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Abstract
The increasing incidence of skin cancer necessitates advancements in early detection methods, where deep learning can be

beneficial. This study introduces SkinNet-14, a novel deep learning model designed to classify skin cancer types using low-

resolution dermoscopy images. Unlike existing models that require high-resolution images and extensive training times,

SkinNet-14 leverages a modified compact convolutional transformer (CCT) architecture to effectively process 32 9 32

pixel images, significantly reducing the computational load and training duration. The framework employs several image

preprocessing and augmentation strategies to enhance input image quality and balance the dataset to address class

imbalances in medical datasets. The model was tested on three distinct datasets—HAM10000, ISIC and PAD—demon-

strating high performance with accuracies of 97.85%, 96.00% and 98.14%, respectively, while significantly reducing the

training time to 2–8 s per epoch. Compared to traditional transfer learning models, SkinNet-14 not only improves accuracy

but also ensures stability even with smaller training sets. This research addresses a critical gap in automated skin cancer

detection, specifically in contexts with limited resources, and highlights the capabilities of transformer-based models that

are efficient in medical image analysis.
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1 Introduction

Skin cancer represents a severe threat to global health and

is one of the most widespread forms of cancer around the

world. Skin cancer appears in many forms. The most

common types of skin cancer include melanoma, basal cell

carcinoma (BCC), actinic keratoses and intra-epithelial

carcinoma (AKIEC), squamous cell carcinoma (SCC),

dermatofibroma (DF), melanocytic nevi and more [1].

Approximately 325,000 new cases of melanoma were

identified worldwide in 2020, leading to an estimated

57,000 deaths [2]. By 2040, 28.4 million new cases of

cancer are predicted to have occurred, representing a 47%

increase in the global cancer burden [3]. For several rea-

sons, estimating the incidence of skin cancer is particularly

challenging. Although about 5% of all cases of skin cancer

are melanomas, it is responsible for 75% of all deaths from

skin cancer [4]. Due to the high death rate of melanoma,

skin cancer is occasionally divided into melanoma and

non-melanoma subtypes. Cancer registries frequently do

not keep track of non-melanoma skin cancer [5]. Derma-

tologists also have difficulty identifying skin cancer from

dermoscopy images of skin lesions [4]. In some circum-

stances, to effectively diagnose cancer a biopsy and

pathology review may be required. Moreover, manual

disease monitoring is time-consuming, labor-intensive and

sensitive to observer variability [6]. In addition, a lack of

& Asif Karim

asif.karim@cdu.edu.au; sami.azam@cdu.edu.au

1 Department of Computer Science and Engineering, Health

Informatics Research Laboratory (HIRL), Daffodil

International University, Dhaka 1341, Bangladesh

2 Faculty of Science and Technology, Charles Darwin

University, Casuarina, NT 0909, Australia

3 Department of Computer Science, University of Calgary,

Calgary, Canada

4 Faculty of Arts and Society, Charles Darwin University,

Casuarina, NT 0909, Australia

123

Neural Computing and Applications (2024) 36:18935–18959
https://doi.org/10.1007/s00521-024-10225-y(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0001-8532-6816
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-024-10225-y&amp;domain=pdf
https://doi.org/10.1007/s00521-024-10225-y


radiologists and an increase in the number of skin cancer

patients may result in delays in diagnosis and treatment. To

address these challenges, it is essential to implement an

effective diagnostic strategy for the detection of skin can-

cer that reduces diagnostic time and increases medical

efficiency.

Deep learning has made significant strides in computer-

based medical diagnostic systems, and these systems are

now frequently used in research to interpret medical ima-

ges. Due to their end-to-end feature representation capa-

bilities, deep convolutional neural networks (CNNs) have

made notable advancements in skin lesion detection.

However, the precise classification of skin lesions remains

challenging due to the following issues: (1) the need for a

large number of training images as well as a lengthy and

complex training process [7], (2) inter-class similarities and

intra-class variations, and (3) lack of the ability to focus on

discriminative skin lesion parts [8]. Transfer learning may

be used to solve the need for large datasets, but other

difficulties such as lengthy training times, computational

needs, generalizability, robustness and performance sta-

bility of the model, should also be addressed [6].

Vision Transformer (ViT) [9], a model based on self-

attention [10] and influenced by natural language pro-

cessing (NLP), was initially implemented in computer

vision tasks. In contrast to standard CNN architectures, the

self-attention layers of the Transformer architecture may

detect long-range dependencies [10, 11]. However, due to

the lack of inductive bias in its architecture, ViT is a data-

hungry model [10]. This data-hungry approach of ViT has

made transformers unsuitable for a variety of essential

tasks, as training datasets remain scarce in many fields. In

order to overcome the massive data limitations of ViTs,

Hassani et al. [12] introduced the compact convolutional

transformer (CCT) model that implements sequential

pooling and replaces patch embedding with convolutional

embedding, allowing for more inductive bias. Due to the

presence of noise, hairs, dark corners, color charts, uneven

illumination and marker ink in dermoscopic images [13],

various image processing techniques are used to improve

the performance of the proposed model.

This study addresses important gaps in skin cancer

detection by developing SkinNet-14, a deep learning model

capable of classifying low-resolution dermoscopy images

while overcoming the challenges faced by traditional

models that rely on high-resolution data. By enhancing the

CCT architecture, SkinNet-14 not only reduces computa-

tional demands but also maintains high diagnostic accu-

racy, making it particularly ideal for resource-constrained

clinical settings. The model further addresses the issue of

data imbalance through enhanced preprocessing and aug-

mentation, promising improved performance and being

more applicable in real-world diagnostic scenarios. The

primary contributions of the manuscript can be outlined as

follows:

1. All the datasets of this study feature an uneven

distribution of images across the classes, which could

hamper model performance. To solve this problem,

three different data augmentation techniques are

experimented to increase the volume of the datasets.

The highest performing data augmentation method is

selected based on the model performance.

2. We propose SkinNet-14, which is a modified CCT

model, for skin cancer classification. The model

addresses problems associated with high computational

complexity. Convolutional blocks are used to tokenize

the vision transformer, lowering model training time

and ensuring good performance even with low-resolu-

tion images.

3. We further optimize the performance and efficiency of

the proposed model by conducting an ablation study

that involves modifying the layer design and hyperpa-

rameters. The intention is to reduce the parameter

number and computation complexity while improving

overall performance.

4. In order to evaluate the effectiveness of the suggested

SkinNet-14 model in terms of training time and

accuracy with 32 9 32 sized images, a number of

transfer learning models, including ResNet50,

ResNet152, MobileNet [47], ResNet50V2 [48],

VGG16 [49] and VGG19 [50], are applied to all three

datasets and compared with the proposed model.

5. The classifier is trained by progressively reducing the

number of images available in order to assess the

sustainability and generalization potential of our model

relative to the training dataset size. Results indicate

that the model produces good performance even with

fewer images, demonstrating the stability of the

SkinNet-14 model in skin lesion detection.

The remainder of this paper is divided into the following

sections. A summary of the literature review is provided in

Sect. 2. Information on the proposed methodology is pro-

vided in Sect. 3. The adopted datasets are described in

Sect. 4. Details on image preprocessing methods are pro-

vided in Sect. 5. An overview of data augmentation

strategies is given in Sect. 6. Section 7 includes a

description of the models with experimental configuration.

The ablation experiment and findings are covered in

Sect. 8. Section 9 concludes the paper.

18936 Neural Computing and Applications (2024) 36:18935–18959

123



2 Literature review

In recent literature, researchers propose several trans-

former, deep learning and machine learning-based methods

for classifying skin lesions. This section presents the

summary of existing literature on classifying skin diseases.

2.1 Deep learning

Mohamed et al. [14] proposed a skin lesion classification

technique by modifying the architecture of GoogleNet. The

proposed model achieved an accuracy of 94.92% in mul-

ticlass classification. In another study, Jason et al. [15]

combined conventional image processing with deep

learning, by fusing features to achieve greater accuracy in

dermoscopy images for melanoma diagnosis. The deep

learning component uses knowledge transfer, via a modi-

fied ResNet50 network, to classify the melanoma from the

ISIC-2019 dataset and achieved 94% accuracy with an

AUC of 90%. The article by, Moloud et al. [16] introduces

the three-way decision (TWD) theory and applies it to

analyze skin cancer images. Two uncertainties presents an

analysis of skin cancer images using TWD theory. The

proposed hybrid deep learning model TWDBDL has inte-

grated two uncertainty quantification (UQ) techniques,

namely deep ensemble (DE) and ensemble MC dropout

(EMC). The study concludes that the model achieved an

accuracy of 88.95% and an AUC of 92% in its final phase.

In their study, Simon et al. [17] classify skin tissue into 12

meaningful dermatological categories using CNN and

machine learning. The study also showed that semantic

segmentation permits a network to interpretably learn the

complete context of skin tissue types. The approach

attained an accuracy of between 93 and 97%. The utiliza-

tion of a convolutional neural network (CNN) for image

classification into benign and malignant categories was

proposed by Ameri et al. [18] in their study on skin cancer

detection. The images were not subjected to any segmen-

tation or feature extraction techniques. An accuracy rate of

84% was achieved through the utilization of the

HAM10000 dataset. Jitendra et al. [19] proposed an

ensemble-based machine learning (ML) and deep learning

(DL) model. After feature extraction and classification, the

model achieved 93% accuracy on ISIC Kaggle dataset. To

help physicians in diagnosis, Reza et al. [20] represented a

viable deep learning-based approach to detect skin cancer

using 57,536 images. The model performed 89.3% ± 1.1%

accuracy on multiclass classification. In their work,

Abdelhafeez et al. [21] proposed a novel hybrid method for

skin cancer classification that combines deep learning,

neutrosophic techniques and feature fusion. Using ISIC-

2019 data, the model attained 85.74%. To classify skin

cancer lesions based on features extracted from prepro-

cessed images Khater et al. [22] used explainable artificial

intelligence techniques to interpret the model results. The

model achieved an accuracy of 94% on PH2 dataset. The

studies by Surono et al. [23, 24] explore the use of con-

volutional neural networks (CNNs) combined with various

machine learning (ML) algorithms and the use of the U-Net

architecture for semantic segmentation of CT images with

varying resolutions. In another study, Sornsuwit et al. [25]

propose a new ensemble learning algorithm called least

error boosting (LEBoosting) to improve the classification

of cardiovascular disease. The survey studies on skin

cancer explore various ML–DL models and show how they

assist dermatologists with complex and composite prepro-

cessing. The articles also state that processing skin-infected

images by ML–DL faces challenges such as low contrast

between infected and normal skin, and artifacts like hair,

bubbles and ink. Additionally, algorithm design must

consider issues like extensive training needs, prevalence of

light-skinned individuals in datasets, minimal variation

between classes, and the diverse sizes and shapes of lesions

in unbalanced datasets [26–29].

2.2 Attention and transformer

Transformer networks are infrequently used as a classifier

of skin cancer. The SkinTrans model proposed by Chao

et al. [30] utilizes a ViT approach to accurately classifying

skin cancer on both HAM10000 and a clinical dataset. The

aim of this paper was to utilize multiscale patch embedding

to serialize images by implementing overlapping multi-

scale sliding windows. The study demonstrates that the

proposed model attained high accuracy rates of 94.3% and

94.1% on the HAM10000 dataset and clinical dataset,

respectively. Xiaoyu et al. [8] proposed a model named

DeMAL-CNN for skin lesion classification from der-

moscopy images. In DeMAL-CNN, a three-part network

(TPN) consisting of three weight-shared embedding

extraction networks, and a mixed attention mechanism,

which takes both spatial-wise and channel-wise attention

information into account, were developed and imple-

mented. The results of the ablation analysis indicated that

DeMAL-CNN obtained a maximum accuracy of 92.7% on

the ISIC-2016–2017 datasets. In another study, Jingye et al.

[31] proposed transformerUNet-based MT-TransUNet. It

was able to segment and classify skin lesions simultane-

ously by mediating multitask tokens in Transformers. The

model achieved 91.2% accuracy for multiclass classifica-

tion. To enhance the deep convolutional neural network

(DCNN) capacity for discriminative representation, Jian-

peng et al. [32] propose the attention residual learning

convolutional neural network (ARL-CNN) model for the

detection of skin lesions in dermoscopy images. After
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applying the ARL-CNN model to the ISIC-skin 2017

dataset, the model attained an AUC of 0.905. Work by Nils

et al. [32] proposed a unique patch-based attention archi-

tecture to successfully classify both the high-class imbal-

ance and high-resolution real-world multiclass skin cancer

datasets. The model gives global context between small,

high-resolution patches. According to the results, using an

attention-based approach increases MC sensitivity by up to

7%. The maximum sensitivity achieved was 67.8%. To

improve skin cancer classification performance Soumyya

et al. [33] merged soft attention with DenseNet, VGG,

ResNet and Inception-ResNet v2 architectures. The authors

found that soft attention enhances the performance of the

original network. Their suggested Inception-ResNet

v2 ? soft attention (IRv ? SA) model achieved the

greatest accuracy of 90.40% on the ISIC-2017 dataset. On

the HAM10000 dataset, Chao et al. [34] suggested an

improved ViT network for classifying skin cancer. The

proposed approach had a 94.3% accuracy. In this study,

Suliman et al. [30] created a two-tier system for accurate

skin cancer classification. They used the Medical Vision

Transformer (MVT) on the HAM10000 and got a 96%

accuracy. Guang et al. [35] introduce a unique approach to

classifying skin cancer in HAM10000 to increase classifi-

cation performance even further. Experiment results sug-

gest that the approach has a classification accuracy of

94.1%. In their study, Arshed et al. [36] proposed a dif-

ferent method for diagnosing various skin cancer disorders

based on off-the-shelf ViT. The suggested method was

compared to 11 CNN-based transfer learning algorithms to

assess its performance. On the HAM10000 dataset, the

model got an accuracy of 92.14%.

As shown in previous studies, several machine learning

and deep learning-based models have been employed to

classify skin cancer. In addition, transformer and attention-

based models can be employed to improve the accuracy of

skin cancer classification. However, there are drawbacks,

such as high time complexity and the inability to utilize

low-quality images. There is scope for improvement in the

classification of skin cancer images by addressing the noted

shortcomings. The limitations of the previous works and a

comparison with our work are described in Sect. 8.6. In

this study, these challenges are considered in the context of

establishing a single framework to achieve robust inter-

pretive capability.

3 Proposed methodology

To develop an effective transformer-based skin lesion

classification model various steps are performed. The entire

step-by-step methodology is illustrated in Fig. 1.

The purpose of this research was to develop a deep

learning model that can accurately classify different types

of skin cancer based on low-resolution dermoscopy ima-

ges. The architectural design of SkinNet-14 is developed in

order to address the particular challenges of efficiently

processing images with 32 9 32 pixels. In order to address

the common challenges that arise from medical imaging

datasets, such as data scarcity, imbalances and artifacts, the

existing CCT were modified. An essential element of the

design is the ablation study, which aims to identify and

optimize the most impactful model parameters for com-

putational efficiency and diagnostic accuracy.

Three publicly accessible skin cancer datasets—

HAM10000, ISIC and PAD-UFES—were used in the

study. Every dataset went through a standardized prepro-

cessing phase during which image quality was enhanced

and artifacts were eliminated. Following this, we applied

and compared three different data augmentation methods to

address the class imbalance, selecting the best-performing

approach based on experimental results. The data from

HAM10000 were split into training, validation and testing

sets, adhering to a 75:10:15 distribution, respectively. This

dataset was chosen for initial model development due to its

comprehensive image volume. To validate the model, the

optimized model was subsequently implemented on the

remaining ISIC and PAD-UFES datasets.

To measure performance, we evaluated SkinNet-14

against six cutting-edge transfer learning models. Each

model was evaluated for accuracy, F1 Score and training

efficiency across all datasets. To assess model robustness,

we conducted a series of experiments where we system-

atically reduced the number of training images, observing

the impact on the model’s performance. Performance

metrics such as precision, recall and F1-score were calcu-

lated for each skin class, and the model’s stability was

assessed from these quantitative measures. This method-

ological approach helped us to obtain important findings

regarding the capabilities of SkinNet-14 and resulted in the

model’s excellent classification accuracy, reaffirming its

suitability for clinical use where high-resolution imaging

may not be available.

4 Dataset description

The experiments conducted in this study utilized three

publicly available skin cancer dermoscopy datasets. The

HAM10000 dataset is well known for its massive number

of images, making it one of the most comprehensive

publicly available datasets for skin disease classification

and diagnosis. Its vastness and variety help to improve the

accuracy of machine learning models. Meanwhile, the ISIC

dataset is a comprehensive resource that includes clinical

18938 Neural Computing and Applications (2024) 36:18935–18959

123



and dermoscopic pictures for a wide spectrum of skin

disorders and conditions. This dataset is popular because of

its wide range and depth of coverage. Finally, while being

smaller than the HAM10000 and ISIC datasets, the PAD-

UFES dataset is nevertheless commonly employed in

model development because to its high quality and accu-

racy. The dataset is popular because it includes images

with different levels of difficulty, which can help improve

the robustness of machine learning models. Below are the

descriptions of the datasets.

4.1 HAM10000 dataset

The HAM10000 (Human against machine with 10,000

training images) [37] dataset is a popular publicly available

Kaggle dataset. The dataset consists of 10,015 skin lesion

images. It has seven classes including Basal Cell Carci-

noma (514 images), Benign keratosis (1,099 images),

Actinic Keratosis (327 images), Dermatofibroma (115

images), Melanoma (1,113 images), Melanocytic Nevi

(6,847 images) and Vascular Lesions (142 images). The

image resolution of this dataset is 644 9 450 pixel.

4.2 ISIC dataset

The ISIC-2019 (International Skin Imaging Collaboration)

[38] dataset contains 2357 images which were collected

from the Kaggle database. The dataset contains nine

classes: Actinic Keratosis (114 images), Basal Cell Carci-

noma (376 images), Pigmented Benign Keratosis (462

images), Dermatofibroma (95 images), Melanoma (438

images), Nevus (357 images), Seborrheic Keratosis (77

images), Squamous Cell Carcinoma (181 images) and

Vascular Lesions (139 images). The image resolution of

this dataset is 600 9 450 pixels.

4.3 PAD-UFES-20 dataset

The PAD-UFES-20 (Dermatology image database from

Federal University of Espirito Santo) [39] is comprised of

2,298 images that are classified into six distinct categories.

This dataset comprises six classes of skin lesions, namely

Basal Cell Carcinoma (845 images), Melanoma (52 ima-

ges), Nevus (244 images), Seborrheic Keratosis (192

images), Actinic Keratosis (730 images) and Squamous

Cell Carcinoma (235 images). The image resolution of this

dataset is 1050 9 1050 pixels.

4.4 Skin lesion description

The dataset includes images of numerous skin lesions.

Three primary forms of skin cancer are squamous cell

carcinoma, melanoma and basal cell carcinoma [40].

Squamous cell carcinoma and Basal cell carcinoma are the

most common types of non-melanoma skin cancers. Basal

cell carcinoma, the most prevalent form of skin cancer,

Fig. 1 Overall methodology to classify multiclass skin disease on three datasets
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exhibits a slow growth rate and rarely metastasizes.

Compared to basal cell carcinoma, squamous cell carci-

noma spreads more quickly and deeply. Melanomas, which

are malignancies based on melanocytes, are inherently

malignant. The most aggressive form of skin cancer, mel-

anoma, can spread to other organs and is extremely diffi-

cult to treat. Figure 2 shows the images of each skin class

marked according to where an image contains tumor,

artifacts or normal skin.

Some details on different skin cancers are Actinic ker-

atosis (Fig. 2A) might appear differently as a rough, dry or

scaly skin patch, on the top layer of skin, or a patch or

bump that is flat to slightly elevated. In certain instances, it

presents a rough, wart-like surface, accompanied by

bleeding and itching. Basal cell carcinoma (Fig. 2B) causes

skin changes such as growths or sores that will not heal.

Lesions are typically characterized by a shiny, transparent,

skin-colored lump, a brown, blue or black lesion, or a flat,

scaly patch with a raised border or a whitish, waxy, scar-

like lesion lacking a distinct boundary. Skeletal cell car-

cinoma (Fig. 2C) can manifest as elevated growths with a

central depression, open sores, scaly red patches, rough,

thickened or wart-like skin. It can occasionally itch, bleed

or crust over. In (Fig. 2D), the size of dermatofibromas is

shown to range from 0.5 to 1.5 cm in diameter. The

appearance of dermatofibroma varies from pink to light

brown on people with fair skin to dark brown or black on

people with darker skin, while certain lesions appear paler

in the middle. Although dermatofibromas rarely exhibit

symptoms, they can occasionally be tender, painful or

irritating. Melanocytic nevi (Fig. 2E) typically grow to a

maximum size of 40 cm. They present as tan to black in

color and can become lighter or darker with time. The

surface of a nevus can be smooth, uneven, elevated,

thickened or bumpy; and it can differ across the nevus and

alter with time. Skin around a nevus is frequently dry,

prone to irritation and itching. Melanomas (Fig. 2F) are

usually asymmetric with an uneven or irregular border. The

diameter of a melanoma mole is larger than 6 mm and

usually presents with an uneven color. The mole size and

color change over time and can evidence bleeding or

itching. Nevus (Fig. 2G) normally has a round smooth

mole, with a single color. Common nevi can appear tan,

brown or pink, and might be flat or dome shaped. Typical

nevi manifest as benign clusters of colored cells. Pig-

mented benign keratosis (Fig. 2H) and seborrheic keratosis

(Fig. 2I) are similar and may appear as an oval growth with

a minor raised section, or as a flat growth. The average size

of a nevi mole is 2.5 cm in diameter, and it may have a

single or many growths ranging from tan to brown or black.

Vascular lesions (Fig. 2J) appear dark to brilliant red in

color and can cause the breakdown of the skin surface,

leading to bleeding and/or infection [42, 43]. It typically

expands outward on the surface of the skin, whereas deeper

lesions resemble bruises on the skin with a mass of soft

tissue underneath.

Fig. 2 Cancer lesions of different skin classes [41]
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5 Image preprocessing

Preprocessing images before putting them into a neural

network optimizes model performance. Morphological

opening is used to remove artifacts and focus on the region

of interest (ROI). This technique removes artifacts by

eroding the boundaries of objects and then dilating them,

effectively eliminating small unwanted elements while

preserving the overall structure of the image. Following

that, NLMD is used to efficiently minimize noise while

keeping crucial image information. It compares similar

patches in the image to estimate the noise level before

applying filtering. CLAHE then increases the image’s

brightness and contrast by equalizing the histogram in

specific locations. It improves the visibility of critical

details while reducing noise over amplification. Further-

more, the Gaussian Blur method smooths pixels in an

image while maintaining the edges, which assists to min-

imize noise and improve overall visual appeal. Finally, the

processed image is downsized to a standard 224 9 224

resolution. We experimented with some more strategies

and the described processing combinations increased the

dermoscopy image quality, allowing for more accurate

analysis and subsequent classification tasks. In this step, all

the image preprocessing techniques are applied to each of

the datasets. Figure 3 shows the complete image prepro-

cessing steps.

5.1 Removal of artifact

Morphological opening is a technique that eliminates all

single-pixel artifacts, such as noisy spikes and tiny spurs,

and blackens small objects [44]. The process of applying

morphological opening to an image involves first con-

verting it into binary format. The conversion to binary

format amplifies the visibility of small noises. The appli-

cation of morphological opening to a binary image is

achieved through the use of a kernel. The characteristics of

the artifact to be removed determine the shape and size of

the kernel. After conducting experiments with various

kernel sizes, a 10 9 10 kernel size is chosen. The suc-

cessful erasure of unwanted objects while preserving

essential image information is achieved through the use of

a specific kernel size. The noise-free binary mask is then

merged with the original picture using the ‘‘bit-wise AND’’

function. In the context of binary images, ‘‘bit-wise AND’’

and ‘‘logical AND’’ perform the same function. Figure 3

shows the image after performing artifact removal on the

original image.

5.2 Image enhancement

The precise classification of various dermoscopy images is

challenging due to the complexity of their details and the

presence of hidden information. For the best performance,

appropriate image enhancement methods assist in adjusting

Fig. 3 Output image after each preprocess stage
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the visual contrast between regions of interest (ROIs) and

backgrounds.

5.2.1 Non-local means denoise (NLMD)

NLMD is implemented to reduce the noise of the images.

The NLMD algorithm [45] is based on the principle of

replacing pixel color with the average of the colors of

neighboring pixels. This significantly improves post-filter-

ing clarity with less loss of image detail than local mean

methods. The denoising of an image z ¼ ðz1; z2; z3Þ in

channel i to the pixel j is executed as follows [45]:

bzi xð Þ ¼ 1

C xð Þ
X

k2B x;rð Þ
zi xð Þx x; kð Þ; ð1Þ

C xð Þ ¼
X

k2B x;rð Þ
x x; kð Þ ð2Þ

The notation Bðx; rÞ denotes the area of pixels x within a

given radius r. The determination of weight x x; kð Þ is

performed by the squared Frobenius norm distance within

color patches with centers at x and k that degrade under a

Gaussian kernel. The OpenCV cv2.fastNlMeansDenois-

ingColored() function is utilized to execute the NLMD. As

the source image, we use the image that resulted following

morphological opening. The options available for filter

strength tuning in the luminance and color components are

h and h Color, respectively. Our proposed method reduced

h value to accurately preserve detail. The utilization of the

recommended values for the parameters template Window

Size and search Window Size, specifically 7 and 21, is

implemented. Figure 3 presents the image after applying

NLMD from artifact removed images.

5.2.2 Contrast limited adaptive histogram equalization
(CLAHE)

CLAHE [46] is performed to rectify excessive contrast

amplification and restore overall contrast balance. The

determination of contrast enhancement in CLAHE near a

specific pixel value is based on the slope of the transfor-

mation function. The kernel size for applying CLAHE is

10 9 10, the clip limit is 2.0, and tile grid size is 8 9 8.

The color space used for this preprocess is YUV. Figure 3

shows the image after applying CLAHE on NLMD applied

images.

5.2.3 Gaussian blur

Gaussian blurring [47] is used in image processing to

minimize noise and eliminate speckles from an image. It is

essential to remove extremely high-frequency components

that surpass those connected with the gradient filter, as

these can lead to the detection of erroneous edges. A two-

dimensional Gaussian function formula is:

G i; jð Þ ¼ 1

2pr2
e�

i2þj2

2r2 ð3Þ

The variables i, j and r are utilized to, respectively,

denote the horizontal axis distance from the origin, the

vertical axis distance and the standard deviation of the

Gaussian distribution. The point (0, 0) serves as the origin

for these axes. The formula generates a two-dimensional

surface consisting of concentric circles exhibiting a Gaus-

sian distribution as they move away from the central point.

The application of Gaussian blur can be achieved through

the utilization of the cv2.bilateralFilter() function in

OpenCV. The diameter of each pixel neighborhood is set to

9, and sigmaColor and sigmaSpace values are set to 75. In

Table 1 Counts of original

versus augmented images
Dataset Data count without augmentation Data count after augmentation

Geometric Photometric Elastic Deformation

HAM10000 10,015 50,075 50,075 50,075

ISIC 2,357 11,785 11,785 11,785

PAD-UFES-20 2,298 11,490 11,490 11,490

Table 2 Ablation study on various augmentation techniques on HAM10000 dataset

Technique Parameters Size of Image Training time 9 epoch Test accuracy (%) Findings

Without Data Augmentation 0.41 M 32 9 32 09s 9 100 77.23% Poor accuracy

Geometric 0.41 M 32 9 32 16s 9 100 87.68 Poor accuracy

Photometric 0.41 M 32 9 32 16s 9 100 89.85 Best accuracy

Elastic Deformation 0.41 M 32 9 32 15s 9 100 83.83 Poor accuracy
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the blurring process, Sigma Color represents the range filter

and Sigma Space represents the spatial filter. These

parameters provide more control over the blurring process,

especially in retaining edges and features while minimizing

noise in the image. Figure 3 shows the image after

applying Gaussian blur on CLAHE applied images.

The preprocessing processes for the HAM10000 dataset

were carried out on images with an original size of

644 9 450 pixels. Similarly, for the ISIC dataset, the

original image size was 600 9 450 pixels. As for the PAD-

UFES dataset, the images had an original size of

1050 9 1050 pixels. After applying the Gaussian blur

algorithm, all images were resized to a standard size of

224 9 224 pixels. This resizing phase ensured consistency

among datasets and assisted in subsequent analysis and

classification operations. The image size is downsized to

32 9 32 pixel during insertion in the model and its dis-

cussion can be found in Sect. 7.2. Several segmentation

approaches, such as thresholding techniques, edge detec-

tion and region-based segmentation, are experimented to

separate skin lesions from the surrounding skin and the

background. However, the segmentation procedures did not

increase our model’s performance. One reason could be

that our model, SkinNet-14, is built to handle a wide range

of image qualities and backgrounds without requiring a

completely clean input. The architecture, involving con-

volutional and transformer layers, has shown the ability to

focus on relevant features by effectively learning from the

entire image context, including subtle signals in the back-

ground that could potentially be significant for accurate

classification.

6 Data augmentation

The technique of artificially generating new training data-

set samples from existing data is known as data augmen-

tation. Data augmentation is vital for AI applications in

medical imaging as annotated data is both expensive and

sparse. Data augmentation is essential as it increases the

quantity of labeled data. In this study, three different data

augmentation techniques, photometric augmentation, geo-

metric augmentation and elastic deformation, were applied

with the optimal technique selected based on highest model

performance.

6.1 Geometric data augmentation

One of the most common augmentation methods employed

to increase the quantity of data is geometric transformation

[48]. Geometric augmentation is the process of modifying

the geometric shape of an image by changing the values to

their matching new values. It is a successful image

enhancement method that changes the shape of an image

without affecting image quality. With several geometric

augmentation methods available for medical imaging, this

study applied vertical flipping, which is used on matrices to

flip the rows and columns vertically, and horizontal flip-

ping, which allows the image to be flipped either to the left

or to the right. Vertical and horizontal flipping maintain the

natural horizontal–vertical column structure and rotation of

an image while rotating the image to any degree. Our

geometric augmentation study used four different tech-

niques named vertical flipping, horizontal flipping and

rotation (clockwise and anticlockwise 90). No additional

parameters are required in geometric techniques; they flip

Fig. 4 Basic structure of Compact Convolutional Transformer (Base Model)
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the image horizontally and vertically, and rotate according

to the given angles.

6.2 Photometric data augmentation

Photometric augmentation involves modifying pixel values

such as brightness, sharpness, blurriness, color and con-

trast. Photometric augmentation transforms red, green and

blue (RGB) channels by shifting the (r, g and b) value of

each pixel to a new pixel (r’, g’ and b’) value. It mainly

alters visual color and lighting, not geometry [49]. This

process must be carried out in such a way that critical pixel

information is not lost. In this study, four different types of

photometric techniques are used: Changing the brightness,

by maintaining the level of lightness or darkness, the

contrast, by making the light regions lighter and the dark

regions darker, the color, by changing the color balance of

an image, and sharpness, by sharpening the details of an

image, produced the best results as a photometric aug-

mentation in this paper. This study used several factor

values to increase image count without compromising pixel

information. The 1.5 factor values generated optimum

augmentation of the images.

6.3 Elastic deformation

Elastic deformation [50] for data augmentation stretches

and changes the shape of images differently according to

skin location and compression strength.

There are two steps involved in obtaining distortion of a

skin cancer image. The first step is to create a random

stress field for the Da and Db directions, respectively. A

random number between m 9 [0.5, 0.5] is selected con-

sistently for each pixel in each direction. A Gaussian filter

is applied to the resulting horizontal and vertical images

independently (Eq. (4) and (5)) to ensure that nearby pixels

have equal displacement. The transformations contain the

maximum value for the initial random displacement (m) and
the degree of smoothing, which is determined by the

Gaussian filter standard deviation (r). Based on the overall

appearance of the patches, a value of = 300 and a value of

20 for deformation were selected. Then, the image seg-

mentation mask is stressed. In order to achieve this, each

pixel is moved to a new location (Eq. (6)), and intensities

at integer coordinates are obtained using order one spline

interpolation [50].

Da ¼ G rð Þ � m� Rand w; zð Þð Þ ð4Þ
Db ¼ G rð Þ � m� Rand w; zð Þð Þ ð5Þ

Itransform jþ Dx j; kð Þ; k þ Dy j; kð Þ
� �

¼ I j; kð Þ ð6Þ

Here, I and Itransform are the original and transformation

images, respectively; w and z are the dimensions of the skin

cancer image. Using this technique, the same image of the

skin lesion will be visible, but it will be deformed and

appear stretched, without losing any important details.

6.3.1 Augmented dataset and augmentation result

From dataset description, it is clearly visible that the data

from each class is grossly unbalanced. So, geometric,

photometric and elastic deformations are applied to

Fig. 5 Proposed SkinNet-14 model architecture
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increase the dataset. Table 1 shows the augmented image

counts for each class.

The generated images are investigated by training the

base CCT model, and test accuracy results are shown in

Table 2.

With a test accuracy of 89.85%, the photometric aug-

mentation methodology clearly exceeds the other data

augmentation methods. Consequently, additional ablation

studies have been conducted employing photometric aug-

mented images.

The result without data augmentation is not satisfactory,

which might be because of the class imbalance problem.

Without augmentation, the model may develop biases,

performing well on overrepresented classes and poorly on

underrepresented ones.

7 Proposed model

ViT is recognized in computer vision studies for outper-

forming CNN models in computing efficiency and training

time. The ViT encoder–decoder blocks process multiple

consecutive datasets faster. Self-attention allows finding

long-distance linkages between items. This results in

improved image categorization [51, 52]. Since ViTs

require significant quantities of data for training, most

medical datasets are not adequate for training purposes.

CCT, a ViT–convolution hybrid, addresses this issue [12].

CNN blocks patch the CCT local receptive field, which

maintains image data. Self-attention identifies visual por-

tions and merges similar data.

7.1 Compact convolutional transformer (CCT)

CCT architecture consists of two main blocks. One is

transformer along sequence pooling, and the other is con-

Table 3 Ablation studies on modifying transformer layer, pooling layer, stride size, activation function

No Transformer encoder block

count

Overall

time

Training

time 9 epoch

Parameters Test accuracy

(%)

Outputs

Modification 1: Transformer layer changes

1 3 41–44 min 200 9 26 s 0.57 M 89.63 Good accuracy with High time

2 2 33–35 min 200 9 16 s 0.41 M 89.85 Good accuracy with medium time

3 1 21–24 min 200 9 7 s 0.24 M 89.55 Almost good accuracy with lower

time

No Activation function Parameters Training time 9 epoch Test accuracy (%) Findings

Modification 2: Activation function changes

1 softplus 0.24 M 10 s 9 200 88.97 Poor accuracy

2 softsign 0.24 M 10 s 9 200 90.88 Almost good accuracy

3 elu 0.24 M 11 s 9 200 90.38 Almost good accuracy

4 relu 0.24 M 10 s 9 200 91.24 Best accuracy

5 Tanh 0.24 M 10 s 9 200 89.55 Poor accuracy

No Pooling layer types Parameters Training time 9 epoch Test accuracy (%) Findings

Modification 3: Pooling layer changes

1 Average 0.24 M 7 s 9 200 91.24 Good accuracy

2 Max 0.24 M 7 s 9 200 92.37 Best accuracy

No Strides numbers Parameters Training time 9 epoch Test accuracy (%) Findings

Modification 4: Stride size changes

1 1 0.24 M 7 s 9 200 93.57 Best accuracy

2 2 0.24 M 4 s 9 200 91.14 Almost good accuracy

3 3 0.24 M 4 s 9 200 91.37 Almost good accuracy

4 4 0.24 M 4 s 9 200 89.63 Poor accuracy
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volutional tokenization. The CCT methodology is shown in

Fig. 4.

Convolutional Tokenization generates image patches

[12]. Convolutional Tokenization processes for image z

using the following formula:

z0 ¼ MaxPool ReLU Conv2D zð Þð Þð Þ ð7Þ

Here, Conv2D is convolutional layer which includes 64

filters with 2 strides and the ReLU. Maxpool then down-

scales Conv2D feature maps. Images of any size can be

processed by convolutional tokenization. The use of con-

volutional patches in CNN layers assists in preserving

regional spatial Information.

Following this, the first block image patches are sent to

the transformer encoder block. The encoder block contains

multilayer perceptron (MLP) and multihead self-attention

(MSA) head. GELU activation, dropout and layer nor-

malization are utilized in the transformer encoder.

The sequence pooling layer utilizes sequence pooling to

gather the output of the transformer backbone. This thesis

explores the use of sequence pooling to enhance data

correspondence for input by assessing the sequential

embeddings of latent space generated by the encoder. The

sequence pooling layer is responsible for collecting every

bit of data, as it effectively captures necessary details from

multiple regions within the input image. The term ‘‘map-

ping transformation’’ is used to describe this particular

method.

Finally, the images from the second dimension are then

categorized after passing through a linear classification

layer.

7.2 Architecture of the base model

This part presents a skin classification model SkinNet-14.

The model is developed by doing ablation studies on the

architecture of the CCT model.

The CCT architecture is made up of an input layer, a

data augmentation layer using different geometric aug-

mentation techniques, a CCT tokenizer, regularization

layers, multihead attention layers, dense layers, pooling

layers, dropout layers and output dense layers. The

224 9 224 9 3 sized image passes through a resizing

process to convert into 32 9 32 9 3 sized images. Then,

the auto-augmentation operates on images with

32 9 32 9 3 input dimensions. Auto-augmentation

Table 4 Ablation studies on

modifying kernel size, batch

size, loss function

No Kernel size count Training time 9 epoch Parameters Test accuracy (%) Findings

Modification 5: Kernel size changes

1 4 8 s 9 200 0.3 M 93.83 Good accuracy

2 3 7 s 9 200 0.24 M 94.77 Best accuracy

3 2 9 s 9 200 0.2 M 93.57 Good accuracy

4 1 10 s 9 200 0.17 M 88.33 Poor accuracy

No Loss Function Training

time 9 epoch

Parameters Test accuracy

(%)

Findings

Modification 6: Loss function changes

1 Binary cross-entropy 7 s 9 200 0.24 M 94.88 Good

accuracy

2 Categorical cross-entropy 7 s 9 200 0.24 M 95.80 Best

accuracy

3 Mean squared error 7 s 9 200 0.24 M 94.81 Good

accuracy

4 Mean absolute error 7 s 9 200 0.24 M 94.63 Good

accuracy

5 Mean squared logarithmic

error

7 s 9 200 0.24 M 28.76 Poor

accuracy

No Batch size Training time 9 epoch Parameters Test accuracy (%) Findings

Modification 7: Batch size changes

1 256 6 s 9 200 0.24 M 94.09 Good accuracy

2 128 7 s 9 200 0.24 M 96.68 Best accuracy

3 64 11 s 9 200 0.24 M 95.56 Good accuracy

4 32 16 s 9 200 0.24 M 95.30 Good accuracy
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generates augmented representations of images during

training in order to boost the performance of the CCT

model. It generates additional training samples with vari-

ous augmentations, enhancing the model’s ability to rec-

ognize objects from different perspectives and lighting

conditions. This leads to better generalization performance.

After passing through auto-augmentation, the CCT Tok-

enizer block receives enhanced images as input, which are

subsequently downsized to 64 9 128 to produce the output

image. The stride and kernel sizes for the convolutional

layer tokenizer block are set to 2 and 4 correspondingly,

coupled with a kernel size of 4 for the pooling layer. Before

the data is delivered to the transformer encoder block, there

are tokenization and tensorflow additions. Two sets of

dense and dropout layers consisting a ratio of 0.1, followed

by the second layer normalization, multihead attention,

regularization and the first layer normalization, comprise

the layers in the sequence stated. The final layer of the

transformer encoder block is connected to another regu-

larization layer. The output, with a size of 64 9 128, is

regularized using the regularization layer. The application

of a second transformer encoded block that is comparable

to the first, follows next. Then, two additional layers are

applied: a regularization layer and a normalizing layer. A

dense layer, using the softmax function, produces outputs

with a dimension of 64 9 1, which is then normalized. The

sequence pooling layer then receives this and generates

output data with a dimension of 1 9 128. Finally, different

groups of skin cancer images are classified by employing a

linear classification layer.

In the proposed model, one transformer encoder block is

removed. Figure 5 depicts the proposed model architecture

that has been generated after the ablation study on the base

model.

7.3 Ablation study

As discussed earlier, to optimize the performance of the

CCT network, we modify the layer architecture and

adjusting the hyper parameter values through an ablation

study. This process involved the conduction of ten ablation

studies. After completing all ablation investigations, the

proposed SkinNet-14 network is established with a more

reliable design, improved functionality and shorter pro-

cessing time.

7.4 Proposed SkinNet-14 architecture

The optimized SkinNet-14 design reduces training time,

maximizes performance and limits time complexity. The

final SkinNet-14 design features fewer transformer encoder

blocks than the original CCT variant (see Sect. 7.2). Fig-

ure 5 shows that the SkinNet-14 model has one transformer

encoder block, while the CCT architecture has two. This

Table 5 Ablation studies on

modifying optimizer, image

size, learning rate

No Optimizer Training time 9 epoch Parameters Test accuracy (%) Findings

Modification 8: Optimizer changes

1 Adam 7 s 9 200 0.24 M 96.68 Best accuracy

2 Nadam 7 s 9 200 0.24 M 88.62 Poor accuracy

3 SGD 7 s 9 200 0.24 M 94.46 Good accuracy

4 Adamax 7 s 9 200 0.24 M 95.23 Good accuracy

5 RMSprop 7 s 9 200 0.24 M 94.48 Good accuracy

No Learning rate Parameters Training time 9 epoch Test accuracy (%) Findings

Modification 9: Learning rate changes

1 0.01 0.24 M 7 s 9 200 92.23 Poor accuracy

2 0.006 0.24 M 7 s 9 200 95.47 Good accuracy

3 0.001 0.24 M 7 s 9 200 97.85 Best accuracy

4 0.0008 0.24 M 7 s 9 200 96.68 Good accuracy

No Image size Parameters Training time 9 epoch Test accuracy (%) Findings

Modification 10: Image size changes

1 64 0.24 M 24 s 9 200 96.17 Near best accuracy

2 32 0.24 M 7 s 9 200 97.85 Best accuracy

3 28 0.24 M 6 s 9 200 95.17 Good accuracy

4 16 0.24 M 5 s 9 200 94.88 Good accuracy
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enables faster training and smaller model size. The archi-

tecture remains unchanged, with the exception of some

model hyperparameters such as kernel size and stride size.

Apart from the data augmentation and softmax functions in

the dense layer, the proposed model has 14 layers in its

architecture, which inspired the model’s name: SKinNet-

14.

Positional encoding is not necessary for model function,

which reduces processing costs. The computational com-

plexity of self-attention is Oðn2:dÞ, where n is the length of

Fig. 6 Test accuracy increasing

over 10 ablation studies

Table 6 Different matrices calculated for SkinNet-14 model performance evaluation

Skin Class Precision Recall F1-score Test Accuracy (%)

HAM10000 dataset Actinic Keratosis 0.99 0.98 0.99 99.91 Test Accuracy:

97.85%Basal Cell Carcinoma 1.00 0.99 0.99 99.95

Benign Keratosis 1.00 0.99 0.99 99.84

Dermatofibroma 1.00 1.00 1.00 100.00

Melanoma 0.99 0.98 0.98 99.62

Melanocytic Nevi 0.98 0.99 0.99 98

Vascular Lesions 0.18 0.04 0.06 98.45

ISIC dataset Actinic Keratosis 1.00 1.00 1.00 100.00 Test Accuracy:

96.01%Basal Cell Carcinoma 1.00 1.00 1.00 99.94

Dermatofibroma 1.00 0.99 0.99 99.94

Melanoma 0.91 0.90 0.90 96.19

Nevus 0.98 0.99 0.99 99.58

Pigmented Benign Keratosis 1.00 1.00 1.00 100

Seborrheic Keratosis 0.50 0.52 0.51 96.55

Squamous Cell Carcinoma 1.00 0.99 1.00 100

Vascular Lesions 1.00 1.00 1.00 99.94

PAD-UFES-20 dataset Actinic Keratosis 0.98 0.98 0.98 99.02 Test Accuracy:

98.14%Basal Cell Carcinoma 0.99 0.98 0.98 98.73

Melanoma 0.93 1.00 0.96 99.83

Nevus 0.99 0.99 0.99 99.83

Seborrheic Keratosis 0.99 0.99 0.99 99.13

Squamous Cell Carcinoma 0.93 0.97 0.95 99.88
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the input sequence and d is the number of vector dimen-

sions. The addition of positional encoding O n2:d þ n:d2
� �

Þ
increases the computational complexity [10]. Because the

SkinNet-14 model does not require positional encoding, the

training and testing phases use fewer resources. Addition-

ally, the transformer backbone only uses self-attention

mechanism. Consequently, the model is significantly more

efficient.

Transformer encoder blocks are computationally inten-

sive, therefore reducing a block decreases the complexity,

which might lead to faster training and inference times

[10]. Additionally, reducing model complexity might be

counterbalanced by incorporating architectural features

that preserve important information and improve the

accuracy.

7.5 Training strategy

The parameters of the base CCT models are: transformer

layer = 3, kernel size = 2, learning rate = 0.0008, opti-

mizer = adam, batch size = 64, loss function = mean

squared error, pooling layer = average and activation

function = tanh. For the PAD dataset, 400 epochs, and 200

epochs for the HAM10000 and ISIC datasets, are used.

Several experiments are conducted before deciding on the

number of epochs. The split ratio of each skin cancer

dataset is 75%, 10% and 15% for training, validation and

testing sequentially. During an ablation study, these are the

initial parameters that are gradually adjusted by multiple

experiments, as shown in Sect. 8.2. Categorical cross-en-

tropy is employed initially as this is the standard loss

Fig. 7 Confusion matrix for the proposed SkinNet-14 model on: A HAM10000 dataset, B ISIC dataset, C PAD dataset
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function in multiclass instances [53]. The same configu-

ration is considered while training the transfer learning

models. In order to test different models and configura-

tions, we engaged three computers, each with an Intel Core

i5-8400 processor, 16 GB of RAM, an NVidia GeForce

GTX 1660 GPU and a 256 GB DDR4 SSD for storage.

7.6 Transfer learning models

We compare the performance of multiple transfer learning

models which trained with the same datasets, taking

training time into account, in order to assess the

performance of our proposed technique. In total, 128 bat-

ches are executed over 400 epochs for the PAD dataset,

200 for HAM10000 and 200 for ISIC. The epoch numbers

are chosen following several experiments.

7.6.1 VGG architecture

This study use the Visual Geometry Group (VGG) net-

works [54], specifically VGG16 and VGG19. VGG16,

having 16 weighted layers, is a cutting-edge transfer

learning algorithm that achieves an accuracy of 92.7% on

the ImageNet dataset. Because the VGG model has more

Fig. 8 Accuracy curve and loss curve of SkinNet-14 model on: A HAM10000 dataset, B ISIC dataset, C PAD dataset
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depth, it can assist the kernel in learning more complicated

features. There are five max-pool layers, thirteen conv

layer and three dense layer in VGG16.

VGG19 is another VGG model version consisting 19

weighted layers. In the convolutional layers, the ReLU

activation function is applied.

7.6.2 ResNet architecture

Residual networks (ResNets) [55] skip blocks of convolu-

tional layers to create residual blocks. Stacking residual

blocks improves training and reduces network

deterioration.

ResNet50 employs different-sized convolution filters to

reduce CNN model deterioration and training time. 48

convolutional layers, a max-pool and an average pool layer

make up this architecture. The selected model has 23

million trainable parameters.

ResNet152 has 152 layers. ResNet is an easy-to-opti-

mize and effective deep learning architecture. As the net-

work design contains multiple layers, it is time-consuming.

ResNet50V2 [55] is an altered version of the original

ResNet50. ResNet50V2 outperforms ResNet50 and

ResNet101 on ImageNet. ResNet50V2 modified the way in

which block connections propagate.

7.6.3 MobileNet

The purpose of MobileNet [56] is to provide an effective

deep neural network architecture that can perform image

classification on embedded and mobile devices with high

efficiency. The model’s lightweight and high-performance

characteristics make it suitable for applications that prior-

itize power and memory constraints.

MobileNet is a convolutional neural network architec-

ture that utilizes depth-wise separable convolutions to

achieve a reduction in the number of parameters and

computation required, while still maintaining comparable

accuracy to conventional convolutional layers. The feasi-

bility of executing the model on devices with restricted

resources is enabled.

8 Result and discussion

In this section, the results of the research are explained,

including the findings of numerous ablation experiments

and model validation metrics. This part also includes a

description of the accuracy loss curves and confusion

matrix to further examine the efficacy of the proposed

SkinNet-14 model.

Fig. 9 Testing the performance of the SkinNet-14 using reduced images on: A HAM10000 dataset, B ISIC dataset, C PAD dataset
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8.1 Evaluation metrics

Several metrics are investigated to determine how well the

suggested classification model performs. A true positive

(TP) is a finding where the model correctly classifies the

positive category. A result is considered to be true negative

(TN) if the model correctly identifies the negative class.

False positive (FP) and false negative (FN) findings are

those in which the model wrongly predicts the positive

class and the negative class, respectively. The percentage

of accurate predictions is known as accuracy. Equations of

the performance metrics used in this study are given below

[57].

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð8Þ

RecaIl ¼ TP

TPþ FN
ð9Þ

Precision ¼ TP

TPþ FP
ð10Þ

F1 ¼ 2
precision*recall

precisionþ recall
ð11Þ

8.2 Ablation study results

The optimal model architecture was achieved through a

series of ablation studies, which are detailed in this sec-

tion. The performance of the skin classification model is

optimized through an ablation study conducted on the

images of the HAM10000 dataset. Each of the parameters

was chosen based on preliminary experiments and litera-

ture that suggested the impact of these parameter on deep

learning models performance and we experimented with a

range of values for these parameters, carefully observing

changes in model performance.

Changing a small number of features can enhance the

performance of a classification model. The proposed robust

model is optimized through a series of experiments that

involve adjusting the base model features to determine the

optimal configuration. This research comprises ten distinct

studies. Tables 4, 5 and 6 present the results of the ablation

experiments conducted in this study.

8.2.1 Modification 1: transformer layer changes

In this research, the transformer layer is changed by

varying the number of encoder blocks. Table 3 shows that

increasing the number of blocks increases the number of

parameters and the duration of time, yet the accuracy is

nearly identical. A single transformer block with 0.24 M

parameters, 21–24 min and 89.55% accuracy achieves

optimum performance. This configuration has the smallestTa
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number of trainable parameters and the least training time

per epoch. Therefore, configuration 3 is selected for addi-

tional ablation experiments.

8.2.2 Modification 2: activation function changes

Different activation functions influence the classification

model, and the optimal activation function improves model

performance. Six different activation functions, entitled

Tanh, ELU, ReLU, SoftSign and SoftPlus are applied to the

model (Table 3). ReLU scored the highest accuracy among

the six activation functions, 91.24%, with a time duration

of 10 s per epoch. Therefore, ReLU activation is selected

for additional ablation experiments.

8.2.3 Modification 3: type of pooling layer changes

The pooling layers downsample feature maps by summa-

rizing feature presence in patches. Average pooling and

max-pooling layers are applied for this experiment

(Table 3). The test accuracy increased from 91.24% to

92.37% after using the max-pooling layer. As a result, the

max-pooling layer is selected for additional ablation

experiments.

8.2.4 Modification 4: stride size changes

The stride selection impacts the network matrix structure

after convolution. Various stride sizes like 4, 3, 2 and 1 are

applied in the transformer layers. Table 3 shows that using

a single stride improved the accuracy to 93.57% with 7 s

per epoch. So, further ablation experiments continued with

stride size 1.

8.2.5 Modification 5: kernel size changes

Kernel size impacts transition speed and can be optimized

through calculation of kernel density. Various kernel sizes

including 4, 3, 2 and 1 are utilized, and Table 4 demon-

strates that kernel size 3 yields the highest accuracy at

94.77% and the shortest time per epoch of 7 s. Conse-

quently, a kernel size of 3 is maintained for future ablation

studies.

8.2.6 Modification 6: loss function changes

Loss functions are used to assess how effectively a model

predicts the outcome. In the experiment, five distinct loss

functions are implemented. They are categorical cross-en-

tropy, binary cross-entropy, mean squared logarithmic

error, mean absolute error and mean squared error. Cate-

gorical cross-entropy, at 95.80% achieved the highest

accuracy of all loss functions tested (Table 4). CategoricalTa
bl
e
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cross-entropy is therefore adjusted for subsequent ablation

experiments.

8.2.7 Modification 7: batch size changes

Different batch sizes affect classification model perfor-

mance. For the modification, 256, 128, 64 and 32-batch

sizes are evaluated (Table 4). Training the model with 128

batches results in a maximum accuracy of 96.68% with

10 s per epoch, whereas other batch sizes reduce accuracy

(Table 4). Accordingly, further ablation studies use batch

size 128.

8.2.8 Modification 8: optimizer changes

An optimizer for neural networks modifies weights and

learning rate. It decreases loss and increases accuracy. In

this study, five optimizers known as Nadam, Adam, Ada-

max, RMSprop and SGD were tested with a learning rate of

0.0008. The best accuracy of 96.68%, is attained with the

Adam optimizer (Table 5). Therefore, Adam optimizer is

retained for the remainder of the ablation research.

8.2.9 Modification 9: learning rate changes

Learning rate affects loss gradient weights in neural net-

works. With the Adam optimizer, learning rates of 0.0008,

0.01, 0.001 and 0.006 are tested. The Adam optimizer

achieves a best result of 97.85% with a learning rate of

0.001 (Table 5). Hence, a learning rate of 0.001 is applied

for subsequent ablation studies.

8.2.10 Modification 10: image size changes

The final study involves doing experimentation with the

input layer picture dimensions (image height and width).

We tested 64 9 64, 32 9 32, 28 9 28 and 16 9 16 pixel

sized images. The findings are presented in Table 5. The

model was able to be trained in just 10 s per epoch, while

still achieving the best testing accuracy of 97.85%, with an

image size of 32 9 32 on HAM10000 dataset. However,

the image size of 64 9 64 also achieved a very good test

accuracy of 96.17%, but the training time was 24 s per

epoch.

The input image dimension selected is 32 9 32 pixels as

it requires minimal training time while retaining high

performance. This is essential because the objective of the

study is to design a model with high performance that also

takes time complexity into account. Figure 6 depicts how

test accuracy gradually improved throughout the ablation

studies conducted on the base model.

After the ablation study, the configuration of the pro-

posed SkinNet-14 is: 32 9 32 image size, Adam optimizer

with learning rate of 0.001, batch size of 128 and kernel

size 3. The activation function of SkinNet-14 is relu, loss

function is categorical cross-entropy and pooling layer is

max-pooling. Pooling layer kernel size is 3 and stride size

is 1.

8.3 Performance evaluation of the proposed
model

After completing ablation experiments on the base model,

the final SkinNet-14 model has been created with signifi-

cantly enhanced classification performance. This is

accomplished by modifying and configuring the model in

various ways. Table 6 shows a statistical analysis for the

proposed SkinNet-14 model, such as precision, f1-score,

recall and test accuracy on each class for the three datasets.

The results of Table 6 clearly show that the proposed

model performed exceptionally well on all three datasets.

In the HAM10000 dataset, the model achieved good per-

formance metrics on six classes of the dataset, except for

vascular lesions. The average accuracy obtained on the

HAM10000 dataset is 97.85%. In the ISIC dataset, the

model achieved good performance metrics for all eight

classes, except for Seborrheic Keratosis. The average

accuracy of the dataset is 96.01%. Finally, on the most

challenging PAD-UFES dataset, the proposed model

achieved the highest average accuracy of 98.14%. It is

visible that the model achieved good performance metrics

for precision, recall and f1-score on all six classes of this

dataset. The test accuracy of the different classes in each

dataset ranges from 98 to 100%. The table depicts that the

performance of vascular lesions in the HAM10000 dataset

and seborrheic keratosis in the ISIC dataset is poorer

compared to other classes. This could be due to the fact that

the image quality of these classes was subpar, and as a

result, reducing their size resulted in a loss of information,

making it more difficult for the model to accurately dis-

tinguish these lesions from others. However, it is clear that

the proposed model performs well in multiclass

classification.

Figure 7 displays the confusion matrix of the SkinNet-

14 model on three datasets. Row values accurately indicate

the correct labeling of test images. The utilization of col-

umn values serves as a means to depict the predicted labels

of the model for the images in the test set. The successful

prediction of test images by the model is indicated by the

diagonal values in the confusion matrix (Fig. 7). However,

in the ISIC dataset confusion matrix (Fig. 8B), among the

58 images, 30 misclassifications occurred for Seborrheic

Keratosis (Class 7) and in the HAM10000 dataset confu-

sion matrix (Fig. 8A), among the 107 images, 100 mis-

classifications occurred for Vascular Lesions (Class 7).

Despite that, the model is not biased toward any particular
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class or classes, nor does it predict any class significantly

better than others. The robustness of the model is demon-

strated by providing of approximately equal numbers of

accurate predictions for each class.

Figure 8 depicts the SkinNet-14 model accuracy and

loss curves on HAM10000, ISIC and PAD dataset. From

the figures of all three dataset, it is visible that the model

training and validation curves converge without substantial

gaps, indicating minimal overfitting. Similarly, loss curves

(Fig. 8) converge steadily from the start to ending epoch. It

can be said that neither overfitting nor underfitting occurred

during the model training phase.

8.4 Examining the performance stability
of proposed SkinNet-14 model

This section evaluates the proposed SkinNet-14 model

performance consistency by gradually reducing the amount

of input photos at various phases. The dataset image

number is decreased by approximately half for each phase.

The results of decreasing the number of images are shown

in Fig. 9.

After data augmentation, the total number of images in

each dataset is 50,785 for the HAM10000 dataset, 11,195

for the ISIC dataset and 11,490 for the PAD dataset. Fig-

ure 9 illustrates the performance of the proposed SkinNet-

14 model using a reduced number of images. In Fig. 9A for

the HAM10000 dataset, we can see that the model attained

a 96.68% accuracy with 50,785 images. After that, the

images are decreased by half in each phase, as follows:

25,392, 12,696 and 6,384, with a respective accuracy of

95.57%, 93.83% and 90.27%. In Fig. 9B, ISIC dataset with

image number 11,195, the suggested model attained an

accuracy of 97.85%. After lowering the image to 5,597, the

accuracy is 95.21%, and after decreasing it by half to

2,798, the accuracy is 92.61%. In Fig. 9C for the PAD

dataset, the accuracy is 98.14% with 11,490 images,

96.23% with a 50% reduction to 5,745 images and

94.45% with 2,872 images. After analyzing the proposed

model on each of these three datasets, despite reducing the

number of images, the model maintains performance con-

sistency and accuracy. We conclude that utilizing a modest

number of images, the suggested SkinNet-14 model may

produce optimal results while keeping a low training time,

demonstrating the consistency of the model performance.

In addition, the model can use fewer images without a

significant reduction in test accuracy.

8.5 Comparison with CNN-based transfer
learning models

Six state-of-the-art transfer learning models are used to

evaluate the proposed approach. All models are trained and

tested on the three skin cancer datasets with 32 9 32 size

images. The images are preprocessed and augmented.

Table 7 shows the results. The optimizer is Adam, the

batch size is 128, and the learning rate for each model in

the table is 0.001. Table 7 shows the experiment results.

VGG16 achieved the highest test accuracy of 81.21%

and F1-score of 82.10% on the HAM10000 dataset and

71.21% accuracy with 72.09% F1-score, on the ISIC

dataset, outperforming all other transfer learning models.

On the PAD dataset, VGG19 achieved the highest score of

the six CNN-based pretrained models with 82.97% accu-

racy and 83.48% F1-score. On all three datasets containing

32 9 32 pixel pictures, the accuracy of the remaining

transfer learning models varied between 40 and 80% for

both accuracy and F1-score. The parameters of all transfer

learning models were high, which raised the temporal

complexity and time per epoch, which ranged between 65

and 67 s for the HAM10000 dataset, 30 and 34 s for the

ISIC dataset, and 28 and 30 s for the PAD dataset. In

contrast, our suggested model achieves the highest accu-

racy of 97.85% on the HAM10000 dataset, 96.0% on the

ISIC dataset and 98.14% on the PAD dataset with 97.92%,

96.50% and 98.57% F1-score, respectively. In terms of

accuracy and F1-score, the SkinNet-14 model outper-

formed all six transfer learning methods. In addition, the

suggested model parameter size is 241,861, resulting in a

reduced temporal complexity of 7 to 8 s per epoch on the

HAM10000 dataset, 2 to 3 s on the PAD dataset and 1 to

2 s on the ISIC dataset. With our methodology, training

takes about 6–24 min contrasted with approximately two

hours for the transfer learning methods. This represents a

substantial improvement in terms of time-intensiveness.

Additionally, achieving near-optimal performance with

smaller image size uses less memory and storage space,

making the model less resource-hungry and contributing to

a reduction in space complexity.

8.6 Comparison with other studies

Table 8 represents a comparison table of model, dataset,

image resolution, training time, accuracy and limitations

between the previous studies and proposed research.

Table 8 compares the literature of other models to our

proposed model. The table shows that all studies classified

skin cancer using different models. A pixel size of

224 9 224 is the commonly used image resolution for the

models. However, each study shows a number of limita-

tions, such as high computational time, limited amounts of

data, poor accuracy and images without preprocessing.

Our research addressed these limitations using a large

and well-balanced dataset and applying image processing

techniques. In order to construct generic classification

models for medical imaging, image resolution is a key
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consideration [62]. In order to learn about the effect of the

image resolution in the modeling, Sabottke et al. [63]

experimented with image resolutions ranging from

32 9 32 pixel to 600 9 600 pixel using some well-known

deep learning and transfer learning models. The study

demonstrated that when the pixel size of the image

decreases, the information required for CNNs for classifi-

cation decreases and as a result, the model suffers in terms

of accuracy. This limitation is overcome in our work by

recommending a model that utilizes images with low res-

olution (32 9 32 pixels) and achieves good accuracies.

9 Conclusion

To summarize the theoretical advancements achieved with

SkinNet-14, a model that demonstrates remarkable ability

to analyze low-resolution dermoscopy images for the

identification of skin cancer. A significant development in

the field is demonstrated by this work, which is supported

by the model’s capacity to overcome the typical challenges

of high-resolution demand and high computational cost.

The deployment of a modified CCT architecture by the

model, which strategically enhances data to address and

reduce class imbalances holistically and hence results in

better performance, makes significant theoretical advances.

Key results validate the accuracy of SkinNet-14, which

reaches up to 97.85% on the HAM10000 dataset, 96.01%

on the ISIC dataset and 98.14% on the PAD dataset with

lower training time. These results demonstrate the model’s

dependability and efficiency in a variety of diagnostic

contexts by exceeding current benchmarks and confirming

its stability despite reduced data volume. Realizing the

shortcomings of our method, future work should focus on

extracting different features from a larger set of raw pho-

tos, including real-time data collecting for a more complete

picture of skin cancer types. Moreover, investigating how

SkinNet-14 might be included into clinical processes is a

promising direction that might bring in a new era of easily

available, quick and precise diagnostic methods. Our

findings contribute a novel perspective to the existing

knowledge pool, challenging and inspiring the academic

community to embrace and expand upon our

methodologies..
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