
Citation: Nobel, S.M.N.; Sultana, S.;

Singha, S.P.; Chaki, S.; Mahi, M.J.N.;

Jan, T.; Barros, A.; Whaiduzzaman, M.

Unmasking Banking Fraud:

Unleashing the Power of Machine

Learning and Explainable AI (XAI) on

Imbalanced Data. Information 2024, 15,

298. https://doi.org/10.3390/

info15060298

Academic Editors: Christos

Michalakelis, Mara Nikolaidou and

Evangelia Filiopoulou

Received: 1 May 2024

Accepted: 9 May 2024

Published: 23 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Unmasking Banking Fraud: Unleashing the Power of Machine
Learning and Explainable AI (XAI) on Imbalanced Data
S. M. Nuruzzaman Nobel 1 , Shirin Sultana 1, Sondip Poul Singha 1 , Sudipto Chaki 1 ,
Md. Julkar Nayeen Mahi 2 , Tony Jan 3 , Alistair Barros 4 and Md Whaiduzzaman 3,4,*

1 Department of Computer Science and Engineering, Bangladesh University of Business and Technology,
Dhaka 1216, Bangladesh; smnuruzzaman712@gmail.com (S.M.N.N.); shirinsultana596@gmail.com (S.S.);
sondippsingh@gmail.com (S.P.S.); sudiptochakibd@gmail.com (S.C.)

2 Department of Software Engineering, Daffodil International University, Dhaka 1207, Bangladesh;
mahi.1992@gmail.com

3 Design and Creative Technologies, Torrens University, Brisbane, QLD 4006, Australia; tony.jan@torrens.edu.au
4 School of Information Systems, Queensland University of Technology, Brisbane, QLD 4000, Australia;

alistair.barros@qut.edu.au
* Correspondence: wzaman@juniv.edu

Abstract: Recognizing fraudulent activity in the banking system is essential due to the significant risks
involved. When fraudulent transactions are vastly outnumbered by non-fraudulent ones, dealing
with imbalanced datasets can be difficult. This study aims to determine the best model for detecting
fraud by comparing four commonly used machine learning algorithms: Support Vector Machine
(SVM), XGBoost, Decision Tree, and Logistic Regression. Additionally, we utilized the Synthetic
Minority Over-sampling Technique (SMOTE) to address the issue of class imbalance. The XGBoost
Classifier proved to be the most successful model for fraud detection, with an accuracy of 99.88%. We
utilized SHAP and LIME analyses to provide greater clarity into the decision-making process of the
XGBoost model and improve overall comprehension. This research shows that the XGBoost Classifier
is highly effective in detecting banking fraud on imbalanced datasets, with an impressive accuracy
score. The interpretability of the XGBoost Classifier model was further enhanced by applying SHAP
and LIME analysis, which shed light on the significant features that contribute to fraud detection.
The insights and findings presented here are valuable contributions to the ongoing efforts aimed at
developing effective fraud detection systems for the banking industry.

Keywords: fraud detection; machine learning; logistic regression; decision tree; SVM; XGBoost;
oversampling SMOTE; SHAP analysis; LIME analysis

1. Introduction

Banking systems in the current era are extremely important to global economies
because they enable financial transactions and supply key services to consumers and
businesses alike. However, fraudulent behaviors can result in significant financial losses
and destroy public trust in such institutions. Currently, criminals find various ingenious
ways to commit fraud [1]. The methods used by fraudsters are constantly evolving with
technological advancements, making it difficult for conventional fraud detection systems to
keep up. Fraudsters increase the intricacy and sophistication of their schemes by constantly
updating their methods to take advantage of new vulnerabilities. Traditional rule-based
fraud detection techniques attempt to discover unusual fraud patterns when working
with imbalanced datasets. This study was driven by the banking industry’s desire for
more advanced fraud detection technology. Financial institutions lose revenues due to
conventional fraud detection systems’ inability to keep up with fraudsters’ dynamic nature.
We can overcome conventional fraud detection constraints by combining machine learning
(ML) and explainable artificial intelligence (XAI).

Information 2024, 15, 298. https://doi.org/10.3390/info15060298 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15060298
https://doi.org/10.3390/info15060298
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0009-0006-0858-0232
https://orcid.org/0009-0009-8966-4578
https://orcid.org/0000-0002-7286-6722
https://orcid.org/0000-0002-1763-2544
https://orcid.org/0000-0002-3114-8978
https://orcid.org/0000-0003-2822-0657
https://doi.org/10.3390/info15060298
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15060298?type=check_update&version=1

Information 2024, 15, 298 2 of 22

Some most commonly used methods for reducing bank fraud are artificial intelli-
gence [2], machine learning [3], LSTM [4], XGBoost [5], and so on. This study explores how
machine learning can analyze financial transactions. When compared to more conventional
rule-based systems, ML models provide a significant improvement in both accuracy and
efficiency. In addition, XAI methods improve openness by detailing the reasoning behind
ML models’ choices and allowing human analysts to verify and analyze the outcomes.
The success of machine learning models is highly dependent on their training accuracy and
diversity. Skewed results and inefficient fraud detection could result from using inaccurate or
missing data. Also, it may be difficult for non-technical stakeholders to completely grasp and
accept the generated predictions from traditional ML models due to their inherent complexity.

Using machine learning and explainable AI (XAI) on imbalanced data, we try to
overcome the shortcomings of current fraud detection systems. This study introduces a
novel approach to enhance the precision of fraud detection models while also ensuring
that the models’ decision-making processes are transparent and interpretable. Developing
robust fraud detection systems driven by machine learning algorithms is crucial, as they
adapt to evolving fraud patterns, minimize false negatives, and detect fraudulent behaviors
that elude rule-based systems. Machine learning classifiers have evolved into crucial tools
for detecting fraudulent transactions, account takeovers, identity theft, and other types
of financial crime used to detect fraudulent activity in banking. We have used SHAP and
LIME [6] analyses to provide a clear explanation of how the input properties affect the
predictions of the model. The main problem with synthetic financial datasets is that they are
imbalanced. To handle an imbalanced dataset, we use some data preprocessing techniques,
such as oversampling SMOTE [7], MinMaxScaler [8], and LabelEncoder [9],which can boost
the efficiency of the machine learning methods.

By using XAI methods, we understand the logic behind how machine learning models
arrive at their conclusions. This openness allows investigators and stakeholders to spot any
weaknesses, biases, or vulnerabilities in the system, allowing for the constant fine-tuning
and development of the fraud detection process. Our findings demonstrate the effectiveness
and interpretability of our suggested methods for identifying and explaining fraudulent
transactions in asymmetric datasets. Our goal is to provide a comprehensive framework
for developing accurate and trustworthy financial fraud detection systems by integrating
the strengths of machine learning, XAI, and imbalanced data handling approaches.

Below are listed the contributions of this study:

• Proposal of an efficient algorithm: Using cutting-edge machine learning techniques,
this study proposes a reliable and efficient approach for dealing with class imbalance
in the banking fraud detection domain.

• Dataset balancing: To mitigate the class imbalance issue, the SMOTE algorithm was
used to balance the dataset.

• Evaluation of Machine Learning Algorithms: To determine fraudulent transaction
methods, four machine learning techniques, including Logistic Regression, XGBoost
Classifier, Decision Tree, and SVM, were analyzed.

• Model explanability: In order to interpret and explain the model‘s predictions, SHAP
and LIME analysis techniques were employed.

This study aims to close the gap between machine learning’s benefits and drawbacks in
fraud detection by incorporating XAI approaches. With the proposed method, the problems
caused by unbalanced data in banking fraud detection can be successfully resolved. The
purpose of merging machine learning and XAI is to increase the precision and efficacy of
fraud detection models on imbalanced data. This strategy enables financial organizations
to more successfully uncover banking fraud by enabling them to make decisions based
on predictions produced by the ML-XAI-based model. In addition, by utilizing XAI
approaches, we solve the issues related to the black box nature of ML models by providing
transparency and interpretability. This raises stakeholder confidence in the system and
equips them with the information they need to make decisions based on fraud signs.

Information 2024, 15, 298 3 of 22

The remainder of this paper is organized as follows: Section 2 discusses earlier research
to detect fraudulent activity in banking sector. Section 3 provides our state-of-the-art (SOTA)
methodologies equipped with ML-XAI techniques. In Section 4, the performance assess-
ment is presented to validate our proposed work. Section 5 highlights the interpretability
of our suggested methods with the help of XAI-based algorithms. Finally, Section 6 brings
the paper to a conclusion with possible extensions in the future research directions.

2. Literature Review

A multitude of scholars have endeavored to tackle the pervasive issue of banking
fraud detection through the application of both ML- and non-ML-based methodologies.
Varmedja et al. [10] devised an ML-based method for identifying fraudulent transactions
on credit cards. SMOTE was used for data balancing. The RF algorithm has been shown to
be superior in performance, with a detection rate of 99.96%. The NB method had a 99.23%
success rate, while the MLP method had a 99.93% success rate. However, two days of data
on credit card transactions from European consumers may provide some insight. Due to its
short-term nature and limited geographic emphasis, it reduces the model’s efficiency in
detecting fraudulent activity in general. Pech [11] uses machine learning to detect fraud in
mobile money transfers by treating it as a binary classification task. Oza et al. [12] used sev-
eral ML techniques on a labeled dataset of payment transactions. The study [13] provides
an overview of the most recent changes in the financial crime scene and highlights the
implementation challenges faced by existing and new graph solutions. Some research [14]
used only classifier optimization based on an SVM, whereas others [15,16] used Logistic
Regression, SVM, Random Forest, and ANN. From those papers [11,12,16], Logistic Regres-
sion showed better results than the other methods. In [17,18], a simulator named PaySim
was used to evaluate several methods to prevent fraud based on thresholds [19] on a mobile
money service. The authors of [20] employed a decentralized data mining methodology to
tackle the issues of imbalanced credit card distributions. In [21], we see a fraud detection
algorithm that employs a proactive approach to detect fraud without using any fraudulent
past cases. A hybrid model that combines supervised and unsupervised techniques to
detect fraud was proposed in a study [22], but the results were inconclusive. The authors
of [23] suggest an ensemble approach for detecting financial fraud using machine learning
algorithms. The study presented a thorough method for identifying financial fraud using
machine learning algorithms [24]. However, there is no explanation of the feature selection
procedure. An analysis was performed by Khatri et al. [25] to evaluate the efficiency of
detecting credit card fraud utilizing various methods, such as DT, KNN, LR, RF, and NB.
The experimental findings showed accuracies of 85.11%, 91.11%, 87.5%, 89.77%, and 6.52%,
respectively, on a highly imbalanced dataset. In evaluating the ECCFD dataset, Hema [26]
utilized RF, LR, and CatBoost but overlooked the issue of imbalanced classes. Despite this,
Hema found that RF produced outstanding results with an accuracy of 99.95%. Meanwhile,
Kumar et al. [27] achieved 90% accuracy using RF. Awoyemi et al. [1] explored several
ML approaches; additionally, a hybrid sample approach was used to deal with the im-
balanced data. Accuracy levels of 97.92%, 54.86%, and 97.69% were achieved by the NB,
LR, and KNN, respectively. The choice to omit a feature selection technique was made
by the authors. A sophisticated payment card fraud detection system was developed by
Manjeevan et al. [28] using the GA for feature selection and aggregation. The GA-ANN
achieved 81.82% accuracy, the GA-DT achieved 81.97% accuracy, and the GA-RF achieved
just 77.95% accuracy. Puh et al. [29] address the issue of imbalanced class distribution in
the dataset by applying SMOTE and evaluating the performance of various algorithms,
including RF, SVM, and LR. Results showed an AUC of 91.14% for static learning and
91.07% for incremental learning, with corresponding average precision values of 73.37%
and 84.13%, respectively.

Table 1 provides a comprehensive overview of various research studies focused on the
identification of fraudulent transactions in the banking sector.

Information 2024, 15, 298 4 of 22

Table 1. This table compares the performance and limitations of existing approaches.

Methods Contribution Limitation

RF, NB, MLP [10] Assessed the three ML algorithms’ credit card fraudulent trans-
actions detection

The short-term nature of the dataset may reduce the
generalization ability.

Hybrid Model [22] A novel hybrid framework that seamlessly integrates super-
vised and unsupervised methodologies to enhance the accu-
racy of fraud detection.

Logistic Regression and
XGBoost [23]

An ensemble machine learning framework for detecting
fraudulent credit card transactions leveraging an imbalanced
dataset.

Lacks an explanation of the feature selection process.

KNN,DT, LR, RF, and
NB [25]

Used a severely imbalanced dataset to evaluate ML algorithms
for detecting fraudulent transactions with credit cards.

Poor classification performence.

RF, LR, and Category
Boosting (CatBoost) [26]

The performance of RF, LR, and Category Boosting (CatBoost)
is evaluated to obtain the most efficient model for evaluating
the ECCFD dataset.

Did not tackle the class imbalance issue.

NB, LR, and KNN [1] The imbalanced dataset was addressed through hybrid sam-
pling.

Poor classification performance of LR. Also, did not
implement the feature selection method.

GA-RF, GA-ANN, GBT,
and GA-DT [28]

Applied Genetic Algorithms (GA) for feature selection and
aggregation, along with multiple machine learning methods,
to evaluate the approach’s effectiveness.

Consumer transactional aspects must be assessed us-
ing data from several regions, although this study con-
centrates only on Malaysian financial transactions.

3. Research Methodology of Our Framework

The core objective of our work revolves around effectively distinguishing between
non-fraudulent and fraudulent financial transactions, leveraging advanced techniques in
the field of financial transaction analysis. The diagram depicted in Figure 1 provides an
extensive overview of our research process, including the phases of data collection, data
preprocessing, data analysis, algorithm implementation, results, and discussion.

Dataset
Data Preprocessing

Train Data

Data splitting

Test Data

Classifier Selection

Training using :
Decision tree
Logistic regression
XGBoost classification
Support vector machine

Model Evaluation

Select Best Classifier

Improve selected
classifier

Fine tuned model
evaluation

Fine tuned model
training

K-Fold cross validation

Fraud detection

Explainable AI

Lime
Shap

Figure 1. Our proposed framework for banking fraud detection on imbalanced dataset.

Information 2024, 15, 298 5 of 22

3.1. Dataset Explanation

Public financial data needs to have adequate availability, especially in financial trans-
actions. To tackle this issue, we collected a synthetic dataset from Kaggle [30], created
with the help of the simulator PaySim. PaySim compiles information from the confidential
dataset to create a fake one and then injects fraudulent activity to test how well fraud
detection systems perform. Initial logs came from the international company offering the
mobile banking service, now available in over 14 countries.

The dataset shows a class imbalance with 6 million transactions, with only 8213 (0.14%)
being fraudulent, as shown in Figure 2.

Figure 2. Transaction types.

3.2. Data Preprocessing

Figure 3 illustrates a box plot characterizing the variable “step” distribution across the
fraud classifications, with 0 denoting the non-fraudulent class and 1 indicating fraudulent
transactions.

Figure 3. Step vs. fraud classification.

Information 2024, 15, 298 6 of 22

The width of the box represents the range of the “step” variable for all cases that are
not fraudulent, as well as the interquartile range. With a shorter range, the values of “step”
for non-fraudulent cases are more likely to cluster together.

As the box of 1 is larger than the box of 0, the values of “step” in fraudulent cases
are more widely distributed and have a greater range than in non-fraudulent cases. We
can infer that the variable “step” tends to have a narrower range and less variability
for non-fraudulent instances by comparing the sizes of the two boxes in the box plot.
Fraudulent instances demonstrate a more excellent range and variability in the “step”
variable. The difference in box sizes implies that the variable “step” may have a distinct
distribution or behavior for fraudulent and non-fraudulent cases.

Several preprocessing steps were taken to prepare the data for analysis and modeling.
One approach to addressing data imbalance is the sampling technique, which creates false
representative samples of minority classes.

Table 2 exhibits the data quantities before and after the implementation of resampling
techniques. When undersampling is used, around 75% of the original data is discarded.
This poses a significant risk of distorting results, limiting insights, compromising the
reliability of any analysis or decision-making process, and resulting in a notable bias within
the dataset. The discarded data may include various perspectives or outliers that could
impact the overall analysis. On the other hand, utilizing SMOTE includes approximately
50% more data, which effectively balances the dataset (Figure 4). Adding approximately
50% more data can effectively address issues such as class imbalance and enhance the
overall performance of machine learning models. By using a more extensive and diverse
dataset, models can learn a broader range of patterns, enabling them to make more accurate
predictions when faced with new data. As a result, the models become more reliable and
robust in their performance. Augmenting the dataset offers a broader range of examples
for the model to learn from. This helps to decrease the chances of overfitting and enhances
the model’s efficiency. That is why, for this task, the technique employed was SMOTE, to
address the imbalanced data issue.

Table 2. The number of instances before and after sampling

Data Splitting Original SMOTE RandomUnderSampler

Training dataset 5090096 10167051 13140
Test dataset 1272524 2541763 3286

In addition, the categorical variables in the dataset needed to be encoded as numerical
values. Categorical features were encoded as integers using the LabelEncoder method for
use with a wide range of algorithms. Another preprocessing tool, MinMaxScaler, scales
numerical properties to a specified range, often between 0 and 1. This guarantees that all
features are roughly the same size and keeps the smaller ones from being overshadowed
by their larger counterparts. These data preprocessing methods ensure that numerical and
categorical features are handled correctly and translated into an analysis-ready format.

Figure 4. SMOTE analysis based on percentile to detect balance and imbalanced data.

Information 2024, 15, 298 7 of 22

3.2.1. SMOTE-Based Data Balancing

To increase the diversity of the dataset, we apply SMOTE (Synthetic Minority Over-
sampling Technique), which interpolates existing samples, creating artificial samples for
minority groups that are similar but not identical in the fraud class. This balancing tech-
nique is widely recognized to enhance the performance of machine learning algorithms,
leading to improved results.

In Algorithm 1, the process of SMOTE is described. The initial two lines depict
the input, output, and variable initialization. The operational process of SMOTE for data
balancing is demonstrated in lines 1 through 9. The SMOTE technique utilizes the K-nearest
neighbor pattern to create artificial data. It selects minority class data points at random and
then identifies the K-nearest neighbors within the dataset. It generates synthetic data by
selecting the K-nearest neighbors from the randomly chosen data.

Algorithm 1: SMOTE algorithm
Input: M: samples from the minority class; N: number of synthesized samples; K:

number of nearest neighbors to consider; n: number of synthesized
samples to generate per minority class sample.

Output: S: synthetic minority class samples.
1 Initialize S as an empty list;
2 Calculate the n: n = N / length (M);
3 for miϵM do
4 Find the K-nearest neighbors of mi using a distance metric such as Euclidean

distance.
5 while j ̸= n do
6 Choose a random neighbor mn from the K-nearest neighbors;
7 Produce an artificial sample ms through linear interpolation between mi

and mn;
8 ms = mi + α × (mn − mi).

9 Append ms to S.

Here, N = number of minority class samples and k = the number of nearest neighbors;
then, the time complexity is approximately O(N × k).

3.2.2. LabelEncoder

The LabelEncoder is a highly effective method utilized in data preprocessing to trans-
form categorical variables into a numerical format. This is achieved by assigning a distinct
numerical label to each category present in the input. The LabelEncoder facilitates seamless
conversion between the initial categorical data and its numerical representation. The utiliza-
tion of a particular methodology is prevalent when handling attributes such as class labels
or target variables in the context of classification predicaments. Within our dataset, we
have three categorical features that have been converted to numeric data through the use of
LabelEncoder. The encoding process is facilitated by utilizing the scikit-learn library [31],
a python package that offers the LabelEncoder class.

3.2.3. MinMaxScaler

The MinMaxScaler technique is a widely used approach for feature scaling. Its primary
function is standardizing and normalizing numerical attributes within a given dataset.
Scaling numerical features of a dataset to a predetermined range, usually within the confines
of 0 and 1, is known as re-scaling. This technique is highly advantageous in scenarios
where the data exhibit disparate scales and ranges. Scaled data can effectively mitigate the
issue of certain features overpowering others in the machine learning algorithm, especially

Information 2024, 15, 298 8 of 22

in cases with a significant disparity in the feature ranges. The formula for MinMaxScaler is
as follows:

xscaledi =
(xi − xmin)

(xmax − xmin)
(1)

where
xscaledi = the scaled value of a feature;
xi = the feature’s initial value is denoted by this symbol;
xmin = dataset’s minimum feature value;
xmax = dataset’s maximum feature value.

Our dataset comprises eight distinct numerical features, each exhibiting significant
variation in their original values. The MinMaxScaler is employed to effectuate a transfor-
mation of these features into a range from 0 to 1. The scikit-learn library [32] is also utilized
for the purpose of scaling.

3.3. Correlation Analysis

Correlation analysis is a statistical method that aims to understand the relationship
between two or more variables [33]. The computational algorithm performs an analysis
that yields a correlation coefficient bounded by −1 and +1. The underlying implication is
that a positive coefficient signifies a positive correlation between the variables, a negative
coefficient implies a negative correlation, and a coefficient of zero signifies the absence of
correlation between the variables. Noting that a correlation exists between two variables
does not prove that an alteration in one variable results in a modification in the other.
Correlation analysis can be utilized to identify the fundamental properties of the dataset.
Figure 5 shows the dataset correlation analysis findings.

Figure 5. Correlation analysis.

The heatmap serves as a visual depiction of the correlation matrix, wherein each cell
symbolizes the correlation existing between two distinct variables. The correlation values
are visually represented through a color-coded scheme, encompassing a range from −1 to
1. This scheme employs distinct colors such as black to denote negative correlation, white
to signify positive correlation, and red to indicate the absence of any correlation.

Information 2024, 15, 298 9 of 22

3.4. Baseline Architectures
Logistic Regression

Logistic regression predicts binary outcomes (e.g., yes/no, 1/0, true/false) based on
multiple features [34]. The posterior probability distribution P(Y|X) represents the target
variable and characteristics. Given X, they return a probability distribution over Y. Logistic
regression uses a logistic or sigmoid function to imitate binary outcomes. Continuous
inputs were converted using a logistic function into probability values between 0 and 1.
The logistic function determines the parameters best suited to the nonlinear function, like
the sigmoid activation function [1]. The equation for the Logistic Regression is typically
expressed as follows:

y =
1

1 + e−(z)
(2)

z = β0 + β1x1 + ... + βnxn (3)

where
y = predicted value;
x = input value;
β0 = bias term;
βn = the coefficient of the input variable xn.

The sigmoid function transforms the linear combination of β0 and βnx into a probabil-
ity value between zero and one. The coefficients are estimated using maximum likelihood
estimation or other optimization techniques. A threshold can then be applied to classify
the observations into their respective binary classes, typically using 0.5 as the cutoff.

The Logistic Regression’s interpretability helps banks and financial organizations
identify fraud-detection factors (See Figure 6). This model can handle big datasets and is
computationally efficient, which is significant in banking due to the enormous number
of transactions. The Logistic Regression’s ability to handle binary outcomes, combine
numerous characteristics, produce interpretable results, generate probabilistic forecasts,
and handle large datasets makes it an efficient banking fraud detection method.

Figure 6. Logistic regression model architecture [35].

3.5. XGBoost

The XGBoost (Extreme Gradient Boosting) algorithm is a variation of the gradient
boosting framework, where multiple weak prediction models are trained and combined
to form a robust prediction model [36], which was developed by Chen et al. in 2016 [37].
Each model aims to lower the residual error and reduce the preceding model’s error. Thus,
each subsequent sequential model receives an updated residual error value for boosting.
A visual representation of the XGBoost architecture is depicted in Figure 7.

Information 2024, 15, 298 10 of 22

Figure 7. An overview of the XGBoost architecture [38].

Algorithm 2 demonstrates how XGboost operates on the provided dataset. The first
two lines of this algorithm indicate the inputs and variable initialization. The dataset is
split into testing, training, and validation datasets in lines 2 to 9. Lines 10 to 17 demonstrate
the deployment of the model.

Algorithm 2: Detecting fraud with XGboost
Input: D: balanced dataset

1 Initialize parameters (e.g., learning rate = 0.001, maximum depth (max_depth) = 7,
n = number of estimators (nestimators) = 341, subsample = 0.9, γ = 0.5);

2 Divide the dataset into a testing set and a training set;
3 Xtrain : input variables of training dataset;
4 Xtest : input variables of testing dataset;
5 Ytrain : target variables of training dataset;
6 Ytest : target variables of testing dataset;
7 Split the training set split into training and validation sets;
8 Xval : input variables of validation dataset;
9 Yval : target variables of validation dataset;

10 Model = XGBClassifier (nestimators);
11 Model = Model.fit(Xtrain,Ytrain);
12 Ypred = Model.pred(Xtest);
13 if Ypred == 0 then
14 transactions = legitmate;
15 else
16 transactions = malicious.

Here, N = total number of samples, t = total number of trees, d = total height of
the trees, and x = total number of non-missing entries in the training set; then, the time
complexity is roughly O(t × d × x × (log n)). O(t × d) is the time required to predict a
fresh sample.

XGBoost is well-suited for banking fraud detection, as it effectively handles imbal-
anced datasets by penalizing misclassification errors more heavily for the minority class,
allowing it to accurately predict fraudulent cases. Additionally, its parallelization capabili-
ties and optimized tree-building process facilitate fast and efficient model training, making
it feasible to process large volumes of banking transaction data. XGBoost’s ability to handle
missing values and outliers further enhances its accuracy in detecting fraudulent activities.

Information 2024, 15, 298 11 of 22

3.6. Decision Tree

For both classification and regression issues, decision trees (DTs) are a go-to standard
supervised machine learning model [39]. It is a model like a tree, with nodes and branches
for selecting the predictor variable that will lead to the most consistent possible subsets of
data concerning the target variable [40,41]. DTs are well-known for their ability to classify
data with minimal effort and high dependability. Producing a DT requires a calculation
of entropy and information gain (IG) [42]. In this work, the C4.5 algorithm developed by
Quinlan [43] was utilized as a classifier. The algorithm recursively operates until a stopping
requirement is met. To calculate the entropy of decision tree T, use the equation below:

H(T) = −
|Y|

∑
i=1

pi log2 pi (4)

In this equation:
|Y| indicates the quantity of classes present in the dataset;
pi indicates the proportion of data points belonging to a specific (i) class.
The information gain of decision tree T for attribute a can be calculated using the

following equation:

IG(T, a) = H(T)− ∑
v∈V

|Tv|
|T| H(Tv) (5)

In this equation:
IG(T, a) represents the information gain of decision tree T;
and |Tv| and |T| indicate the number of instances in Tv and T, respectively.

3.7. SVM

Vapnik et al. are credited with the original implementation of Support Vector Machines
(SVM) [44]. The core idea behind SVM is that data may be optimally classified by plotting
the set on a hyperplane. The SVM method finds the hyperplane that separates the two
groups the most, also called the maximum-margin hyperplane. A set of support vectors,
or margin points, determines where exactly the hyperplane will lie [45].

By mapping the input data to a higher-dimensional space, kernel functions allow for
more accurate linear separation. A visual representation of the structure of SVM is shown
in Figure 8.

Figure 8. An overview of the SVM architecture [46].

The binary linear SVM classification algorithm is designed to determine the optimal
hyperplane decision boundary by leveraging a training dataset. Depending on whether or

Information 2024, 15, 298 12 of 22

not the flawless classification of the training dataset is possible and desirable, optimality
may be interpreted in the following ways:

• A hard margin optimality may be employed if the classes in the training dataset can
be perfectly separated. Here, the decision boundary of the hyperplane is set such that
it is maximally far away from the closest data point in the training set.

• A soft marginal optimality is implemented if completely accurate classification is
not desired. Here, the choice of hyperplane is an adjustable compromise between
increasing the distance to the next correctly identified training point and decreasing
the misclassification rate.

The decision boundary is solely determined by the Support Vectors, which comprise
a subset of the input vectors used during training. The input vector’s allocated class is
determined by the side of the decision boundary on which it lies. Classification using
a linear Support Vector Machine is shown graphically in Figure 9 for both linearly and
non-linearly separable classes.

Figure 9. Support Vector Machine (SVM) classifier representations for (a) a pattern that can be linearly
separated, where a hyperplane completely divides the space into green circles and red squares,
and (b) a pattern that cannot be linearly divided, where no hyperplane divides the space into green
circles and red squares [46].

4. Results and Discussion
4.1. Experimental Setup

Intending to obtain the best possible results from the training procedure, the experi-
mental setup encompasses several orchestrated steps. We utilized SMOTE to balance the
dataset to address the class imbalance issue. By creating synthetic samples by interpolating
between real ones, the SMOTE method improves the representation of the minority class.
After that, we made use of LabelEncoder to quantify categorical variables. By undergoing
this transformation, machine learning algorithms are able to process and comprehend
the categorical features, allowing for their incorporation into the fraud detection model.
To further standardize the numerical characteristics of the dataset, we used MinMaxScaler.
By bringing all feature values into the same range, this scaling method ensures that no one
feature’s larger values overshadow the training of the model.

The dataset was divided into three segments so that we could assess our model’s
efficacy. A proportion of 80% of the dataset was placed in the training set to ensure that the
model could learn as much as possible from the data. Model generalizability was checked
and fine-tuned using a validation set that included 10% of the training data. The accuracy
of the model was then evaluated in a controlled setting using 20% of the data adopted as a
testing set.

The specific hyperparameters for different classifiers are provided in Table 3. These
hyperparameters were selected via fine-tuning, which likely involved a combination of
manual exploration and automated techniques such as random search or grid search.
The process of fine-tuning machine learning models entails the systematic adjustment of
various hyperparameters in order to optimize their performance.

Information 2024, 15, 298 13 of 22

Specifying the random state as 42 in the Logistic Regression model ensures that
the randomization process employed within the algorithm will yield the same results
consistently across multiple iterations. XGBoost uses 341 estimators, with a max depth
of 7 and a subsample value of 0.9. The learning rate is 0.001, and a gamma value of
0.5 controls minimum loss reduction. To split an internal node in a decision tree, a minimum
of 69 samples is required. This algorithm uses entropy as a criterion to accurately measure
the purity of each split, providing valuable insights for decision-making. In addition,
the strategy employed to choose the optimal split at each node is determined by the splitter
value of 42. SVM uses a linear kernel to create a decision boundary between classes. A C
value of 1.0 balances margin maximization with classification error minimization.

Table 3. Model parameters.

Model Details of Parameters

Logistic Regression random state = 42.

XGBoost

n_estimators = 341
max_depth = 7,
subsample = 0.9,
learning rate = 0.001,
γ = 0.5.

Decision Tree
min samples split = 69
cirterion = entropy
splitter = 42

SVM kernel = linear,
C = 1.0

Figure 10 illustrates the significance of each feature in classifying fraudulent trans-
actions. The figure clearly shows that the feature labeled as “type” is significantly more
important than all the other features. The features named “newblanceOrig” and “amount”
also have significant importance. “Step” and “oldbalanceorg” contribute little impor-
tance to the decision-making process. The feature named “OldBalancedest” holds minor
significance, while the “nameDest ” feature does not contribute to the classification of
fraudulent transactions.

Figure 10. Ordering of features by importance to the model learned.

Information 2024, 15, 298 14 of 22

4.2. Evaluation Measures

Evaluation measures (performance metrics or scoring criteria) are required to assess
model quality, efficacy, and performance accurately. These parameters offer quantifiable,
objective standards for evaluating predictions against actual results. The F1-score, accuracy,
precision, and recall metrics assess a model’s effectiveness. Accuracy in classification is
the percentage of samples with the correct labels. The proportion of actually positive
elements to all positively marked items is referred to as precision. The proportion of correct
identifications relative to the sum of correct and incorrect identifications is known as recall.
The F1-score is a measure that takes into account both accuracy and recall. A higher score
reflects a better performance. The equations are as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1-Score = 2 × Precision × Recall
Precision + Recall

(9)

The true positive (TP) rate measures the total amount of correctly identified samples.
FP, or false positive, represents the total number of positively classified negative instances.
True negative, or TN , represents the total amount of negative instances that are adequately
classified by the model. The false negative (FN) metric indicates how many truly positive
examples were classified as negative by the model.

4.3. Result Analysis

Table 4 shows the results of the four machine learning models. Logistic Regression
had a precision of 0.92 and a recall of 0.86, with a well-balanced F1-score of 0.89. Its high
accuracy rate of 98.99% means it can correctly classify most data points.

Table 4. Comparisons of model efficiency.

Model Precision Recall F1-Score Accuracy

Logistic Regression 0.92 0.86 0.89 98.99%
XGBClassifier 0.96 0.88 0.92 99.88%
Decision Tree 0.87 0.85 0.86 98.96%
SVM 0.64 0.36 0.48 96.91%

The XGBoost model obtains 0.96 precision, 0.88 recall, and a 0.92 F1-score, which is
impressive. The model’s 99.88% success rate in classification is indicative of its superior
overall performance.

Decision Tree model has an F1-score of 0.86, a recall of 0.85, and a precision of 0.87.
This model has 98.96% accuracy, which is a little lower than the preceding models but
still decent.

SVM model, on the other hand, performs poorly compared to the others. The SVM
model has an F1-score of 0.48 due to its low precision (0.64) and recall (0.36). Although the
SVM model classifies the majority of instances correctly with an accuracy of 96.91%, its
performance lags significantly behind the other models.

In Table 4, the XGBoost model demonstrates superior performance compared to
the other three candidate models. The Logistic Regression and Decision Tree models
demonstrate commendable performance, albeit with slightly inferior metrics in comparison
to XGBoost. Conversely, the Support Vector Machine (SVM) model exhibits significantly
inferior performance, indicating poor classification performance.

Information 2024, 15, 298 15 of 22

Table 5 presents an overview of an analysis of the utilized machine learning model
evaluations using various sampling strategies. Looking at the performance of the Logistic
Regression model, it appears that by using the oversampling technique, SMOTE attained
a remarkable accuracy score of 98.99%. Without the sampling technique, it resulted in a
slightly lower accuracy of 96.89%, while the undersampling technique yielded the lowest
accuracy score of 81.71%.

The XGBoost Classifier performed well, with an accuracy score of 95.97%. The SMOTE
sampling technique resulted in the highest accuracy score of 99.88%. Interestingly, the un-
dersampling technique also achieved a high accuracy score of 97.41%, indicating that
reducing the majority of class instances did not impact the model’s performance.

The Decision Tree model achieved the highest accuracy score of 98.96% when using
SMOTE. The initial dataset resulted in an accuracy rate of 97.87%, whereas the under-
sampling technique produced a similarly good result with an accuracy score of 96.74%.
These results indicate that the performance of the Decision Tree model is relatively similar
across all three sampling techniques. The SVM model achieved 96.91% accuracy with
SMOTE sampling. The accuracy without sampling was 92.74%, and undersampling de-
creased it to 88.89%.

Table 5. Performance of different models with different sampling techniques.

Model SMOTE Normal Undersampling

Logistic Regression 98.99% 96.89% 81.71%
XGBClassifier 99.88% 95.97% 97.41%
Decision Tree 98.96% 97.87% 96.74%
SVM 96.91% 92.74% 88.89%

The Receiver Operating Characteristic (ROC) curve is a powerful visualization tool
used to assess the performance of binary classification models. The ROC curve displays
the trade-off between the True Positive Rate (TPR) and the False Positive Rate (FPR) for
various classification models in Figure 11. The closer a model’s ROC curve is to the top-left
corner of the plot, the better its performance in correctly classifying positive and negative
instances. The XGBoost model, with its curve-hugging the top-left corner, emerges as the
best-performing model among those presented in the image. The coloured curves depict
the performance of different classification models. The Logistic Regression model (blue
curve) with an Area Under the Curve (AUC) of 0.94 performs reasonably well. In contrast,
the Decision Tree model (orange curve) with an AUC of 0.84 performs less than the others.
The Random Forest model (green curve) with an AUC of 0.96 demonstrates the second-best
performance, closely followed by the XGBoost model (red curve) with an impressive AUC
of 1.00, indicating its superior ability to achieve a high True Positive Rate while maintaining
a low False Positive Rate.

The dashed line represents the random classifier or the baseline model, where the True
Positive Rate and False Positive Rate are equal across all threshold values. This line serves
as a reference point, and any model that falls below this line is considered to perform worse
than random guessing.

Based on the analysis, it is clear that the XGBoost model with the highest accuracy
has the most potent discriminative power out of the models evaluated, with an AUC of
1.00. The model with the second highest accuracy, the Decision tree model, has weaker
performance, with an AUC value of 0.84.

In Figure 12, the bar plot, along with the macro average and weighted average,
provides a thorough overview of the precision, recall, and F1-score metrics for each class
(non-fraudulent or fraudulent). The macro average provides an overall evaluation of
performance without taking into account class imbalances by representing an unweighted
average of precision, recall, and F1-score across all classes. In contrast, the utilization of a
weighted average as a performance measure accounts for class imbalances by assigning
weights to the average based on the frequency of instances within each class. Notably,

Information 2024, 15, 298 16 of 22

it is clear from the bar plot that the bar representing the weighted average is taller than
the bar indicating the macro average. This suggests that, in comparison to the macro
average, the weighted average, which takes into consideration the effect of class distribution,
produces a higher performance measure result. These two bars’ different heights highlight
the adverse effects of class imbalance on the overall performance assessment.

Figure 11. A comparison of the models’ ROC curves.

Figure 12. Performance of the XGBoost Classifier.

4.3.1. K-Fold Cross-Validation

One way to determine if a machine learning model is overfitting is by using K-fold
cross-validation. This technique evaluates the model’s performance on both the training
and validation datasets. If the model performs well on the training data but needs help
with unseen data, it is likely overfitted. K-fold cross-validation is a reliable way to detect
this issue.

K-fold cross-validation involves splitting a dataset into K folds, using one as the
validation set and the rest as the training sets. This is repeated K times to evaluate the

Information 2024, 15, 298 17 of 22

model’s performance and prevent overfitting. Consistent performance across all folds
indicates strong generalization.

Our research utilized a rigorous ten-fold cross-validation approach to meticulously
analyze the dataset. The dataset was meticulously divided into ten subsets called “folds”.
We trained the model using nine out of ten folds to ensure optimal training results [47],
while the remaining fold was reserved for validation. This meticulous process was rigor-
ously repeated ten times, with each iteration utilizing a different fold from the dataset for
validation. The training accuracy values consistently ranged between 99.979% and 99.982%,
conclusively demonstrating that the model consistently achieves an exceptionally high
level of accuracy when trained on the data.

Based on the data in Table 6, the training and validation accuracy exhibit minimal
differences across all K values. The observed data do not exhibit any notable variations or
significant differences in the accuracy values between the training and validation [48] sets
across different folds. The observed differences between them are relatively inconsequential,
indicating an absence of significant overfitting in the model. The model exhibits an excellent
ability to generalize to new instances [49], as shown by the consistently high validation
accuracy. The validation accuracy [50] slightly decreases compared to the corresponding
training accuracy values, which is typical of a well-generalized model.

Table 6. Performance of ten-fold cross-validation of our proposed model.

Value of K Train_acc (%) Valid_acc (%)

Fold = 1 99.991 99.973
Fold = 2 99.991 99.952
Fold = 3 99.991 99.984
Fold = 4 99.991 99.983
Fold = 5 99.991 99.982
Fold = 6 99.992 99.979
Fold = 7 99.991 99.980
Fold = 8 99.992 99.984
Fold = 9 99.991 99.980
Fold = 10 99.993 99.984

4.3.2. Comparison with Current State-of-the-Art Methods

Table 7 compares various methods and models based on their achieved banking fraud
detection accuracy.

Table 7. Comparison of proposed model’s performance against other models’ accuracy levels.

Reference Dataset Accuracy (%)

[10]
RF = 99.96,

Credit card fraud detection NB = 99.23
MLP = 99.93

[23] Transaction records: 18,060 Logistic Regression + XGBOOST = 98.523

[26]
Credit card transactions Logistic Regression = 99.88

conducted by European cardholders. Random Forest = 99.95
CatBoost = 99.93

NB = 97.92
[1] Credit card transactions KNN= 97.69

Total transaction records: 284,807 LR = 54.86

[28] Statlog (Australian Credit) Gradient Boosted Trees (GBT) = 96.7

Proposed Method Synthetic Financial Datasets 99.88

Information 2024, 15, 298 18 of 22

5. Explainability Analysis

Understanding the factors or features that impact a model’s predictions is crucial for its
interpretability and for identifying limitations or improvement areas. Examining patterns,
correlations, or anomalies associated with fraudulent activity can provide invaluable
insights to prevent future fraud. Therefore, explainability is of the utmost importance in
model analysis.

In this study, two well-known methods for explainability analysis—SHAP (Shapley
Additive Explanations) and LIME (Local Interpretable Model-Agnostic Explanations)—
are utilized. These methods aim to shed light on how the model makes its predictions,
but they employ distinct approaches. While SHAP offers a global perspective on the
model’s behavior and feature importance, LIME explains individual predictions, providing
a local perspective. By using both methods, transparency can be ensured, making it easier
to detect and prevent fraud.

5.1. Model’s Interpretability Using SHAP Analysis

The SHAP method utilizes cooperative game theory to evaluate the role of each
feature in a prediction by analyzing all possible feature combinations. By assessing all
possible coalitions of features, SHAP values determine the average impact of each feature
on all possible predictions. For fraud detection purposes, SHAP analysis is beneficial
in identifying which features affect the model’s determination of whether a transaction
is fraudulent. It pinpoints the significant indicators of fraudulent transactions based on
their influence on the model’s predictions. Mean SHAP may aid in determining which
characteristics have the greatest influence on fraud detection, allowing for more targeted
feature engineering and model development [51,52].

In Figure 13, we present global explanations of the XGBoost model. The selection
of the XGBoost model for SHAP analysis was based on its proven superiority in fraud
detection, as mentioned earlier. SHAP uses colors to find low and high feature values.
The red pixels represent strong feature values that are important in allocating a particular
class. The blue pixels represent low feature values.

Figure 13. XGBoost model’s global explanations.

In Figure 14, we present the bar plot of XGBoost. The first SHAP value is “newblance-
Orgi”, which obtained +0.14. The next is “oldblanceOrg”, which is +0.13. The lowest values
are “newblanceOrgi”, “step”, and “oldbalanceDest”, respectively.

The mean SHAP values are presented, which are computed based on their respective
influence on the output in accordance with established principles.

Information 2024, 15, 298 19 of 22

Figure 14. For a conventional bar plot, the mean absolute value of the SHAP values for each feature
is required.

5.2. Model’s Interpretability Using LIME

The XGBoost Classifier algorithm’s predictions for identifying fraud were interpreted
using LIME. The LIME model may provide an explanation for machine learning model
inferences [53] by performing a local approximation of the inference point. The algorithm
constructs a linear regression close to a chosen conclusion. Characteristics having a high
positive weight lend credence to the prediction choice in the linear regression approxi-
mation, whereas characteristics with a high negative weight argue against it. Its goal is
to make it easier for people in different locations to understand the reasoning behind a
decision to label a transaction as fraudulent or non-fraudulent. The feature significance
weights that result from LIME’s explanation generation allow it to do this.

Figure 15 shows the XGBoost model’s LIME explanation. It explains why a transaction
was detected as fraudulent and why it was not. The orange bars provide factors that
provide significance to the model’s prediction, while the blue bars show counterarguments.
According to the description, the quantity and frequency of transactions, as well as the
mismatch between the old and new balance’s intended recipients, are among the essential
factors in the prediction. Conversely, our explainable machine learning model (XGBoost
with LIME) identifies these factors as essential indicators of fraudulent activity in this
specific transaction analysis.

Figure 15. LIME for XGBoost Classifier of prediction on a specific transaction instance. Red indicates
features contributing to non-fraud prediction; green indicates contributing to fraud prediction.

Information 2024, 15, 298 20 of 22

6. Conclusions and Future Works

This research has laid a solid foundation for the detection of financial fraud through
meticulous preprocessing, robust algorithm selection, and insightful interpretability meth-
ods. The exceptional accuracy of the XGBoost Classifier underscores its efficacy in iden-
tifying fraudulent activities, even within imbalanced datasets. Our findings employing
SHAP and LIME for model interpretation add transparency to the decision-making process
and demonstrate promising results; however, there remains room for further exploration.
Exploring alternative sampling techniques and delving into the realm of deep learning
methods will contribute to refining fraud detection capabilities. The real-world validation
of these approaches on diverse financial datasets is crucial for ensuring their practical
applicability. By continuing to innovate and refine our methodologies, we can enhance
the resilience of financial systems against fraudulent behavior, ultimately fostering greater
trust and security within the industry.

Author Contributions: Conceptualization, S.M.N.N. and S.C.; Methodology, S.S. and S.C.; Software,
S.M.N.N., S.S. and S.P.S.; Validation, S.S. and M.J.N.M.; Formal analysis, S.M.N.N.; Investigation, T.J.,
A.B. and M.W.; Resources, S.C. and M.J.N.M.; Data curation, S.S., S.P.S. and S.C.; Writing—original
draft, S.M.N.N. and S.P.S.; Writing—review & editing, M.J.N.M. and M.W.; Visualization, S.P.S. and
M.W.; Supervision, S.C. and M.J.N.M.; Project administration, M.J.N.M.; Funding acquisition, T.J.,
A.B. and M.W. All authors have read and agreed to the published version of the manuscript.

Funding: The authors declare this project as self-funded.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The majority of the data presented in this research article are avail-
able within the manuscript. Any additional data, if required, can be obtained by contacting the
corresponding author upon request.

Conflicts of Interest: The authors declared no conflict of interest.

References
1. Awoyemi, J.O.; Adetunmbi, A.O.; Oluwadare, S.A. Credit card fraud detection using machine learning techniques: A comparative

analysis. In Proceedings of the 2017 International Conference on Computing Networking and Informatics (ICCNI), Lagos,
Nigeria, 29–31 October 2017; IEEE: New York, NY, USA, 2017; pp. 1–9.

2. Mytnyk, B.; Tkachyk, O.; Shakhovska, N.; Fedushko, S.; Syerov, Y. Application of Artificial Intelligence for Fraudulent Banking
Operations Recognition. Big Data Cogn. Comput. 2023, 7, 93. [CrossRef]

3. Yee, O.S.; Sagadevan, S.; Malim, N.H.A.H. Credit card fraud detection using machine learning as data mining technique. J.
Telecommun. Electron. Comput. Eng. (JTEC) 2018, 10, 23–27.

4. Raval, J.; Bhattacharya, P.; Jadav, N.K.; Tanwar, S.; Sharma, G.; Bokoro, P.N.; Elmorsy, M.; Tolba, A.; Raboaca, M.S. RaKShA: A
Trusted Explainable LSTM Model to Classify Fraud Patterns on Credit Card Transactions. Mathematics 2023, 11, 1901. [CrossRef]

5. Irénée, M.; Wang, Y.; Hei, X.; Song, X.; Turiho, J.C.; Nyesheja, E.M. XTS: A Hybrid Framework to Detect DNS-Over-HTTPS
Tunnels Based on XGBoost and Cooperative Game Theory. Mathematics 2023, 11, 2372. [CrossRef]

6. Hasib, K.M.; Tanzim, A.; Shin, J.; Faruk, K.O.; Al Mahmud, J.; Mridha, M. BMNet-5: A novel approach of neural network to
classify the genre of Bengali music based on audio features. IEEE Access 2022, 10, 108545–108563. [CrossRef]

7. Hasib, K.M.; Iqbal, M.; Shah, F.M.; Mahmud, J.A.; Popel, M.H.; Showrov, M.; Hossain, I.; Ahmed, S.; Rahman, O. A survey of
methods for managing the classification and solution of data imbalance problem. arXiv 2020, arXiv:2012.11870.

8. Maitra, S.; Hossain, T.; Hasib, K.M.; Shishir, F.S. Graph theory for dimensionality reduction: A case study to prognosticate
parkinson’s. In Proceedings of the 2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication
Conference (IEMCON), Vancouver, BC, Canada, 4–7 November 2020; IEEE: New York, NY, USA, 2020; pp. 134–140.

9. Jahan, S.; Islam, M.R.; Hasib, K.M.; Naseem, U.; Islam, M.S. Active Learning with an Adaptive Classifier for Inaccessible Big Data
Analysis. In Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July
2021; IEEE: New York, NY, USA, 2021; pp. 1–7.

10. Varmedja, D.; Karanovic, M.; Sladojevic, S.; Arsenovic, M.; Anderla, A. Credit card fraud detection-machine learning methods. In
Proceedings of the 2019 18th International Symposium INFOTEH-JAHORINA (INFOTEH), Novi Sad, Serbia, 20–22 March 2019;
IEEE: New York, NY, USA, 2019; pp. 1–5.

11. Pech, R. Fraud Detection in Mobile Money Transfer as Binary Classification Problem; Eagle Technilogies Inc Publ: Arlington, VA, USA,
2019; pp. 1–15.

http://doi.org/10.3390/bdcc7020093
http://dx.doi.org/10.3390/math11081901
http://dx.doi.org/10.3390/math11102372
http://dx.doi.org/10.1109/ACCESS.2022.3213818

Information 2024, 15, 298 21 of 22

12. Oza, A. Fraud detection using machine learning. Transfer 2018, 528812, 532909.
13. Kurshan, E.; Shen, H.; Yu, H. Financial crime & fraud detection using graph computing: Application considerations & outlook.

In Proceedings of the 2020 Second International Conference on Transdisciplinary AI (TransAI), Irvine, CA, USA, 21–23 September
2020; IEEE: New York, NY, USA, 2020; pp. 125–130.

14. Pambudi, B.N.; Hidayah, I.; Fauziati, S. Improving money laundering detection using optimized support vector machine.
In Proceedings of the 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI),
Yogyakarta, Indonesia, 5–6 December 2019; IEEE: New York, NY, USA, 2019; pp. 273–278.

15. Zhang, Y.; Trubey, P. Machine learning and sampling scheme: An empirical study of money laundering detection. Comput. Econ.
2019, 54, 1043–1063. [CrossRef]

16. Raiter, O. Applying supervised machine learning algorithms for fraud detection in anti-money laundering. J. Mod. Issues Bus.
Res. 2021, 1, 14–26.

17. Lopez-Rojas, E.A.; Barneaud, C. Advantages of the PaySim simulator for improving financial fraud controls. In Intelligent
Computing: Proceedings of the 2019 Computing Conference, Volume 2; Springer: Berlin/Heidelberg, Germany, 2019; pp. 727–736.

18. Besenbruch, J. Fraud Detection Using Machine Learning Techniques. Research Paper Business Analytics. 2018. Available online:
https://vu-business-analytics.github.io/internship-office/papers/paper-besenbruch.pdf (accessed on 30 April 2024).

19. Kuppa, A.; Le-Khac, N.A. Adversarial XAI methods in cybersecurity. IEEE Trans. Inf. Forensics Secur. 2021, 16, 4924–4938.
[CrossRef]

20. Ngai, E.W.; Hu, Y.; Wong, Y.H.; Chen, Y.; Sun, X. The application of data mining techniques in financial fraud detection: A
classification framework and an academic review of literature. Decis. Support Syst. 2011, 50, 559–569. [CrossRef]

21. Saia, R.; Carta, S. Evaluating Credit Card Transactions in the Frequency Domain for a Proactive Fraud Detection Approach; SECRYPT:
Berlin, Germany, 2017; pp. 335–342.

22. Carcillo, F.; Le Borgne, Y.A.; Caelen, O.; Kessaci, Y.; Oblé, F.; Bontempi, G. Combining unsupervised and supervised learning in
credit card fraud detection. Inf. Sci. 2021, 557, 317–331. [CrossRef]

23. Zhao, Z.; Bai, T. Financial Fraud Detection and Prediction in Listed Companies Using SMOTE and Machine Learning Algorithms.
Entropy 2022, 24, 1157. [CrossRef] [PubMed]

24. Nascita, A.; Montieri, A.; Aceto, G.; Ciuonzo, D.; Persico, V.; Pescapé, A. Improving performance, reliability, and feasibility in
multimodal multitask traffic classification with XAI. IEEE Trans. Netw. Serv. Manag. 2023, 20, 1267–1289. [CrossRef]

25. Khatri, S.; Arora, A.; Agrawal, A.P. Supervised machine learning algorithms for credit card fraud detection: A comparison. In
Proceedings of the 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida,
India, 29–31 January 2020; IEEE: New York, NY, USA, 2020; pp. 680–683.

26. Hema, A. Machine Learning methods for Discovering Credit Card Fraud. IRJCS Int. Res. J. Comput. Sci. 2020, III, 1–6.
27. Kumar, M.S.; Soundarya, V.; Kavitha, S.; Keerthika, E.; Aswini, E. Credit card fraud detection using random forest algorithm. In

Proceedings of the 2019 3rd International Conference on Computing and Communications Technologies (ICCCT), Chennai, India,
21–22 February 2019; IEEE: New York, NY, USA, 2019; pp. 149–153.

28. Seera, M.; Lim, C.P.; Kumar, A.; Dhamotharan, L.; Tan, K.H. An intelligent payment card fraud detection system. Ann. Oper. Res.
2021, 334, 445–467. [CrossRef]

29. Puh, M.; Brkić, L. Detecting credit card fraud using selected machine learning algorithms. In Proceedings of the 2019 42nd
International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija,
Croatia, 20–24 May 2019; IEEE: New York, NY, USA, 2019; pp. 1250–1255.

30. Lopez-Rojas, E.; Elmir, A.; Axelsson, S. PaySim: A financial mobile money simulator for fraud detection. In Proceedings of the
28th European Modeling and Simulation Symposium, EMSS, Larnaca, Cyprus, 26–28 September 2016; Dime University of Genoa:
Genoa, Italy; 2016; pp. 249–255.

31. sklearn.Preprocessing.LabelEncoder—scikit-learn.org. Available online: https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.LabelEncoder.html (accessed on 1 July 2023).

32. Sklearn.Preprocessing.MinMaxScaler—scikit-learn.org. Available online: https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.MinMaxScaler.html (accessed on 1 July 2023).

33. Islam, M.T.; Hasib, K.M.; Rahman, M.M.; Tusher, A.N.; Alam, M.S.; Islam, M.R. Convolutional Auto-Encoder and Independent
Component Analysis Based Automatic Place Recognition for Moving Robot in Invariant Season Condition. Hum. Centric Intell.
Syst. 2022, 3, 13–24. [CrossRef]

34. Hasnat, F.; Hasan, M.M.; Nasib, A.U.; Adnan, A.; Khanom, N.; Islam, S.M.; Mehedi, M.H.K.; Iqbal, S.; Rasel, A.A. Understanding
Sarcasm from Reddit texts using Supervised Algorithms. In Proceedings of the 2022 IEEE 10th Region 10 Humanitarian
Technology Conference (R10-HTC), Hyderabad, India, 6–18 September 2022; IEEE: New York, NY, USA, 2022; pp. 1–6.

35. Hossain, M.S.; Arefin, M.S. Development of an Intelligent Job Recommender System for Freelancers using Client’s Feedback
Classification and Association Rule Mining Techniques. J. Softw. 2019, 14, 312–339. [CrossRef]

36. Jullum, M.; Løland, A.; Huseby, R.B.; Ånonsen, G.; Lorentzen, J. Detecting money laundering transactions with machine learning.
J. Money Laund. Control 2020, 23, 173–186. [CrossRef]

37. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.

http://dx.doi.org/10.1007/s10614-018-9864-z
https://vu-business-analytics.github.io/internship-office/papers/paper-besenbruch.pdf
http://dx.doi.org/10.1109/TIFS.2021.3117075
http://dx.doi.org/10.1016/j.dss.2010.08.006
http://dx.doi.org/10.1016/j.ins.2019.05.042
http://dx.doi.org/10.3390/e24081157
http://www.ncbi.nlm.nih.gov/pubmed/36010821
http://dx.doi.org/10.1109/TNSM.2023.3246794
http://dx.doi.org/10.1007/s10479-021-04149-2
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
http://dx.doi.org/10.1007/s44230-022-00013-z
http://dx.doi.org/10.17706/jsw.14.7.312-339
http://dx.doi.org/10.1108/JMLC-07-2019-0055

Information 2024, 15, 298 22 of 22

38. Wang, Y.; Pan, Z.; Zheng, J.; Qian, L.; Li, M. A hybrid ensemble method for pulsar candidate classification. Astrophys. Space Sci.
2019, 364, 139. [CrossRef]

39. Cody, C.; Ford, V.; Siraj, A. Decision tree learning for fraud detection in consumer energy consumption. In Proceedings of the
2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 9–11 December 2015;
IEEE: New York, NY, USA, 2015; pp. 1175–1179.

40. Javed Mehedi Shamrat, F.; Ranjan, R.; Hasib, K.M.; Yadav, A.; Siddique, A.H. Performance evaluation among id3, c4. 5, and cart
decision tree algorithm. In Pervasive Computing and Social Networking: Proceedings of ICPCSN 2021; Springer: Berlin/Heidelberg,
Germany, 2022; pp. 127–142.

41. Nobel, S.N.; Sultana, S.; Tasir, M.A.M.; Rahman, M.S. Next Word Prediction in Bangla Using Hybrid Approach. In Proceed-
ings of the 2023 26th International Conference on Computer and Information Technology (ICCIT), Cox’s Bazar, Bangladesh,
13–15 December 2023; pp. 1–6.

42. Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
43. Salzberg, S.L. C4. 5: Programs for Machine Learning; Quinlan, J.R., Ed.; Morgan Kaufmann Publishers, Inc.: San Francisco, CA,

USA, 1993.
44. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
45. Salehi, A.; Ghazanfari, M.; Fathian, M. Data mining techniques for anti money laundering. Int. J. Appl. Eng. Res. 2017,

12, 10084–10094.
46. Ruiz-Gonzalez, R.; Gomez-Gil, J.; Gomez-Gil, F.J.; Martínez-Martínez, V. An SVM-based classifier for estimating the state of

various rotating components in agro-industrial machinery with a vibration signal acquired from a single point on the machine
chassis. Sensors 2014, 14, 20713–20735. [CrossRef] [PubMed]

47. Li, D.; Jiang, M.R.; Li, M.W.; Hong, W.C.; Xu, R.Z. A floating offshore platform motion forecasting approach based on EEMD
hybrid ConvLSTM and chaotic quantum ALO. Appl. Soft Comput. 2023, 144, 110487. [CrossRef]

48. Hossen, R.; Whaiduzzaman, M.; Uddin, M.N.; Islam, M.J.; Faruqui, N.; Barros, A.; Sookhak, M.; Mahi, M.J.N. Bdps: An efficient
spark-based big data processing scheme for cloud fog-iot orchestration. Information 2021, 12, 517. [CrossRef]

49. Whaiduzzaman, M.; Sakib, A.; Khan, N.J.; Chaki, S.; Shahrier, L.; Ghosh, S.; Rahman, M.S.; Mahi, M.J.N.; Barros, A.; Fidge, C.;
et al. Concept to Reality: An Integrated Approach to Testing Software User Interfaces. Appl. Sci. 2023, 13, 11997. [CrossRef]

50. Achar, S.; Faruqui, N.; Whaiduzzaman, M.; Awajan, A.; Alazab, M. Cyber-physical system security based on human activity
recognition through IoT cloud computing. Electronics 2023, 12, 1892. [CrossRef]

51. Ekanayake, I.; Meddage, D.; Rathnayake, U. A novel approach to explain the black-box nature of machine learning in compressive
strength predictions of concrete using Shapley additive explanations (SHAP). Case Stud. Constr. Mater. 2022, 16, e01059. [CrossRef]

52. Ahmed, S.; Nobel, S.N.; Ullah, O. An effective deep CNN model for multiclass brain tumor detection using MRI images and SHAP
explainability. In Proceedings of the 2023 International Conference on Electrical, Computer and Communication Engineering
(ECCE), Chittagong, Bangladesh, 23–25 February 2023; pp. 1–6.

53. Khedkar, S.; Subramanian, V.; Shinde, G.; Gandhi, P. Explainable AI in healthcare. In Proceedings of the 2nd International
Conference on Advances in Science & Technology (ICAST), Mumbai, India, 8–9 April 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10509-019-3602-4
http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.3390/s141120713
http://www.ncbi.nlm.nih.gov/pubmed/25372618
http://dx.doi.org/10.1016/j.asoc.2023.110487
http://dx.doi.org/10.3390/info12120517
http://dx.doi.org/10.3390/app132111997
http://dx.doi.org/10.3390/electronics12081892
http://dx.doi.org/10.1016/j.cscm.2022.e01059

	Introduction
	Literature Review
	Research Methodology of Our Framework
	Dataset Explanation
	Data Preprocessing
	SMOTE-Based Data Balancing
	LabelEncoder
	MinMaxScaler

	Correlation Analysis
	Baseline Architectures
	XGBoost
	Decision Tree
	SVM

	Results and Discussion
	Experimental Setup
	Evaluation Measures
	Result Analysis
	K-Fold Cross-Validation
	Comparison with Current State-of-the-Art Methods

	Explainability Analysis
	Model’s Interpretability Using SHAP Analysis
	Model’s Interpretability Using LIME

	Conclusions and Future Works
	References

