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A B S T R A C T

Mathematical models of Barnacle Mating Optimization (BMO) are based on observations of
real-world barnacle mating behaviors such as sperm casting and self-fertilization. Nevertheless,
BMO considers penis length to produce new offspring through pseudo-copulated mating
behavior, with no constraints like strong wave motion, food availability, or wind direction
considered. Exploration and exploitation are two crucial optimization stages as we implement
the constrained BMO. They are informed by models of navigational sperm casting properties,
food availability, food attractiveness, wind direction, and intertidal zone wave movement
experienced by barnacles during mating. We will later integrate opposition-based learning (OBL)
with constrained BMO (C-BMO) to improve its exploratory behavior while retaining a quick
convergence rate. Rather than opposing all barnacle dimensions, we just opposed those that
went over the border. In addition to increasing efficiency by cutting down on wasted time
spent exploring, this also increases the likelihood of stumbling onto optimal solutions. After
that, it is put through its paces in a real-world case study, where it proves to be superior to
the most cutting-edge algorithms available.

. Introduction

In recent years, meta-heuristic optimization approaches have gained popularity due to their ease of use, low computational cost,
radient-free process, and flexibility. However, the No Free Lunch (NFL) theorem in this field posits that no single approach can
olve all optimization problems. This implies that while some meta-heuristic algorithms may provide optimal solutions for certain
roblems, they may offer subpar results for others. This insight motivates further exploration into the field, leading researchers
o investigate numerous advancements and enhancements of optimization algorithms based on natural processes, with the genetic
lgorithm [1–4] being particularly prominent. The primary objective is to identify the globally optimal solution from a population
f candidates generated through recombination, mutation, and the inheritance of favorable traits across generations. According to
FL theory, the efficiency of a new algorithm may be improved for diverse applications where problem types vary significantly.
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Despite their advantages, meta-heuristics face challenges such as slow convergence and the risk of becoming trapped in local
earch regions, which can increase computing costs. To address these limitations and leverage the benefits of meta-heuristics, there

has been a significant rise in the development of hybrids, modifications, and improvements [5,6]. Notable examples include hybrid
grey wolf [7], hybrid differential evolution [8], hybrid heat transfer and passing vehicle algorithms [9], hybrid harmony search
algorithms [10], hybrid ABC [11], hybrid PSO [12], and the hybrid Taguchi salp swarm-Nelder–Mead algorithm [13–15]. Effective
meta-heuristics must balance global diversification and local intensification. Achieving an optimal equilibrium between exploration
and exploitation is crucial for developing meta-heuristics, as each phase plays a significant role in improving the solution space and
reducing overall time. This research utilizes the Gooseneck Barnacle Optimization Algorithm, which has been described in recent
work [16]. Additionally, the novel machine learning approach based on this optimizer has been applied in rainfall prediction [17].
Other relevant optimization techniques such as the continuous genetic algorithm have been explored in previous studies [18,19].
Moreover, the hybrid evolutionary algorithm was recently applied for COVID-19 case prediction [20]. Consequently, the quest
for more effective approaches remains a pressing issue, leading to an increase in the development of new hybrid meta-heuristics.
Over recent decades, researchers have utilized numerous hybrid meta-heuristics to solve engineering design optimization problems,
enefiting from enhanced local and global search strategies.

Similarly, the Barnacle Mating Optimizer (BMO) [16,17] derives its name from the mating rituals of barnacles. The algorithm
odels barnacle reproduction, where barnacles release sperm and eggs into the sea. In BMO, barnacles represent potential

ptimization targets, and simulated mating sustains and expands barnacle populations. At the start of each mating cycle, the
algorithm selects the highest and lowest fitness-rated barnacles and combines their starting points to generate new candidates.
The strongest offspring emerge as the most robust barnacles, with the process continuing until a satisfactory solution is found.
BMO’s simplicity and fewer parameter settings make it user-friendly, and it can address both discrete and continuous optimization
problems.

Despite promising results, BMO’s stability, scalability, and speed require further investigation, as improvements by various
researchers [21–25] have not fully addressed these concerns. The initial BMO implementation, based on pseudo-copulated mating
using only penis length as a feature, does not accurately reflect real-world reproductive behaviors. This highlights the need for a
more theoretically grounded approach.

The Barnacle Mating Optimizer (BMO) algorithm, though widely cited with over 300 references, lacks critical analysis of
its theoretical and structural foundations. The algorithm’s simplicity raises questions about its efficacy due to the absence of
specialization in theoretical, structural, or natural mimicry. For example, the Hardy-Weinberg principle is unsuitable for modeling
biological processes in hermaphroditic species like barnacles. The BMO method, which considers the relative contributions of parents’
qualities to their offspring, may not be necessary for optimizing the search space.

In particular, BMO’s exploration equation for sperm-cast mating is flawed. While BMO aims to maximize global search sites, it
lacks the limits and validation needed to support its exploration–exploitation balance. This issue underscores the need for a robust
theoretical basis in any effective optimization method.

To address these limitations, the Improved Barnacle Mating Optimization (IBMO) algorithm incorporates gooseneck barnacle
behavior into the exploration and exploitation phases, enhancing the algorithm. IBMO’s random variable helps avoid local optima,
lthough its theoretical foundation is not yet fully established.

The incorporation of Opposition-Based Learning (OBL) offers a potential solution to these issues. OBL enhances the algorithm’s
search space exploration by considering both candidate solutions and their inverses, increasing the likelihood of finding the global
optimum. OBL improves performance by avoiding early convergence and ensuring a better balance between exploration and
exploitation, and has been successfully applied to various optimization techniques.

Integrating OBL [26,27] within the BMO framework significantly strengthens the algorithm. The enhanced BMO, supported by
OBL, navigates complex datasets more effectively, avoids local optima, and provides more reliable results. This approach addresses
the limitations of the original BMO and aligns the optimization process with natural constraints.

The study’s key contributions are:

• Enhancing the original BMO by introducing constraints such as wave action and wind direction, and integrating Opposition-
Based Learning (OBL). This combination improves the algorithm’s exploration–exploitation balance and enables a more
efficient search of the solution space.

• Developing a hybrid model that combines the Selective Opposition-Based Constrained BMO (SO-C-BMO) with LSSVM. This
hybrid model optimizes hyperparameters, avoids premature convergence, and effectively addresses time series prediction
challenges.

• Comparing SO-C-BMO with leading metaheuristic algorithms, demonstrating its superior performance in terms of statistical
significance, convergence speed, exploration–exploitation ratio, and diversity.

The structure of the paper is organized as follows: Section 2 presents the study’s rationale and biological basis. Section 3 describes
the methodology in detail. Section 4 offers a comprehensive comparison of various advanced technologies and a real-life case study
to validate and confirm the effectiveness of SO-C-BMO. Finally, Section 5 concludes the study and provides suggestions for future
research.
2 
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2. Basic theory and notations

2.1. Barnacle Mating Optimizer (BMO)

The Barnacle Mating Optimizer (BMO) is a biologically inspired algorithm introduced in [28,29]. It mimics barnacle mating
habits, which involve both traditional copulation and sperm-casting techniques. The initial barnacle population 𝑋, representing
solution candidates, is given by:

𝑋 =
⎡

⎢

⎢

⎣

𝑥11 ⋯ 𝑥𝑁1
⋮ ⋱ ⋮
𝑥1𝑛 ⋯ 𝑥𝑁𝑛

⎤

⎥

⎥

⎦

(1)

Here, 𝑛 denotes the total population size, and 𝑁 is the number of control variables to be optimized. After evaluating the
population, the best solution is identified, sorted, and placed at the top of the list.

The reproduction process in BMO is described by the following equations:

𝑥(𝑁new)
𝑖 = 𝑝 × 𝑥𝑁barnacle_dad + 𝑞 × 𝑥𝑁barnacle_mum (2)

𝑥(𝑁new)
𝑖 = rand() × 𝑥𝑛barnacle_mum (3)

In these equations, 𝑥𝑁barnacle_dad and 𝑥𝑁barnacle_mum are the control variables of the parent barnacles. 𝑝 represents normally distributed
andom numbers, and 𝑞 is calculated as 𝑞 = 1 − 𝑝.

2.2. Limitations of BMO

• Lack of Theoretical and Structural Foundation: The BMO algorithm lacks a well-defined theoretical basis and structural
specialization. Despite its widespread citation, its foundational principles have not been critically examined, raising concerns
about its validity.

• Inaccurate Biological Mimicry: The algorithm oversimplifies biological processes, such as applying the Hardy-Weinberg
principle to barnacle offspring generation. This approach does not align with natural barnacle behavior, leading to questionable
relevance in optimization tasks.

• Unjustified Exploration and Exploitation: BMO struggles with balancing exploration and exploitation, crucial for effective
optimization. Its exploration equation, inspired by sperm-cast mating, lacks clear validation and constraints, making its
optimization process difficult to justify.

• Dependence on Ineffective Metrics: BMO relies on metrics, such as penis length in pseudo-copulated mating, that do not
significantly contribute to the optimization process, limiting its effectiveness.

• Susceptibility to Local Optima: BMO’s performance is influenced by its initialization strategy and may struggle to escape
local optima, resulting in unreliable outcomes, especially with complex datasets.

• Insufficient Real-World Application: BMO has not been thoroughly applied to real-world scenarios, with its development
focusing narrowly on barnacle behavior, limiting its usability for complex optimization problems.

2.3. Variants and hybridization of BMO

The Barnacle Mating Optimizer (BMO), inspired by barnacle mating, has been used to solve various optimization challenges,
including technical and economic problems. However, it faces drawbacks such as delayed and premature convergence. Hybridization,
which involves combining BMO with other optimization methods, has been explored to improve convergence speed, exploration,
and exploitation. Adjustments to the fundamental algorithm or parameters, such as adaptive mutation rates or varied population
sizes, have been suggested to enhance BMO’s performance.

The following table summarizes some enhancements and hybridization of BMO (see Table 1).
In conclusion, hybridization and enhancement of BMO can improve its performance and resilience, making it more effective for

olving optimization problems. Future studies may further explore these methods.

2.4. Constrained Barnacle Mating Optimizer (C-BMO)

Nature-inspired optimization methods should ideally replicate natural constraints to minimize computational complexity, as
onstraints shape natural system behaviors and interactions. Ignoring these constraints can lead to suboptimal solutions. For example,
enetic algorithms often include task constraints in the fitness function to ensure viable solutions are evaluated. This approach can

improve search effectiveness and convergence speed. However, incorporating all constraints may increase computational complexity,
o balancing constraint integration with computational feasibility is essential.

The initial BMO design did not incorporate constraints. This study introduces three factors to improve BMO’s exploration and
xploitation processes: wave action in intertidal zones, surrounding wind activity, and wave and wind direction towards targets.
3 
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Table 1
BMO enhancements and hybridizations in other fields of study.

Sl# Improvements of BMO Applications Ref

1 BMO-LSSVM COVID-19 confirmed cases prediction [30]
2 BMO based Support Vector Machine Selection of genes for microarray-based cancer classification [31]
3 BMO based transfer learning model Detection and classification of malaria parasites in

biomedical contexts
[32]

4 BMO-NN Stock price predictive analysis [33]
5 BMO-Levy Forecasting COVID-19 confirmed cases using time-series

analysis while accounting for total vaccination
[34]

6 BMO-Gauss Forecasting COVID-19 confirmed cases using time-series
analysis while accounting for total vaccination

[35]

7 Conventional mathematical formula used to
Improve the exploration and then BMO
hybridize with SVM

Estimating the state of charge for lithium-ion batteries [36]

8 BMO-Levy Flight The objective is to find the unknown parameters for fuel
cells by minimizing the sum of squared differences between
the experimentally observed and anticipated output voltage

[37]

Barnacles typically inhabit the higher and intermediate intertidal zones, with significant wave heights between 0.8 and 1.5 to 3
meters above mean low water. Traditionally, the significant wave height 𝐻𝑠 is given by 𝐻𝑠 = 4(𝐻2𝑇 ). This study uses the following
modified formula for 𝐻𝑠:

𝐻𝑠 = 1.5 − (Iteration × (1.5 − 0.2))
Maximum Iteration (4)

Equations for the updated BMO are:

𝑥(𝑁new)
(𝑖+1) = 𝑝 × 𝑥𝑁barnacle_dad + 𝑞 × 𝑥𝑁barnacle_mum + WD𝑖 + Tdim +𝐻𝑠 × 𝑥(𝑁new)

𝑖 (5)

𝑥(𝑁new)
(𝑖+1) = rand() × 𝑥𝑛barnacle_mum + WD𝑖 + Tdim +𝐻𝑠 × 𝑥(𝑁new)

𝑖 (6)

WD𝑖 = randi[0, 359] (7)

The wind direction WD𝑖 adjusts the search space using cosine and sine functions. Integrating this with target dimensions Tdim, and
ssuming a constant wind direction towards the target, enhances Eq. (6). This enhancement through selective opposition improves

exploration, leading to better convergence and avoidance of local optima compared to BMO or C-BMO.

2.5. Selective opposition-based C-BMO (SO-C-BMO)

Selective Opposition improves metaheuristic optimization algorithms by reversing the exploration orientation of solutions that
outperform the current optimum, helping escape local optima and explore the solution space more effectively. This technique
accelerates convergence to the global optimum, especially for non-convex objective functions with multiple local optima.

Selective Opposition (SO) has been applied in various algorithms, including evolutionary algorithms, particle swarm op-
imization, and gradient-based methods [38–41]. The methodology enhances algorithm effectiveness with minimal processing

requirements, preventing local optima and improving exploration.
We have hybridized the constrained BMO with Selective Opposition and LSSVM to form SO-C-BMO-LSSVM. This combined

approach uses C-BMO to find optimal LSSVM hyperparameters for time series prediction. Selective Opposition improves C-
BMO-LSSVM’s performance in handling non-convex functions by exploring solution space more effectively and avoiding local
ptima.

Recent studies have explored applications of machine learning beyond time series prediction. For instance, [42] used Recurrent
eural Networks (RNNs) for solving the persistent defensive location problem (CDLP), reducing computing costs and optimizing
efensive facility placement. Other studies have utilized RNNs in IoT settings [43] and developed a personalized healthcare rec-

ommender system using community detection algorithms [44]. Further research [45] suggests Hybrid Ant-Bee Colony Optimization
HABCO) for feature selection issues. These applications and methods will be evaluated for their performance and potential internal
odifications.

3. Methodology

3.1. Data description

Data was collected daily from February 24, 2021, to November 27, 2022, as described in [46]. The dataset was segmented into
raining, validation, and test sets. Each day’s vaccination case [47] from the exact date was combined with previous days’ data to
4 
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Fig. 1. Sample dataset.

Fig. 2. Schematic diagram of dataset after segmentation.

produce a cumulative verified COVID-19 dataset—Malaysia’s total number of vaccinations since the start of daily collection. Figs. 1
and 2 illustrate the dataset sample after segmentation (70-15-15) and the schematic diagram for better understanding, respectively.

Fig. 2 the schematic diagram illustrates the segmentation of cumulative confirmed COVID-19 cases and vaccination frequency
data into three parts: 70% for training, 15% for validation, and 15% for testing, covering 854 days (122 weeks) from February 24,
2021, to July 27, 2022. The data is divided into Weekly Average Points (WAP) calculated by averaging the confirmed cases and
vaccination frequency over a 7-day period. Each week is denoted as 𝑊1𝐷1, 𝑊1𝐷2,… , 𝑊1𝐷7, where 𝐷1, 𝐷2,… , 𝐷7 represent daily
confirmed cases.

In this setup, the seventh day of the first week (𝑊1𝐷7) might fall on a specific day, such as Friday. The number of confirmed
and vaccination cases for the preceding six days (𝑊1𝐷1, 𝑊1𝐷2,… , 𝑊1𝐷6) influences the weekly average. This means that weekly
trends are shaped not just by the end-of-week data point but also by daily fluctuations throughout the week. For example, if there
is a spike or drop in confirmed cases or vaccination frequency on specific weekdays, it will significantly affect the overall WAP for
that week.

The cumulative confirmed cases and vaccination data are averaged to form a WAP, calculated as:

𝑊 𝐴𝑃𝑛 =
𝑁𝑤𝑒𝑒𝑘

7
where 𝑁𝑤𝑒𝑒𝑘 is the total number of confirmed cases or vaccinations in a week.

This approach helps capture weekly trends in a balanced way, smoothing out daily variances while still reflecting important
fluctuations throughout the week, which might be influenced by factors such as weekday vaccination drives or spikes in confirmed
cases.

For training, 85 weeks (595 days) of data are used, while 17 weeks (119 days) are used for validation and 20 weeks (140 days)
for testing. This distribution ensures a balanced representation of the dataset, allowing for efficient model training and testing on
unseen data, preserving the trends seen in both confirmed cases and vaccination efforts.
5 
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Table 2
Performance evaluation of different algorithms.
Optimizers with LSSVM MAPE Accuracy Theil’s U
SO-C-BMO 0.002211 0.99649 0.047
HBA 0.0036 0.9901 0.061
PSO 0.004 0.992 0.069
DA 0.006 0.991 0.083
BMO 0.0118 0.9813 0.119
SSA 0.02 0.97 0.159
MVO 0.025 0.97 0.1603

3.2. Hybrid selective opposition-based constrained Barnacle Mating Optimizer (SO-C-BMO)

This research introduces a novel hybrid approach to assessing COVID-19 individuals with complete vaccination. It integrates
elective Opposition into the Constrained Barnacle Mating Optimizer (C-BMO) to enhance both exploration and exploitation

capabilities. The Least Squares Support Vector Machine (LSSVM) approach is combined with Selective Opposition-Based Constrained
BMO to optimize hyperparameters for predictive tasks. This results in the Selective Opposition-Based Constrained Barnacle Mating
Least Squares Support Vector Machine (SO-C-BMO-LSSVM), which improves C-BMO’s efficacy through Opposition-Based Learning
(OBL).

Figs. 3 and below pseudo code show the proposed developments of the original BMO. The technique involves establishing
nitial population characteristics and boundaries, computing wave height and wind direction, and randomly selecting vectors within
pecified limitations. The algorithm enhances search space exploration by creating potential solutions through opposition, using OBL
o improve less efficient barnacles and accelerate convergence to the global optimum.

4. Pseudo code

Each iteration generates a new batch of options, with the best option determined by ranking the newly formed offspring based
n their adaptation to wave and wind conditions. The optimal solution and its vicinity may be located at opposite ends of the

search space from the least well-fit barnacles. The ranking correlation coefficient between each solution and the optimal solution is
calculated after each iteration. If the coefficient is negative, the search perspective is misaligned with the data, leading to a narrowed
search by selecting opposing dimensions and barnacles using the Spearman coefficient.

4.1. Evaluation criteria

Traditional metrics for evaluating time series forecasting models include accuracy, Mean Absolute Percentage Error (MAPE), and
Theil’s U. The definitions for these performance measures in regression models are provided below:

MAPE = 1
𝑛

𝑛
∑

𝑖=1

|

|

|

|

𝑦predicted − 𝑦actual

𝑦actual

|

|

|

|

× 100% (8)

Theil’s U =

√

1
𝑁

∑𝑁
𝑖=1(𝑦actual − 𝑦predicted)2

√

1
𝑁

∑𝑁
𝑖=1(𝑦actual)2 +

1
𝑁

∑𝑁
𝑖=1(𝑦predicted)2

(9)

Accuracy = 1 − MAPE (10)

In these equations, 𝑛 represents the number of test instances, 𝑦predicted denotes the predicted values at the 𝑖th time, and 𝑦actual
refers to the actual values at the 𝑖th time. These metrics quantify the error rate of the prediction model in regression, with the goal
of minimizing their values.

5. Results and discussion

The SO-C-BMO-LSSVM approach effectively addresses real-world, context-specific problems, similar to other metaheuristic
algorithms. This subsection presents the results of using the SO-C-BMO and LSSVM methods to forecast the time series of confirmed
COVID-19 cases. Table 2 summarizes the performance of various hybrid algorithms used in this study for predicting verified cases
while considering the total vaccination rate.

Table 3 compares actual confirmed case values with target values for all hybrid algorithms considered in this study, factoring
n total vaccination.

Fig. 4 illustrates a comparison between actual and predicted values. It demonstrates that the SO-C-BMO-LSSVM method
outperforms other approaches—BMO-LSSVM, HBA-LSSVM, DA-LSSVM, MVO-LSSVM, PSO-LSSVM, and SSA-LSSVM—in predicting
onfirmed COVID-19 cases in Malaysia, factoring in total vaccination.
6 
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Fig. 3. Workflow diagram of SO-C-BMO-LSSVM.

6. Conclusion

In this study, we introduce a novel enhancement to the BMO algorithm, termed SO-C-BMO, which is designed to strike a
more effective balance between exploration and exploitation. By efficiently navigating the search space and avoiding suboptimal
regions, SO-C-BMO shows improved performance in solving complex optimization tasks. The algorithm’s effectiveness was rigorously
evaluated in real-world scenarios, highlighting superior statistical outcomes, an optimized exploration–exploitation trade-off, and
more rapid convergence. The integration of SO-C-BMO with the LSSVM model, termed SO-C-BMO-LSSVM, demonstrated significant
7 
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Algorithm 1 Barnacle Optimization Algorithm with LSSVM and SOBL.
1: Initialize population 𝑋𝑖 (each barnacle)
2: Determine fitness of 𝑋𝑖 based on LSSVM (training + validation)
3: Sort and update the position of 𝑋𝑖
4: while 𝐼 < 𝑀 𝑎𝑥_𝐼 𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
5: Set 𝑝𝑙 value
6: Calculate Significant Wave Height, 𝐻𝑠 using Eq. (4)
7: Calculate Wind Direction towards target, 𝑊 𝐷 using Eq. (7)
8: Selection of parents
9: if selection of parents == 𝑝𝑙 then

10: for each barnacle do
11: // Exploitation Process
12: Generate offspring using Eq. (5)
13: end for
14: else if selection of parents > 𝑝𝑙 then
15: for each barnacle do
16: // Exploration Process Improved by SOBL
17: Generate offspring using Eq. (6)
18: Relocate barnacles that go outside the search space
19: Arrange the search agents in ascending order based on their fitness values

20: 𝑙 𝑖𝑚𝑖𝑡 = 2 −
(

𝐼 × 2
𝑀 𝑎𝑥_𝐼 𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

)

21: 𝑏𝑜𝑢𝑛𝑑 𝑎𝑟𝑦 = 𝑙 𝑖𝑚𝑖𝑡
22: for 𝑟 = 1 to number of relocated barnacles do
23: for 𝑑 = 1 to total dimensions do
24: 𝑑 𝑖𝑓 𝑓 (𝑑) = |𝑋(𝑑) −𝑋𝑖(𝑑)|
25: if 𝑑 𝑖𝑓 𝑓 (𝑑) > 𝑏𝑜𝑢𝑛𝑑 𝑎𝑟𝑦 then
26: 𝐴𝑙 𝑏𝑎𝑟𝑛𝑎𝑐 𝑙 𝑒_𝑛𝑜 = 𝐴𝑙 𝑏𝑎𝑟𝑛𝑎𝑐 𝑙 𝑒_𝑛𝑜 + 1
27: end if
28: end for
29: Calculate SRCE using:

𝑆 𝑅𝐶 𝐸 = 1 −
6
∑

𝑗 𝑑 𝑖𝑓 𝑓 (𝑗)2
𝑑 𝑖𝑚(𝑑 𝑖𝑚2 − 1)

30: if 𝑆 𝑅𝐶 𝐸 ≤ 0 then
31: if (𝑑 𝑖𝑚 − 𝐴𝑙 𝑏𝑎𝑟𝑛𝑎𝑐 𝑙 𝑒_𝑛𝑜) < 𝐴𝑙 𝑏𝑎𝑟𝑛𝑎𝑐 𝑙 𝑒_𝑛𝑜 then
32: for each 𝑝 ∈ {𝑑 ∶ 𝑑 𝑖𝑓 𝑓 (𝑗) > 𝑏𝑜𝑢𝑛𝑑 𝑎𝑟𝑦} do
33: 𝑋(𝑝) = 𝑢𝑏(𝑝) + 𝑙 𝑏(𝑝) −𝑋(𝑝)
34: end for
35: end if
36: end if
37: end for
38: end for
39: end if
40: Determine fitness for the new 𝑋𝑖 using LSSVM (training + validation)
41: Sort and update the position of better solutions
42: 𝐼 = 𝐼 + 1
43: end while
44: return position

success in time series prediction. The algorithm efficiently identifies optimal hyperparameters for LSSVM, resulting in highly accurate
forecasts. By leveraging selective opposition, SO-C-BMO is adept at handling non-convex objective functions with multiple local
ptima, thus improving its ability to locate global optima and deliver precise predictions.

A comparative analysis with other optimization techniques, such as PSO, DA, HBA, BMO, MVO, and SSA, further underscores
the advantages of SO-C-BMO-LSSVM in addressing complex search spaces. It excels in both convergence speed and maintaining
an effective exploration–exploitation balance. Future research will explore enhancements to the C-BMO algorithm by incorporating
features like chaotic maps, binary objectives, and multi-objective frameworks, aimed at addressing large-scale optimization problems
more effectively.
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Table 3
Weekly Prediction comparison performances.

Week Target SO-C-BMO-LSSVM BMO-LSSVM HBA-LSSVM MVO-LSSVM PSO-LSSVM SSA-LSSVM DA-LSSVM

67 4 506 510 4490286.564 4452941.116 4490255.018 4390692.693 4485329.403 4405564.176 4375165.783
68 4 517 447 4501184.191 4463748.108 4501152.569 4401348.612 4496214.999 4416256.187 4385784.02
69 4 530 312 4514002.877 4476460.181 4513971.165 4413882.982 4509019.534 4428833.011 4398274.063
70 4 544 626 4528265.346 4490604.031 4528233.534 4427829.112 4523266.258 4442826.378 4412170.876
71 4 560 583 4544164.901 4506371.35 4544132.977 4443376.017 4539148.26 4458425.941 4427662.802
72 4 578 741 4562257.532 4524313.506 4562225.481 4461067.356 4557220.917 4476177.202 4445291.579
73 4 600 736 4584173.35 4546047.051 4584141.145 4482497.085 4579112.541 4497679.514 4466645.525
74 4 629 963 4613295.133 4574926.63 4613262.723 4510972.951 4608202.174 4526251.829 4495020.691
75 4 659 710 4642935.044 4604320.027 4642902.426 4539955.453 4637809.363 4555332.496 4523900.702

Fig. 4. Prediction comparison between algorithms.
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