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Abstract

Among many types of cancers, to date, lung cancer remains one of the deadliest cancers

around the world. Many researchers, scientists, doctors, and people from other fields contin-

uously contribute to this subject regarding early prediction and diagnosis. One of the signifi-

cant problems in prediction is the black-box nature of machine learning models. Though the

detection rate is comparatively satisfactory, people have yet to learn how a model came to

that decision, causing trust issues among patients and healthcare workers. This work uses

multiple machine learning models on a numerical dataset of lung cancer-relevant parame-

ters and compares performance and accuracy. After comparison, each model has been

explained using different methods. The main contribution of this research is to give logical

explanations of why the model reached a particular decision to achieve trust. This research

has also been compared with a previous study that worked with a similar dataset and took

expert opinions regarding their proposed model. We also showed that our research

achieved better results than their proposed model and specialist opinion using hyperpara-

meter tuning, having an improved accuracy of almost 100% in all four models.

Introduction

Lung cancer is one of the most commonly diagnosed cancers worldwide to date. It’s a severe

disease that affects individuals from all aspects of life regardless of their lifestyle and surround-

ings environment. This cancer lies within the intricate network of the human respiratory sys-

tem and arises as a silent menace, often remains unnoticed until it reaches an advanced stage

[1]. It can manifest in various forms, from the insidious creep of small cell lung cancer to more

common non-small cell lung cancer, presenting its own challenges in diagnosing and treat-

ment. The impact is profound, not just physically but emotionally and socially as well. One’s

journey through lung cancer is often fearful and uncertain, having to make some tough
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decisions. Starting from a strategic decision about the risk stratification of the screening pro-

gram to decide eligibility [2, 3].

In the United States, lung cancer is the second most common cancer in both men and

women. The American Cancer Society estimates that there will be 234,580 new cases of lung

cancer, including 116,310 in men and 118,270 in women, and about 125,070 deaths due to this

in the year 2024 [4]. They also reported that the proportion of developing lung cancer in men

is 1:16, whereas in women, it is 1:17, including both smokers and non-smokers, but for smok-

ers’ people, the chances are much higher. Having a five-year relative duration to gather survival

rate, the Surveillance, Epidemiology, and End Results (SEER) database shows 28% relative sur-

vival probabilities for non-small cell lung cancer and 7% survival probabilities for small cell

lung cancer [5]. Data collected by Cancer Research UK (2016–2018) shows that lung cancer is

the third most common cancer in the UK, with around 48500 new cases in the UK every year,

including 23,300 cases in women and 25,300 cases in men and only 10% survival rate is

remoted in 2013–2017 [6]. In Asian countries like China, a total of 19.2% of cancer-related

deaths were reported due to lung cancer in 2017 [7]; India had 8.1% of cancer-related deaths

[8]; Malaysia reports that lung cancer has a 10% contribution to all malignancies [7]. Analysing

these situations, the seriousness of the prevention and early diagnosis can easily be

understood.

Lung cancer has many risk factors; smoking is number one, as reported by the Centers for

Disease Control and Prevention (CDC) [8]. According to the CDC, smoking is linked to 80–

90% of lung cancer deaths in the USA. Secondhand smoking, which means people who don’t

smoke themselves but are exposed to smoking, are also highly prone to lung cancer. As

reported by the CDC, around 14 million children were affected from 2013 to 2014. The second

leading cause of lung cancer is Radon, which is a gas that forms in rocks, soil, and water and

can enter buildings through cracks and cause lung cancer if breathed for a long time. Other

factors include radiation therapy, abnormal diet, and family genetic history. Risk prediction is

more important in lung cancer screening than clinical assessment, as demonstrated by many

trials, including the Back model [9], the Lung Cancer Risk Assessment Tool (LCRAT) [10], the

Lung Cancer Death Risk Assessment Tool (LCDRAT) [10], the Liverpool Lung Project (LLP)

model [11, 12], and the PLCOm2012 model [13, 14].

This study addresses the relationship between lung cancer factors and early symptoms.

Four machine learning models are tuned to detect the low, medium, or high lung cancer

risk level. Most of the studies only do detection and provide no explanation due to the

black-box nature of machine learning. This study overcame that limitation by explaining

each model’s interpretability using different explanation methods such as decision bound-

aries, Local Interpretable Model-agnostic Explanations (LIME), and tree extraction. The

primary motivation of this study is to explain model results to non-technical people or

patients so they can trust the process more. Significant contributions are mentioned in

below points:

1. Exploring dataset to figure out relations between different features.

2. Tuning four machine learning algorithms to outperform previous best results.

3. Explaining the model behaviour and reasoning through explainable AI methods.

The rest of the paper is divided into multiple sections, including a literature review in sec-

tion 3, materials and methods in section 4, result analysis in section 5, discussion in section 6,

limitations in section 7 and conclusion in section 8.
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Literature review

Though the development in medical science has advanced so far, cancer remains a highly criti-

cal and significant concern throughout medical aid, oncology, health care professionals, and

AI-based medical science researchers. Diagnosis of lung cancer mainly relies on manual

pathology screening, which is highly prone to error due to the human nature of manual film

reading. A good number of algorithms and methods were developed using machine learning

(ML) and deep learning (DL) to identify cancer from numerical datasets or image-based data-

sets [15]. Early detection is still crucial for improving survival rates among patients.

Various ML and DL-based techniques have been applied to identify many kinds of cancer

diagnosis, prognosis, and risk factors [16–19]. Specifically, AI has been seen to be applied to

lung cancer risk assessment, utilising diverse data sources such as medical imaging, genetic

markers, clinical records, and environmental factors [20]. ML models incorporating clinical

data, such as patient demographics, smoking history, and symptoms, have demonstrated effi-

cacy in predicting lung cancer risk [21]. Among different models, the Support Vector Machine

(SVM) showed the highest detection accuracy, but no reasoning has been provided, lacking

model explainability. Four ML models, SVM, Naïve Bayes (NB), Decision Tree (DT), and

Logistic Regression (LR), were applied to predict lung cancer from two datasets (collected

from UCI and Data World), achieving the highest accuracy of 96.9% with LR on UCI and

99.2% with SVM on Data World [22]. In both cases, no model explainability has been pro-

vided. Using five different data mining techniques: SVM, K-Nearest Neighbors (KNN), NB,

DT, and Artificial Neural Network (ANN), lung cancer prediction has been done with three

case scenarios [23]. The best accuracy achieved was 93% using the ANN algorithm and

SMOTE Upsampling technique on an unbalanced Kaggle dataset [24]. Biomarkers are also

used to identify early lung cancer by analysing the combination of metabolism factors with

ML methods. Among the used models, Neural Network (NN) and NB achieved 100% classifi-

cation accuracy [25]. Among these machine learning models, none was found that explained

the internal reasoning that resulted in the accuracy, causing the trustfulness of the application.

A customised Lung Cancer Prediction Tool (LCPT) has been developed to predict lung cancer

using the risk factor and compared with expert opinion to verify the result [26]. They have

shown an accuracy of 93.33% using LCPT, more significant than the specialist opinion of

86.66%. A Random Forest (RF) model was also used to generate ten random trees to compare

the results with LCPT. They explained how the factors resulted in the decision using Degree of

Importance (DOI).

Image processing of computed tomography (CT) screening has widely been used to diag-

nose lung cancer using different computer vision techniques [27]. Previously, 2D images of

CT were hugely popular for classification and segmentation. As computational power has

increased, people are now exploring 3D images and have achieved excellent results. Research-

ers are using DL methods to identify high-risk smokers suitable for lung cancer screening CT

using chest radiographs. Their model’s performance was validated, showing promise in

improving the selection process of lung cancer screening [28]. A customised deep CNN has

been proposed to classify interstitial lung diseases (ILDs) from CT image patches, achieving

around 85.61% accuracy, higher than VGG-Net performance, which gained 78% [29].

3D-VNet and 3D-ResNet architecture have been developed to train 3D CT image slices for

segmentation and classification problems [30]. They have achieved a 99.3% Dice Similarity

Coefficient (DSC) for segmentation and 99.2% accuracy for classification on the LUNA16

dataset. Though their accuracy and segmentation results are promising, model explainability is

very difficult to show due to the complexity of CNN architecture. Another study developed a

cascade 3D-UNet to detect lung cancer bone metastases (LCBM) from CT images. Compared
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with five radiologists, their model outperformed in detecting LCBM, with higher AUROC

(0.875 vs. 0.819) and sensitivity (0.894 vs. 0.892) in an observer-independent study [31]. Com-

bining with transformer and U-Net, an architecture has been developed named UNETR and

used to segment 3D images of lung cancer using the Decathlon dataset [32], achieving an accu-

racy of 97.83% with DSC of 96.42% and a classification result of 98.77% [32]. They have shown

the different performances regarding different hyperparameters like optimiser, number of

epochs, and activation functions. Still, the CNN explainability remains unnoticed. An ensem-

ble multi-view 3D CNN model has been designed for risk stratification of invasive lung adeno-

carcinoma using thin slice CT scan images, with an AUC of 91.3% for benign/malignant

diagnosis and 92.9% for pre-invasive/invasive nodule classification [33]. It also outperforms

senior doctors in risk assessment, having 77.6% accuracy, but lacks information on why it can

outperform doctors.

Explainable AI, or XAI, is gaining significant attention because of its ability to understand

the reasoning behind the model’s prediction, classification, or segmentation. Various works

are seen to explain the AI model to understand the importance of features; for example, in

chronic wound images, LIME has been applied to understand ROI [34]. Another custom XAI

diagnostic model has been proposed to interpret the model using TabNet with causal graphs

on mammography reports of breast cancer [35]. Another ensemble learning framework with

XAI has been developed by ref. [36] to determine breast cancer with explanations. The SHAP

model has been used to explain lung cancer reasoning from biomarker values identified from

CT scan reports by ref. [37], where they developed an AI CAD model using multiple ML meth-

ods. Many other works have used the XAI method to explain model behaviour on lung cancer

detection on both ML and DL methods [38–41].

Regarding the risk factors, almost all image-based detection is the diagnosis of lung cancer,

and most risk factors are considered in a numerical form of data with different vital factors

and symptoms. This research is based on exploring the relationship between these factors and

lung cancer chances using four popular machine learning models named SVM, KNN, DT, and

RF. It also explains why the model behaved as it did. This work will improve a previous work

[26] that addresses issues on the same dataset and proposes a custom LCPT model. In this

work, we have also shown that higher classification accuracy can be achieved using parameter

tuning.

Materials and methods

Dataset description

The dataset is taken from Data World [42]. There are 22 features: Age, Gender, Air Pollution,

Alcohol use, Dust Allergy, Occupational Hazards, Genetic Risk, Chronic Lung Disease, Bal-

anced Diet, Obesity, Smoking, Passive Smoker, Chest Pain, Coughing of Blood, Fatigue,

Weight Loss, Shortness of Breath, Wheezing, Swallowing Difficulty, Clubbing of Fingernails,

Frequent Cold, Dry Cough, Snoring. The details of the dataset have been shown in Table 1.

The association of features with risk-level classes is significant. It has been seen that people

aged around 35–40 are more likely to have lung cancer. Also, high air pollution levels cause a

higher risk, along with alcohol use. People with less alcohol use are seen to have lower chances

of getting lung cancer. A similar trend has been seen among other features; having high points

generally leads to higher positive risk, except shortness of breath, wheezing, clubbing finger-

nails, and snoring. The exceptions are seen to have a range of values having higher risks. A

total feature distribution histogram has been shown in Fig 1.

The dendrogram represents a hierarchical clustering of various features based on their simi-

larity or dissimilarity. The y-axis measures the distance between clusters, with lower values
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indicating greater similarity and likeliness of occurring together. Each feature on the x-axis

corresponds to a symptom or factor of lung cancer. Feature distance has been calculated using

a dendrogram graph and is shown in Fig 2. As we move up the hierarchy, clusters form by

joining related symptoms and factors. For example, Fatigue and Snoring suggest that they are

likely to occur together. Broader clusters emerge as we ascend the dendrogram, where Age and

Gender show that they are unlikely to be related to each other. The red cluster indicates a close

relation with risk level and other highly connected features.

Another correlation matrix has been generated to show the relationship between features in

a better way in Fig 3. Light color represents a higher correlation, and dark color means a lower

correlation. It can be noticed that Age and Gender have the lowest correlation with Levels of

0.079 and -0.16, and Obesity and Coughing of blood have higher correlations of 0.82 and 0.77.

Among features, a high (0.82–0.88) correlation value is seen among Occupational hazards,

Genetic risk, Alcohol use, and Dust Allergy. Some more high correlations between 0.79–0.82

are seen among Chest pain and Occupational hazard, genetic risk, lung disease, and balanced

diet. The lowest correlation value is seen among smoking and weight loss as -0.27.

Model training and validation

Four widely known ML models (SVM, KNN, DT, RF) are selected to train and validate the

data to predict the risk factors. The dataset has been split into train and test, with 70% for train-

ing and 30% for testing, which included 219 low, 235 medium, and 246 high-risk level data-

point in training and 84 low, 97 medium, and 119 high-risk level datapoint in test portions

(details shown in Table 2). The model training speed is fast, and it took around 1–2 seconds to

Table 1. Dataset description.

Feature Count Mean Standard deviation Min 25% 50% 75% Max

Age 1000 37.17 12.00 14 27.75 36 45 73

Gender 1000 1.40 0.49 1 1 1 2 2

Air Pollution 1000 3.84 2.03 1 2 3 6 8

Alcohol use 1000 4.56 2.62 1 2 5 7 8

Dust Allergy 1000 5.16 1.98 1 4 6 7 8

Occupational Hazards 1000 4.84 2.10 1 3 5 7 8

Genetic Risk 1000 4.58 2.12 1 2 5 7 7

Chronic Lung Disease 1000 4.38 1.84 1 3 4 6 7

Balanced Diet 1000 4.49 2.13 1 2 4 7 7

Obesity 1000 4.46 2.12 1 3 4 7 7

Smoking 1000 3.94 2.49 1 2 3 7 8

Passive Smoker 1000 4.19 2.31 1 2 4 7 8

Chest Pain 1000 4.43 2.28 1 2 4 7 9

Coughing of Blood 1000 4.85 2.42 1 3 4 7 9

Fatigue 1000 3.85 2.24 1 2 3 5 9

Weight Loss 1000 3.85 2.20 1 2 3 6 8

Shortness of Breath 1000 4.24 2.28 1 2 4 6 9

Wheezing 1000 3.77 2.04 1 2 4 5 8

Swallowing Difficulty 1000 3.74 2.27 1 2 4 5 8

Clubbing of Fingernails 1000 3.92 2.38 1 2 4 5 9

Frequent Cold 1000 3.53 1.83 1 2 3 5 7

Dry Cough 1000 3.85 2.03 1 2 4 6 7

Snoring 1000 2.92 1.47 1 2 3 4 7

https://doi.org/10.1371/journal.pone.0305035.t001
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Fig 1. Feature distribution histogram, where 0 = low, 1 = medium and 2 = high.

https://doi.org/10.1371/journal.pone.0305035.g001
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train all four models. From the previous dataset analysis section, looking into the correlation

matrix, it can be understood that Age and Gender might not have a major contribution to the

risk factor. The Random Forest classifier is used to calculate the feature importance, having

n_estimator as 20. It also shows that Gender has 0 feature importance and Age is the second

lowest with a 0.0022 score. Hence, these two features have been deducted from the training

dataset. The total feature importance is shown in Table 3.

Fig 2. Feature distance calculation using a dendrogram graph.

https://doi.org/10.1371/journal.pone.0305035.g002
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Parameter tuning has been applied to select the best parameters among given dictionaries

using the Grid Search algorithm with cv = 5 and n_jobs = 5. The Fbeta scorer was selected

with beta = 2, and the micro average was considered to create the scorer. For SVM, four

parameters were given with suitable ranges as C = [0.1,1,10]; Kernel = [rbf, poly, sigmoid,

Fig 3. Correlation matrix heatmap.

https://doi.org/10.1371/journal.pone.0305035.g003
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linear]; class weight = [balanced, None] and decision function shape = [ovo, ovr]. Similarly,

for KNN given parameters and values are, n neighbors = [3,5,7], weights = [uniform, distance],

algorithm = [auto, ball_tree, kd_tree, brute], leaf size = [10, 20, 30, 40], p = [1, 2].For DT, given

parameters are, criterion = [gini, entropy], splitter = [best, random], max depth = [10, 20, 30,

None], min samples split = [2, 5, 10], min samples leaf = [1, 2, 4], max features = [auto, sqrt,

log2]. Finally, for RF classifier given parameters are, n estimators = [10, 20, 30], max features =

[auto, sqrt, log2], max depth = [10, 20, 30, None], criterion = [gini, entropy] and class weight =

[balanced, balanced subsample, None]. Though parameter tuning has also been tested on DT

and RF, as they are already achieving 100% accuracy, after tuning, parameters are just the first

value of the dictionary. Improved parameters after grid search algorithm that are applied: {’C’:

0.1, ’class_weight’: ’balanced’, ’decision_function_shape’: ’ovo’, ’kernel’: ’linear’} for SVM and

{’algorithm’: ’auto’, ’leaf_size’: 10, ’n_neighbors’: 3, ’p’: 1, ’weights’: ’uniform’} for KNN. All

four models have been trained again with selected parameters, and this time, SVM, KNN, and

DT showed improved K-fold test accuracy.

Table 2. Dataset distribution between train and test sets.

Low Medium High Total

Training 219 235 246 700

Testing 84 97 119 300

Total 303 332 365 1000

https://doi.org/10.1371/journal.pone.0305035.t002

Table 3. Feature importance values extracted using RF.

Feature name Importance Value

1. Coughing of Blood 0.123877

2. Passive Smoker 0.114201

3. Wheezing 0.081368

4. Alcohol use 0.069177

5. Fatigue 0.063178

6. Obesity 0.061386

7. Smoking 0.055678

8. Dust Allergy 0.052402

9. Shortness of Breath 0.051129

10. Swallowing Difficulty 0.042071

11. Occupational Hazards 0.039309

12. Balanced Diet 0.034404

13. Chest Pain 0.034277

14. Air Pollution 0.033687

15. Frequent Cold 0.026834

16. Clubbing of Fingernails 0.025768

17. Snoring 0.022114

18. Weight Loss 0.022050

19. Dry Cough 0.019524

20. Chronic Lung Disease 0.013363

21. Genetic Risk 0.011912

22. Age 0.002291

23. Gender 0.000000

https://doi.org/10.1371/journal.pone.0305035.t003
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Model explainability

Machine Learning model explainability refers to the understanding and interpreting how a

model arrives at its predictions, in this case, risk levels. It is about demystifying the black-

box nature of complex scenarios and making their internal functionality more transparent and

understandable to humans. Understanding why a model makes a specific prediction or classifi-

cation can help build trust in its reliability and fairness and provide valuable insights for

improving the model’s performance or addressing biases.

There are various techniques for enhancing model explainability, ranging from simple

methods like feature importance analysis to more sophisticated approaches such as generating

human readable explanations for individual predictions using popular algorithms like LIME

or Shapley Additive Explanations (SHAP).

Support vector machine (SVM). A decision boundary has been plotted and analyzed to

explain the outcome of the SVM model and shown in Fig 4. However, a decision boundary is a

2D plot, where the dataset has multiple features; hence, a principal component analysis (PCA)

was done to reduce the dimensionality of the data. After doing 2D PCA, minimum and maxi-

mum values are extracted to create a mesh grid. SVM has been trained to get the Z-axis values

using that grid data. A decision boundary has been drawn using the mesh grid and Z-axis val-

ues, and a scatter plot is used to plot the training and testing data points.

K-nearest neighbors (KNN). The LIME method has been used to explain the KNN

model. LIME begins by generating a dataset of perturbed instances around the instance of

interest. For presenting a prediction made by a KNN model, LIME would generate new data

points by perturbing the features of the instance being explained. The KNN model is then used

to predict the output for these perturbed instances. Since KNN is a lazy learner, it directly uses

the nearest neighbors from the training data to make predictions without explicitly building a

model. Next, LIME fits an interpretable model to the generated dataset using the perturbed

Fig 4. Decision boundary plotting for SVM.

https://doi.org/10.1371/journal.pone.0305035.g004
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instances and the corresponding predictions obtained from the KNN model. The coefficients

or feature importances of the interpretable model trained in the previous step are used to

determine the contribution of each feature to the KNN model’s prediction for the instance of

interest. This helps in understanding which features are most influential in the decision made

by the KNN model. Finally, LIME provides an explanation for the prediction by highlighting

the most essential features and their contributions. This explanation helps us understand why

the KNN model made a particular prediction for the instance under consideration.

One sample is shown from a targeted three-level class for better understanding. An explana-

tion of a “High” risk prediction that KNN does is shown in Fig 5, where influential parameters

and their value ranges are demonstrated with feature value. In these graphs, full feature names

have been shortened due to the width limitation of the plot; the details abbreviations are: ‘AP’

=> ’Air Pollution’, ‘AU’ => ’Alcohol use’, ‘DA’ => ’Dust Allergy’, ‘OH’ => ’Occupational

Hazards’, ‘GR’ => ’Genetic Risk’, ‘CLD’ => ’chronic Lung Disease’, ‘BD’ => ’Balanced Diet’,

‘O’ => ’Obesity’, ‘SM’ => ’Smoking’, ‘PS’ => ’Passive Smoker’, ‘CP’ => ’Chest Pain’, ‘COB’

=> ’Coughing of Blood’, ‘F’ => ’Fatigue’, ‘WL’ => ’Weight Loss’, ‘SB’ => ’Shortness of

Breath’, ‘W’ => ’Wheezing’, ‘SD’ => ’Swallowing Difficulty’, ‘COFN’ => ’Clubbing of Finger

Nails’, ‘FC’ = > ’Frequent Cold’, ‘DC’ => ’Dry Cough’ and ‘SN’ => ’Snoring’.

Fig 5. LIME explanation of a "High" risk class.

https://doi.org/10.1371/journal.pone.0305035.g005
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Decision tree. A decision tree is a popular supervised learning algorithm for classification

and regression tasks. It works by recursively partitioning the input space into smaller regions

and assigning a label or value to each area. This process creates a tree-like structure where each

internal node represents a decision based on a feature, each branch represents a possible out-

come of that decision, and each leaf node represents the final prediction or value. The topmost

node in the tree is the root node, representing the entire input space. Nodes that represent

decisions based on features are called internal nodes. Each internal node splits the data into

two or more subsets based on a feature value. The edges connecting nodes are called branches,

representing the possible outcomes of decisions. Nodes at the end of the branches that do not

split further are terminal nodes. They represent the final predictions or values. At each internal

node, the decision tree algorithm selects the best feature and the corresponding threshold to

split the data into subsets. The goal is to maximize the homogeneity or purity of the subsets

regarding the target variable. After selecting the splitting criteria, the algorithm recursively

applies the splitting process to each subgroup, creating a binary tree structure. The recursive

partitioning process continues until a stopping criterion is met. Standard stopping criteria

include reaching a maximum tree depth, achieving a minimum number of samples per leaf

node, or no further improvement in homogeneity. Once the tree is constructed, it can be used

to make predictions for new instances by traversing the tree from the root node to a leaf node

based on the values of the input features. In our case, Frequent Cold is the root node that links

to Air Pollution and Obesity for direct high-risk prediction. A complete tree explanation has

been shown in Fig 6.

Random forest. Plotting a decision tree from a random forest ensemble can provide

insights into how the individual decision trees within the random forest make predictions col-

lectively. While each decision tree in a random forest is trained independently, understanding

Fig 6. Decision tree explanation.

https://doi.org/10.1371/journal.pone.0305035.g006
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the structure of a single decision tree can help in understanding the overall behavior of the ran-

dom forest algorithm. However, it’s important to note that plotting a single decision tree from

a random forest does not fully represent the complexity and diversity of the entire ensemble.

Each decision tree in a random forest is trained on a bootstrapped subset of the original dataset

and may use a random subset of features at each split. Plotting an individual decision tree can

help understand the specific features and decision criteria used by that tree to make predic-

tions. By analyzing the splits and decisions made by the particular tree, one can infer the

importance of different features in making predictions. Features that appear higher in the tree

and are used for multiple splits are likely more important in decision-making. While a single

decision tree provides insights into the decision-making process, the strength of random for-

ests lies in aggregating predictions from multiple trees. Plotting multiple decision trees from a

random forest and analyzing their commonalities and differences can help understand how

the ensemble combines diverse predictions to improve overall accuracy and generalization.

Understanding the decision-making process of individual trees within a random forest can

enhance the interpretability of the model, providing insights into why specific predictions are

made and how different features contribute to those predictions. The first decision tree from

the random forest model is shown in Fig 7.

Result analysis

Initially, all four models are trained with default parameters, having five k-fold cross-valida-

tion. SVM has achieved a cross-validation accuracy of 95% (+/- 0.02), total accuracy of 96.33%,

KNN achieved a cross-validation accuracy of 92% (+/- 0.07), and total accuracy of 99.66%. On

the other hand, the decision tree achieved 99% (+/- 0.03) cross-validation accuracy, and the

random forest achieved 100% accuracy in cross-validation and total accuracy. Detailed results,

including precision, recall, and f1-score are shown in Table 4 for all four models. The confu-

sion matrix of the test result is shown in Fig 8.

Though the classification accuracy with tree algorithms is highest at 100%, SVM seems to

miss some values. For which tuned parameters are seen as an improvement in accuracy,

achieving almost 100% test accuracy even with five k-folding tests. Similar improvements have

been seen for KNN, which has come to 99% test accuracy from the previous 92%, improving

almost 7%. The decision tree also improved on the 1st K-fold test, increasing to 100% from

Fig 7. One tree is represented by the random forest model.

https://doi.org/10.1371/journal.pone.0305035.g007
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96%, but decreased 1% on the 3rd K-fold test, but overall remains at 99% test accuracy. The

random forest model remains unchanged on all K-folding. A detailed comparison of results is

shown in Table 5. The learning curve has also been analyzed before and after parameter tun-

ing. Before parameter tuning, SVM shows a slow learning curve in training and cross-valida-

tion. Similar but lower validation scores can also be seen with KNN. Comparatively, DT and

RF show better training and cross-validation scores from the beginning. Learning curves for

four models before parameter tuning have been shown in Fig 9.

After parameter tuning, much better learning curves are seen for SVM and KNN. Previ-

ously, reaching the peak accuracy took SVM around 400 training sets, but now it is achieved

within 300 training sets. Similarly, KNN’s previous peak performance was at 500 training sets,

but now it is achieved within 400 training sets. Little performance disruption is seen for DT,

but it can ultimately maintain its peak accuracy. No noticeable changes were seen for RF, as it

has a stable learning curve and accuracy throughout the K-folding and fixed parameter tests.

Details of learning curves after parameter tuning for four models are shown in Fig 10.

Discussion

Machine learning has always been one of the most popular techniques for analyzing numeric

data. Specifically, it has been widely used in medical science to help healthcare professionals

with prognosis, diagnosis, different factor analysis, and so on. In this paper, four ML models

are used to predict lung cancer risk levels, as well as analyze the explainability of these models’

outcomes. Previous studies that worked with similar datasets used some standard models but

achieved lower performance and provided no logical explanation [22, 26]. Ahmad A. et al.

even collected expert professional comments to compare with the ML predicted result, which

shows the superiority of ML prediction. Even with CT scans, the CNN method shows better

accuracy than senior doctors in the case of risk assessment [33]. It refers to the importance of

explainability in answering why these models can perform better than professionals.

This paper worked with a lung cancer risk assessment dataset, which has been trained with

four machine learning models, achieving higher accuracy than previous work [26]. Hyperpara-

meter tuning has been done using the Grid Search algorithm to get the best parameters among

given ranges for all four models. After training with those parameters, improvements were

seen in the SVM, KNN, and DT models. Random Forest has remained the top scorer since the

beginning due to its capability of generating multiple trees, each having split features based on

feature weights. SVM, KNN, and DT are some of the most popular models for training

Table 4. Detailed results of four ML models on the overall test dataset.

Model Classes Precision Recall F1-score Support Accuracy

SVM 0 1.00 0.90 0.95 84 0.96

1 0.92 0.97 0.94 97

2 0.98 1.00 0.99 119

KNN 0 1.00 0.99 0.99 84 0.99

1 0.99 1.00 0.99 97

2 1.00 1.00 1.00 119

DT 0 1.00 1.00 1.00 84 1.00

1 1.00 1.00 1.00 97

2 1.00 1.00 1.00 119

RF 0 1.00 1.00 1.00 84 1.00

1 1.00 1.00 1.00 97

2 1.00 1.00 1.00 119

https://doi.org/10.1371/journal.pone.0305035.t004
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numeric datasets, and some other Kaggle datasets were seen to be trained by using these mod-

els. One recent work achieved accuracy around 95.4% for SVM, 93.7% for DT, and 95.2% for

KNN [21], another work [22] achieved 99.2% with SVM and 90% with DT on the same dataset.

In both cases, no hyperparameter tuning has been done, which might be able to increase their

accuracy, and no model explanations were mentioned. On a custom-collected dataset, SVM,

RF, and KNN were applied to train the data, and they gained 94.7%, 89.5%, and 89.5% model

accuracy, respectively. A comparison of these results is shown in Table 6.

Fig 8. A confusion matrix shows the classification result (in %) of test data using four ML models.

https://doi.org/10.1371/journal.pone.0305035.g008
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This paper also explained the models’ performance reasons using different explainability

methods. A decision boundary has been drawn for both training and testing data for SVM.

From the decision boundary, it can be understood that the data points are well-categorized

and differentiable from one class to another. The LIME method has been used to extract the

reasoning behind KNN’s classification. For example, one “High” risk level category is selected

as “High” due to having higher Fatigue, specifically having a value of more than 5, Passive

Smoking value of more than 5, Obesity between 4 to 7, Alcohol use value of more than 7, and

so on. Similarly, the reasons for other levels can also be determined. For the Decision Tree and

Random Forest classifier, a single tree has been shown to explain why the model came to the

particular decision of given feature values.

Limitations of the study

While machine learning (ML) models hold promise for lung cancer risk prediction, there are

limitations to their efficacy, especially regarding explainability:

Data Dependence: ML models are only as good as the data they are trained on. Biases in the

data, such as underrepresentation of certain demographics, can lead to inaccurate predictions

for those groups.

Focus on Established Risk Factors: Current models primarily focus on well-established risk

factors like smoking history. They might miss subtle or emerging risk factors not yet incorpo-

rated into the training data.

False Positives and Negatives: ML models can generate false positives (identifying low-risk

individuals as high-risk) and false negatives (missing high-risk individuals). This can lead to

unnecessary procedures or missed opportunities for early detection.

Conclusion

Lung cancer remains the deadliest disease, with a high mortality rate throughout the world

regardless of economic or social conditions. It is much better to care about early prevention,

which could save not only one life but also a whole family. To understand the possibility of

lung cancer, its factors are critical to understand and analyze and know early symptoms. In

this work, a dataset having 22 such properties have been analyzed. The machine learning

models used are very lightweight, easily reproducible, and usable in real life without having

much technical knowledge. With parameter tuning, almost 99 to 100% test accuracy has

been achieved for all four (SVM, KNN, DT, RF) models, even with 5 K-fold cross-valida-

tions. Later, each model’s decisions were explained with valid and accessible reasoning

through various methods such as decision boundary, LIME, and tree representation. This

research has been done considering the low correlation between Age and Gender. This

Table 5. Comparison of results due to parameter tuning for five k-fold cross-validation.

Model Tuning 1-fold 2-fold 3-fold 4-fold 5-fold Accuracy STD (+/-)

SVM Before 0.93 0.95 0.96 0.95 0.96 0.95 0.02

After 1.00 1.00 1.00 0.98 1.00 1.00 0.01

KNN Before 0.93 0.95 0.92 0.85 0.93 0.92 0.07

After 1.00 1.00 0.98 1.00 0.98 0.99 0.02

DT Before 0.96 1.00 1.00 0.98 1.00 0.99 0.03

After 1.00 1.00 1.00 0.97 1.00 0.99 0.03

RF Before 1.00 1.00 1.00 0.98 1.00 1.00 0.01

After 1.00 1.00 1.00 0.98 1.00 1.00 0.01

https://doi.org/10.1371/journal.pone.0305035.t005
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might not be true if any other dataset has a higher correlation. Hence, it can be regarded as

a minor limitation. Future work can include multiple neural network-based model architec-

tures to deal with more complex datasets and compare results and explainability with ML

models.

Fig 9. Learning curves for four models before parameter tuning.

https://doi.org/10.1371/journal.pone.0305035.g009
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Fig 10. Learning curves after parameter tuning for four models.

https://doi.org/10.1371/journal.pone.0305035.g010
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