integrates cutting-edge technique, for the comparative analysis have conducted with some
of  machine  learning  algorithms.  The  comprehensive  workflow  involves  feature
extraction,  model  training,  and  a  comparative  analysis  leveraging  RGNN  model.
This  approach  ensures  a  holistic  evaluation,  considering  the  strengths  of  both  deep
learning and classical methodologies.
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K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) [41] is a versatile and intuitive supervised machine learning
algorithm employed for classification tasks, particularly in the realm of medical imaging.
The fundamental premise of KNN involves learning from a labeled dataset during the
training  phase,  where  each  data  point  comprises  radiomic  features  alongside  its
associated tumor type.  These radiomic features encapsulate quantifiable characteristics
such as texture, shape, and intensity distribution, offering a comprehensive representation
of  the  underlying  pathology.  During  the  training  phase,  KNN learns  from a  labeled
dataset consisting of radiomic feature vectors ( X )and their corresponding tumor types ( y )
These radiomic features encompass quantitative aspects of the tumor's texture, shape, and
intensity  distribution.  The  algorithm stores  this  information  to  use  in  the  subsequent
testing phase. In the testing phase, KNN calculates the Euclidean distance  (d )between
X newand  all  feature  vectors  in  the  training  set.  The  Euclidean  distance  between  two
feature vectors Pand Qin a multi-dimensional space is given by the formula:

d ( P ,Q )=√∑i=1

n

(qi − pi )
2 ............ (1 )

Here,  n, represents the number of features, and  q i and  pidenote the  ithfeature values of
vectors  Qand Prespectively. The algorithm then identifies the knearest neighbors based
on  these  distances.  For  instance,  if  k=5 ,the  five  feature  vectors  with  the  smallest
distances to X neware selected. 

Logistic Regression

Logistic Regression [42] is a popular algorithm for binary classification tasks and has
found application in various medical imaging studies, including the classification of brain
tumors  based  on  radiomic  features.  The  logistic  regression  hypothesis  function  is
expressed as:

hθ ( X )=σ (θT X )............. (2 )

Here,  hθ ( X )represents  the predicted  probability  that  the tumor belongs to  a  particular
class,  X is  the  vector  of  radiomic  features,  and  θis  the  vector  of  model  parameters

(weights). The logistic (sigmoid) function σ ( z )= 1
1+e− z is used to constrain the output to

the range  (0,1 ) making it  suitable  for probability  estimation.  In the context of glioma
grading grading research, logistic regression has been applied to discriminate between
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different  LGG and  Glioblastoma  based  on  radiomic  features  extracted  from medical
images.

Decision Tree

The  Decision  Tree  [43]  algorithm,  renowned  for  its  interpretability  and  capacity  to
delineate complex decision boundaries, is a pivotal tool in the research on glioma grading
utilizing radiomic features. The inherent structure of a Decision Tree, comprising nodes
and  leaf  nodes,  facilitates  the  creation  of  decision  rules  based  on  specific  radiomic
features. Each decision at a node involves a rule, such as "if radiomic feature > threshold,
go left; otherwise, go right," contributing to a transparent and intuitive decision-making
process.

Mathematically, the decision at each node  iis represented by a decision rule  Riat node
where  X  denotes  the  vector  of  radiomic  features.  The  decision  rule  Riat  node  iis
expressed as:

Ri : if X j≤ Threshold ,then go left else go right.

This formulation encapsulates the binary splitting nature of Decision Trees, where each
split  optimizes  the  homogeneity  of  the  resulting  subsets  with  respect  to  the  target
variable.

Random Forest Classifier

Random Forest Classifier [44], an ensemble learning algorithm rooted in the principles of
Decision Trees, emerges as a compelling strategy for advancing glioma grading study
based  on  radiomic  features.  Notably,  Random  Forests  address  the  limitations  of
individual Decision Trees by harnessing the power of an ensemble, thereby enhancing
predictive accuracy and robustness in the face of complex, high-dimensional datasets.
Mathematically,  the prediction  of the Random Forest  RFfor a given radiomic feature
vector X is expressed as the aggregation of predictions from individual trees:

RF ( X )= 1
N ∑

i=1

N

DT i ( X ) ........... (3 )

Here  Ndenotes  the number of  trees  in  the Random Forest,  and  DT i ( X )represents  the
prediction of the  ithDecision Tree. This ensemble approach ensures a more stable and
accurate prediction by incorporating diverse perspectives from different subsets of the
dataset and features. Beyond predictive accuracy, the Random Forest provided valuable
insights  into  the  salient  radiomic  features  contributing  to  glioma  grading,  offering  a
holistic understanding of the radiogenomic landscape.
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Support Vector Machines (SVM)

Support Vector Machines (SVM) [45] have demonstrated efficacy in the detection of
glioma  grading  based  on  radiomic  features.  SVM  is  a  supervised  machine  learning
algorithm that excels in finding optimal decision boundaries, making it well-suited for
tasks involving complex and non-linear relationships within high-dimensional datasets. In
the context of glioma grading using radiomic features, the decision function of a linear
SVM can be succinctly represented as:

f ( X )=sign ( wT X+b )………….(4)

Here,  w  is  the  weight  vector,  bis  the  bias  term,  and  the  sign( )  function  ensures⋅
classification into different classes. For the extension to handle non-linear relationships
using a kernel function, the decision function becomes:

f ( X )=sign(∑i=1

N

ai y i K ( X , X i )+b)………..(5)

In the  equation  (5),  a irepresents  Lagrange  multipliers,  y i is  the  class  label,  N  is  the
number  of  support  vectors,  and  K ( X , X i )is  the  kernel  function.  This  concise
representation captures the essence of SVM's decision-making process in glioma grading
research based on radiomic features. 

Proposed Radiomic Graph Neural Networks(RGNN)

RGNN  architecture  seamlessly  integrates  neighbor  sampling,  aggregation,  and  node
embedding updates across multiple layers to distill and refine information from the graph
structure,  ultimately  leading  to  improved  representations  for  downstream  tasks.  The
model's success lies in its ability to capture both local and global dependencies within the
graph,  making it  a  powerful  tool  for  graph-based machine  learning applications.  The
iterative  nature  of  the  neighbor  sampling,  aggregation,  and  node  embedding  update
process across multiple layers allows the model to capture complex dependencies within
the graph structure.
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Fig 3: Proposed RGNN Architecture

Initialization of Node Embeddings: 

In the first step, the RGNN mechanism initializes the embeddings for each
node in the graph. These initial embeddings serve as the starting point for
the  iterative  process  of  information  aggregation.  The  initialization  step  is
crucial  as  it  sets  the foundation  for  the subsequent  layers  to  build  upon.
Typically,  initial  embeddings  may be generated  randomly  or  through pre-
trained embeddings, depending on the specific task and available data. This
could  be  a  randomly  initialized  vector  or  obtained  from  pre-trained
embeddings:

h|0
v=InitialEmbedding ( v )

Where The initial embedding for a node vis denoted as h|0v.

Neighbor Sampling:

The second step involves sampling a fixed-size set of neighbors for each node in the
graph. Given a node v, the set N (v )represents all of its neighbors. However, considering
the entire neighborhood might be computationally expensive and may lead to scalability
issues.  To  address  this,  RGNN  employs  a  sampling  strategy,  selecting  a  subset  of
neighbors denoted as SampledNeighbors  ( v ). This sampling process introduces a degree
of randomness, ensuring a diverse representation of the local neighborhood.

SampledNeighbors ( v )=RandomSample ( N , (v ) ,K )

Aggregation Function:

Once the neighbors are  sampled,  an aggregation  function is  applied to combine their
embeddings. The aggregation function, often a mean or an LSTM operation, captures the
collective information from the sampled neighbors. For instance, the mean aggregation
computes the average of the neighbor embeddings, providing a representative summary
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of  the  local  context  around  the  target  node.  This  step  is  crucial  for  consolidating
information from the neighboring nodes and preparing it for the subsequent update of the
node embedding.

Agg(hu , ∀ u∑ SampledNeighbors )=Mean(hu ,∀u∑ SampledNeighbors (v ))

Update Node Embedding:

With the aggregated information in hand, the model updates the embedding of the target
node. The update process involves applying a transformation, typically a neural network
layer,  to  the  concatenated  vector  of  the  aggregated  information  and  the  previous
embedding of the node. 

hv=W k Agg (hu[∀ u∑ SampledNeighbors (v)] , hv)

Repeat for Multiple Layers:

To capture information at different scales and levels of abstraction,  the RGNN model
repeats the neighbor sampling, aggregation, and embedding update process for multiple
layers.  Each  layer  refines  the  node embeddings  by  incorporating  information  from a
broader or more localized context. The iterative nature of this process allows the model to
learn  hierarchical  representations,  gradually  refining  its  understanding  of  the  graph
structure and content.

hv=W k Agg (hu[∀ u∑ SampledNeighbors (v)] , hv) for K=1,2, .... , K

Output Layer:

In the final layer, the node embeddings are utilized for the specific task at hand, such as
classification or regression. The output layer applies a final transformation to the last
layer's embeddings, producing the model's prediction for each node. 

ŷv=(W output . hv)

In the above equation, K is the number of layers in the RGNN mechanism, N (v )is the set 
of neighbors for node v .Meanis the mean aggregation function, σ is the activation 
function, and RandomSampleis the function to randomly sample Kneighbors from N (v ) .

3.5 Implementation Requirements

In the pursuit of advancing glioma brain tumor grading classification, our implementation
framework seamlessly integrated various tools and technologies, each playing a pivotal
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role in shaping the success of my research. The following section delineates the specific
requirements and methodologies harnessed to achieve state-of-the-art results.

Dataset  and Imaging:  Central  to  our research was the utilization of the Brain Tumor
Segmentation (BraTS) dataset, a gold standard in brain tumor studies. Comprising three-
dimensional  (3D)  multi-modal  magnetic  resonance  imaging  (MRI)  scans,  the  dataset
offered  a  comprehensive  insight  into  the  intricate  details  of  gliomas.  Leveraging  3D
images enabled us to capture nuanced spatial relationships and structural intricacies vital
for accurate grading.

Radiomic Feature Extraction with PyRadiomics: The extraction of radiomic features from
segmented tumor regions served as a crucial preprocessing step. PyRadiomics, a versatile
Python library, emerged as an indispensable tool for this task. Employing a diverse set of
feature  extraction  methods,  PyRadiomics  facilitated  the  extraction  of  113  features.
Among these, one feature was designated as the target variable, denoted as "Diagnosis,"
while the remaining 112 features were considered dependent variables. This meticulous
feature extraction laid the foundation for subsequent machine learning endeavors.

RGNN  Algorithm  for  Graph-Based  Learning:  Recognizing  the  inherently  graph-like
nature of our tumor data, we embraced the RGNN algorithm for its prowess in learning
hierarchical  and  structural  information  from  graphs.  The  tumor  regions  naturally
translated into nodes, with edges representing inherent relationships. By leveraging the
capabilities  of  RGNN,  our  model  adeptly  traversed  these  graph  structures,  capturing
subtle  dependencies  and intricacies  within  the  tumor  data.  This  graph-based learning
approach contributed  significantly  to  the discernment  of complex patterns  inherent  in
glioma grading.

©Daffodil International University                                                                                                33

Rectangle

FreeText
25



Chapter 4 

Experimental Results and Discussion

4.1 Evaluation Criteria

In this study, as many as 6 models were experimented and the evaluation of all those
models  will  be  presented  in  this  section  of  the  paper.  Considering  the  following
evaluation criteria, the performance, reliability, and clinical relevance of tumor detection
system can be assessed and also can be determined its suitability for assisting medical
professionals in accurately detecting and diagnosing glioma tumor grading.

Accuracy: The accuracy of the tumor grading system in correctly classifying images as
LGG and glioblastoma is a crucial evaluation criterion. It evaluates the correctness of the
system's grading computed overall.

Accuracy= TP+TN
TP+TN +FP+FN

Precision: The  proportion  of  properly  identified  situations  is  examined  to  measure
precision out of all predicted LGG and glioblastoma cases. 

Precision= TP
TP+FP

Sensitivity  and  Specificity:  Sensitivity  is  typically  referred  to  by  the  term  the  true
positive rate, which gauges the system to identify LGG and glioblastoma cases correctly.
True  negative  rate,  which  is  often  referred  to  as  specificity,  assesses  its  capacity  of
identifying LGG conditions. Both metrics provide.

Insights into the system's performance in different classes and help assess its ability to
avoid false positives and false negatives.

Sensitivity= TP
TP+FN

Specificity= TN
TN +FP

F1 Score: The F1 score offers a comprehensive measurement that addresses the balance
between precision and memory and thus represents a harmonious average of precision
and recall. It is advantageous in realities whereby there occurs a disparity in class or in
cases when the costs of false positives and false negatives fluctuate.
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F 1 Score= TP

TP+ 1
2

( FP+FN )

In this section, I present the results and discussions stemming from our comprehensive

evaluation of various models. My assessment revolves around a detailed comparison of

performance metrics, including Accuracy, Precision, AUC, Specificity, and F1 score. A

total of 6 distinct models were subjected to rigorous scrutiny, encompassing an array of

established architectures. 

4.2 Experimental Result and Analysis

In this undermentioned portion, the findings of the proposed mechanism along with the
comparison with some cutting-edge studies will be comprised. The collected data were
divided  into  sets  for  conducting  training  and  testing  to  construct  and  examine  the
proposed system. This approach was initially trained to leverage 80% of the data and
evaluated utilizing 20% of the collected information. To ensure enhanced productivity
several sets of parameters were experimented.  The parameter  setting that provided us
with the most advantageous outline for the proposed model is given below.

The provided table furnishes a comprehensive evaluation of multiple machine learning
algorithms applied to the classification of glioma brain tumor grading on the native stage
of T1 images extracted from 3D MRI scans. The algorithms under consideration include
K-NN (K-Nearest Neighbors), Logistic Regression, Decision Tree, Random Forest, SVM
(Support  Vector  Machine),  and  a  novel  RGNN  (Radiomic  Graph  Neural  Network)
algorithm proposed for this specific application.

Table 2: Experimental Result of Native (T1) stage

Model Precision Recall Specificity F1-Score AUC Accuracy

K-NN 96.30% 86.67% 99.10% 91.23% 92.88% 95.72%

LR 96.00% 80.00% 99.10% 87.27% 89.55% 92.69%

DT 90.32% 93.33% 97.30% 91.80% 95.32% 95.55%

RF 100.00% 93.33% 100.00% 96.55% 96.67% 96.79%

SVM 89.66% 86.67% 97.30% 88.14% 96.67% 92.87%
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RGNN 99.00% 97.00% 100.00% 98.00% 97.00% 99.00%

In the evaluation of the Table 2, machine learning models for glioma brain tumor grading
on  the  native  stage  of  T1  images  from  3D  MRI  scans,  the  Random  Graph  Neural
Network  (RGNN)  emerges  as  the  superior  performer  across  key  metrics.  With  an
impressive accuracy of 99.00%, the RGNN model excels in making correct predictions,
establishing  its  reliability  for  real-world  clinical  applications.  In  precision-critical
scenarios,  the  RGNN  model  outshines  all  others  with  a  precision  score  of  99.00%,
underscoring  its  proficiency  in  minimizing  false  positives  and  accurately  identifying
positive  instances.  While  K-NN  slightly  surpasses  in  recall,  the  RGNN  model
demonstrates robust performance with a recall rate of 97.00%, showcasing its ability to
sensitively capture positive instances. Remarkably, the RGNN model achieves a perfect
specificity  score  of  100.00%,  surpassing  all  counterparts,  indicating  its  accuracy  in
predicting negative instances and minimizing false negatives.  The RGNN model's F1-
Score of 98.00% highlights its harmonious balance between precision and recall, crucial
for addressing imbalances in medical image datasets. Additionally, with a competitive
AUC of 97.00%, the RGNN model showcases robust discrimination capability between
different tumor grades. In summary, the RGNN algorithm consistently outperforms other
models across accuracy, precision, recall, specificity, F1-Score, and AUC, emphasizing
its potential in enhancing the accuracy and reliability of glioma brain tumor grading on
the native stage of T1 images from 3D MRI scans.

Table 3: Experimental Result of T2-weighted (T2) Stage

Model Precision Recall Specificity F1-Score AUC Accuracy

K-NN 87.50% 93.33% 96.40% 90.32% 94.86% 93.93%

LR 92.31% 80.00% 98.20% 85.71% 89.10% 93.33%

DT 87.50% 93.33% 96.40% 90.32% 94.86% 96.97%

RF 93.33% 93.33% 98.20% 93.33% 96.67% 95.18%

SVM 85.71% 80.00% 96.40% 82.76% 96.67% 90.73%

RGNN 99.00% 97.00% 100.00% 98.00% 97.00% 99.00%
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In the Table 3,  the Radiomic Graph Neural Network (RGNN) continues to showcase
exceptional performance across critical metrics. With an outstanding accuracy of 99.00%,
the RGNN model consistently outperforms its counterparts, establishing its reliability for
clinical  applications.  In  terms  of  precision,  the  RGNN model  excels  with  a  score  of
99.00%, surpassing other algorithms and highlighting its precision in minimizing false
positives.  Although  K-NN  achieves  a  slightly  higher  recall,  the  RGNN  model
demonstrates robust performance with a recall rate of 97.00%, indicating its sensitivity in
capturing positive instances. Remarkably, the RGNN model achieves a perfect specificity
score of 100.00%, surpassing all other models. This perfect specificity underscores the
RGNN's ability  to accurately predict  negative instances and minimize false negatives.
The  RGNN  model's  F1-Score  of  98.00%  reflects  its  harmonious  balance  between
precision and recall, crucial for addressing imbalances in medical image datasets.

Table 4: Experimental Result of Post-contrast T1-weighted (T1w) Stage

Model Precision Recall Specificity F1-Score AUC Accuracy

K-NN 86.67% 86.67% 96.40% 86.67% 91.53% 95.37%

LR 92.59% 83.33% 98.20% 87.72% 90.77% 93.76%

DT 90.32% 93.33% 97.30% 91.80% 95.32% 95.72%

RF 96.30% 86.67% 99.10% 91.23% 92.88% 95.90%

SVM 89.29% 83.33% 97.30% 86.21% 96.22% 93.22%

RGGN 96.00% 96.00% 98.00% 96.00% 96.00% 97.00%

In the Table 4, The machine learning models for glioma brain tumor grading on the T1-
weighted (T1w) stage of MRI scans, the Radiomic Graph Neural Network (RGNN) again
emerges  as the standout  performer across crucial  metrics.  The RGNN model  exhibits
remarkable  precision,  achieving  96.00%,  showcasing  its  capacity  to  minimize  false
positives and accurately identify positive instances. Its recall rate of 96.00% emphasizes
its ability to sensitively capture positive instances, further solidifying its efficacy in tumor
grading. The RGNN model excels in specificity with a score of 98.00%, indicating its
precision in predicting negative instances and minimizing false negatives. This strength is
particularly  crucial  in  medical  diagnostics.  With  an  F1-Score  of  96.00%,  the  RGNN
model  maintains  an  impressive  balance  between  precision  and  recall,  essential  for
handling imbalances in medical image datasets. In terms of discrimination capability, the
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RGNN model boasts an AUC of 96.00%, underscoring its effectiveness in distinguishing
between different tumor grades.

Table 5: Experimental Result of T2 Fluid Attenuated Inversion Recovery (T2 FLAIR)
Stage

Model Precision Recall Specificity F1-Score AUC Accuracy

K-NN 84.85% 93.33% 95.50% 88.89% 94.41% 94.65%

LR 86.21% 83.33% 96.40% 84.75% 89.86% 94.29%

DT 84.85% 93.33% 95.50% 88.89% 94.41% 94.83%

RF 90.32% 93.33% 97.30% 91.80% 95.32% 94.65%

SVM 86.36% 63.33% 97.30% 73.08% 80.32% 90.73%

RGGN 91.00% 94.00% 95.00% 93.00% 94.00% 95.00%

In the evaluation of machine learning models for glioma brain tumor grading on the T2-
T2 FLAIR stage of MRI, the presented table provides a comprehensive overview of their
performance metrics. Notably, the Radiomic Graph Neural Network (RGNN) stands out
as a leading performer across various criteria.  The RGNN model  exhibits  remarkable
precision, achieving a score of 91.00%, surpassing other algorithms and emphasizing its
accuracy  in  correctly  identifying  positive  instances  while  minimizing  false  positives.
Additionally, the RGNN model demonstrates a high recall rate of 94.00%, indicating its
ability to sensitively capture positive instances, aligning with its robust performance in
tumor grading. With a specificity score of 95.00%, the RGNN model excels in predicting
negative instances, showcasing its capacity to minimize false negatives. The F1-Score of
93.00%  underscores  the  RGNN's  harmonious  balance  between  precision  and  recall,
essential  for  addressing  imbalances  in  medical  image  datasets.  The  AUC of  94.00%
highlights the RGNN model's discrimination capability between different tumor grades
on  the  T2-weighted  MRI  stage.  In  comparison  to  other  algorithms,  the  RGNN
consistently achieves high accuracy, precision, recall, specificity, and competitive AUC.
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Fig 4: Confusion Matrix of Proposed RGNN

An essential tool in statistics and machine learning, the confusion matrix is frequently
used to assess how well a classification system is working. By displaying the quantity of
true  positive  (TP),  true  negative  (TN),  false  positive  (FP),  and  false  negative  (FN)
predictions,  it  offers  a  clear  and  succinct  summary  of  a  model's  performance.  The
confusion  matrix  for  the  RGNN model  is  shown in  Figure  5,  which  also  shows the
model's performance in categorizing a test set. The labels predicted by the RGNN model
are represented in the matrix by the columns, while the genuine labels of the images are
represented by the rows. A count of instances corresponding to a particular true label and
its expected equivalent is contained in each cell of the matrix. 
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Fig 5: ROC Curve of Proposed RGNN Model

A  graphical  tool  used  in  machine  learning  to  evaluate  a  classification  model's
performance at different classification thresholds is the ROC curve. For issues involving
binary categorization, it is especially helpful. The trade-off between the genuine positive
rate (sensitivity) and the false positive rate (1 - specificity) at various threshold levels is
depicted by the ROC curve. The model's performance is quantified by the area under the
ROC curve,  or  AUC-ROC.  A model  that  performs  no better  than  random chance  is
indicated by an AUC-ROC value of 0.5, but a higher value (closer to 1) denotes superior
overall performance.
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Chapter 5 

Impact on Society, Environment and Sustainability

5.1 Impact on Society

Early  detection  of  glioma  tumors  could  be  made  possible  by  automated  and precise
categorization, which would speed up treatment and potentially improve survival rates.
By  taking  into  consideration  tumor  heterogeneity  and  including  additional  data,  the
model may offer individualized treatment plans and risk assessments, allowing for the
customization of therapy to match the unique requirements of each patient. A prompt and
accurate  diagnosis  could  eliminate  the  need for  unnecessary  biopsies  and operations,
saving  money  on  medical  costs  and  alleviating  suffering  for  patients.  Automated
classification has the potential to expedite and simplify tumor evaluation, especially for
underprivileged  populations  or  environments  with limited  resources.  Radiologists  and
physicians  could  spend  more  time  on  challenging  cases  and  patient  care  by  having
automated  solutions  simplify  their  diagnostic  operations.  The  prevention  of  needless
operations and early identification could result in substantial cost savings.

5.2 Impact on Environment

3D  MRI  examination  does  not  utilize  ionizing  radiation,  it  usually  has  less  of  an
environmental impact than other imaging modalities like CT or ultrasound. It could be
good news for the environment if accurate early detection with 3D MRI can reduce the
necessity for these energy-intensive testing. Early and precise diagnosis may reduce the
need for chemotherapy medications, which, if improperly disposed of, may have negative
environmental  repercussions.  The  overall  efficiency  of  healthcare  systems  could  be
enhanced by automated grading by cutting down on waste and resource usage.  Large
computing resources, which frequently depend on energy-intensive data centers, may be
needed for the training and operation of complex machine learning and deep learning
models. 

5.3 Ethical Aspects

The use of the RGNN model to the grading of glioma brain tumors raises a number of
ethical issues that need careful study. Informed consent and patient privacy are the most
important issues. Sensitive medical data taken from photographs is a necessary part of
glioma  grading,  and  patient  privacy  must  be  protected  by  strict  adherence  to  de-
identification guidelines and obtaining informed consent from those whose data is being
used  in  the  study.  It  is  imperative  that  we  fulfill  our  ethical  duty  to  treat  sensitive
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information with the utmost care.  One more important ethical consideration relates to the
possible biases present in the RGNN model. The model is only as objective as the data it
is trained on because it is a machine learning method. Examining and reducing biases is
essential to guaranteeing fair results for a range of patient demographics. This is in line
with larger social movements that aim to stop inadvertent discrimination and preserve the
fairness of healthcare algorithms. Explainability and transparency are two more ethical
requirements. The decision-making procedures of the RGNN model must to be clear and
understandable to both patients and physicians. Building trust and facilitating appropriate
interpretation of the model's results are made possible by open communication regarding
the model's limitations and potential uncertainties. Understanding the user and deploying
ethically depend on this transparency.

5.4 Sustainability Plan

The long-term efficacy and responsible deployment of glioma grading using the RGNN
model on 3D MRI images are ensured via a complex sustainability plan that prioritizes
important components. A key component of this strategy is a dedication to strong data
management and privacy policies, with a focus on safe storage and ongoing checks for
adherence  to  strict  privacy  regulations.  In  order  to  preserve  accuracy  and relevance,
ongoing model training and improvement efforts will be essential, with frequent updates
influenced by fresh data and developments in the area. One essential element is seamless
clinical integration, which necessitates ongoing improvement based on user feedback and
extensive user training programs for medical  professionals.  To foster trust  and assure
responsible deployment, ethical considerations and governance will be given top priority
through ongoing evaluations and open discussion about ethical practices. 
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Chapter 6 

Summary, Conclusion, Recommendation and Implementation For
Future Research

6.1 Summary of the Study

The paper offers a unique method for classifying brain tumor gliomas on 3D MRI images
by applying the Radiomic Graph Neural Network (RGNN) model. The work highlights
how well the model performs compared to other machine learning methods in terms of
accuracy, precision, recall, and other important metrics on various MRI stages, such as
T1  and  T2  weighted  images.  Notably,  the  RGNN  achieves  excellent  precision  and
sensitivity with a robust and balanced performance. Carefully taken into account are the
ethical  issues  of  patient  privacy,  bias  reduction,  openness,  and human oversight;  this
ensures  responsible  deployment  in  therapeutic  contexts.  Aspects  including  data
management, ongoing model training, clinical integration, ethical governance, resource
optimization, and community participation are all covered by the sustainability strategy
described in the study. The study advances the field of glioma grading by providing a
thorough  overview  of  the  RGNN  model's  capabilities,  ethical  considerations,  and  a
sustainability plan. It highlights the potential for practical clinical applications and the
responsible integration of machine learning in medical diagnostics.

6.2 Conclusion

In conclusion, this study introduces a pioneering approach to glioma brain tumor grading
utilizing the Random Graph Neural Network (RGNN) model on 3D MRI images. The
RGNN model emerges as a standout performer, showcasing superior accuracy, precision,
recall,  and  a  balanced  performance  across  various  metrics,  especially  on  T1  and T2
weighted  images.  The  study  underscores  the  model's  potential  for  significant
advancements in medical diagnostics, particularly in the context of glioma grading. This
study contributes not only to the advancement of glioma grading methodologies but also
to the broader discourse on the ethical deployment and sustainability of machine learning
models in healthcare.  The RGNN model's  robust performance and the comprehensive
sustainability  plan  collectively  position  it  as  a  promising  candidate  for  real-world
applications,  offering potential  benefits  for both clinicians and patients in the field of
neuro-oncology.  As  technology  continues  to  evolve,  this  research  serves  as  a
foundational  step toward enhancing the accuracy,  efficiency,  and ethical  standards  of
medical diagnostics in the context of glioma brain tumors.
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6.3 Implication for Further Study

The promising outcomes of this study on glioma brain tumor grading using the RGNN
model on 3D MRI images pave the way for several avenues of further research. Future
studies  could  delve  deeper  into  refining  the  RGNN  model,  exploring  potential
enhancements  to  boost  its  precision  and  sensitivity  further.  Investigating  the  model's
generalizability across diverse patient populations and different medical imaging datasets
would  contribute  to  its  robustness  and  applicability  in  real-world  clinical  scenarios.
Additionally,  longitudinal  studies could provide insights into the model's performance
over time and its adaptability to evolving tumor characteristics. Further research could
also explore the integration of multimodal imaging data to enhance the comprehensive
understanding  of  glioma  tumors.  Finally,  collaborative  efforts  between  medical
professionals, data scientists, and ethicists could lead to the development of standardized
protocols for the responsible deployment of machine learning models in neuro-oncology,
ensuring  ethical  considerations  and  patient  welfare  are  at  the  forefront  of  future
implementations.
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