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Abstract: The Internet of Medical Things (IoMT) has become an attractive playground to cyber-
criminals because of its market worth and rapid growth. These devices have limited computational
capabilities, which ensure minimum power absorption. Moreover, the manufacturers use simplified
architecture to offer a competitive price in the market. As a result, IoMTs cannot employ advanced
security algorithms to defend against cyber-attacks. IoMT has become easy prey for cybercriminals
due to its access to valuable data and the rapidly expanding market, as well as being comparatively
easier to exploit.As a result, the intrusion rate in IoMT is experiencing a surge. This paper proposes
a novel Intrusion Detection System (IDS), namely SafetyMed, combining Convolutional Neural
Networks (CNN) and Long Short-Term Memory (LSTM) networks to defend against intrusion from
sequential and grid data. SafetyMed is the first IDS that protects IoMT devices from malicious image
data and sequential network traffic. This innovative IDS ensures an optimized detection rate by
trade-off between False Positive Rate (FPR) and Detection Rate (DR). It detects intrusions with an
average accuracy of 97.63% with average precision and recall, and has an F1-score of 98.47%, 97%,
and 97.73%, respectively. In summary, SafetyMed has the potential to revolutionize many vulnerable
sectors (e.g., medical) by ensuring maximum protection against IoMT intrusion.

Keywords: internet of medical things; intrusion detection system; convolutional neural network;
long short-term memory; response mechanism; IoMT; IDS; CNN; LSTM

1. Introduction

The Internet of Medical Things (IoMT) is a sophisticated network that seamlessly
integrates Internet-connected medical devices and corresponding software applications to
exchange healthcare-related information to facilitate treatment and patient observation over
the Internet [1]. The global IoMT market will experience a Compound Annual Growth Rate
(CAGR) of 18.5% between 2021 and 2027, resulting in a valuation of US $284.5 billion [2].
Moreover, the value of IoMT data is considered 50 times more than data of other sectors [3].
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At the same time, IoMTs are resource-constraint devices. That is why the quality of the
utility gets higher priority than the advanced security by the manufacturer [4]. The rapid
market growth, data value, and security vulnerabilities attract cybercriminals to exploit the
weaknesses of IoMT devices. This paper proposes SafetyMed, a novel Intrusion Detection
System (IDS) that ensures the integrity, confidentiality, and security of IoMT-enabled
services, facilitating safer and more reliable personalized healthcare services.

SafetyMed employs a groundbreaking LSTM-CNN hybrid architecture specifically
designed for intrusion detection. This distinctive architecture enables the system to proac-
tively defend against intrusions using both image and non-image data. The hybrid model
has been meticulously crafted through rigorous mathematical analysis, ensuring the concep-
tual integrity of the system. The revolutionary design of SafetyMed incorporates an edge
server interposed between the IoMT network and the Internet access point. Furthermore, it
houses a highly effective classification algorithm capable of identifying the twelve most
commonly occurring IoMT intrusions. To the best of our knowledge, this surpasses the
capabilities of any existing IDS in terms of the number of detectable intrusions. Half of
these intrusions are non-images, with the remainder being image-based. SafetyMed is
designed with the aim of detecting intrusions with substantially high accuracy, thereby
safeguarding the IoMT nodes from subsequent intrusions of a similar nature. In summary,
SafetyMed is a unique IDS offering both intrusion detection and prevention and boasts the
following novel features:

• Architectural Novelty:The proposed SafetyMed is the first of its kind of IDS, to our
best knowledge, hybridizing the CNN and LSTM to defend against intrusion from
sequential and grid-structured data.

• Innovative Optimization Scheme: The SafetyMed is the first IDS that incorporates an
optimization scheme that uses the trade-off between Detection Rate (DR) and False
Positive Rate (FPR).

• Effective Application: Unlike most IDSs studied in the literature review, SafetyMed
employs an additional layer of protection by detecting and preventing further mali-
cious traffic from compromised sources.

• Unique Classification Algorithm: A unique classification algorithm using the Safe-
tyMed technology has been developed in this paper, contributing to the proposed
IDS’s outstanding performance.

The remainder of this paper is organized as follows. Section 2 presents existing re-
search and its limitations. Section 3 outlines the methodology employed in the study,
detailing the various steps and techniques used. Section 4 covers the implementation of the
proposed SafetyMed system and analyzes its response mechanism. Section 5 provides a per-
formance evaluation of SafetyMed, considering different contexts and scenarios. Section 6
discusses the paper’s limitations and explores potential avenues for future research. Finally,
Section 7 concludes the paper, summarizing the key findings and contributions to the field.

2. Related Work

The IoMT threat detection system with the explainable model developed by
I. A. Khan et al. [5] supports the problem statement explored in this paper. A survey by
S. Ahmed et al. [6] on Machine Learning (ML)-based intrusion detection systems shows
the dominance of text-based IDSs. After detecting intrusion in the IoMT network, the
decision-making seems to be gaining little attention. The proposed IDS pays equal attention
to intrusion detection and its application. The article by I. Idrissi et al. [7], F. Khan et al. [8],
and S. A. Wagan et al. [9] agrees with the findings of this paper, stating that IoMT intrusion
is rising. These studies focus on the development of the IDS, enhancing their performances.
However, the improved detection rate is underutilized in these papers. At the same time,
these papers have not analyzed the detection rate and delay. The proposed paper addresses
these issues, enhances the performance of the IDS, and focuses on detection rate and
detection time. This is how SafetyMed stands out from the rest of the IDSs.
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A. K. Kumar et al. [10] propose an IoMT intrusion detection system by hybridizing
CNN, BiLSTM, and Gated Recurrent Units (GRU). While this methodology achieves 98.34%
accuracy, it detects only Botnet attacks. The Botnet attacks are usually made through
sequential data [11]. An LSTM or BiLSTM network is enough to detect this attack ac-
curately [12]. CNNs are designed for grid-like data structures representing images [13].
This observation suggests that hybridizing with CNN does not serve the purpose but
introduces additional network complexity. The proposed SafetyMed has adopted the idea
of hybridizing CNN and LSTM networks, making the extended capabilities productive.
Including Botnet attacks, this paper detects eleven other types of attacks. This is the first
IDS capable of detecting these many intrusions. It utilizes the CNN for detecting intrusions
through a grid data structure, which is missing in the paper of A. K. Kumar et al. [10]. At
the same time, SafetyMed uses LSTM to detect six types of intrusions from the sequential,
where A. K. Kumar et al. [10] detected only Botnet attacks.

R. Chitra [14] developed the XGBoost classifier-based malware detection system of
IoMT, which achieves 97% accuracy. However, this study did not develop any response
mechanism after developing the classifier to take appropriate action. SafetyMed proposes
an effective algorithm to defend the intrusion after detection and prevent further attacks
from the malicious source. This classifier is optimized with Genetics Algorithm (GA),
which optimizes the learning process. However, they did not optimize the detection
rate to reduce the false alarm rate, which has been conducted in our proposed system.
S. Karagiannis et al. [15] conducted a study on developing mobile applications to analyze
the security vulnerability in IoMT. It is a unique research. However, it does focus on
intrusion detection and protecting the IoMT devices, whereas SafetyMed is dedicated to
protecting IoMT devices. An innovative experience-driven threat-defense system devel-
oped by B. Tahir et al. [16] addresses the impact of False Data Injection Attacks (FDIA).
While it accurately defends this attack, the other frequently attempted attacks are ignored,
leaving the system vulnerable to other frequently attempted attacks. The proposed IDS
considers the risk of being exploited by various other types of intrusions. That is why it
has been designed to defend against twelve intrusions.

The Gradient-Boosted-Tree-based IoMT intrusion detection system developed by
W. Lu [17] classifies intrusions with 95.4% accuracy. However, it has been trained using
11 features only, leaving a question mark on the system’s reliability. The intrusion pattern
rapidly changes because of the availability of high-performance computing [18]. A system
trained with 11 features cannot detect complicated patterns embedded in non-malicious
data. The proposed SatefyMed has been trained on 78 non-image and numerous image
features, which is more than 97% accurate. Because of using the CNN-LSTM hybrid
network, it is capable of identifying intrusions from complex patterns, ensuring better
security. An explainable DL framework for Industrial IoT (IIoT) developed by I. A. Khan
et al. [19] uses Fully Connected (FC) architecture and segments the data sequence using the
Sliding Window (SW) method and converts them into fixed sequences. This methodology
agrees with the approach introduced in this paper. The Swarm-Neural Network-based
IoMT intrusion detection system developed by J. B. Awotunde et al. [20] secures health-
related data by incorporating an edge server. The proposed IDS uses an edge server as well
but with well-designed IDS architecture with an aim to outperform these methods.

Research Gaps

A thorough review of the literature reveals a significant research gap in intrusion
detection systems based on image data. The preponderance of existing studies concentrates
on intrusion detection within non-image data. Contrary to this trend, our proposed system,
SafetyMed, distinguishes itself by tackling both image and non-image data. Remote patient
monitoring is a prevalent service within the Internet of Medical Things (IoMT) domain.
The vulnerability of these imaging device-based systems to intrusion via malware-infused
images presents a substantial risk. Additionally, the transmission of medical imaging
reports through IoMT services exposes another potential area of vulnerability [6]. Our
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proposed intrusion detection system proactively identifies and mitigates these threats by
detecting intrusions from both image and non-image data sources.

Over-sensitive IDS generates false alarms even if the Machine Learning (ML) model
exhibits high accuracy. Blocking network traffic based on false positive prediction inter-
rupts the seamless IoMT communication. It also degrades the service quality. Emphasizing
the model’s accuracy and ignoring its usability is a significant research gap in the exist-
ing literature [21]. Training and optimizing ML models to improve IDS’s performance
draws the attention of the recently published papers. Developing sophisticated network
architectures, incorporating various optimization algorithms, and introducing more ef-
fective features highlight the current IDS research trends [22]. Using the prediction to
develop reliable and usable IDS is a research gap explored in the proposed SafetyMed. It
abridges the gap by devising a novel algorithm called SafetyMed Classification (SC) to
utilize the predictions from the system and secure IoMT devices by defending current and
future intrusions.

3. Methodology

The overview of the proposed methodology is illustrated in Figure 1. It is the sim-
plified process of the overall system, where Figure 1a presents the network training. It
involves network selection, dataset processing, and training phases. Figure 1b is the sim-
plified SafetyMed overview that runs in an edge server. Finally, Figure 1c presents the
communication module where the router communicates with the internet. A Router Access
Control (RAC) unit is controlled by the SafetyMed Classification (SC) algorithm. The
algorithm detects the intrusion and protects the IoMT devices by blocking further packets
from malicious sources through the RAC.

Figure 1. The overview of the methodology.

3.1. Deep Learning Model Analysis and Selection

Deep Learning (DL) technology uses the Multilayer Artificial Neural Network (ANN)
algorithm [23]. As a result, it can learn complex patterns from different data and make
accurate predictions. IoMT receives complex network data where numerous parameters
and their values are combined. The data pattern is complex; thus, DL models are perfect
for intrusion detection at the IoMT node. However, hundreds of DL models and more
are frequently added. This rapid development in DL technology has made choosing
an appropriate model challenging.

3.1.1. Model Analysis

We have performed an exploratory analysis to identify the most effective DL models
to detect intrusions at the IoMT node. The findings of our analysis show that the Convolu-
tional Neural Networks (CNNs) [24], Recurrent Neural Networks (RNNs) [25], and Long
Short-Term Memory (LSTM) networks [26] are more appropriate than other models for
intrusion detection. Despite the potential scope of application, the Bidirectional Encoder
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Representations from Transformers (BERT) developed by J. Devlin et al. [27] is a hybrid
architecture that combines CNN, RNN, and other transformer models, which have not
been considered. It is an excellent approach to trained models from unlabelled text for
Natural Language Processing (NLP) applications. However, the dataset used in this paper
is labelled and does not contain natural language. That is why it has not been finalized for
analysis. This section presents the logical argument with supportive evidence for finalizing
these three models.

Convolutional Neural Networks (CNNs)

IoMT devices communicate textual, numerical, and image data [28]. Stegomalware
has become an emerging challenge in Cybersecurity because of its characteristics. As IoMT
involves image data, it is essential to implement an intrusion detection model optimized
for image data. According to F. Österlind et al. [24], CNNs are specially designed for
images. They are efficient in image feature extraction and classification. Image data are
represented as grid data structures in the network traffic. CNNs are effective in classifying
grid data [29]. A typical CNN follows the mathematical model defined in Equation (1).

Ynm = (X ∗ K)nm = ∑
p

∑
q

X(n+p)(m+q)Kpq (1)

According to Equation (1), the hidden layers perform convolution operations, denoted
by X, that extract the image features. It is followed by a pooling layer that reduces the
image size. The K is the kernel of q× p, and Ynm is the output feature map at position
(n, m). Finally, the fully connected layer learns to classify images from the features extracted
through the convolutional operation. The mathematical structure of CNNs shows that they
learn hierarchical image features automatically. The network intrusion patterns frequently
change, and retraining the model is essential to protect the IoMT nodes. This is where the
CNNs become effective, as they excel at extracting features and learning from them. This is
the reason for selecting CNN as one of the Deep Learning models for intrusion detection.

Recurrent Neural Networks (RNNs)

Cybercriminals send frequent small data sequences as network packets to exploit the
vulnerability of IoMT devices. A review on RNN conducted by Y. Yu et al. suggests that
RNN suffers from performance issues for longer sequences. However, its performance for
shorter sequences is impressive [30]. This characteristic implies that the RNN effectively
classifies small intrusion data sequences. However, malicious code embedded into long
data sequences may not be accurately detected by RNN. Mathematically, the RNN is
defined as Equation (2).

ht = σ(Whhht−1 + Wxhxt + bh) (2)

yt = Whyht + by (3)

In Equation (2), xt is the input time step at t. The hidden state is denoted by ht. The
output is yt. The weight matrices are defined by Whh, Wxh, and Why. The final output from
the RNN is processed by a non-linear hyperbolic tangent denoted by σ(·), which is defined
by Equation (4), where (4), x = Whhht−1 + Wxhxt + bh

tanh(x) =
ex − e−x

ex + e−x (4)

The typical RNN models effectively identify malicious short sequences from the
network traffic. That is why this experiment has selected them as one of the DL models.

Long Short-Term Memory (LSTM) Networks

The malicious network traffic comes in both short and long sequences. RNN is effective
in identifying short sequences. Moreover, LSTM networks perform well in classifying long
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data sequences [31]. It is a subset of RNN with other memory cells and three gating
mechanisms. The first gate of the LSTM network is the input gate defined by (6). The
second gate is the forget gate expressed in Equation (5), and the last gate is the output gate
modelled as Equation (7).

ft = σ(W f [ht−1, xt] + b f ) (5)

it = σ(Wi[ht−1, xt] + bi) (6)

ot = sigma(Wo[ht−1, xt] + bo) (7)

In Equations (5)–(7), the output gate is denoted by ot, the forget gate is ft, and the input
gate is it. These gates control the information flow. Relevant information and dependencies
are stored in the memory cell longer using these gates. If necessary, data are erased or
replaced [32]. Because of having control over the memory cell, LSTM demonstrates an
outstanding performance in classifying long sequences. The memory cells are updated
according to Equation (8).

C̃t = tanh(WC[ht−1, xt] + bC) (8)

After updating, it is necessary to check the status of the cells. This is performed by
Equation (8).

Ct = ft � Ct−1 + it � C̃t (9)

The comprehensive design of LSTM combining memory cells and control gates, de-
fined by Equation (10), enables it to handle long data sequences while maintaining an
performance. This is the reason behind choosing LSTM as one of the Deep Learning models
for IoMT intrusion detection.

ht = ot � tanh(Ct) (10)

These deep learning techniques can be adapted and fine-tuned for intrusion detection
tasks, taking advantage of their unique capabilities to process and learn from complex
network data.

3.1.2. Model Selection

IoMT data refers to the health-related data of the patients. According to B. Bhushan et al. [3],
the average cost of IoMT data is precious, which is considered to be more than 50 times
higher than data from other sectors. This is one of the fundamental reasons behind the
recent rise in IoMT intrusion attempts [33]. It has been observed that the IoMT suffers from
similar attacks, which are attempted on IoT devices. The application domain of IoMT is
exclusive. However, the fundamental development structure and communication protocols
are identical [34]. That is why the intrusion common to IoT devices also threatens IoMT
devices. These intrusions appear in short sequences, long sequences and sometimes are
embedded in image data. Figure 2 illustrates a Venn diagram that shows the overlapping
characteristics of the DL models we explored.

CNN is exclusive to malicious image data. The RNN covers most short sequences
and a marginal portion of the long sequences. However, the LSTM network is effective for
both short and long sequences. IoMT devices’ response time should be fast because they
need to process signals in real-time [35]. Using too many deep learning models will create
multilevel filtering, which introduces an additional processing delay. That is why CNN
and LSTM have been selected as DL models to detect intrusion in IoMT. The Equation (11)
shows that CNN’s role is exclusive in this experiment.
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(CNN(image) ∩ RNN(short)) ∪
(CNN(image) ∩ RNN(long)) ∪

(CNN(image) ∩ LSTM(long)) ≡ ∅
(11)

The equivalency (12) shows that RNN and LSTM are mutually inclusive. That is
why their union is logically equivalent to either RNN or LSTM. However, the scenario is
different for long sequences. According to Equation (13), the intersection between RNN
and LSTM is logically equivalent to LSTM. That is why LSTM is enough to detect intrusion
from both short and long sequences.

RNN(short) ∪ LSTM(short) ≡ RNN(short)

≡ LSTM(short)
(12)

RNN(long) ∩ LSTM(long) ≡ LSTM(short) (13)

After exploring the characteristics of the experimenting DL models, the CNN
and the LSTM network have been selected to implement the proposed IoMT intrusion
detection system.

Figure 2. Model selection criteria using Venn Diagram.

3.2. Dataset Description and Processing

Deep Learning is a data-driven technology [36]. Without an adequate amount of
feature-rich datasets, the models suffer from performance issues. Usually, the raw dataset
contains duplicate data, missing values, outliers, and other quality-limiting issues [37].
That is why data pre-processing is an essential step in training DL models. This section
presents the dataset description and pre-processing methods.

3.2.1. Textual Dataset Description and Cleaning

The Canadian Institute for Cybersecurity has collected different types of attacks on
the Internet of Things (IoT) and published the CIC-IDS2017 dataset in 2017 [38]. Since then,
this dataset has been frequently updated. That is why it is considered one of the most
convenient datasets to train an intrusion detection system [39]. The types of attacks on
IoT and IoMT are the same. During the time of conducting this experiment, there were
2.8 million instances in this dataset. There are multiple duplicate values, outliers, and
missing values in the original dataset. It requires cleaning before using it.
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Dataset Cleaning

The cleaning process of the CIC-IDS2017 dataset involves handling missing values,
removing duplicates, and removing outliers. In the beginning, the dataset D has been
defined by Equation (14), where N is the total number of instances.

D = {d1, d2, . . . , dN} (14)

In the dataset, D, multiple missing values Mi for ith features exist. The missing
values have been calculated using non-missing values using Equation (15), where µi is the
replacement for the missing value of the ith feature.

µi =
1

N − |Mi| ∑
dj∈D\Mi

dj,i (15)

Missing values after being updated after calculating them. The updating process
follows the mathematical model of Equation (16).

dj,i =

{
µi, if dj ∈ Mi

dj,i, otherwise
(16)

After handling the missing values, the duplicate values were identified and removed.
Equation (17) demonstrates the mathematical approach to managing duplicate values. Here
D∗ is the dataset after handling duplicate values. D′ is the set of unique instances in D∗.

D′ = {d ∈ D∗ | @d′ ∈ D∗ \ {d}, d = d′} (17)

Numerous outliers in the dataset have been removed through visual inspection using
different functionalities of Microsoft Excel.

Dataset Splitting

There are 56,660 instances in the dataset after cleaning it. This dataset has been split
into training, testing, and validation by maintaining 70:15:15. After splitting, there are
39,662 instances for training. Both testing and validation datasets have 8499 instances.
The training dataset has been used to train the network. The validation dataset was
used to validate the training data performance during the training. The testing dataset
is untouched during training and validation. It has been used to test the proposed IoMT
intrusion detection performance after training the model.

Variables and Sample

The CIC-IDS2017 is one of the most prominent datasets for IoMT intrusion detection
research. One of the reasons behind it is its 78 features. These 78 features are mapped to
fifteen classes [38]. Out of these fifteen classes, one is benign, and the remaining fourteen
are different types of attacks. One snippet of this dataset is listed in Table 1. It is beyond
the scope of tabulating every sample variable because of space constraints. That is why
five prominent features have been presented in the sample. These samples are Destination
Port (Dst Port), Flow Duration (Flow Duration), Total Fwd Packets (Tot Fwd Pkts), Total
Backward Packets (Tot Bwd Pkts), and Fwd Packet Length Mean (Fwd Pkt Len Mean).
Not every target variable of the CIC-IDS2017 dataset applies to IoMT. DoS slowloris, DoS
Slowhttptest, DoS Hulk, DoS GoldenEye, and DDoS are the frequently occurring attacks
on the availability of IoMT [40–42]. The web-based interface of the IoMT services is usually
under Web Attack-Brute Force, Web Attack-XSS, and Web Attack-SQL Injection. The most
frequently occurring attack to gain unauthorized access to IoMT devices is the Infiltration
attack. Many attackers use Bot attacks to automate their primary attacks. Although
portscan is not a direct attack, it is also considered a threat to the IoMT device. This is
because the attackers find the vulnerability to gain unauthorized access through open ports
using PortScan.
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Table 1. A simplified sample of the CIC-IDS2017 Dataset.

Dst
Port

Flow
Duration

Tot
Fwd
Pkts

Tot
Bwd
Pkts

Fwd Pkt
Len Mean Label

80 1,545,689 2 1 274.5 BENIGN

443 4,790,712 15 11 128.667 FTP-Patator

80 2,315,410 11 7 174.364 SSH-Patator

443 1,341,299 19 15 98.947 DoS slowloris

443 123,122 3 0 266.667 DoS Slowhttptest

443 5,323,637 7 6 65.714 DoS Hulk

80 451,990 9 11 38.444 DoS GoldenEye

80 87,828 11 9 107.091 Heartbleed

443 1,341,300 2 1 0 Web Attack—
Brute Force

80 879,012 3 3 0 Web Attack—
XSS

443 673,129 9 9 0 Web Attack—
Sql Injection

80 1,238,901 1 1 0 Infiltration

443 498,312 2 2 0 Bot

443 2,919,210 5 5 0 PortScan

80 213,012 5 5 0 DDoS

3.2.2. Textual Feature Extraction and Processing

The Deep Learning models learn from the features of the dataset. That is why feature
extraction and processing are essential to training the DL models. The dataset features are
not always aligned with the DL models’ characteristics. That is why we need to process the
features. This section presents the textual features and corresponding processing techniques
used in this paper.

Normalization

In this experiment, the Z-normalization has been used, which aims to transform
the features of a dataset to minimize the mean towards zero and modify the variance
to unity. First of all, the dataset has been denoted as D = {d1, d2, . . . , dN}, where N
is the total number of instances and dj = (xj1, xj2, . . . , xjn) represents the feature vector
of instance j. After that, the mean (µi) and standard (σi) deviation are calculated using
Equations (18) and (19).

µi =
1
N

N

∑
j=1

xji (18)

σi =

√√√√ 1
N

N

∑
j=1

(xji − µi)2 (19)

The mean and standard deviation computer is used to normalize each feature value
represented using xji and governed by Equation (20).

zji =
xji − µi

σi
(20)
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After the transformation, the transformed dataset is expressed as Z = {z1, z2, . . . , zN}.
Here zj = (zj1, zj2, . . . , zjn) is the feature vector of instance j after z-normalization.

Handling Categorical Features

The CIC-IDS2017 dataset contains both numerical and categorical data. The numerical
data are scaled using the Z-normalization discussed in Section Normalization. However, the
categorical data are not suitable for Z-normalization. In this experiment, the categorical data
have been processed using the One-Hot encoding technique defined in Equation (21) [43].

OH(P)encoded = [p1, p2, . . . , pn] (21)

In Equation (21), OH(P)encoded is the one-hot encoded vector. Each type of categorical
data has its separate vectors. Here, P stands for protocol, a categorical feature in the feature
vector of the dataset. There are other categorical features as well. Each categorical feature
maintains exclusive categorical vectors.

Feature Selection

A dataset for deep learning usually has multiple features. A large dataset with
diversified features may not generate the expected results if the features are unrelated to
the target variable. This is why selecting features correlating with the target variable is
essential [44]. This experiment uses the Mutual Information (MI) technique to discover
correlations. It ranks the features according to their relevance to the target variable. The MI
technique is governed by mathematical expression (22).

MI(X, Y) = ∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(22)

In Equation (22), the features are X, and the label of the target variables is Y. The joint
and marginal probabilities are p(x, y), p(x), and p(y), respectively. The ranking of features
is conducted according to the relevance of the feature with the target variable. Features
with higher ranks are more relevant to the target variable.

Sequence Generation

The LSTM network requires sequential data. When the proposed IDS for the IoMT
is operational, it will receive a network packet sequence with a time step. However, the
current dataset is not in sequential form. As a result, it is not suitable to train the LSTM
network. It must be converted into sequential data with a time step to train the LSTM
network [45]. In this experiment, the sliding window approach has been considered to
convert the dataset into sequences. The process is defined in Equation (23).

(Xt−w+1, Xt−w+2, . . . , Xt)→ Yt+1 (23)

In Equation (23), w is the window size. This window is slid over the dataset. The
input at t time step is Xt, and the output at the same time step is Yt+1. After completing
a certain iteration, the entire dataset is converted to sequential data suitable to train the
LSTM network.

3.2.3. Image Dataset Description and Processing

A paper published by L. Nataraj et al. [46] introduced the Malimg Dataset. This dataset
contains 9339 images infected with seven different types of malware. Dialer, Backdoor,
Worm, Trojan, Trojan-Downloader, Rogue, and Password (PWS) are the malware. The
Malimg dataset contains images with varying resolutions. That means there is no common
specific size for these images. These are binary images stored in Portable Network Graphics
(PNG) format.
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Directory Distribution and Splitting

The Malimg dataset has been prepared to classify the family or class of different
types of attacks. However, this paper aims at identifying the attacks, regardless of their
family. There are 25 classes in the dataset and seven types of attacks. Seven different
directories with the names of attacks have been created. The corresponding images have
been moved to these directories. Each directory is further divided into three sub-directories.
They are training, testing, and validation. The directory structure has been illustrated in
Figure 3. Each attack dataset has been split into a training, testing, and validation dataset
by maintaining a ratio of 70:15:15, respectively.

Figure 3. The directory structure of the dataset.

Image Resizing

The Malimg dataset contains images in different resolutions. That is why it is not
ready to use to train CNNs because convolutional neural networks have specific input
layers with particular sizes. If the input image size does not match the input layer size, the
network cannot process the image. That is why resizing the images to a specific resolution
is mandatory. It imposes another challenge, which is the information loss from the images.
These images contain malicious codes. Resizing the image increases the chances of losing
information that represents the malware. We used bicubic interpolation to ensure minimal
information loss. The original image is denoted by I, and the size is M× N pixels. This
image is resized to 64 × 64 pixels and denoted by R. In the Bicubic Interpolation (BI)
method [47], the value of a cubic polynomial function at a new point is estimated as the
previous value and its derivative at the neighbouring points. The original image I is defined
as a continuous function f (x, y) representing the intensity values of pixels at the coordinate
(x, y). The entire process is governed by a mathematical model expressed in Equation (24).

p(x, y) =
3

∑
i=0

3

∑
j=0

aijxiyj (24)

In Equation (24), the aij is the coefficient. The value of this coefficient is calculated from
the values of the four nearest neighbours at (x, y) and the derivative of the function f (x, y).
The interpolation values are calculated at the desired point after getting the aij values. Once
the interpolation values are available, the scaling factors are computed using (25).
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sx =
M
64

sy =
N
64

(25)

In Equation (25), the coordinates of the resized image R are expressed as (x′, y′). These
pixel coordinates map them back to the corresponding pixel coordinates of the original
image I.

x = sxx′ (26)

y = syy′ (27)

Once the scaling factors are obtained, the Bicubic interpolation estimates the pixel
values considering the continuous coordinates (x, y) of the original image I. At the same
time, the aij is calculated, and the cubic polynomial function p(x, y) is evaluated. Finally,
the interpolated values are replaced by the pixel values (x, y) of the resized image R. This
is how the images are resized to 64× 64 pixels with minimal information loss.

3.3. IoMT Node Architecture and Communication Protocols

There is no specific architecture of IoMT [48]. These devices are usually task-specific.
For example, the IoMT architecture for an Alzheimer’s patient [49] differs from that of
a lung cancer patient [50]. This difference is at the sensor and protocol levels. The core IoT
architecture illustrated in Figure 4 remains the same.

3.3.1. Basic IoMT Node Architecture

The basic architecture of IoT and IoMT are similar. Both systems have a Communication
unit, Processing Unit, Sensor array, and Power Supply. The connected sensors make the fun-
damental differences between IoT and IoMT. When the set of medical and healthcare-related
sensors is connected to the sensor array, it becomes IoMT devices. On the other hand, non-
healthcare-related sensors connected to the sensor array are IoT devices. Considering IoT
devices with sensors S1, S2, . . . , SN and IoMT devices as a collection of MS1, MS2, . . . , MSN ,
the relation between IoT and IoMT is expressed using Equation (28).

IoT = {S|S ∈ SN , S ∈ MSN} (28)

The IoMT devices, such as IoT devices, are connected to an edge server. The edge
server is connected to the router. The router is connected to the Internet Service Provider
(ISP), which is further connected to the broader network or Internet gateway. The proposed
IoMT intrusion detection system runs at the IoMT edge server. The IoMT sensors are simple
input–output (IO) devices. Energy consumption (E), active time (Tactive), idle time (Tidle),
power consumption during active state (Pactive), and energy consumption during idle states
(Pidle) are a few of the performance evaluation indicators of IoMT devices. The performance
indication is characterized by the mathematical Equation (29).

E = Pactive · Tactive + Pidle · Tidle (29)

From a communication point of view, latency and throughput are the performance
evaluation factors. The anomalous nature of the latency and throughput indicates an
intrusion at the IoMT node. The throughput, data, and transmission time are characterized
by their mathematical relation expressed in Equation (30), where Thp is the throughput
measured in bps, and D is the amount of data processed within T seconds.

Thp =
D
T

(30)
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Figure 4. IoT Node Architecture.

3.3.2. Communication Protocols

Protocols govern the communication of the internet. The Internet of Medical Things
(IoMT) is no different. A set of protocols also governs IoMT communication. Cybercrimi-
nals exploit the existing protocols’ vulnerabilities to gain unauthorized access or disrupt the
smooth service. Developing an effective intrusion detector for IoMT requires deep knowl-
edge of the protocols [51]. IEEE 802.15.4, Bluetooth Low Energy (BLE), Low-Power Wide
Area Network (LoRaWAN), and Cellular IoT are the standard protocols associated with the
IoMT [52]. Observing the IoMT performance from the protocol level refers to characterizing
the performance in terms of transmission range, data rate, and energy consumption, which
is expressed by Equation (31).

Ec =
Ptx · D

R
(31)

In Equation (31), the transmission power is denoted by Ptx, the data rate as R, the
amount of data transmitted as D, and the energy consumption as Ec. The received power
of a signal from the internet degrades in proportion to the transmission range if it is not
amplified. It indicates that receiving low power is not always an indicator of an intrusion at
the IoMT nodes. However, the probability is not entirely zero. Using the Friis transmission
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equation, the received power over a specific transmission range is calculated using the
following Equation (32) [53].

Prx =
Ptx · Gtx · Grx · λ2

(4π)2 · d2 (32)

The difference between the calculated and the received power, Prx, indicates the
intrusion. In Equation (32), Gtx and Grx are the transmitter and receiver gains, respectively.
The signal’s wavelength is λ when the distance between the transmitter and receiver is d.

3.3.3. Common IoMT Intrusions

The CIC-IDS2017 dataset contains features for fourteen different attacks, and the
Malimg dataset has seven intrusions. These two datasets are not exclusive to IoMT. The CIC-
IDS2017 is a standard dataset for all types of IoT devices. We have already established that
IoT ∈ IoMT but IoMT /∈ IoT. As a result, not every attack available in these two datasets
applies to IoMT nodes. The potential intrusions for IoMT have been listed in Table 2.

Table 2. The potential attacks for IoMT.

CIC-IDS2017
Dataset Threat Type Malimg Dataset Threat Type

Brute Force
(BF) Attack Unauthorized access Backdoor Unauthorized access and

control

DoS Reduce the availability Worm Exploiting vulnerabilities

DDoS Reduce the availability Trojan Unauthorized access and
data integrity

Infiltration Stealing sensitive data Trojan Download Unauthorized access

Portscan Exploiting vulnerabilities Rogue False alarm

Botnet Unauthorized access
and control Password (PWS) Data disclosure

There is no guarantee that a certain intrusion will happen at a particular time. The list
provided in Table 2 refers to the frequently occurring attacks on IoMT. The probability of
a successful attack from these intrusions is defined in Equation (33), which is a conditional
probabilistic model, where the probability of a successful attack P(A) is dependent on
the probability of the capability of the attackers to exploit the security features and find
vulnerabilities. It also depends on the probability of breaching the system’s defence
mechanism. The probability of breaching the system’s defence mechanism is denoted
by P(D), and P(C) means the probability of attackers’ capability to exploit the security
protocols. The P(S) stands for the probability of sustainability of the security features.

P(A|C, S, D) =
P(A, C, S, D)

P(C, S, D)
(33)

The list of attacks presented in Table 2 have been shortlisted based on the probabilistic
model defined in (33). In this joint probability, the probability of a successful attack
depends on P(C, S, D). The twelve attacks have been finalized by analyzing the different
probabilistic characteristics of the twenty-one attacks on IoT.

3.4. SafetyMed Architecture

The proposed SafetyMed is a hybrid network, illustrated in Figure 5, consisting of
CNN and LSTM. The Internet of Medical Things (IoMT) communicates in textual, numeric,
and image data. Intrusion detection from textual and numerical data ignoring the malicious
image data leave a severe security vulnerability in IoMT. The LSTM networks are excellent
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at detecting intrusions from short and long sequences representing textual or numerical
data. The features available on the CIC-IDS2017 dataset have been used to train the LSTM
network. On the other hand, CNNs are specially designed Deep Neural Networks (DNNs)
to handle image data properly. They are effective in identifying embedded malware in
images. Combining the LSTM and CNN results in a complete intrusion detection system
that detects intrusion from all textual, numerical, and image data types.

Figure 5. The overview architecture of the SafetyMed.

The proposed SafetyMed architecture uses a parallel combination of CNN and LSTM
networks. A data-type differentiating module identifies the input data. It passes the image
data to CNN and textual data to the LSTM network. After the differentiating modules’
processing, the CNN and LSTM network work separately. The SafetyMed Classification
Algorithm (SCA), explained in Section 3.6, combines the predictions from both networks,
performing the hybridization. The LSTM network uses numerical features which represent
the intrusion from network packet sequences. This means it handles text from a non-NLP
point of view.

3.4.1. CNN Design and Implementation

A Convolutional Neural Network (CNN), illustrated in Figure 5b, has been designed,
optimized, and implemented for the intrusion detection of malicious image data. It consists
of convolutional layers, max-pooling layers, and some additional layers for performance
optimization. The fully connected layer architecture has been used in this experiment for
feature learning. The network output has seven nodes to detect seven types of intrusions.

Input and Convolutional Layers

The size of the input layer of the proposed CNN is 64× 64× 3. That means it requires
three-channel images with a resolution of 64× 64. Usually, images downloaded from the
web or received online have three channels. That is why the input layer accepts three-
channel images. The input layer passes the signals to the first convolutional layer. There
are 30 filters of kernel size 3× 3 in this layer. The working principle of this layer is defined
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in Equation (34), where Fi is the convolution filter of each layer, and the output feature
map is Oi.

Oi(x, y) =
k

∑
m=−k

k

∑
n=−k

I(x + m, y + n)Fi(m, n) (34)

In Equation (34), the kernel size is expressed by k. The i in Fi represents the i-th filter.
The Rectified Linear Uni (ReLU), defined in Equation (35), has been used as the activation
function of the convolutional layers. The ReLU has been used element-wise in the proposed
network architecture to maintain non-linear characteristics.

ReLU(x) = max(0, x) (35)

Pooling Layer Design

The proposed CNN uses a max pooling layer after convolutional layers. It has been
used to downsample the operation. Reducing the spatial dimension of the input feature
map is an important step of feature extraction. It has been conducted using the max pooling
layer, which is expressed in Equation (36).

P(x, y) =
k−1

max
m=0

k−1
max
n=0

I(x× k + m, y× k + n) (36)

We divided the feature maps into multiple non-overlapping regions. After that, the
maximum values of each region are taken using Equation (36). In this equation, P(x, y) is
the output from the pooling layer, and the pool size is k. The input feature map, in other
words, the input image, is I.

Additional Layers

During the experiment, it was observed that it requires more convolutional layers.
Consequently, more ReLU activation functions and pooling layers need to be added. These
layers have been considered as an additional layer for the performance improvement of the
proposed network. This additional layer consists of a convolutional layer with 15 filters.
Each filter’s kernel size is 3× 3. After processing the signals of this convolutional layer
using the ReLU activation function, the max pooling layer with a 2× 2 pool size has been
used. This architecture tends to overfit. It has been fixed by a dropout layer with a dropout
rate of 0.25. The dropout is governed by Equation (37).

The model continues with another convolutional layers (15 filters, 3× 3 kernel size,
ReLU activation) and a max pooling layer (2× 2 pool size), followed by a dropout layer
with a dropout rate of 0.25. Dropout is a regularization technique that helps prevent
overfitting by randomly setting a fraction of input units to 0 during training:

D(x) =

{
x, with probability 1− p
0, with probability p

(37)

According to Equation (37), it randomly chooses weights and turns them into zero. As
a result, that particular weight does not play any role in the training and eventually the
network becomes more regularized which prevents overfitting. In this equation, D(x) is
the dropout layer. The input is defined by x, and the dropout rate is p.

Fully Connected Layer Design

The fully connected layer starts after the dropout layer, which prevents the overfitting
problem. However, there is a flattened layer that converts every signal into a one-dimensional
array. This one-dimensional data are passed to the fully connected layers, which are also
known as dense layers. The first fully connected layer has 128 hidden nodes. Each node is
activated using the ReLU activation function. We used a 0.5% dropout rate to prevent the
proposed CNN from overfitting. After that, another fully connected layer with 50 hidden
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nodes has been introduced. These nodes use the same activation function. The entire
process is expressed in Equation (38).

yi = Activation(
n

∑
j=1

wijxj + bi) (38)

In Equation (38), the output of the i-th unit of the fully connected layer is expressed
by yi. The input and weight matrix are denoted by xj and wij, respectively. The bias factor
is expressed using bi. In every case, each term is indexed at i except for x because it is the
input. The summation defined by Equation (38), iterates according to the number of pixels
in the input, which is indexed at j. The entire expression is under the activation function.
In this experiment, the ReLU has been used as the activation function.

Output Layer Design

The original Malimg dataset has seven types of intrusions. However, the proposed
SafetyMed intrusion detection system focuses on IoMT only. Six intrusions are threats to
IoMT according to the probabilistic model of Equation (33). That is why the output layer of
the proposed CNN has six nodes. We used the ReLU activation function for the hidden
nodes. However, the Softmax activation function has been used for output nodes. The
primary reason behind using the Softmax activation function is to obtain the probabilistic
responses from the CNN, scaled between 0 to 1. The output layer has been developed using
a mathematical model defined in (39).

softmax(xi) =
exp(xi)

∑n
j=1 exp(xj)

(39)

In Equation (39), the input from the dense layer to this layer is xi. These inputs are
processed by the Softmax function. The n in the equation is the number of output nodes. In
this experiment n = 6 because the number of output classes is 6.

Model Compilation

The final step, model compilation, is conducted using the categorical cross-entropy
loss function. The proposed CNN is a multi-class classifier. That means it classifies
multiple classes simultaneously. For these types of classifiers, the cross-entropy loss
function generates better results. This function is defined in Equation (40).

L(y, ŷ) = −
n

∑
i=1

yi log(ŷi) (40)

In Equation (40), the output class label is y. It is a categorical output. That is why we
used the One-Hot encoding scheme to express different classes using binary sequences.
The prediction from the model is expressed using ŷ. The prediction is made in terms of
the probability distribution. The maximum n number of classes are predicted using the
proposed CNN.

The Adaptive Moment Estimation (ADAM) optimizer has been used to train the model.
This optimizer combines Adaptive Gradient (AdaGrad) and Root-Mean-Square Propagation
(RMSPorp). That is why this optimizer has the advantages of both of these optimizers [54].

3.4.2. LSTM Network Architecture

An LSTM network, illustrated in Figure 5c, has been designed, implemented, and
optimized for this experiment to detect intrusions from sequential network data. It has
32 LSTM layers followed by a dense layer. The dense layer converts the output from the
LSTM layer into a one-dimensional array. There are six nodes in the dense layer. These
nodes use the Softmax activation function. Finally, a multi-class classification layer has
been added to the Softmax layer. It has six classes.
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Training the Network

The LSTM network has been trained using the training dataset, which is a subset of the
CIC-IDS2017 dataset. There are 39,662 instances in this dataset. The LSTM network requires
sequential data at different timesteps. The original CIC-IDS2017 dataset has been processed
in Section 3.2, where it has been converted into a sequence with a specific timestep. The
proposed LSTM network takes only 2 min 14 s to reach 97.78% validation accuracy with
ten epochs. In each epoch, there are 325 iterations. The learning progress of the proposed
LSTM network is illustrated in Figure 6.

Figure 6. The learning progress with respect to epoch.

The learning progress curve of the LSTM network is illustrated in Figure 6. The learn-
ing curve shows the relation among training accuracy, training loss, validation accuracy,
and validation loss with respect to the number of epochs and accuracy. The training and
validation accuracy curves overlap each other. That means the network does not overfit.
Similar characteristics are visible for the training and validation loss as well. The training
and validation accuracy increases rapidly until the first epoch. After that, there are repeated
small ripples in the learning curve. However, the smoothed version of these curves exhibits
near-linear characteristics. A similar statement applies to the training and validation loss
as well.

Weight Initialization

The proposed LSTM network has been designed to learn from short and long se-
quential data. The dataset is large, and numerous significant variations exist among the
instances. That is why appropriately initializing the weights is crucial for the network to
converge quickly by gaining good accuracy. A proper weight initialization method also
handles the vanishing or exploding gradient problems. This experiment uses the Orthogo-
nal Initializing (ORI) method to initialize the weight of the LSTM network [55]. Here, the
orthogonal matrix is a square matrix Q ∈ Rn×n with the property defined by Equation (41).

QQT = QTQ = I (41)

In Equation (41), QT represents the transpose of Q. The I is the identity matrix of the
same size as Q. These matrices have orthonormal columns and rows. That means they are
mutually orthogonal. It implies they have a norm in equation 1 according to expression (42),
where qi and qj represent the columns of the orthogonal matrix Q. If they are considered
orthogonal rows, the overall response from the system remains unchanged.
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∀i, j ∈ {1, . . . , n}, qT
i qj =

{
1 if i = j
0 if i 6= j

(42)

The weight W of the LSTM network is initialized as orthogonal matrices according to
the mathematical Equation (43). The weight comes in a W ∈ Rn×m form, where n 6= m. It
starts with a random orthogonal matrix Q ∈ Rk×k, where k = max(n, m). After that, the
matrix size is batched with the size of the LSTM layer size. This is how the weights have
been initialized in the proposed LSTM network.

∂L
∂W

=
∂L

∂WT =
∂L
∂I

(43)

Optimization Algorithm

The proposed LSTM network uses an Adaptive Moment Estimation (ADAM) opti-
mization algorithm. It is a combination of the Adaptive Gradient Algorithm (AdaGrad) [56]
and Root Mean Square Propagation (RMSProp) [54]. That is why it has the advantages
of both of them. It combines these two algorithms by the first and second momentum
defined by Equations (44) and (45). Here, the gt represents the gradient at time step t. The
exponential decays for these two equations are β1 and β2.

mt = β1mt−1 + (1− β1)gt (44)

vt = β2vt−1 + (1− β2)g2
t (45)

After calculating the moments, the bias-corrected first and second moments are calcu-
lated and denoted by m̂t and v̂t, which are defined by Equations (46) and (47), respectively.

m̂t =
mt

1− βt
1

(46)

v̂t =
vt

1− βt
2

(47)

The m̂t and v̂t are used in Equation (48), where θt is the weight update at time t. In this
equation, α is the learning rate whose value is between 0 to 1. It is used to control the pace
of weight updates. A small constant ε is added with a denominator to prevent division
by zero.

θt = θt−1 − α
m̂t√

v̂t + ε
(48)

3.5. Architectural Comparison with BERT

The architecture of SafetyMed and BERT have similarities and differences. The
first similarity is the data diversion according to their types. Both architectures pass the
image to the CNN and the non-image data to the recurrent branch. However, the CNN
architecture of SafetyMed has been designed to learn features from the Malimg dataset
only optimally. On the other hand, the BERT employs a generalized CNN architecture
suitable for a wide range of images. A significant difference between SafetyMed and BERT
is the preprocessing scheme for recurrent units. The input to these units is preprocessed by
following the NLP principle so that they can be vectorized using Word2Vec. Conversely,
the SafetyMed preprocess data which carry no semantic meaning. These sequential data
are converted into specific sequences segmented at specific timestamps.

The BERT architecture uses a concatenation layer that concatenates the features from
CNN and RNN models. A combination of features from both models participates in
classification. As a result, the uniqueness of the features is not preserved. SafetyMed
maintains a parallel processing scheme where the CNN and LSTM networks perform
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concurrently. The image features and textual features participate in the classification
process independently. After the model-wise classification, an additional classification
algorithm performs the final classification.

3.6. SafetyMed Classification Algorithm

The proposed intrusion detection system for IoMT combines CNN and LSTM net-
works. They work simultaneously when both image and non-image data are received.
If no image data are received, the CNN remains inactive. If there is no non-image data,
the LSTM network remains inactive. As illustrated in Figure 5, a classifier combines the
prediction from the CNN and LSTM network using the SafeMed Classification Algorithm
(SCA). The algorithm is presented as Algorithm 1.

Algorithm 1 The SafetyMed Classification Algorithm
Start
while packet do
Receive Packet p← Type(Packet);

if p == image then
i← ReadImage(p)
i← ResizeImage(p, 64× 64× 3)
C[ts]←CNN(i, ts)
append.log(ts)
if C[ts] > 0.7 then

Intrusion(C[ts], True)
BlockTraffic(p.source)
Reject(p)

if p! = image then
d← ReadData(p)
d← GenerateSequence(d, t)
D[ts]← LSTM(d, ts)
append.log(ts)
if D[ts] > 0.7 then

Intrusion(D[ts], True)
BlockTraffic(p.source)
Reject(p) None

Terminate

The SCA is activated when it receives network packets. After receiving packets, it
checks the data type of the packets. Image and non-image data are handled differently by
separate networks. The algorithm resizes the images to 64× 64× 3 and then passes them
to the CNN. It maintains a log according to timestamp ts. The processing is different for
non-image data. Initially, the non-image data are converted into length sequences d with t
time differences. These sequences are passed to the LSTM network. Algorithm 1 uses the
trained CNN and LSTM network to classify the intrusions from both image and non-image
data. If the probability of a certain class is more than 70%, then the algorithm considers it
to be a considerable intrusion. It immediately blocks traffic from the source and also rejects
the current packet.

Complexity Analysis

The time complexity analysis of a system consisting of CNN and LSTM networks
is not straightforward. It depends on the number of layers, the size of the input data,
the weights of nodes, the combination of biases, etc. The complexity of an image with
n is O(n + CNN). The LSTM network handles the non-image data. For data with m
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size, the complexity is O(m + LSTM). Considering that the system loops over every
packet where the number of packets is p, the overall time complexity of the algorithm is
O(p× (n + m + CNN + LSTM)) for the worst case. However, it is O(p) for the best case.

4. Implementation and Response Mechanism

The proposed SafetyMed has been implemented and experimented with in the testbed.
Although the experimental environment has been artificially created, the real-world intru-
sion characteristics have been maintained by randomizing the intrusions. The malicious
packets have been randomly injected with regular packets, as if coming from real attackers.

4.1. Experimental Setup

The experimental setup has been designed using Cooja Network Simulator. This
network simulator generates a realistic replication of a busy network. It runs on the Contiki
Operating System (COS) [57]. In this experiment, the COS has been installed in a virtual
machine. A Raspberry Pi 4 Model B with 8GB primary memory has been used as the edge
server. The experimental setup has been illustrated in Figure 7. The physical hardware
houses the virtual hardware through Virtualization Technology (VT). The Contiki OS is
installed on the virtual hardware. It simulates a realistic network as a dynamic network
generating and carrying thousands of packets in different parts of the world. A separate
intrusion server has been created to insert malicious codes among the network traffic
randomly. A random mixture module retrieves different types of image and non-image
intrusions with the simulated network traffic. A wireless router receives the traffic and
converts non-image data into sequential data at different timesteps. It converts the image
data into a grid data structure. Finally, these data are transmitted to the edge server
where the proposed SafetyMed runs. This edge server has implemented the SafetyMed
classification (SC) algorithm. If no intrusion is detected, the network traffic is allowed to
communicate with the IoMT devices. Otherwise, the SC algorithm blocks the source that
generates intrusion and rejects the corresponding packets.

4.2. Threshold Selection

The proposed Deep-IDS runs from the edge server. The sensors receive data from
the internet through the server. The same thing applies to data transmission as well. The
edge server sits in between the sensors and the router. Whenever the edge server receives
a packer, it initiates the Deep-IDS and passes the packets to it. If the LSTM network detects
the intrusion, it checks the probability of certain intrusion. If the probability is more than
70%, then the Deep-IDS rejects the data and sends the traffic block signal to the router. The
router blocks the source of the intrusion. The Deep-IDS passes the data to the sensors if no
intrusion is detected.

Figure 8 shows an inverse relationship between false alarms and detection rates as the
threshold value increases. The detection rate is high with lower threshold values, but so is
the false alarm rate. The false alarm rate decreases as the threshold value increases, but the
detection rate also drops, indicating a trade-off between the two metrics. If there are too
many false alarms, the system will cause too much interruption in regular operations. If the
detection rate falls, the system will fail to secure the IoMT. Choosing an optimal threshold
value that balances minimizing false alarms and maximizing detection rates is challenging.
It is evident in Figure 8 that at a threshold value of 70, the false alarm rate is significantly
reduced to 1.46% while maintaining a relatively high detection rate of 98.01%, which further
increases the threshold results in a steep decline in the detection rate; this is unacceptable
depending on the specific use case. From this observation, the response mechanism of the
system has been at a threshold of 70%. At this threshold value, the proposed intrusion
detection system maintains the optimum false alarm rate and detection rate.
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Figure 7. Overview of the implementation of the proposed IoMT IDS.

Figure 8. Threshold selection.

5. Performance Evaluation

SafetyMed is the first IoMT intrusion detection system that simultaneously detects
the intrusion from image and non-image data. The network architecture is a combination
of CNN and LSTM networks. That is why the performance of the proposed IDS has been
evaluated from image intrusion, non-image intrusion, and combined intrusion classification.
This experiment uses the CICIDS2017 dataset. The overall performance of this dataset is
satisfactory. However, it leaves a question on the performance of the SafetyMed on other
datasets. It has been evaluated using CICIDS2018 and CICIDS2019 datasets to leave no
stone unturned. The SafetyMed is the first IDS capable of detecting and defending twelve
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intrusions. No other IDS has this capability. As a result, very little common ground exists
between SafetyMed and other IDSs. Because of being exclusive, its performance could not
be compared with other similar IDSs.

5.1. Evaluation Metrics

The same evaluation metrics have been used for both CNN and LSTM. Both networks
perform classification. That is why using the same evaluation metrics has become possible.
According to the literature review, accuracy, precision, recall (sensitivity), and F1 Score
are the state-of-the-art evaluation metrics for classification problems. These metrics are
dependent on Positive (TP), True Negative (TN), False Positive (FP), and False Negative
(FN). These values are obtained from the confusion matrix. Mathematically, the evaluation
metrics are defined by Equations (49)–(52), respectively [58].

Accuracy =
TP + TN

TP + TN + FP + FN
(49)

Precision =
TP

TP + FP
(50)

Recall =
TP

TP + FN
(51)

F1 Score =
2× (Precision× Recall)

Precision + Recall
(52)

Accuracy is the measurement of the number of correctly detected intrusions. There
are both positive and negative classes in the dataset. Precision is the measurement of the
quality of positive prediction by SafetyMed. The recall represents the percentage of correctly
identified positive classes out of the total classes. The F1 score combines precision and recall
to determine the number of times the model makes correct predictions from the entire dataset.

5.2. Performance Analysis of LSTM

The confusion matrix, illustrated in Figure 9, demonstrates an excellent performance by
the proposed intrusion detection system. It is the performance of the system on sequential
data. It detects intrusions with 98.23% accuracy. The average precision and recall are above
95%, indicating the prediction’s reliability from the LSTM network.

The performance of the LSTM network has been summarized in Table 3. This compre-
hensive evaluation shows that the precision value ranges from 0.958 for DoS to 0.9898 for
Botnet intrusion. The precision represents the ability of SafetyMed to classify the true
positives correctly. That means the system is very effective in minimizing false alarms. The
lowest recall is 0.9631 for Portscan, and the highest is 0.98 for the DoS attack. This indicates
the proportion of the true positive predicted out of all actual positive cases.

The F1 score in Table 3 indicates the balanced performance of SafetyMed. It is a com-
bination of precision and recall. It ranges from 0.9662 for DDoS to 0.9768 for Botnet, which
demonstrates the ability of the proposed intrusion detection system to maintain a high precision
and recall. Figure 10 illustrates the performance of the LSTM network in detecting intrusions.

In Figure 10, the precision, recall, and F1-score values are on the left vertical axis. The
FPR and FNR are scaled on the right vertical axis. The low False Positive Rates (FPR) and
False Negative Rates (FNR) reveal the system’s aptitude for minimizing both classification
errors. The FPRs range from a mere 0.0011 for Botnet to 0.0084 for DoS, indicating that the
system rarely misclassifies benign activities as threats. Similarly, the FNRs, which measure
the proportion of false negatives to actual positives, are relatively low, with values between
0.02 for DoS and 0.0369 for Portscan. From the confusion matrix analysis of Figure 9, data
in Table 3, and performance visualization in Figure 10, it is evident that the experimenting
LSTM network is an excellent non-image intrusion detector and ensures reliable security,
protecting the IoMT network from intrusions.
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Figure 9. Confusion Matrix Analysis for LSTM Network.

Table 3. Performance summary of the LSTM network.

Intrusion Precision Recall F1 Score FPR FNR

Brute Force 0.9848 0.9798 0.9823 0.003 0.0202

DoS 0.958 0.98 0.9689 0.0084 0.02

DDoS 0.9615 0.9709 0.9662 0.008 0.0291

Infiltration 0.9647 0.975 0.9698 0.0076 0.025

Portscan 0.9833 0.9631 0.9731 0.0026 0.0369

Botnet 0.9898 0.9641 0.9768 0.0011 0.0359

Figure 10. The performance visualization of the LSTM network.
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5.3. Performance Analysis of CNN

The confusion matrix illustrated in Figure 11 demonstrates the performance of the
CNN of the SafetyMed intrusion detection system. It is the performance of the system on
image data. It classifies the intrusions with 96.92% accuracy. The average precision of the
intrusion detector is 0.9692. This indicates that the model accurately predicts true positive
cases. The characteristics of the recall are quite similar. The average recall is 0.9644, which
suggests that the system is sensitive to intrusion, and it can detect a significant number of
intrusions, minimizing the risk of undetected threats.

Figure 11. Confusion Matrix Analysis for CNN.

The overall performance of the trained CNN to detect an intrusion is listed in Table 4.
The highest precision of the system is recorded at 0.9797 for the Trojan, and the lowest
is 0.9608 for the Backdoor attack. The recall ranges from 0.9509 for PWS to 0.98 for the
Backdoor attack. The lowest F1-score is 0.9604 for the PWS, and the highest F1-score is
0.9723 for the Trojan attack. It has been observed that the precision, recall, and F1-score
do not fall below 0.96, which is evidence that the trained CNN is excellent at detecting an
intrusion through images.

Table 4. Performance summary of the CNN.

Intrusion Precision Recall F1 Score FPR FNR

Backdoor 0.9608 0.98 0.9704 0.0072 0.02

Worm 0.965 0.965 0.965 0.0063 0.035

Trojan 0.9797 0.965 0.9723 0.0036 0.035

TRD 0.9653 0.9653 0.9653 0.0063 0.0347

Rogue 0.9746 0.96 0.9673 0.0045 0.04

PWS 0.97 0.9509 0.9604 0.0054 0.049
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The performance of the proposed intrusion detection system has been visually pre-
sented in Figure 12. The left x-axis represents the precision, recall, and F1-score performance
scale. The right x-axis represents the FPR and FNR scales. The average FPR and FNR of the
SafetyMed are 0.0054 and 0.049, respectively. It is an indication that the IDS rarely classifies
non-intrusion events as intrusive.

Figure 12. The performance visualization of the CNN.

5.4. Overall Performance

The overall performance of the proposed intrusion detection system, SafetyMed, is
represented by the confusion matrix illustrated in Figure 13. The average accuracy of
SafetyMed is 97.63%. The average precision, recall, and F1-score are 0.9847, 0.97, and 0.9773,
respectively. The average FPR and FNR are 0.0071 and 0.0267, respectively.

Figure 13. The overall performance of the proposed intrusion detection system.

The variations among the precision, recall, and F1-score are illustrated in Figure 14.
According to this figure, the range of these values varies from 0.95 to 0.99. Intrusion
detection with performance in between this range is undoubtedly an outstanding IDS.
Moreover, the FPR is 0.71% and FNR is 2.67%. These values indicate that the proposed
SafetyMed is reliable and rarely generates false positive or negative results.
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Figure 14. The variations amongthe precision, recall, and F1-score.

5.5. Performance on Different Datasets

SafetyMed demonstrates an outstanding performance on the CICIDS2017 dataset. The
dataset has been split into three segments—(i) Training, (ii) Testing, and (iii) Validation.
The network’s performance has been tested using the Testing dataset, which was not used
during the training phase. Although it is enough to validate the capability of SafetyMed,
it has been further tested with CICIDS2018 and CICIDS2019 datasets. The performance
comparison of SatefyMed for different datasets is listed in Table 5. The performance
variations of SafetyMed for different datasets are insignificant.

Table 5. Performance of the proposed system on different datasets.

Precision Recall F1 Score

Intrusion CICDIS
2017

CICDIS
2018

CICDIS
2019

CICDIS
2017

CICDIS
2018

CICDIS
2019

CICDIS
2017

CICDIS
2018

CICDIS
2019

Backdoor 0.9608 0.966 0.96527 0.98 0.98279 0.98168 0.9704 0.97040 0.96984

Worm 0.965 0.966 0.96779 0.965 0.96835 0.96332 0.965 0.96612 0.96444

Trojan 0.9797 0.980 0.97970 0.965 0.96556 0.96444 0.9723 0.97398 0.97118

TRD 0.9653 0.965 0.96753 0.9653 0.96977 0.96865 0.9653 0.96753 0.96642

Rogue 0.9746 0.973 0.97963 0.96 0.96168 0.96447 0.9673 0.96618 0.96562

PWS 0.97 0.969 0.96832 0.9509 0.95369 0.94922 0.9604 0.96319 0.96096

Brute Force 0.9848 0.983 0.98815 0.9798 0.97924 0.98315 0.9823 0.98286 0.98565

DoS 0.958 0.957 0.95688 0.98 0.98000 0.97832 0.9689 0.97225 0.96946

DDoS 0.9615 0.964 0.96485 0.9709 0.96922 0.97537 0.9662 0.96843 0.97123

Infiltration 0.9647 0.966 0.96861 0.975 0.97947 0.97500 0.9698 0.96868 0.97315

Portscan 0.9833 0.986 0.98274 0.9631 0.96366 0.96813 0.9731 0.97589 0.97310

Botnet 0.9898 0.994 0.99371 0.9641 0.96466 0.96689 0.9768 0.97680 0.98127

The graphical illustration of the comparison is presented in Figure 15. It also shows
insignificant performance variations for different datasets. The performances of SafetyMed
have been compared in terms of precision, recall, and F1-score. Figure 15 shows the
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performance of each type of attack for every dataset experimented in this paper. The
ignoble variations listed in Table 5 and demonstrated in Figure 15 prove that SafetyMed is
well-trained, not biased to any particular dataset, and maintains a generalized performance
when the dataset varies.

Figure 15. Performance comparison among different datasets.

5.6. Performance Comparison

The performance of SafetyMed has been compared with five concurrent papers, which
are listed in Table 6. The comparison shows that it significantly outperforms the state-of-the-
art (SOTA) approaches in handling various intrusions and incorporating a response mecha-
nism. While the papers by V. Ravi et al. [59], M. Alalhareth et al. [60], S. A. Wagan [9], W.
Lu et al. [61], and S. Saif et al. [62] can only detect up to 2 types of intrusions, the proposed
method can successfully detect 12 different types. Regarding accuracy, S. Saif et al. [62]
achieved the highest accuracy of 99% among the SOTA approaches. However, the proposed
method closely follows this with an impressive accuracy of 97.63%, which is commendable
given its ability to detect a far greater number of intrusion types. The proposed approach
also stands out with its unique response mechanism, a feature absent in the SOTA methods.
Additionally, it includes a detection rate of 98.01%, a metric not provided by the other stud-
ies. Therefore, the proposed approach significantly advances the existing methodologies,
boasting a broader scope and an integrated response mechanism.

Table 6. Performance comparison with state-of-the-art (SOTA) methodologies.

Paper Number of
Intrusions Detection Rate Accuracy Response

Mechanism

V. Ravi et al. [59] 2 NA 95% NA

M. Alalhareth et al. [60] 2 NA 88.90% NA

S. A. Wagan [9] 2 NA 92% NA

W. Lu et al. [61] 2 NA 81.96 NA

S. Saif et al. [62] 1 NA 99% NA

Proposed 12 98.01% 97.63% Yes
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6. Limitations and Future Direction

Despite the outstanding performance, the proposed SafetyMed suffers from several
limitations. These limitations are not intractable. However, it is beyond the scope of this
paper to overcome these limitations at this phase. As a result, it leaves an opportunity to con-
duct more research in the future to strengthen SafetyMed and includes additional features.

6.1. Architectural Complexity

The proposed IoMT intrusion detection system combines CNN and LSTM networks.
As a result, the overall architecture of SafetyMed has become a complex one. Attaining the
same result with simpler architecture would be desired. However, this opportunity has
not been explored yet. That means there is still scope to optimize the network architecture
further to make it simpler, which is the future scope of this research.

6.2. Expensive

SafetyMed uses a Raspberry Pi 4 Model B with 8GB primary memory as the edge
server, which is an expensive device for many researchers. It requires an additional cooling
unit and power supply unit as well. That is why the upfront cost of developing SafetyMed
is high. However, the Raspberry Pi is a multipurpose headless computer, but the cost can
be reduced if an embedded system is designed for SafetyMed only; however, this can be
considered as a future scope of the paper.

6.3. Adversarial Machine Learning (AML) Attack

The proposed intrusion detection system has been trained with the public dataset.
That means it is possible to discover the features through reverse engineering. It makes
the system vulnerable to Adversarial Machine Learning (AML) attacks [63]. Although the
intruder would not have direct access to add irrelevant data to the training dataset, there
are still risks of embedding malicious code which does not fall within the learned features’
characteristics of the trained models. This vulnerability will be studied in the subsequent
versions of SafetyMed.

6.4. Testbed Experiment

The experimental environment replicates the real-world environment. Although the
network simulator generates traffic as if it is an original network, the insertion of intrusion
is conducted randomly. It has been taken for granted that there will be an intrusion. This
assumption deviates the experimental setup from 100% resemblance to the real-world
environment. This weakness can be overcome with permission to install the proposed IDS
in a functioning IoMT network.

6.5. Cyber-Physical System Security

The proposed intrusion detection system focuses on cybersecurity only. Cyber-physical
system security is also essential to maintain the integrity of the IoMT network [64]. Anyone
with access to the edge server of the SafetyMed can temper the trained model, retrain the
models with the adversarial dataset, or bypass the connection with the edge server and
expose the IoMT devices to direct network traffic. Implementing a cyber-physical security
module can overcome this limitation, which we plan to implement in the future.

7. Conclusions

The healthcare sector is on the verge of a paradigm shift, and the availability and
popularity of the Internet of Medical Things (IoMT) have accelerated this transition from
a traditional to a personalized one. However, the security concerns of these devices have
become a major barrier to the massive adoption of this technology. The resource-constrained
architecture of the IoMTs is insufficient to employ sophisticated security algorithms to
defend against ever-changing malicious signal patterns intended to intrude on healthcare
services. SafetyMed, presented in this paper, ensures maximum protection of the IoMT by
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defending against twelve types of attacks. Augmenting this technology with the existing
IoMT-enabled services is a potential solution to this sector’s security concern. The novelty
of SafetyMed lies in the innovative architecture, detection rate optimization, false positive
rate reduction, and effective classification algorithm development. These novelties fill up
the gaps discovered in existing solutions. It detects an intrusion with an average accuracy
of 97.63%. The average False Positive Rate (FPR) of SafetyMed is only 0.71%, representing
its reliability. The precision of the SafetyMed is 98.47%, which indicates that 98.47% of the
positively identified intrusions are correct. A similar performance is observed for the recall
and F1-score, which are 97% and 97.73%, respectively.

Despite the outstanding performance and remarkable potential, SafetyMed is not im-
mune to limitations, including architectural complexities and production costs. Moreover,
it has only been applied in an experimental setup, which may not reflect the real-world sce-
narios in many cases just yet. Furthermore, SafetyMed has no defence mechanism against
the AML attack, which is a major limitation of this system. The cyber-physical system
security is another weakness of it. However, these limitations pave the path to conducting
further experiments, facilitating more research scopes for advancing this technology.
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