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ABSTRACT 
Climate change has substantially increased both the occurrence 
and intensity of flood events, particularly in the Indian subcontin
ent, exacerbating threats to human populations and economic 
infrastructure. The present research employed novel ML models— 
LR, SVM, RF, XGBoost, DNN, and Stacking Ensemble—developed 
in the Python environment and leveraged 18 flood-influencing 
factors to delineate flood-prone areas with precision. A compre
hensive flood inventory, obtained from Sentinel-1 Synthetic 
Aperture Radar (SAR) data using the Google Earth Engine (GEE) 
platform, provided empirical data for entire model training and 
validation. Model performance was assessed using precision, 
recall, F1-score, accuracy, and ROC-AUC metrics. The results high
lighted Stacking Ensemble’s superior predictive ability (0.965), fol
lowed closely by, XGBoost (0.934), DNN (0.929), RF (0.925), LR 
(0.921), and SVM (0.920) respectively, establishing the feasibility of 
ML applications in disaster management. The maps depicting sus
ceptibility to flooding generated by the current research provide 
actionable insights for decision-makers, city planners, and author
ities responsible for disaster management, guiding infrastructural 
and community resilience enhancements against flood risks.
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1. Introduction

Flooding, regarded as a perilous and recurrent natural calamity, engenders significant 
human and economic casualties (Saha et al. 2022) impacting around 200 million peo
ple annually (Youssef, Mahdi, et al. 2022). Over the last several decades, there has 
been a notable rise in the occurrence of such calamities, mostly attributed to climate 
change. The intensity of these hazards is predicted to worsen due to the consequences 
of climate change, which include more frequent and severe extreme precipitation 
(Antzoulatos et al. 2022). Preventive as well as emergency actions, defined as actions 
taken in the moments leading up to, during, or after a flood, are needed to lessen the 
effect of floods on the loss of property and human life. Whereas, preventative meas
ures aim to lessen the likelihood that a certain location will flood. Under such cir
cumstances, the execution of countermeasures requires real-time knowledge of the 
magnitude of the flood and the places at risk (Mitra and Das 2022; Pradhan et al. 
2023). Maps indicating flood hazards, or the potential characteristics of a flood event, 
can be used to assess flood susceptibility and identify areas of flood vulnerability.

From 1998 to 2017, climate-related and geophysical catastrophes led to 4.4 billion 
people experiencing injuries, homelessness, displacement, or requiring emergency 
assistance. These events also claimed 1.3 million lives. While geophysical events like 
earthquakes and tsunamis accounted for the majority of deaths, severe meteorological 
events such as floods, storms, droughts, and heatwaves-were responsible for 91% of 
all catastrophes. Disaster-affected nations suffered direct economic losses of US$ 2908 
billion between 1998 and 2017, with US$ 2245 billion, or 77% of the total, coming 
from climate-related catastrophes. This amounts to more than 68% (US$ 895 billion) 
of losses (US$ 1313 billion) that were documented between 1978 and 1997 (CRED 
and UNISDR 2016). Between these two 20-year periods, there was a 151% increase in 
the total recorded losses due to severe weather events. Current research has explored 
that, besides intense rainfall, recurrent storm surges resulting from tropical cyclones, 
extensive siltation in riverbeds, and the rivers’ limited capacity to manage substantial 
discharges play crucial roles in exacerbating flooding in India (Mishra and Sinha 
2020). Between 1995 and 2015, floods have had a global impact on over 2.3 billion 
individuals, representing approximately 56% of the overall population affected by 
hydro-meteorological disasters (CRED and UNISDR 2016).

Multiple studies have conducted assessments indicating that the Indian sub-contin
ent is positioned at the forefront of places that are highly susceptible to river flood 
hazards, posing threats to both human populations and economic endeavours (Mitra 
and Das 2022; Saha et al. 2022). As per the findings of the National Institute of 
Hydrology (NIH 2000), the primary areas prone to flooding in India encompass the 
deltas and riverbanks of the Ganga, Brahmaputra, Kosi, Mahanadi, Godavari, 
Krishna, Cauvery, and their respective tributaries (Saha et al. 2021; Ghosh et al. 2022; 
Mitra and Das 2022; Mitra et al. 2022; Ghosh et al. 2023; Sarkar et al. 2023; 
Sutradhar and Mondal 2023). Significant impacts from substantial floods are observed 
in states like Uttar Pradesh, Bihar, West Bengal, Odisha, and Assam in India (Mishra 
and Sinha 2020; Das and Gupta 2021; Paul and Sarkar 2022). These states together 
account for 38.68% of India’s total population and bear the brunt of around 70% of 
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the most catastrophic flood occurrences in the nation. West Bengal exhibits a signifi
cant proportion of around 42.5% of its total land area as flood susceptible, rendering 
it one of the foremost regions in the nation that experiences the adverse impacts of 
floods. The region with the greatest impact, as documented in the Annual Flood 
Report by the Irrigation & Waterways Department, Government of West Bengal, 
India (2022), measured around 37,760 sq. km as flood susceptible.

Considering these exceptional conditions, it is essential to evaluate and demarcate 
regions susceptible to flooding to mitigate future flood-related losses. This may be 
achieved by creating comprehensive flood hazard susceptibility maps. Hence, the pro
ficient and precise modelling of flood susceptibility has the potential to mitigate the 
repercussions by analysing susceptibility maps. Susceptibility mapping is affected by 
various parameters, each leaving distinct marks. Consequently, pinpointing the opti
mal parameters demands a thorough process, involving an extensive literature review, 
insights from experts in the study area, and meticulous field observations. Numerous 
research studies (Mishra and Sinha 2020; Das and Gupta 2021; Ghosh et al. 2022; 
Mitra et al. 2022; Paul and Sarkar 2022) have identified key aspects related to flood 
susceptibility mapping procedures. In recent years, integrated Remote Sensing (RS) 
and Geographic Information System (GIS) approaches have been widely employed 
for accurate and efficient susceptibility, vulnerability, and risk assessment 
(Gharakhanlou and P�erez 2023). Significant efforts have been dedicated to evaluating 
flood susceptibility through the application of various decision-making methodolo
gies, including Multi-Criteria Decision-Making (MCDM) methods (Amiri et al. 2024), 
Analytical Hierarchy Process (AHP) (Harshasimha and Bhatt 2023; Sarkar et al. 2023; 
Shah and Ai 2024), Shannon’s Entropy (SE) (Bera et al. 2022), While Multi-Criteria 
Decision Analysis (MCDA) offers a comprehensible and direct approach to flood 
susceptibility assessment, its applicability to intricate events may yield less dependable 
outcomes (Bentivoglio et al. 2022). Additionally, owing to the subjective nature of 
criterion weights, determined through expert-driven knowledge-based statistical 
methods, these weights are susceptible to external influences.

Despite the reliability and efficiency of numerical techniques in modelling flood 
hazards, the expeditious and accurate simulation of floods remains a persistent chal
lenge. In recent years, machine learning (ML) based data-driven models as they have 
shown to be effective and dependable in developing efficient and trustworthy solu
tions (Dou et al. 2020; Merghadi et al. 2020), have become more important in flood 
susceptibility investigations (Maharjan et al. 2024). Several studies have been carried 
out to assess flood susceptibility through the utilization of algorithms based on 
machine learning, such as Adaptive Boosting (AdaBoost) (Gharakhanlou and P�erez 
2023; Dey et al. 2024), Artificial Neural Networks (Karunanayake et al. 2020; Khaniya 
et al. 2021), Support Vector Machine (SVM) (Tanim et al. 2022). This is because ML 
models analyse the historical flood data to understand the connection between flood 
occurrences and the elements that contribute to them (Chang et al. 2019). This 
approach eliminates the subjective process of determining the importance of each 
component in predicting flood susceptibility (Ghanim et al. 2023).
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In this backdrop, our current research aimed to create six distinct machine learn
ing (ML) models such as Logistic Regression (LR) (Saikh and Mondal 2023; 
Mansour et al. 2024), Support Vector Machines (SVM) (Gharakhanlou and P�erez 
2023; Ren et al. 2024), Random Forest (RF) (Ghanim et al. 2023; Dey et al. 2024), 
Extreme Gradient Boosting (XGBoost) (Hitouri et al. 2024), Deep neural network 
(DNN) (Ghobadi and Ahmadipari 2024; Nguyen et al. 2024), and Stacking Ensemble 
to evaluate flood susceptibility in Malda district, West Bengal. We used the Python 
programming language environment to train the models and extract relevant infor
mation from them. We used the stacking ensemble approach, a versatile technique 
for improving the prediction by combining predictions of base models such as LR, 
SVM, RF, XGBoost, and DNN since stacking can mitigate the weakness of individual 
models and produce more robust predictions, besides reducing overfitting and pro
vide more interpretability via training a meta-learner on the prediction of base mod
els. As a result, the goals of this study are to detect flood patches and generate flood 
inventory points for the entire Malda district using Sentinel-1 SAR data on the GEE 
platform. To compare the prediction accuracy of machine learning (ML) models 
(LR, SVM, RF, XGBoost), deep neural network (DNN) architecture, and Stacking 
Ensemble for the Malda district using remote sensing and geospatial techniques.

2. Dataset and study area

2.1. Study area and historical flood events in Malda district

The district of Malda is situated within the latitude range of 24�4002000 N to 
25�3200800 N and the longitude range of 87�4505000 E to 88�2801000 E. Covering a geo
graphical expanse of 3733.66 sq. km (1441.6 sq mi), Malda shares an international 
border with Bangladesh to the east, and is adjacent to Santhal Parganas of Jharkhand 
and Purnea of Bihar to the west (Figure 1). The region (Figure 1(c)) under consider
ation has a 165.5-km boundary that is shared with the neighbouring country of 
Bangladesh. The presence of a strategic position makes it a significant intersection 
and gateway to Siliguri from the southern region of Bengal. The river Ganga starts its 
ingress into the state of West Bengal near Manikchak of Malda. Due to its geograph
ical characteristics as a low-lying basin, the area is susceptible to flooding. The Malda 
district mostly comprises low-lying alluvial plains that exhibit a gradual slope towards 
the southern direction. The district’s North-Eastern region has many high areas. 
Certain regions of these elevated terrains have altitudes 40 m above the mean sea 
level. The heights are connected by deep water canals, resulting in a topographical 
configuration that resembles little hills. The Mahananda River, flowing from the 
northeast to the southeast, serves as the dividing line between the Eastern and 
Western regions of the district. Moreover, the river Kalindri serves as a dividing line, 
separating the Western area into distinct Northern and Southern sections. Each of 
the areas has its unique qualities. The Eastern region has a very elevated and undulat
ing topography, while lower elevations and rich land characterize the Western region. 
The district may be classified into three discrete physiographic sub-regions, which are 
distinguished by their topography and soil characteristics. These sub-regions are 
referred to as Barind, Diara, and Tal.
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The Malda region is prone to devastating floods. Flooding has traditionally been a 
threat in the district during the rainy season, particularly in all the blocks and munic
ipalities. In the following years, 1987, 1988, 1991, 1995, 1996, 1998, 1999, 2003, 2005, 
2006, 2007, 2008, 2017, and 2019 all districts were hit by severe flooding catastrophes 
(DDMPM 2020–2021), mainly occurred during the month between July and 
September. Instead of being caused by rainfall in the district directly, these floods 
were the consequences of rainfall in the upper catchment regions as well, which 
caused the rivers to overflow their banks. Most district rivers and streams, including 
the Ganges, have their origins in the Himalayan mountains, making them vulnerable 
to the sudden influx of enormous water generated by the melting of snow or by the 
extreme rainfall in the mountains. The District Disaster Management Plan of Malda 
(DDMPM 2020–2021) estimated that during the 2017 flood, nearly 3,64,043 popula
tion fully affected, 236 villages were adversely affected, 12,871 houses were damaged, 
and 1069 hectares (ha) of agricultural land were damaged. Flooding lasted for almost 
20 days, wreaking havoc on people’s lives and property in the district.

2.2. Optical and radar data collection

This study compiled a geographical database of 18 flood conditioning parameters to 
create thematic layers within the GIS platform. The primary objective is to systemat
ically investigate and define parameters related to flood susceptibility (FSP) using 
scientific methods. Various thematic data layers, sourced from reliable channels, 

Figure 1. Location map of the study area (a) India, (b) West Bengal, (c) Malda district, and (d) spa
tial distribution of flood locations.
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underwent processing within the ESRI ArcGIS 10.4.1 environment to achieve the 
desired outcomes. Utilizing the USGS ASTER GDEM, a digital elevation model with 
a spatial resolution of 30 m, served as the foundation for generating diverse thematic 
layers, including elevation, slope, TPI, TRI, TWI, relief amplitude, SPI, and STI. 
Extraction of the drainage network was performed using the ASTER GDEM dataset, 
and, on the ESRI ArcGIS 10.4.1 platform, thematic layers for drainage density and 
distance to drainage were subsequently developed.

Optical images from the USGS LANDSAT-8 OLI/TIRS, corrected for radiometric 
considerations, were utilized to generate three distinct land-use thematic layers: 
NDVI, mNDWI, and LULC. The thematic layer depicting clay content was developed 
using the global dataset of physical soil properties from Soil Grid. Annual rainfall and 
rainfall intensity thematic layers were produced using mean average annual rainfall 
and the modified Fournier Index (MFI) method, utilizing Information gathered by 
the Indian Meteorological Department (IMD) over 35 years, ranging from 1986 to 
2020. The same dataset was utilized to compute district digital maps, which were 
then employed to create geomorphology and lithology thematic layers sourced from 
the BHUKOSH GSI (Geological Survey of India).

After completing the Synthetic Aperture Radar (SAR) change detection analysis to 
identify flood and non-flood locations, we proceeded to extract pixel values from the 
above-mentioned flood conditioning factors for these specific points. By overlaying 
the identified flood and non-flood locations onto spatial datasets corresponding to 
each conditioning factor, we recorded the relevant pixel values using Geographic 
Information System (GIS) tools and remote sensing techniques. This process enabled 
us to compile a comprehensive dataset reflecting the environmental and geographical 
conditions at both flooded and non-flooded sites, which is essential for further ana
lysis to understand the relationship between these factors and flood occurrences, 
ultimately aiding in the development of predictive models and flood risk management 
strategies. Table 1 and Table 2 offers a comprehensive overview detailing the origins 
and explanations of the parameters employed in susceptibility zonation, and hyper
parameters details for applied algorithms.

2.3. Flood susceptibility parameters (FSP)

2.3.1. Elevation
Elevation is a significant criterion because low-lying flood plains and lower-elevated land 
are the most flood-prone zones (Meliho et al. 2022; Saikh and Mondal 2023). The district 
has an elevation range of 5 to 80 m. The district’s western, central, and eastern parts belong 
to the lower elevated lands and flood plains where river flow increases downstream (Figure 
2(a)). 30 m ASTER GDEM prepared the elevation map and classified by natural breaking 
as 5–20 m, 20–26 m, 26–32 m, 32–39 m, and 39–80 m.

2.3.2. Slope
Slope angle is a significant factor where the lower slope leads towards the flood (Mia 
et al. 2022; Mehravar et al. 2023). The slope angle of the district ranges from 0� to 
35�. Flat (0�–2�), gentle (2�–4�), moderate (4�–6�), moderately steep (6�–9�), and 
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steep (9�–35�) slopes (Figure 2(b)). Slopes have been classified where flat and gentle 
slopes are found in the western, central, and eastern sections of the district, which 
are the most flood susceptible zones. The slope (degree) of the study area has been 
classified into 0�–2�, 2�–4�, 4�–6�, 6�–9�, and 9�–35�.

2.3.3. Topographic Position Index (TPI)
TPI is the significant parameter of FS. TPI values mainly indicate the valley, flat land, 
and moderately elevated and highly elevated areas (Abedi et al. 2021). Mainly negative 
and zero classification indicates the valley and flat regions, which leads to higher FS.

TPI ¼ Z0 − eZi (1) 

eZi ¼
1

nR

X

i2R
Zi (2) 

The TPI map was employed to assess FS by applying Equations (1) and (2). 
Topographic Position Index (TPI) illustrates the variation in altitude of a specific location 
(Z0) compared to the average altitude (eZ) within a certain distance (R). Additionally, the 
TPI was assessed using the ‘land facet corridor designer tool’ within the ArcGIS platform, 
as outlined by Jenness et al. (2013) and Mitra and Das (2022). TPI values of the studied 
region ranges from −4.72 to 5.29 (Figure 2(c)). TPI values have been classified into 
−4.72 to −1.50, −1.49 to 0.00, 0.00–0.01, 0.02–2.50, and 2.51–5.29.

2.3.4. Topographic Ruggedness Index (TRI)
TRI is calculated by measuring the difference in elevation between adjacent cells of 
the ASTER GDEM dataset, providing a numerical value that reflects the heterogeneity 
of the landscape (Fatah et al. 2022). High TRI values indicate a rugged terrain with 

Table 1. Source and description of the parameters used in flood susceptibility zonation.

Parameters Descriptions Data source Resolution/scale
GIS  

data type

Elevation, slope, 
relief amplitude, 
TPI, TRI, TWI, SPI, 
STI, drainage 
density and 
distance to river

Derived from ASTER DEM 
and prepared the 
thematic layer using 
ArcGIS 10.4.1

United States of Geological 
Survey (USGS) 

Retrieved from: (https:// 
earthexplorer.usgs.gov)

30 m Raster

NDVI, MNDWI and 
LULC

Landsat-8 OLI/TIRS, all the 
layers were prepared 
after mosaicing and 
atmospheric correction 
of the image

United States of Geological 
Survey (USGS) 

Retrieved from: (https:// 
earthexplorer.usgs.gov)

30 m Raster

Clay content Physical soil properties 
Global soil grid data

Soil Grid 
Retrieved from: (https:// 

soilgrids.org/)

250 m Raster

Annual rainfall, 
rainfall intensity 
using MFI

Gridded rainfall for the 
period 1986–2020 has 
been used for 
calculation

Indian Meteorological 
Department (IMD) 

Retrieved from: (http://www. 
imdpune.gov.in)

0.25 � 0.25 NetCDF

Geomorphology, 
lithology

Digital geomorphological, 
lithological map of the 
district

Geological Survey of India 
(GSI) Retrieved from: 
(http://bhukosh.gsi.gov.in/)

– Vector
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steep slopes, while low TRI values correspond to flat or gently sloping areas. Steep 
terrains with high TRI values typically have rapid runoff due to limited water infiltra
tion, potentially contributing to flash flooding downstream. Conversely, low TRI areas 
tend to have a slower runoff, which can lead to longer-duration floods but with gen
erally lower depths and velocities (Equation (3)).

TRI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AbsðFSmax2 − FSmin2Þ

q

(3) 

Figure 2. Flood conditioning parameters: (a) elevation, (b) slope, (c) TPI, (d) TRI, (e) TWI, (f) Relief 
amplitude, (g) drainage density, (h) distance to drainage, (i) rainfall, (j) MFI, (k) NDVI, (l) mNDWI, 
(m) SPI, (n) STI, (o) clay content, (p) LULC, (q) geomorphology, and (r) lithology.
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Here, ‘FSmax and FSmin are the maximum and minimum elevation of the 
define region respectively’. TRI values of the studied region range from 0.00 to 72.42 
(Figure 2(d)). TRI values have been classified into 0.00–4.26, 4.27–11.64, 11.65–17.61, 
17.62–24.42, and 24.43–72.42.

2.3.5. Topographic Wetness Index (TWI)
TWI is a crucial landscape parameter that indicates soil erosion, soil moisture condi
tion, the volume of flow accumulation, and runoff generation (Mousavi et al. 2022). 
The TWI layer is created by applying the formula outlined in Equation (4)

Figure 2. Continued.
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(Beven and Kirkby 1979; Abedi et al. 2021; Mitra et al. 2022) to the ASTER GDEM 
dataset,

TWI ¼ Ln
a

tan b

� �

(4) 

Where, ‘the variables a and tan b pertain to the catchment area and slope angle, 
respectively, of the region under investigation, respectively. Furthermore, here ¼ A

L , 
where the variable A represents the entirety of the basin’s area and L denotes the 
length of the contour being analysed’ (Beven and Kirkby 1979; Fatah et al. 2022). 
TWI values of the studied area varied from 3.76 to 25.52 (Figure 2(e)). TWI has been 
classified into 3.76–8.03, 8.04–11.10, 11.11–13.66, 13.67–16.73, and 16.74–25.52.

2.3.6. Relief amplitude
Relief amplitude serves as an indicator of potential energy in a landscape, with higher 
values suggesting a greater force for water to move downslope. In areas with high relief 
amplitude, precipitation can result in rapid surface runoff, increasing the risk of flash 
flooding, particularly in the absence of sufficient vegetation or soil absorbency. Low relief 
areas, characterized by smaller variations in elevation, are prone to slower water move
ment and can become zones of waterlogging and prolonged inundation (Equation (5)).

Relief Amplitude ¼ FSmax − FSminð Þ (5) 

Where ‘FSmax and FSmin are the maximum and minimum elevation of that 
region respectively’. Relief amplitude values of the studied region range from 0 to 
49 m (Figure 2(f)). Relief amplitude values have been classified into 0–2 m, 3–5 m, 6– 
9 m, 10–14 m, and 15–49 m.

2.3.7. Drainage density
Higher drainage density leads to a greater amount of surface runoff. Regions with 
higher stream networks have a great chance to be flooding frequently (Meliho et al. 
2022; Wang et al. 2023) (Equation (6)).

Dd ¼
Xi¼n

i¼1

Di

A
km−1ð Þ (6) 

Where,‘
P

Di is the stream’s overall length within the grid (km) is represented by, 
while A denotes the grid area (km2)’. The drainage density of the area ranges from 
0.00 to 0.87 km./sq. km. (Figure 2(g)). Drainage density values are 0.00–0.14 km./sq. 
km, 0.15–0.27 km./sq. km, 0.28–0.40 km./sq. km, 0.41–0.55 km./sq. km, and 0.56– 
0.87 km./sq. km.

2.3.8. Distance to river
Areas near rivers are more susceptible to flooding than those near the river network. 
Inland storage of water like large ponds, lakes, reservoirs, and dams is also likely to 
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flood locally (Meliho et al. 2022; Mia et al. 2022). Distance to the river ranges from 
0.00 to 3478.97 km (Figure 2(h)). Distance to river values has been classified into: 
0.00–436.58 km, 436.59–900.44 km, 900.45–1391.59 km, 1391.60–1964.59 km, and 
1964.60–3478.97 km.

2.3.9. Annual rainfall
Annual Rainfall is a critical parameter in flood susceptibility as it provides a baseline 
for the amount of water introduced to a catchment area over a year (Mia et al. 2022; 
Dutta et al. 2023). High annual rainfall levels can saturate the ground, making it less 
capable of absorbing additional rainfall, thus increasing flood potential (Meliho et al. 
2022). Monitoring annual rainfall can help in predicting potential flood events, espe
cially when combined with other hydrological factors. In the district, Annual Rainfall 
values range from 1429.11 to 1628.97 mm (Figure 2(i)). Annual Rainfall values have 
been classified into 1429.11–1481.62 mm, 1481.63–1512.97 mm, 1512.98–1540.41 mm, 
1540.42–1573.32 mm, and 1573.33–1628.97 mm.

2.3.10. Modified Fournier Index (MFI):
Rainfall intensity map with the MFI method has been calculated by 35 years (1981–2020) 
IMD data of the total district. After the creation of the spatiotemporal map, the higher MFI 
values indicate higher FS (Eslaminezhad et al. 2022; Mitra and Das 2022) (Equation (7)).

MFI ¼
X12

i¼1

P2
i

P0
(7) 

Where, ‘Pi represents the average amount of precipitation in a month, while 
P0 represents the average amount of precipitation in a year’. In the district, MFI 
values range from 239.54 to 290.37 mm/year (Figure 2(j)). MFI values have been clas
sified into 239.54–252.50 mm/year, 252.51–260.67 mm/year, 260.68–269.24 mm/year, 
269.25–278.01 mm/year, and 278.02–290.37 mm/year.

2.3.11. Normalized Difference Vegetation Index (NDVI):
NDVI values typically range from −1.0 to þ1.0. Areas with NDVI values (0.1 or less) 
indicate non-vegetated regions, such as low-lying floodplains, bare land, and sand. 
Moderate NDVI values (0.2–0.3) indicate shrub, grassland, and rangeland, while 
higher values (0.6–0.8) suggest moderate to dense forest (Zhao et al. 2021; Mia et al. 
2022). Less vegetation cover regions are more susceptible to flood than those with 
higher vegetation cover (Equation (8)).

NDVI ¼
NIR − Red
NIRþ Red0

(8) 

Where, ‘Red signifies red band and NIR signifies near-infrared band’. NDVI values 
of the district range from −0.12 to 0.40 (Figure 2(k)). NDVI values have been classi
fied into: −0.12to 0.00, 0.01–0.11, 0.12–0.16, 0.17–0.23, and 0.24–0.40.
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2.3.12. Modified Normalized Difference Water Index (mNDWI):
Normally, mNDWI values lie between −1.0 and þ1.0. According to different values, 
vegetation has smaller values that differentiate vegetation from waterbodies, built-up 
features have values between 0.00 and 0.20, and waterbodies value is greater than 0.5 
(Equation (9)).

mNDWI ¼
Green − MIR
GreenþMIR0

(9) 

Where, ‘Green signifies green band and MIR signifies middle infra-red band’. 
mNDWI values of the study area range from −0.35 to 0.37 (Figure 2(l)). mNDVI val
ues are: −0.35 to −0.11, −0.10 to −0.04, −0.03 to 0.04, 0.05–0.17, and 0.18–0.37.

2.3.13. Stream Power Index (SPI)
SPI is a critical factor that indicates the stream erosive power level and sediment 
transport to a specific area with respect to the catchment basin. High stream power 
leads to channel transformation and creates flooding conditions (Abedi et al. 2021; 
Penki et al. 2022) (Equation (10)).

SPI ¼ Ai� tanb (10) 

Where, ‘Ai Represents the specific area and tanb represents the gradient’. SPI val
ues of the district range from 0.00 to 20,52,755.36 (Figure 2(m)). SPI values have 
been classified into 0.00–0.01, 0.02–99.65, 99.66–193.30, 193.31–498.25, and 498.26– 
20,52,755.36.

2.3.14. Sediment Transport Index (STI)
STI is an important parameter of FS and shows the general runoff figure of a catch
ment basin. Higher runoff indicates a higher amount of sediment transportation and 
lower FS (Fatah et al. 2022; Mia et al. 2022) (Equation (11)).

STI ¼
Fa
dx

� �2

Sig nðSaÞ
dy

� �2

2

6
6
4

3

7
7
5 (11) 

Where, ‘Fa represents the flow accumulation and Sa represents the slope raster, 
derived from ASTER GDEM, and dx and dy represent the constant’. STI values of 
the studied region varied from 0.00 to 8420.94 (Figure 2(n)). STI values have been 
classified into 0.00–0.01, 0.02–3.69, 3.70–11.07, 11.08–22.14, and 22.15–8420.94.

2.3.15. Clay content
Clay content in soils influences flood susceptibility due to its unique particle size and 
cohesive properties. Compared to sand or silt, clay particles are much smaller, leading 
to tighter soil pore spaces and decreased permeability. As a result, clay-rich soils tend 
to retain water on the surface longer than coarser soils, exacerbating surface runoff 
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during heavy rain. In areas with high clay content, water infiltration rates are lower, 
causing the water table to rise more quickly during rain events. Clay content values 
of the studied region varied from 20 to 42% (km/km) (Figure 2(o)). Clay content val
ues have been classified into 20–28% (km/km), 29–30% (km/km), 31–32% (km/km), 
33–34% (km/km), and 35–42% (km/km).

2.3.16. Land Use and Land Cover (LULC)
Land Use and Land Cover (LULC) changes are a key factor in flood events (Youssef 
et al. 2023). These changes influence how water moves across the landscape (Saha 
et al. 2023). LULC of the district signifies the flood condition with diverse landscapes 
(Abedi et al. 2021; Mia et al. 2022). LULC of the Malda district has been classified 
into five different distinctive classes, i.e. waterbody (7.78%), vegetation cover 
(13.68%), agricultural area (59.12%), built-up area (17.54%) and bare ground (1.87%) 
(Figure 2(p)). The above classification shows that the agricultural area mostly occu
pies the Malda district.

2.3.17. Geomorphology
Geomorphology plays a critical role in understanding and predicting flood behaviour, 
as it encompasses the study of landforms and the processes that have shaped them 
(Mitra and Das 2022). When considering flood events, the geomorphological features 
and processes of a region can influence the magnitude, frequency, duration, and 
extent of flooding (Saikh and Mondal 2023). The geomorphological map of the entire 
district has been classified into eight distinctive zones based on BHUKOSH GSI 
(Figure 2(q)). Classified zones are active flood plain (31.70%), embankment (0.21%), 
older alluvial plain (25.58%), older flood plain (21.13%), younger alluvial plain 
(14.66%), pond (1.02%), river (5.68%) and lake (0.03%).

2.3.18. Lithology
In this research, lithology is regarded as an additional component influencing flood 
conditions (Youssef et al. 2023). Measuring the hydrological processes, stagnation, 
and percolation of water, rock permeability, and lithology is a crucial factor in flood
ing (Abedi et al. 2021; Fatah et al. 2022). Even drainage network features of each 
given location are influenced by this phenomenon. The lithological map of the entire 
district has been classified into five distinctive zones based on BHUKOSH GSI 
(Figure 2(r)). Classified zones are clay with sand, silt, and iron nodule (13.44%), fee
bly oxidized sand, silt and clay (1.63%), sand, silt, and gravel (3.67%), sand, silt, and 
clay (72.24%) and sand, silt, clay with calcareous concretions (9.02%).

2.4. Multicollinearity test

The Multicollinearity testing method is used to assess the relationship between chosen 
flood affecting elements. Prior to doing regression analysis in susceptibility models, multi
collinearity tests are often performed using tolerances, variance inflation factors (VIF), 
conditional index, and Pearson’s correlation coefficients (Debnath et al. 2023). This 
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research used tolerances and VIF (Variance Inflation Factor) to evaluate the level of mul
ticollinearity among the 18 chosen flood-affecting components (Ghosh et al. 2023).

Tolerance and VIF (Variance Inflation Factor) are closely related concepts used to 
assess multicollinearity in multiple regression models. Tolerance is the reciprocal of 
VIF, and both can be calculated as follows. Tolerance measures the proportion of 
variance in a predictor variable that can be explained by the other predictor variables 
in the model. It is calculated for each predictor variable as follows (Equation (12)):

Tolerance of the ith predictor variable

ðTiÞ ¼ 1 − R2
i (12) 

Where, ‘Ti is the tolerance for the ith predictor variable. R2
i is the coefficient of 

determination when the ith variable is regressed against all the other predictor varia
bles’. High tolerance values (close to 1) indicate that a predictor variable is not 
affected by multicollinearity and has little variance explained by other predictors. 
Conversely, low tolerance values suggest that a variable is highly influenced by 
multicollinearity.

VIF quantifies how much the variance of the estimated regression coefficients is 
increased due to multicollinearity. It is the inverse of tolerance and is calculated as 
follows (Equation (13)):

VIF of the ith predictor variable

VIFið Þ ¼
1
Ti

(13) 

Where, ‘VIFi is the VIF for the ith predictor variable, Ti is the tolerance for the 
ith predictor variable’. A high VIF (typically greater than 10) suggests strong multi
collinearity, while a low VIF indicates that a predictor variable is not highly corre
lated with others in the model.

3. Methodology

3.1. Flood inventory map

Microwave remote sensing techniques, such as Synthetic Aperture Radar (SAR), offer 
additional advantages over optical remote sensing by enabling the observation and 
monitoring of the Earth’s surface irrespective of prevailing weather conditions 
(Ramayanti et al. 2022). The backscatter variability in the VV channel is generally 
more responsive to water surface roughness compared to the VH channel (Zhao et al. 
2022). Consequently, the anticipated backscatter reduction due to flooding may not 
always occur, as turbulent floodwaters can produce higher backscatter in the VV 
channel than various natural and artificial bare surfaces. Conversely, the VH channel 
tends to show a more consistent decrease in backscatter across different land cover 
types during flooding, as it produces very low backscatter returns over water, is less 
sensitive to surface roughness, and exhibits minimal double-bounce scattering (Pelich 
et al. 2022). The VH polarization is particularly efficient in identifying waterlogged 
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areas, particularly in small regions of concern (Parida et al. 2022). In both VH and 
VV polarizations, water bodies appear black due to the smoothness of the surface of 
the water bodies, which causes radar signals to be reflected away from the sensor, 
resulting in low backscatter (Saini et al. 2020). This low return signal creates dark 
patches in the image, effectively highlighting water bodies against the more reflecting 
surrounding environment. However, for our study site, VH polarization was chosen 
due to its more consistent backscatter reduction across different land cover types dur
ing flooding.

The flood inventory map, which provides a comprehensive record of historical and 
contemporary flood incidents, plays a critical role in identifying flood-prone areas 
(Nohani et al. 2019; Zhao et al. 2021; Tavus et al. 2022). In our study, we derived a 
flood inventory map through a systematic approach. We conducted an in-depth ana
lysis of the historical flood events that occurred in the years 2017, 2019, and 2021. 
These flood events varied in magnitude and spatial extent. We extracted the flood 
patches by performing a comprehensive change detection analysis on the VH polar
ization band of the SAR GRD (Ground Range Detected) data hosted on the Google 
Earth Engine cloud platform, comparing pre- and post-flood conditions within our 
specified region of interest.

The process begins with applying the refined Lee algorithm to both the pre-and 
post-flood VH polarized images to reduce the salt and pepper noise caused by radar 
scattering (Yommy et al. 2015). Then, we compute the ratio by dividing the dB values 
of the post-flood image by those of the pre-flood image, which allows us to highlight 
significant changes in backscatter, indicative of flooding. A threshold of 1.25 is 
applied to this ratio image based on empirical analysis to create an initial estimate of 
flooded pixels, indicating a significant change that is indicative of flooding. However, 
this initial estimate can contain false positives due to factors like permanent water 
bodies, steep slopes (where water is unlikely to accumulate), and isolated pixels 
(which are likely errors). The Global Surface Water (GSW) dataset is used to identify 
areas with permanent or semi-permanent water, which are masked out as they do not 
represent fresh instances of flooding. The SRTM digital elevation model (DEM) is 
used to calculate slope, and areas with slopes greater than 5 degrees are masked out, 
as water is less likely to accumulate on steep slopes. In GEE, a connected-component 
analysis is performed on the remaining flooded areas. Small clusters of pixels below a 
threshold of 20 are considered isolated and removed, as they are likely errors or not 
representative of true flood extents. This threshold is based on empirical analysis and 
is tailored to the problem and the study area’s characteristics. Subsequently, the 
refined flood extents from each of the three flood years under consideration were 
integrated into a composite binary raster, providing a comprehensive overview of 
areas inundated during any of the analysed flood events. Finally, a morphological 
closing operation is applied to fill in small holes and gaps within the flood patches, 
effectively smoothing the boundaries. The result was a more continuous representa
tion of the flood extent. This refined flood layer and multi-year analysis enabled a 
more robust assessment of flood vulnerability and a better understanding of the 
spatial and temporal dynamics of flooding in the study region.
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We generated random points within the study area and adopted an approach 
where points lying within the extracted flood patches were assigned a value of 1, indi
cating them as flood points. Subsequently, in terms of non-flood points, we created a 
buffer zone with a radius of 500 m around the flood patches and generated random 
points again. But this time, the points that fell outside the buffer zone and did not 
intersect with the flood patches were selected and assigned a value of 0, indicating 
them as non-flood points. The entire process of generating flood inventory points 
was efficiently performed on the GEE cloud platform. We acquired a total of 2260 
data points to generate a robust and well-balanced dataset for our flood susceptibility 
zonation (Figure 3(b)). Subsequently, to facilitate model training and evaluation, we 
partitioned this dataset using a popular approach known as the train-test split. We 
allocated 70% of the data (1582 points) for training our flood susceptibility models, 
enabling them to learn patterns and relationships from the majority of the dataset. 
The remaining 30% of the data (678 points) was left for testing and evaluating the 
models’ performance (Figure 3(c)). This methodical split of data ensured that we 
could examine the model’s ability to generalize and generate accurate predictions on 
fresh, unseen data, a vital step in flood susceptibility mapping (Antzoulatos et al. 
2022; Tavus et al. 2022; Risling et al. 2024; Wahba et al. 2024).

Figure 3. Flood inventory map (a) false colour composite of SAR VH bands, with pre-flood VH in 
red and blue channels and post-flood VH in the green channel, highlighting changes in the back
scatter response due to flooding, (b) ratio image of pre- and post-flood VH polarization bands, 
identifying areas affected by flooding, and (c) combined flood patches from three different flood 
years, overlaid with randomly generated flood and non-flood points.
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3.2. Data pre-processing

Normalization of the explanatory variables is an important data pre-processing step 
to avoid any kind of bias in the classification. In normalization, the data have typic
ally been rescaled between 0 and 1 so that no single feature significantly dominates 
the classification results. This makes the interpretation of the normalized values 
straightforward. We chose Min-Max scaler because it preserves the true relationship 
among the original data points, thereby maintaining the proportionate distances 
between different values. Additionally, normalization can also bring robustness to the 
models and make them less prone to overfitting. For example, elevation in the study 
area typically ranges from 6 to 80 m, whereas indices like NDVI and NDWI range 
between −1 and þ1. Some machine learning algorithms compute the weight of each 
explanatory variable based on its sheer magnitude. Normalization is performed as per 
Equation (14):

Xnormalized ¼
X − Xmin

Xmax − Xmin
(14) 

However, not all machine learning models require feature scaling. For instance, 
algorithms like logistic regression, SVM, MLP, DNN, and kNN perform better with 
feature scaling, whereas tree-based models such as decision trees, random forests, and 
gradient boosting remain unaffected.

Handling categorical variables is another essential data pre-processing step, as 
most machine learning algorithms cannot handle categorical features unless we con
vert them into numerical features. There are several techniques to handle categorical 
features, such as one-hot encoding, label encoding, ordinal encoding, frequency 
encoding, etc. One-hot encoding is a commonly used method to convert nominal fea
tures into binary vectors. It creates a new binary column for each category within a 
categorical feature and assigns a value of 1 or 0 to the columns, where 1 represents 
the presence and 0 represents the absence of a specific category.

One-hot encoding has been efficiently implemented in the Python environment. 
We applied one-hot encoding to the categorical features such as geomorphology, lith
ology, and LULC. These features were initially represented as text labels and needed 
to be converted into a numerical input format suitable for machine learning algo
rithms. However, one-hot encoding, while effective, can introduce the ‘curse of 
dimensionality’ in the dataset, which in turn can lead to increased memory and com
putational requirements.The methodological flow diagram shows (Figure 4) the com
plete blueprint of the entire research.

3.3. Feature selection

Feature selection is a critical step, as one-hot encoding significantly increases the 
dimensionality of the dataset. Feature selection removes irrelevant features from the 
dataset while keeping the most relevant ones, which helps to increase the overall per
formance of the models. Mutual information (entropy) gain, which measures the 
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dependence and information shared between the features and the target variable, is a 
useful method for feature selection.

Information gain is closely related to entropy, which quantifies the amount of 
information contained in a random variable or feature. A skewed distribution, where 
one event dominates, generally has low entropy as there is less uncertainty. In con
trast, a distribution where events have equal probability has higher entropy, indicating 
greater uncertainty and disorder in the dataset. In a binary classification scenario, 
entropy can be calculated as per Equation (15):

H Sð Þ ¼ −p0 p0ð Þ − p1 p1ð Þ (15) 

Where, H Sð Þ is the entropy of the dataset, p0 and p1 are the proportions of instan
ces in class 0 and class 1 respectively. The entropy ranges between 0 and 1, where 0 
indicates a complete pure dataset and 1 indicates a complete impure dataset.

To quantify the gain of each feature in the dataset, the IG value is computed as 
per Equation (16):

IG S, Að Þ ¼ H Sð Þ −
X

v2Values Að Þ

svj j

sj j
�H Svð Þ (16) 

Where, IG S, Að Þ is the information gain by splitting the dataset S on feature A, 
H Sð Þ is the entropy of the dataset S, ValuesðA) is the set of all possible values of fea
ture A, sv is the subset of data in which feature A takes the values v, sj j is the total 
number of instances in the dataset S, svj j is the total number of instances in the sub
set sv, and H Svð Þ is the entropy of the subset Sv:

Figure 4. Methodological flow chart.
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We utilized Scikit-learn’s ‘mutual_info_classif’ class to quantify the information 
gain value for each feature in the dataset. Among the various explanatory variables 
considered for flood susceptibility, it was found that active floodplain and elevation 
exhibited the highest information gain values following other variables such as TRI, 
the agricultural field, older alluvial plain, etc. (Figure 5).

Scikit-learn’s ‘SelectKBest’ class has been incorporated to effectively reduce the ini
tial one-hot encoded set of 32 features to a more manageable 20 features. This pro
cess, in turn, reduces the dimensionality of the data while preserving the most 
valuable features for further analysis.

3.4. Supervised learning

We utilized Python, a powerful and popular programming language for data analysis and 
machine learning tasks, to create flood susceptibility maps through a supervised learning 
procedure. More specifically, we used scikit-learn, a Python-based machine learning 
library (https://scikit-learn.org/stable/) that is easy to use and effective, to create our flood 
susceptibility models. This library ensures great performance and user-friendliness by 
making the training and evaluation of our models easier. Our analysis encompassed the 
utilization of four machine learning algorithms: Logistic Regression (LR), Support Vector 
Machine (SVM), Random Forest (RF), and Extreme Gradient Boosting (XGBoost), along 
with a Deep Neural Network (DNN). These algorithms were selected for their outstand
ing classification capabilities and predictive accuracy. LR offers a simple and interpretable 
baseline for understanding relationships between flood conditioning factors and flood 
susceptibility. SVM excels in handling high-dimensional data and finding optimal class 
separation, enhancing the model’s precision in identifying susceptible areas. RF is effect
ive in managing non-linear relationships and interactions between variables, making it 
robust for predicting flood-prone regions. XGBoost is known for its high performance 

Figure 5. Information gain value.
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and efficiency in capturing intricate patterns within the data, improving predictive accur
acy. DNNs provide the flexibility to learn complex, non-linear representations, which is 
crucial for accurately mapping flood susceptibility. The stacking ensemble model integra
tes these diverse approaches to leverage their unique strengths, resulting in improved 
overall performance and robustness. The combination of these models provides a com
prehensive approach to flood prediction, leveraging both linear and non-linear relation
ships, simple and complex models, and individual and ensemble learning strategies. This 
diverse set of models ensures robustness and reliability in our flood prediction analysis.

3.4.1. Logistic Regression (LR)
Logistic regression (LR) is a statistical technique primarily known for binary classifi
cation tasks, where the objective is to predict whether an instance belongs to one of 
two groups. It assumes that independent variables and the binary outcome can be 
represented by the logistic (sigmoid) function (Ghosh et al. 2022; Saikh and Mondal 
2023). This function maps an input feature’s linear combination onto a range of 
probabilities between 0 and 1, with the anticipated probability indicating the possibil
ity of an instance being part of the positive class. The mathematical expression of the 
logistic regression model is as follows (Equation (17)):

P Y ¼ 1ð Þ ¼
1

1þ e− b0þb1X1þb2X2þ:::þBnXnð Þ
(17) 

Here, P Y ¼ 1ð Þ is the probability of being positive class, b0 is the intercept, bi are 
the coefficients and Xi are the input features.

3.4.2. Support Vector Machine (SVM)
Support vector machine (SVM) algorithm is a widely used machine learning tech
nique that efficiently solves classification and regression problems. Its core concept is 
to establish an optimal hyperplane that maximizes the distance between classes in the 
feature space (Dou et al. 2019; Saravanan and Abijith 2022). The combination of 
SVM and a radial basis function (RBF) kernel is a potent solution that excels at hand
ling nonlinear decision boundaries in intricate datasets. The RBF kernel transforms 
the initial feature space into a higher-dimensional space, enabling SVM to effectively 
capture complex relationships. The mathematical expression for the decision function 
of SVM with an RBF kernel is as follows (Equation (18)):

f Xð Þ ¼
Xn

i¼1
aiK X, Xið Þ þ b (18) 

Here, f Xð Þ stands for the decision function, while ai are the Lagrange multipliers 
and Xi represents the support vectors. K X, Xið Þ is the RBF kernel, and b is the bias 
term. The RBF kernel can be expressed as (Equation (19)):

K X, X
0

� �
¼ expexp −

kX − X0k2

2r2

� �

(19) 

Where, kX − X0k2 represents the squared Euclidean distance between input feature 
vectors X and X0 , and r is the kernel width parameter.
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3.4.3. Random Forest (RF)
Random forest is a widely used tree-based ensemble learning method that is capable of 
handling both classification and regression tasks with great proficiency. This algorithm 
builds multiple decision trees during training and then computes the mode of the classes 
in the case of classification (Li et al. 2022; Ghanim et al. 2023; Gharakhanlou and P�erez 
2023). It introduces randomness by selecting a random subset of features for each tree 
and bootstrapping the data. The decision function of the random forest model can be 
expressed mathematically as an aggregation over the decision trees (Equation (20)):

F Xð Þ ¼ f1 Xð Þ þ f2 Xð Þ þ � � � þ fN Xð Þ
� �

(20) 

Here, the prediction for a feature vector is denoted by F Xð Þ, mode indicates the 
class that appears most frequently among the predictions made by each tree, and N 
denotes the total number of trees in the random forest ensemble. Each fi Xð Þ refers to 
the prediction of the i-th decision tree, which is trained on a random subset of fea
tures and a bootstrapped sample of the dataset.

3.4.4. Extreme Gradient Boosting (XGBoost)
XGBoost stands as a state-of-the-art algorithm famous for its exceptional performance 
in classification and regression problems. It is a gradient-boosting framework that 
sequentially generates an ensemble of weak learners, often decision trees, and steadily 
refines the prediction accuracy (Youssef, Pourghasemi, et al. 2022). The formulation 
of XGBoost combines the capabilities of gradient boosting and regularization techni
ques to generate robust and accurate models (Equation (21)).

F Xð Þ ¼
XM

m¼1
fm Xð Þ (21) 

Where, F Xð Þ is the final prediction, M is the total number of weak learners, and 
fm Xð Þ is the prediction of the m-th tree. Each tree is trained to optimize the loss of 
its predecessors, thereby adapting, and enhancing the model’s overall accuracy.

XGBoost’s effectiveness can be attributed to its incorporation of regularization ele
ments within the objective function, which helps strike a balance between predictive 
performance and model complexity. The objective function is formulated as 
(Equation (22)):

Obj ¼
Xn

i¼1
L yi, ŷi
� �

þ
XM

m¼1
X fmð Þ (22) 

Here, L yi, ŷi
� �

signifies the loss function, evaluating the difference between the true 
label yi and the predicted label ŷi, while X fmð Þ represents the regularization term for 
the m-th tree.
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3.4.5. Deep Neural Network (DNN)
A Deep Neural Network is a sophisticated architecture of artificial neural networks 
characterized by its multi-layered structures which refers to the presence of numerous 
hidden layers between the input and output layers. It uses techniques like forward 
and backward propagation for parameter learning and activation functions for intro
ducing non-linearities. Although there are difficulties in computation and a require
ment for a large amount of labelled data, DNNs have played a crucial role in 
advancing the field of artificial intelligence. The model architecture was developed 
using the TensorFlow library, having a setup suited for robust performance. The ini
tial layer has 128 neurons with the rectified linear unit (ReLU) activation function, 
adding L2 regularization (0.01) to mitigate overfitting. A Dropout layer with a 0.5 
dropout rate follows, boosting generalization by randomly deactivating neurons dur
ing training. Batch Normalization stabilizes the activations before continuing to a 
second Dense layer with 64 neurons, ReLU activation, and additional L2 regulariza
tion (0.01). A Dropout layer (0.3) and Batch Normalization further improve the net
work. The final layer, a Dense layer with one neuron and a sigmoid activation 
function is suited for binary classification problems. This architecture, defined by var
ied activation functions, regularization techniques, and dropout layers, amalgamates 
to build a resilient DNN model capable of sophisticated classification and robust 
generalization.

3.4.6. Stacking Ensemble
Hybrid modelling, under the framework of a stacking ensemble, involves using differ
ent base models to construct a more robust and precise prediction model. Stacking, 
or stacked generalization, is a meta-learning method in which many distinct base 
models are trained to predict the target variable (Zhu et al. 2024). The predictions 
made by these models are then used as inputs for a higher-level model, commonly 
called a meta-model. The training data for the ensemble model is created by includ
ing the predictions provided by the preceding models, specifically Logistic Regression 
(LR), Support Vector Machine (SVM), Random Forest (RF), Extreme Gradient 
Boosting (XGBoost), and Deep Neural Network (DNN). The stacking ensemble com
prises four core classifiers: LR, SVM, RF, and XGBoost, and a Logistic Regression 
model as the final estimator, combining the accumulated knowledge from the base 
models to improve forecast accuracy. To thoroughly evaluate the effectiveness of the 
model, a 10-fold cross-validation approach is employed, which guarantees a full 
assessment over several subsets of the dataset. This strategy seeks to use the synergis
tic advantages of multiple models, mitigating individual limitations and enhancing 
overall prediction efficacy.

We trained all our supervised machine learning models using the comprehensive 
pixel samples dataset to classify flood and non-flood locations (Ghobadi and 
Ahmadipari 2024). Once the models were trained, we applied them to the entire 
image containing the flood causative factors (with each factor represented as a separ
ate band). We set the model output in the form of class probabilities, specifically the 
probability of each pixel belonging to the positive class (i.e. flood-prone areas) 
(Diaconu et al. 2024). We interpreted these probabilities as flood susceptibility, 
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creating flood susceptibility maps that highlight areas with higher probabilities of 
flooding (Bhatta and Adhikari 2024). In short, our methodology involves delineating 
flood patches from SAR images, extracting data from flood conditioning factors for 
flood and non-flood locations, training machine learning models on these data, and 
generating flood susceptibility maps based on the class probabilities output by the 
models (Amitrano et al. 2024; Ghosh et al. 2024). This approach allows us to effect
ively translate SAR-derived flood information into a comprehensive assessment of 
flood susceptibility.

3.5. Hyperparameter optimization

Hyperparameter optimization is a crucial stage in the development of machine learn
ing models, aimed at optimizing the configuration of algorithmic parameters to 
enhance prediction performance. In this study, we have adopted Randomized Search 
Cross-Validation (RandomizedSearchCV) to iteratively search for the optimal hyper
parameters. It is a robust and fast optimization technique that involves randomly 
sampling from a defined range of hyperparameters and evaluating model performance 
using cross-validation. This approach allows us to efficiently explore a broad hyper
parameter space without the exhaustive computational cost associated with Grid 
Search. We have conducted a randomized search with a substantial 1000 iterations 
and five-fold cross-validation. This five-fold cross-validation strategy produces a 
robust estimate of model performance across various hyperparameter configurations.

For the LR model, the choice of the SAGA solver, L1 penalty, a maximum of 
200 iterations, and a balanced class weight indicates a balanced consideration of 
computational performance, regularization, and handling of imbalanced class distribu
tions. The regularization strength (C) of 100 suggests a relatively high regularization, 
favouring a more parsimonious model. In the refinement of the SVM, the specified 
hyperparameters include the choice of the radial basis function (RBF) kernel, suggest
ing a capacity to capture complicated, non-linear relationships within the data. The 
’gamma’ parameter determines the influence of individual training samples, with 
higher values resulting in a more localized influence. Additionally, the regularization 
parameter ’C’ is calibrated to a value of 10, regulating the trade-off between creating 
a smooth decision border and accurately classifying training data.

When it comes to tree-based algorithms, the RF model is parameterized with great 
consideration: it comprises 50 trees (n_estimators), each requiring a minimum of 8 
samples to split (min_samples_split) and 8 samples at a leaf node (min_samples_leaf). 
The model takes the whole dataset for each tree (max_samples: 1), evaluates 40% of 
features for each split (max_features: 0.4), and allows trees to develop without a 
stated maximum depth. The criterion for splitting nodes is based on entropy, and 
bootstrap sampling is enabled throughout tree construction. The XGBoost model is 
meticulously designed with precise hyperparameters. A subsample fraction of 0.7 
defines the random sampling during each boosting round, and a total of 150 boosting 
rounds (n_estimators) are conducted. The minimal child weight is set to 1, indicating 
the minimum sum of instance weight needed in a child. The maximum depth of each 
tree is defined as 8. A low learning rate of 0.05 is applied to regulate the step size 
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shrinking and prevent overfitting. The gamma parameter is set to 0, necessitating a 
minimal loss reduction for further partition on a leaf node. Lastly, the fraction of fea
tures to be randomly selected for each tree (colsample_bytree) is determined as 0.3.

The specified DNN architecture comprises three layers with 128, 64, and 1 neu
ron(s) respectively, the model employs ReLU activation functions in the hidden layers 
and a sigmoid activation function in the output layer, tailored for binary classification 
tasks. The utilization of L2 regularization and Dropout layers significantly reduces the 
overfitting. Additionally, Batch Normalization is employed after each hidden layer, 
contributing to stable and efficient training.

The specialized hyperparameter selections work together to create a group of mod
els that are accurately tuned, leading to trustworthy and context-specific predictions 
for areas that are prone to floods. By varying the parameters across the models, we 
can take advantage of each algorithm’s strengths and achieve superior performance in 
the context of flood susceptibility mapping.

4. Evaluation of model performance

4.1. Multicollinearity results

To assess the presence of multicollinearity and choose variables for regression ana
lysis, the Variance Inflation Factor (VIF) is used. However, VIF alone does not deter
mine the factors that influence the dependent variable. To assess the extent of 
multicollinearity in the flood susceptibility modelling and to evaluate the significance 
of the chosen food-controlling factors, we calculated both the Variance Inflation 
Factor (VIF) and the tolerance value for multicollinearity. A collinearity problem is 

Table 2. Utilized hyperparameters optimized through randomized search CV for ML models and 
proposed architecture for DL model.
Classifier Hyperparameters Classifier Hyperparameters

LR Solver Saga DNN Input layer Dimension 20
Penalty l1 Hidden layer 1 Units 128
Max_iter 200 Activation Relu
Class_weight Balanced Regularizer L2
C 100 Dropout 0.5

SVM Kernel Rbf Batch normalization True
Gamma 1 Hidden layer 2 Units 64
C 10 Activation Relu

RF n_estimators 50 Regularizer L2
Min_samples_split 8 Dropout 0.3
Min_samples_leaf 8 Batch normalization True
Max_samples 1 Output layer Units 1
Max_features 0.4 Activation Sigmoid
Max_depth None Stacking 

Ensemble
Base models LR Probability

Criterion Entropy SVM Probability
Bootstrap True RF Probability

XGBoost Subsample 0.7 XGBoost Probability
n_estimators 150 DNN Probability
Min_child_weight 1 Final estimator Logistic regression
Max_depth 8 CV 10
Learning_rate 0.05 Stack_method Predict_proba
Gamma 0
Colsample_bytree 0.3
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often identified when the Variance Inflation Factor (VIF) exceeds 10 and the toler
ance value is below 0.1. The VIF and tolerance values for all flood conditioning 
factors in this research, as shown in Table 3, fall within the range of 10 to 0.01. This 
indicates that none of the chosen food conditioning variables exhibit any issues of 
multicollinearity. Based on the findings, there is no problem of multicollinearity.

4.2. Interpretability of machine learning by Shapley method

Shapley values, derived from cooperative game theory, offer a robust method for 
interpreting the contribution of each player (in our context, each machine learning 
model) towards the predictive performance of a coalition (ensemble). This is particu
larly useful in complex ensemble methods where understanding individual contribu
tions is key to improving overall model performance and transparency.

The Shapley value can be calculated as (Equation (23)):

/j talð Þ ¼
X

S�fx1, :::, xpg fxjg

Sj j! p − Sj j − 1ð Þ!

p!
tal S [ xjf g
� �

− tal Sð Þ
h i

(23) 

Where, S is a subset of the features used in the model, x is the vector of feature 
values of instance to be explained, p the number of features, and tal Sð Þ is the predic
tion for feature values in set S marginalized over features that are not included in 
set S:

4.3. Statistical measures criteria

In this research, the performance of the machine learning (ML) models was evaluated 
using statistical metrics such as precision, recall, F1-score, accuracy, and area under 

Table 3. Multicollinearity test (tolerance and VIF values) of the food 
conditioning factors.

Collinearity statistics

Factors Tolerance VIF

Elevation 0.431 2.322
Slope 0.723 1.382
TPI 0.661 1.513
TRI 0.52 1.922
TWI 0.457 2.19
Relief amplitude 0.702 1.424
Drainage density 0.769 1.301
Distance to drainage 0.746 1.341
Rainfall 0.685 1.459
MFI 0.768 1.301
NDVI 0.716 1.397
mNDWI 0.685 1.459
SPI 0.731 1.368
STI 0.874 1.144
Clay content 0.955 1.047
LULC 0.854 1.17
Geomorphology 0.953 1.05
Lithology 0.926 1.08
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the curve (AUC) (Equations (24)–(29)). The use of these performance assessment 
methodologies is prevalent in academic literature (Eslaminezhad et al. 2022; Sellami 
et al. 2022; Ghanim et al. 2023; Saber et al. 2023).

4.3.1. Precision
Precision, a statistical metric employed to assess the precision of positive predictions made 
by a model, is determined by dividing the number of true positive predictions by the total 
number of positive predictions. This calculation aids in gauging the model’s ability to min
imize false positives, as demonstrated in Equation (24) (Eslaminezhad et al. 2022).

4.3.2. Recall
Recall, alternatively known as sensitivity or true positive rate, serves as a statistical meas
ure for assessing a model’s proficiency in correctly recognizing all pertinent instances 
among the overall positive instances. Its ability to minimize false negatives is emphasized 
in Equation (25) (Sellami et al. 2022), showcasing the model’s effectiveness.

4.3.3. F1-score
The F1-score serves as a comprehensive metric that harmoniously combines accuracy 
and recall, striking a balance through their harmonic mean. It helps evaluate a model’s 
overall performance in binary classification tasks by considering both false positives and 
false negatives shown in Equation (26) (Ghanim et al. 2023; Saber et al. 2023).

4.3.4. Accuracy
Accuracy serves as a statistical metric employed to assess the accuracy of predictions 
generated by a model. It is computed by dividing the count of accurate predictions 
by the overall number of predictions. However, its applicability may be limited in 
scenarios involving imbalanced datasets, where the emphasis on false positives or false 
negatives is highlighted, as demonstrated in Equation (27) (Eslaminezhad et al. 2022; 
Saber et al. 2023).

Precision ¼
TP

TP þ FP
(24) 

Recall ¼
TP

TP þ FN
(25) 

F1 − Score ¼
2 Precision� Recallð Þ

Precisionþ Recall
(26) 

Accuracy ¼
TP þ TN

TP þ FP þ TN þ FN
(27) 

Where, ‘TP¼True Positive, and TN¼True Negative are correctly predicted pixel 
numbers; FP¼ False Positive, and FN¼ False Negative are falsely predicted pixel 
numbers; P¼Total number of floods pixels; N¼Total number of non-floods pixels’.
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4.4. Validation of evaluation of model performance

The validation of flood susceptibility maps holds considerable importance in the pro
cess of identifying and characterizing areas prone to flooding (Sellami et al. 2022). 
This study aims to evaluate the accuracy of flood susceptibility maps generated by 
various models using receiver operating characteristics (ROC) analysis (Ha et al. 
2022). ROC analysis is a highly influential and widely utilized methodology in spatial 
modelling (Ghosh et al. 2022).

The ROC curve, a visual representation, illustrates a model’s sensitivity in predict
ing the proportion of pixels accurately relative to the total predicted by the model. 
Constructing this curve involves plotting two statistical measures, ‘sensitivity’ and ‘1- 
specificity’, on the y-axis and x-axis, respectively (Saber et al. 2023). Higher sensitivity 
indicates a significant proportion of correct predictions (true positives), while higher 
specificity indicates a low probability of false positives. The research graph depicts the 
correlation between the false positive rate (1-specificity) on the X-axis and the true 
positive rate (sensitivity) on the Y-axis (Ghanim et al. 2023) Equations (28) and (29).

X ¼ 1 − specificity ¼ 1 −
TN

TN þ FPð Þ

� �

(28) 

Y ¼ sensitivity ¼
TN

TP þ FNð Þ

� �

(29) 

The evaluation of the predicted accuracy of flood susceptibility models involves the 
assessment of the area under the curve (AUC) of the forecasting degree (Youssef, 
Pradhan, et al. 2022). The categorization of the qualitative relationship between the 
area under the ROC curve (AUC) and the prediction performance of a model has 
been classified into five separate groups (Li and Hong 2023). The classes are classified 
as follows: 0.5–0.6 (poor), 0.6–0.7 (average), 0.7–0.8 (good), 0.8–0.9 (very good), and 
0.9–1 (excellent).

5. Results

5.1. Flood susceptibility zonation (FSZ)

Flood susceptibility maps of the Malda area are developed using six advanced machine 
learning (ML) models: Logistic Regression (LR), Support Vector Machine (SVM), 
Random Forest (RF), Extreme Gradient Boosting (XGBoost), Deep Neural Network 
(DNN) and Stacking Ensemble. These models are implemented inside a RS and GIS 
context. The final map is categorized into five distinct classifications, namely very 
low, low, moderate, high, and very high susceptibility to floods (Table 4). As seen in 
Figure 6, the maps illustrate that the regions exhibiting significant sensitivity are mostly 
localized within the region and along the course of the River. Furthermore, it is evident 
that the categories with a significantly high susceptibility include a substantial quantity 
of training data points that were derived from the affected areas during the occurrence 
of the flood. This empirical evidence serves to validate the robust performance of the 
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model (Ramayanti et al. 2022). The classifications are denoted as ‘very high’, ‘high’, 
‘moderate’, ‘low’, and ‘very low’ in sequential order, signifying the accurate training of 
the models (Figure 7). This was further validated by a comparison between the pre
dicted data and real-world data. According to the Logistic Regression (LR) model 
(Figure 6(a)), the study region is classified as having 832.26 sq. km (22.70% of total 
area) with very high susceptibility, 406.42 sq. km (11.09% of total area) with high sus
ceptibility, 451.43 sq. km (12.31% of total area) with a moderate susceptibility, 
438.22 sq. km (11.95% of total area) with low susceptibility, and 1537.61 sq. km 
(41.94% of total area) with a very low susceptibility (Figure 7). According to the 
findings of the Support Vector Machine (SVM) model (Figure 6(b)), it has been 
determined that 1026.40 sq. km (28.00% of total area) of the study area exhibits a sig
nificantly very high susceptibility to flooding, 434.95 sq. km (11.86% of total area) of 
the study area demonstrates a high susceptibility, 214.43 sq. km (5.85% of total area) 
displays a moderate susceptibility, 238.24 sq. km (6.50% of total area) showcases a low 
susceptibility, and the majority, 1751.92 sq. km (47.79% of total area), exhibits a very 
low susceptibility to flooding (Figure 7). According to the findings of the Random 
Forest (RF) model (Figure 6(c)), it has been determined that within the study region, 
721.78 sq. km (19.69% of total area) exhibits a very high susceptibility to flooding, 
562.02 sq. km (15.33% of total area) of the research area demonstrates a high suscepti
bility, 558.33 sq. km (15.23% of total area) displays a moderate susceptibility, 553.27 sq. 
km (15.09% of total area) showcases a low susceptibility, and 1270.56 (34.66% of total) 

Figure 6. Flood susceptibility zone (FSZ) (a) Logistic Regression (LR), (b) Support Vector Machines 
(SVM), (c) Random Forest (RF), (d) Extreme Gradient Boosting (XGBoost), (e) Deep Neural Network 
(DNN), and (f) Stacking Ensemble.
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area exhibits a very low sensitivity to flooding (Figure 7). The final model used in this 
research is the Extreme Gradient Boosting (XGBoost) model (Figure 6(d)). The results 
indicate that 942.97 sq. km (25.72% of total area) of the study region exhibits a very 
high susceptibility to flooding, 404.78 sq. km (11.04% of total area) of the area demon
strates a high susceptibility, 361.35 sq. km (9.86% of total area) displays a moderate sus
ceptibility, 421.01 sq. km (11.48% of total area) exhibits a low susceptibility, and the 
remaining 1535.85 sq. km (41.90% of total area) showcases the lowest vulnerability to 
flooding (Figure 7). For Deep Neural Network (DNN) (Figure 6(e)), the distribution 
across zones was as follows: very high zone 922.23 sq. km (25.16% of total area), high 
zone 416.72 sq. km (11.37% of total area), moderate zone 521.63 sq. km (14.23% of 
total area), low zone 707.38 sq. km (19.30% of total area), very low zone 1097.99 sq. km 
(29.95% of total area) (Figure 7). For Stacking Ensemble (Figure 6(f)), the distribution 
across zones was as follows: very high zone 1157.81 sq. km (31.58% of total area), high 
zone 265.28 sq. km (7.24% of total area), moderate zone 239.24 sq. km (6.53% of total 
area), low zone 300.36 sq. km (8.19% of total area), very low zone 1703.27 sq. km 
(46.46% of total area) (Figure 7).

The results emphasize a significant flood susceptibility (FS) in the Tal and Diara 
regions located in the western part of the district. The younger, lower floodplains 
along the Ganga, Fulhar, Kalindi, and Mahananda rivers demonstrate an increased 
vulnerability to floods. Several factors, such as lower altitude, gradual slope, intense 
rainfall, high drainage density, and elevated water levels, contribute to this susceptibil
ity. During the rainy season, there is a heightened risk of riverbed siltation and back 
thrust action at confluences. In contrast, the Barind region in the eastern half gener
ally faces a comparatively lower threat of flooding, except for the Tangon and 
Punarbhava riverine floodplains. The eastern part exhibits a moderate to low level of 
flood susceptibility due to its higher elevation, moderate slope, and undulating ter
rain. A detailed block-level analysis in Malda District, comprising 15 administrative 
blocks, underscores 11 blocks with the highest susceptibility (Figure 8). Notably, areas 

Figure 7. FSZ area coverage by different models.
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at the highest risk include Harischandrapur-I & II, Kaliachak-II & III, Manikchak, 
and Ratua-I & II blocks, situated amidst the Ganga, Fulahar, Kalindi, and Mahananda 
rivers (Figure 8). Conversely, regions with a moderate susceptibility level include the 
Bamangola, Gajole, Habibpur, and Old Malda blocks, located between the 
Mahananda and Tangon rivers, as well as the Punarbhava and Tangon interfluves 
(Figure 8). The conclusive findings of this study firmly establish Malda as a flood- 
prone district in West Bengal, where specific environmental conditions contribute to 
the annual recurrence of floods.

5.2. Influence of explanatory variables

SHAP values, also known as SHapley Additive exPlanations, are an effective method 
for evaluating the results of machine learning models by attributing a unique contri
bution to each feature in creating predictions. These values are based on cooperative 
game theory and ensure an equitable distribution of the model’s prediction across 
each feature (Lyu and Yin 2023; Pradhan et al. 2023). In the context of our investiga
tion, SHAP values were applied to acquire insights into the impact of explanatory 
variables across all the models tested in the current study. Specifically, a SHAP bar 
plot was constructed to graphically represent the distribution and amplitude of the 
SHAP values for each feature throughout the dataset (Liu et al. 2023).

Figure 8. CD Block-wise flood susceptibility zone distribution (a) Harischandrapur-I, (b) 
Harischandrapur-II, (c) Chanchal-I, (d) Chanchal-II, (e) Ratua-I, (f) Ratua-II, (g) Gazole, (h) Bamangola, 
(i) Habibpur, (j) Maldah (Old), (k) English Bazar, (l) Manikchak, (m) Kaliachak-I, (n) Kaliachak-II, (o) 
Kaliachak-III.
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A significant spread in permutation importance of the Modified Fourier Index 
(MFI, a value of þ 0.00826) and Rainfall (value of þ 0.000148), concomitant with 
other affecting factors, has been noticed (Figure 9). This remarkable heterogeneity in 
the range of SHAP values reflects the diversified and large impact of MFI and 
Rainfall on the predicted outcomes of these models. On the other hand, a dispersion 
in the features of Geomorphologically Active Flood Plain and Elevation, in conjunc
tion with other influencing factors, has been observed. This large variety in the distri
bution of SHAP values demonstrates the diversified and influential nature of these 
two factors on the predicted outcomes of these ensemble models.

5.3. Model evaluation

Six distinct machine learning (ML) algorithms were applied to predict flood suscepti
bility in the district. These algorithms include Logistic Regression (LR), Support 
Vector Machine (SVM), Random Forest (RF), Extreme Gradient Boosting (XGboost), 
Deep Neural Network (DNN) and Stacking Ensemble. Table 5 illustrates the valid
ation metrics for each of the four machine-learning models utilized in our study. 
These metrics provide a quantitative assessment of the models’ performance and their 
suitability for flood susceptibility prediction.

For Logistic Regression (LR) statistical metricises are, Precision: 0.825 (for output 
0) and 0.835 (for output 1), Recall: 0.817 (for output 0) and 0.842 (for output 1), F1- 
score: 0.821 (for output 0) and 0.839 (for output 1), Accuracy: 0.83. Being a linear 
model, LR exhibits decent performance with a balanced F1-score for both binary 
classes. It reaches an accuracy of 83%. For Support Vector Machine (SVM) statistical 

Figure 9. Permutation importance of explanatory variables across models using SHAP values.
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metricises are, Precision: 0.869 (for output 0) and 0.845 (for output 1), Recall: 0.82 
(for output 0) and 0.887 (for output 1), F1-score: 0.844 (for output 0) and 0.865 (for 
output 1), Accuracy: 0.855. SVM demonstrates improved overall performance with 
higher precision, recall, F1-score, and accuracy compared to LR. This suggests its 
competence to handle difficult decision boundaries and properly classify data. SVM 
exhibits an overall accuracy of about 85.5%. Ensemble models like RF, which combine 
multiple decision trees, are typically known for their robustness and accuracy. For 
Random Forest (RF) statistical metricises are, Precision: 0.849 (for output 0) and 
0.853 (for output 1), Recall: 0.836 (for output 0) and 0.865 (for output 1), F1-score: 
0.842 (for output 0) and 0.859 (for output 1), Accuracy: 0.851. RF performs well, 
obtaining balanced performance metrics for both classes. Its accuracy of 85.1% 
implies that it successfully exploits the benefits of ensemble learning, leading to good 
classification results. XGBoost, a powerful ensemble learning algorithm, leverages the 
power of advanced gradient boosting techniques. It is quite popular for its strong pre
dictive accuracy and scalability. For Extreme Gradient Boosting (XGBoost), Precision: 
0.847 (for output 0) and 0.857 (for output 1), Recall: 0.842 (for output 0) and 0.862 
(for output 1), F1-score: 0.845 (for output 0) and 0.86 (for output 1), Accuracy: 
0.853. XGBoost displays performance on par with RF, displaying good precision, 
recall, and F1-scores. The model’s accuracy of 85.3% implies that it efficiently 
employs gradient boosting to give competitive classification results. For Deep Neural 
Network (DNN), Precision: 0.866 (for output 0) and 0.844 (for output 1), Recall: 
0.820 (for output 0) and 0.885 (for output 1), F1-score: 0.843 (for output 0) and 
0.864 (for output 1), Accuracy: 0.854. For Stacking Ensemble, Precision: 0.885 (for 
output 0) and 0.896 (for output 1), Recall: 0.885 (for output 0) and 0.896 (for output 
1), F1-score: 0.885 (for output 0) and 0.896 (for output 1), Accuracy: 0.891.

The Receiver Operating Characteristic (ROC) curve is a significant tool for analy
sing the classification performance of machine learning models. It provides insights 
into a model’s efficacy in discriminating between positive and negative instances. The 
Area Under the ROC Curve (AUC) is a statistic that quantifies the overall perform
ance of a model, with a higher AUC value suggesting more discriminatory power. 
The AUC scores for our machine learning models were as follows: Stacking Ensemble 
achieved the highest AUC (0.965), followed closely by, XGBoost (0.934), DNN 
(0.929), RF (0.925), LR (0.921), and SVM (0.920). These AUC values represent the 

Table 5. Validation metrics.
Classifier Output Precision Recall F1-score Accuracy AUC

Logistic Regression (LR) 0 0.825 0.817 0.821 0.83 0.921
1 0.835 0.842 0.839

Support Vector Machine (SVM) 0 0.869 0.820 0.844 0.855 0.92
1 0.845 0.887 0.865

Random Forest (RF) 0 0.849 0.836 0.842 0.851 0.925
1 0.853 0.865 0.859

Extreme Gradient Boosting (XGBoost) 0 0.847 0.842 0.845 0.853 0.934
1 0.857 0.862 0.860

Deep Neural Network (DNN) 0 0.866 0.820 0.843 0.854 0.929
1 0.844 0.885 0.864

Stacking Ensemble 0 0.885 0.885 0.885 0.891 0.965
1 0.896 0.896 0.896 
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models’ ability to differentiate between flood-prone and non-flood-prone locations 
(Figure 10).

The Stacking Ensemble model shows the highest performance across almost all 
metrics, notably achieving the highest accuracy (0.891) and AUC (0.965). This sug
gests that the ensemble approach, which combines multiple models, provides a sig
nificant improvement over individual model. This improvement is seen in its ability 
to generalize better and make more accurate predictions. The performance metrics 
indicate the trade-offs between different models; for example, while the SVM shows 
high precision for output 0, the Stacking Ensemble balances high precision, recall, 
and F1-scores across both output classes, leading to its overall superior performance.

Conclusively, our analysis shows that areas along the Ganga, Fulhar, Kalindi, and 
Mahananda rivers, particularly the Tal and Diara regions, exhibit the highest flood 
susceptibility due to factors like low altitude, gradual slopes, and high rainfall. In con
trast, the Barind region to the east, with its higher elevation and moderate slopes, 
faces lower flood risks, except for the floodplains of the Tangon and Punarbhava riv
ers. Different models provided varying susceptibility rates, with the Stacking 
Ensemble model achieving the highest performance, identifying 31.58% of the area as 
highly susceptible and showing the highest accuracy (89.1%) and AUC (0.965). SHAP 
values highlighted the significant impact of features like the Modified Fourier Index 
and rainfall on flood predictions. The findings emphasizes Malda’s vulnerability to 
flooding, particularly in specific blocks such as Harischandrapur-I & II and 
Kaliachak-II & III, and emphasize the importance of these models in guiding effective 
flood risk management and disaster preparedness strategies in the district. Moreover, 
high-risk zones, identified in the current study, such as the Tal and Diara regions, 
frequently experience floods due to low altitude, gradual slopes, intense rainfall, high 
drainage density, and elevated water levels, which are exacerbated during the rainy 
season by riverbed siltation and back thrust action at confluences. The flood suscepti
bility maps produced not only correspond to past flood events but also provide an 

Figure 10. (a) Performance of Logistic Regression (LR), Support Vector Machines (SVM), Random 
Forest (RF), Extreme Gradient Boosting (XGBoost), Deep Neural Network (DNN), and Stacking 
Ensemble models based on AUC-ROC curves, (b) Confusion matrix of Stacking Ensemble model.
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accurate representation of flood-prone areas, enhancing the reliability of the models 
for guiding flood risk management and disaster preparedness strategies. Utilizing 
these outcomes, authorities can better manage flood-vulnerable regions through tar
geted interventions. Tal and Diara regions can benefit greatly from improved infra
structure, such as enhanced drainage systems, flood barriers, flood-proofing homes, 
creating community-based disaster management plans and early warning systems. 
Additionally, optimized land-use planning and tailored emergency response plans will 
minimize flood damage and focus on the most vulnerable areas. The data produced 
in the current work also informs community education programs, ensuring residents 
are better prepared for flood events. Authorities can prioritize investments in flood 
defences and resilient construction practices, minimizing damage costs and insurance 
premiums. Farmers can make informed decisions about crop planting and harvesting, 
reducing losses and enhancing food security.

6. Discussion

The present study conducted a comprehensive flood susceptibility mapping analysis 
in the Malda district of West Bengal, utilizing six distinct machine learning (ML) 
algorithms: Logistic Regression (LR), Support Vector Machine (SVM), Random 
Forest (RF), Extreme Gradient Boosting (XGBoost), Deep Neural Network (DNN) 
and Stacking Ensemble. The research integrated a wide range of flood conditioning 
parameters to create a holistic understanding of the flood susceptibility dynamics 
within the region. The flood conditioning parameters considered in this study 
included elevation, slope, TPI, TRI, TWI, relief amplitude, drainage density, distance 
to river, annual rainfall, MFI, NDVI, mNDWI, SPI, STI, LULC, geomorphology, and 
lithology. The use of multiple machine learning (ML) algorithms in this research 
enabled a robust and reliable assessment of flood susceptibility in the Malda district. 
Each algorithm contributed unique advantages to the analysis. Logistic Regression 
(LR) was employed to establish a foundational understanding of the relationship 
between flood susceptibility and the selected conditioning parameters (Li et al. 2022; 
Saikh and Mondal 2023). It provided insights into the statistical significance and dir
ection of influence of individual parameters, facilitating the identification of key driv
ers of flood susceptibility. Support Vector Machine (SVM) was employed to capture 
complex nonlinear relationships within the dataset and define a hyperplane that 
maximized the separation between flood-prone and non-flood-prone areas 
(Gharakhanlou and P�erez 2023). Its ability to work well with high-dimensional data
sets made it well-suited for integrating the numerous conditioning parameters consid
ered in this study. Random Forest (RF) an ensemble learning technique, was utilized 
to address the challenge of overfitting in the model (Satarzadeh et al. 2021; Li et al. 
2022). By aggregating the predictions of multiple decision trees, RF improved the 
model’s predictive performance while considering the importance of individual 
parameters. This allowed for a more accurate assessment of flood susceptibility. 
Extreme Gradient Boosting (XGBoost) another ensemble method, was employed to 
further enhance predictive accuracy by minimizing both bias and variance in the 
model (Ghanim et al. 2023). Its ability to handle imbalanced datasets was particularly 
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advantageous for flood susceptibility mapping, where flood events are typically rare 
compared to non-flood events. Deep Neural Networks (DNN) are sophisticated ML 
algorithms that mimic the workings of the human brain, capable of capturing com
plex patterns through their multiple layers and neurons. In this study, a DNN archi
tecture was designed to process large volumes of data and extract intricate patterns 
related to flood susceptibility. This approach allowed for a deep learning-based inter
pretation of the data, leveraging the ability of DNNs to model complex nonlinear 
relationships. Stacking Ensemble is an advanced machine-learning technique that 
combines multiple prediction models via a meta-learner. In this context, the predic
tions from LR, SVM, RF, XGBoost, and DNN were aggregated to create a final 
ensemble model. This method aims to capitalize on the strengths of each model and 
mitigate its weaknesses, providing a robust and accurate flood susceptibility predic
tion. By integrating these diverse machine learning algorithms, the study aimed to 
harness the complementary strengths of each method, thereby enhancing the reliabil
ity and accuracy of flood susceptibility maps for the Malda district. This comprehen
sive approach not only contributes to the scientific understanding of flood risks but 
also serves as a valuable tool for planners and policymakers in implementing effective 
flood risk management strategies.

The incorporation of a diverse set of flood conditioning parameters provided a 
comprehensive view of the factors influencing flood susceptibility in the Malda dis
trict. Key factors such as elevation, drainage density, and distance to rivers were 
expected to play crucial roles due to their direct influence on flood dynamics. The 
inclusion of topographic indices (TPI, TRI, TWI) helped capture terrain characteris
tics that contribute to flood susceptibility, while meteorological parameters (annual 
rainfall, MFI) and hydrological parameters (SPI, STI) provided insights into precipita
tion and hydrological conditions. Vegetation indices (NDVI and mNDWI) were used 
to assess the impact of land cover and water bodies on flood susceptibility, and the 
consideration of LULC, geomorphology, and lithology allowed for the evaluation of 
land-use patterns and geological factors. The findings of this research offer valuable 
insights into flood susceptibility patterns in the Malda district, which can inform dis
aster management, land-use planning, and infrastructure development. Additionally, 
the methodology and machine learning (ML) algorithms employed in this study can 
be adapted for flood susceptibility mapping in other regions, contributing to 
improved flood risk assessment and resilience-building efforts.

Despite the robust findings, the study’s reliance on Synthetic Aperture Radar 
(SAR) data for certain parameters introduces several limitations. SAR data often suf
fer from limited temporal resolution, hindering the capture of rapid changes in flood 
dynamics during extreme weather events. Additionally, the spatial resolution of SAR 
data can vary, potentially missing finer details of flood-prone areas, particularly in 
complex terrains. The accuracy of SAR signals can also be compromised by vegeta
tion and surface roughness, leading to potential inaccuracies in regions with dense 
vegetation or uneven terrain. In particular, the SAR thresholding technique employed 
in this study has intrinsic limitations when it comes to identifying floods in urban 
and densely vegetated areas. Urban areas and densely vegetated regions have complex 
surface characteristics that can hinder the accurate detection of floodwater using 
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SAR-based methods. The method’s insensitivity to these conditions sometimes masks 
out these areas, leading to false negatives in the training data (Zhao et al. 2021). 
Furthermore, obtaining high-quality, up-to-date SAR data can be challenging, which 
limits the model’s applicability in regions where such data are scarce or outdated. 
These limitations highlight the need for supplementary data sources and advanced 
processing techniques to enhance the accuracy and reliability of flood susceptibility 
assessments.

7. Conclusion

Floods are widely acknowledged as highly destructive natural disasters that pose sig
nificant threats to various aspects of human life. The development of a flood suscepti
bility map is an essential element in the execution of a complete flood management 
plan, since it aims to reduce human fatalities and mitigate flood-induced losses. A 
significant obstacle encountered in several nations throughout the process of generat
ing susceptibility maps is the insufficiency of appropriate and current field data that 
can be used for the training phase of machine learning techniques. Additionally, the 
generation of flood susceptibility maps is often influenced by two primary factors: 
effectiveness and accuracy. This research used a combination of RS & GIS, GEE, and 
Python capabilities to achieve the necessary levels of speed and accuracy in generating 
susceptibility maps. Climate change and global warming are phenomena that cannot 
be avoided, and natural disasters are prevalent worldwide. One example is the flood, 
which can result in significant damage. This prompts us to consider identifying more 
efficient solutions to mitigate the magnitude of this issue. Therefore, the model that 
has been produced may be used in other places by gathering the flood conditioning 
components that are relevant to the specific region being examined. The research 
may also be used in the field of urban planning to identify locations with a high sus
ceptibility to flooding, therefore informing decisions about the approval of new struc
tures in order to mitigate future risks. This research also has the potential to provide 
benefits to a range of stakeholders, including policymakers, government ministries, 
authorities, local administrative bodies, environmentalists, planners, and engineers, 
who work together to minimize vulnerability to flooding. While the study on flood 
susceptibility mapping in the Malda district using advanced machine learning models 
shows promising results, several limitations must be acknowledged. Firstly, the study 
relies on complex machine learning models which, although powerful, pose a risk of 
overfitting due to the high dimensionality of the data and the complexity of the mod
els themselves. This overfitting may limit the generalizability of the findings, making 
it difficult to apply these results to other regions with different geographical or cli
matic conditions. Additionally, the accuracy and effectiveness of the susceptibility 
maps are highly dependent on the quality and availability of relevant field data. 
Although the Malda district benefits from relatively comprehensive datasets, such 
data may be outdated or unavailable in other regions, thereby limiting the reliability 
and applicability of the models elsewhere.

Furthermore, the models used may incorporate simplified hydrological assump
tions, potentially overlooking complex processes like river flow dynamics, 
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groundwater interactions, and urban drainage systems that are crucial for a compre
hensive flood risk assessment. Adding features form process based hydrological 
dynamics may further improve the accuracy of the models used in the study. Our 
approach assumes that all years are independent, which may be too strong of an 
assumption if consecutive years have correlated environmental and climatic condition, 
which could have impact on model accuracy. The study also does not take into 
account socioeconomic factors such as population density, land use planning, or 
infrastructure resilience, which are essential for a holistic understanding of flood risk 
and its impact on communities. The training data’s focus on flood-affected areas 
might introduce bias, leading to models that are overly sensitive to these areas and 
potentially underestimating susceptibility in regions with less historical flood data. 
Lastly, the analysis is based on historical data and does not consider potential future 
changes in flood patterns due to climate change, thus reducing the long-term applic
ability of the susceptibility maps for future flood risk management and planning. 
These limitations underscore the need for further research and methodological 
improvements to enhance the robustness and applicability of flood susceptibility 
mapping.
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