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A B S T R A C T

Early detection of colorectal cancer through the proper segmentation of polyps in the colonoscopy images is crucial. Polyps’ complex morphology and varied ap-
pearances are the greatest obstacles for the segmentation approaches. The paper introduces SAMU-Net, a novel deep learning-based dual-stage architecture consisting
of a custom attention-based U-Net and modified Segment Anything Model (SAM) for better polyp segmentation. In our model, we used the custom U-Net architecture
with an attention mechanism to obtain polyp segmentation masks as the first stage. This mask is then used to generate a bounding box input for the second stage that
contains the modified Segment Anything Model. The modified SAM relies on the use of High-Quality token-based architecture along with global and local properties
to segment polyps accurately, even in cases where the shapes and sizes of polyps are diverse and the polyps have different appearances. The efficiency of SAMU-Net
generated from four different datasets of colonoscopy images was examined. Our process produced a dice coefficient score of 0.94, which is very impressive and has a
considerable improvement over the existing state-of-the-art polyp segmentation methods. Moreover, the qualitative results also visualize that the SAMU-Net is
capable of accurately segmenting polyps of wide ranges, thus, it is a relevant tool for computer-aided detection as well as the diagnosis of colorectal cancer.

1. Introduction

Colorectal cancer (CRC) is a major health concern as it ranked third
among all the cancer cases globally and is the second most frequent
cause of cancer-related mortality [1]. It was estimated that in 2020,
about 1.93 million new cases of CRC were diagnosed worldwide, with
935,000 deaths attributed to the disease [2]. It is also predicted that, by
the year 2030, the number of new CRC cases will rise by 60 % to 2.2
million and the number of deaths will go up to 1.1 million per year [3].
The rising number of these cases is a lucid sign pointing to the usefulness
of colonoscopy, a standard screening modality for CRC, capable of
detecting and removing precancerous polyp [4]. Such growths that
might be found in the patient’s colon or rectum that can after some time
change into cancer. Colonoscopy would be able to reduce the probability
of CRC development by detecting and removing polyps [5]. However,
colonoscopy has a major shortcoming in the accuracy of polyp’s detec-
tion and segmentation, thus lowering the chance for the patients with
colorectal cancer to be properly diagnosed, not to mention their treat-
ment [6]. Timely detection and treatment are essential to lessen the
number of casualties. Despite its importance, the segmentation of polyps
during colonoscopy faces several challenges. An example of this is

manual polyp segmentation. This traditional method is prone to oper-
ator dependency errors, especially for thin and flat polyps [7]. The ac-
curacy of polyp segmentation can also be impaired by different
variables, such as the quality of the colonoscopy image, the presence of
artifacts, and polyps with various shapes [8]. Besides, there has been a
rise in the number of CRC screening, especially among the senior citi-
zens, which has added pressure to the healthcare systems and endo-
scopists, emphasizing the need for efficient and accurate automated
segmentation tools [9].

To counteract these challenges and improve the accuracy in polyp
segmentation, there has been growing interest in developing and
applying artificial intelligence (AI) technologies in colonoscopy [10].
Computer-aided segmentation systems that are based mostly on algo-
rithms of deep learning have already represented very promising results
in increasing accuracy in polyp segmentation. These AI-aided systems
could provide accurate polyp boundary delineation and thus help the
endoscopist in the complete removal of the polyp and improve the
quality of histopathological examination [11–16]. Deep learning-based
developments over the past few years have drastically enhanced the
potential for medical image analysis. Convolutional Neural Networks
have established excellent performance on many medical imaging tasks,
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particularly segmentation [17]. Various CNN-based architectures have
been brought into the field of polyp segmentation, such as U-Net [18],
SegNet, and DeepLab [19]. Among them, U-Net has been particularly
noticed for its very good performance in medical image segmentation
tasks. The contacting path and the expanding path are the two paths that
form the U-Net architecture, linked by skip connections that enable
precise localization while context information is maintained. Therefore,
the methodology is very appropriate for polyp segmentation, since the
accurate delineation of the polyp boundaries is paramount for proper
removal and histopathological analysis. While U-Net and variants are
able to bring about success, inherently there is still space for further
improvements related to polyp segmentation performance [20]. Atten-
tion mechanisms have been one of the most powerful techniques that
have begun to surface over the past few years for enhancing model
performance in deep learning applied in various domains, in particular,
medical image analysis. Attention mechanisms allow models to focus on
the most relevant parts of the input, possibly improving accuracy and
interpretability. Attention mechanisms probably improve the accuracy
in polyp segmentation by having the model pay attention to subtle
features that outline the boundaries between the polyps and surround-
ing tissue for segmentation and detection [21]. Another significant
development in computer vision is the introduction of the Segment
Anything Model (SAM) by Meta AI [22]. SAM is a segmentation system
able to generate high-quality object masks directly from points or boxes.
Being flexible and having zero-shot properties make it an interesting
candidate for the application of medical image segmentation
tasks—especially polyp segmentation. Integrating such advanced tech-
niques to develop more robust and accurate systems in this line of polyp
segmentation may become a promising avenue.

This paper introduces SAMU-Net, a novel dual-stage polyp segmen-
tation network that integrates a custom, attention-based U-Net together
with the Segment Anything Model to enhance mask prediction. We
utilize the benefits of both architectures in our methodology to predict
more accurate and robust results for the segmentation of polyps. The
first stage of SAMU-Net is a modified U-Net architecture that includes
custom attention mechanisms. It is a U-Net based on attention-enhanced
methods for the prediction of ROI (Region of Interest) and segmentation
of polyps. Attention mechanisms let the model concentrate only on small
parts in the input that are relevant for its specific task, assuming that this
potentially could enhance its capability to detect accurate boundaries of
the polyp and be more robust to challenging cases of flat or small polyps.
The second stage of SAMU-Net uses the Segment Anything Model to
further enhance the quality of the initial segmentation masks generated
by the attention-based U-Net. Equipped with powerful segmentation
abilities available in SAM, SAMU-Net can thus avoid some traditional
CNN-based segmentation method-related issues, such as challenging
cases dealing with different polyp shapes and sizes. Our two-stage
approach aims to weld the strengths from both models: the capability
of the U-Net to learn task-specific features from training data and the
flexibility and accuracy of SAM. Only by such a combination will the
segmentation of polyps be more accurate and robust for all types of
polyps and different image qualities related to colonoscopy.

We conduct detailed experiments on four publicly available colo-
noscopy image datasets for performance evaluation and compare our
approach with the state-of-the-art methods on polyp segmentation tasks.
All the experiments are evaluated according to the dice coefficient, IoU,
Weighted F-measure, S-measure, and E-measure. Several potential im-
plications for clinical practice could be realized from the development of
SAMU-Net. As such, with better accuracy and more robustness in polyp
segmentation, it is possible for SAMU-Net to further improve the effi-
ciency of current AI-aided colonoscopy methods. This is expected to
achieve more accurate boundary delineation of the polyp and conse-
quently more complete removals. It will then improve the preventive
effect against CRC and reduce incarnation and mortality rates of colo-
rectal cancer. Furthermore, the incorporation of SAM into our model is
highly likely to yield a much more interactive and flexible polyp-

segmentation system. Our Contributions are as follows.

● We propose a novel dual-stage polyp segmentation network SAMU-
Net, integrating a custom attention-based U-Net and the Segment
Anything Model (SAM).

● We enhanced polyp segmentation accuracy by leveraging an
attention-based U-Net to segment and localize polyp regions,
providing initial masks precisely.

● We propose SAM to refine segmentation masks, incorporating global
contextual information to delineate polyp boundaries accurately.

● To remove unwanted data and enhance the colonoscopy image, we
applied morphological operations for specular reflection removal
and utilized an image-sharpening kernel.

● We achieve superior performance with a Dice similarity coefficient of
0.94 on Kvasir-SEG and CVC-ClinicDB datasets, surpassing state-of-
the-art methods.

2. Related works

In order to automate the process of polyp segmentation, researchers
have been developing CAD prototypes. Analyzing the polyp’s edge was
the backbone of most early polyp segmentation approaches. Modern
approaches, on the other hand, rely heavily on convolutional neural
networks (CNNs) and pretrained networks. Faysal et al. [23] proposed a
methodology that involves using a MultiResUNet with Attention Guid-
ance (AG) and Test-Time Augmentation (TTA) for colorectal polyp
segmentation. The model is trained on the Kvasir-SEG dataset using
various data augmentation techniques and the Adam optimizer. The
results are measured using metrics like the Dice Similarity Coefficient
(DSC) and Intersection over Union (IoU). This approach outperforms
others by integrating attention mechanisms and residual connections to
extract vital features, enhancing segmentation accuracy and robustness.
Poly-SAM by Li et al. [24] is a foundational vision model designed for
polyp segmentation in medical imaging, leveraging the Segment Any-
thing Model (SAM) through transfer learning. The methodology involves
fine-tuning SAM using multi-center colonoscopy image datasets to
enhance its performance on polyp segmentation tasks. Poly-SAM ach-
ieves its best performance on the CVC-300 dataset with a dice similarity
coefficient (DSC) of 0.924 and a mean intersection-over-union (mIoU) of
0.882, demonstrating its superior capability in polyp segmentation
compared to other models. Dong et al. [25] presents solutions for
medical image segmentation tasks, including polyp and surgical in-
strument segmentation, utilizing advanced transformer-based models.
The methodology involves a multi-model fusion approach, integrating
Polyp-PVT, Sinv2-PVT, and Transfuse-PVT models with pyramid vision
transformers (PVT) as the backbone for feature extraction. This method
demonstrates superior performance compared to conventional con-
volutional networks (ConvNets). The results achieved the best scores of
0.91 in instrument segmentation and 0.83 in polyp segmentation. The
proposed solution improves accuracy and generalization in segmenta-
tion tasks, enhancing clinical decision-making and potentially reducing
surgical risks and missed diagnoses of colorectal polyps. Zijin et al. [26]
introduce the Duplex Contextual Relation Network (DCRNet) for auto-
matic polyp segmentation, enhancing performance by capturing
contextual relations within individual images and across multiple
photos. Methodologically, it employs two parallel modules, the Interior
Contextual-Relation Module (ICR) and the Exterior Contextual-Relation
Module (ECR), along with a Region Cross-Batch Memory (ROM) to store
and utilize embedding features from previous training epochs. The result
is a significant improvement in segmentation performance, achieving a
Dice score of 85.41 on the PICCOLO dataset and 90.14 on the Kvasir-SEG
dataset. DCRNet outperforms state-of-the-art methods like PraNet and
ACSNet, with scores of 2.9 in MAE, 84.44 in IoU, 82.05 in F-measure,
and 91.49 in Sα on the Kvasir-SEG dataset.

A novel methodology proposed by Zhao et al. [27] for polyp seg-
mentation to improve the accuracy of colorectal cancer detection. The
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proposed method, MSNet, introduces a multi-scale subtraction network
that effectively utilizes complementary information from different
feature levels to enhance the perception of polyp areas. This is achieved
through a subtraction unit (SU) that captures the difference features
between adjacent levels in the encoder and a training-free network
"LossNet" for comprehensive supervision across feature layers. MSNet
achieves the best scores on several benchmark datasets with a mean Dice
coefficient improvement of up to 14.1 % on challenging datasets like
ETIS. The network also operates in real-time at approximately 70fps for
352 × 352 images, making it faster than other methods. Enhanced U-Net
by Krushi et al. [28] introduce a model for polyp segmentation. The
methodology includes using a combination of pixel-based IoU loss, focal
loss, and dice loss to improve the model’s learning capability, com-
plemented by the addition of a Selective Feature Enrichment Module
(SFEM) and Attention-Gated Context Module (AGCM). This model
achieves remarkable results, with the best performance noted as a mean
Dice of 88.62 % and mean IoU of 81.30 % on the CVC-300 dataset: Fan
et al. [29] present PraNet, a model for accurate polyp segmentation from
colonoscopy images. PraNet employs a parallel partial decoder (PPD) to
generate high-level semantic maps and integrates reverse attention (RA)
modules for enhanced accuracy. The model outperformed
state-of-the-art approaches, achieving top scores such as a mean Dice of
0.899 and a mean IoU of 0.849 on the CVC-612 dataset, and a mean Dice

of 0.898 and a mean IoU of 0.840 on the Kvasir dataset. Its superior
performance, signified by over 7 % improvement in mean Dice across
metrics compared to other models, The CPSNet by Wang et al. [30] is an
innovative deep learning model designed to segment camouflaged and
partially occluded colorectal polyps accurately. It incorporates three key
modules: the Deep Multi-Scale-Feature Fusion Module (DMF), the
Camouflaged Polyp Detection Module (CDM), and the Multi-Scale
Feature Enhancement Module (MFEM). These modules work synergis-
tically to enhance feature extraction, improve boundary localization,
and effectively integrate shallow and deep features. CPSNet demon-
strates superior performance, achieving a 2.3 % increase in the Dice
coefficient on the ETIS-LaribPolypDB dataset compared to previous
state-of-the-art methods.

Hao et al. [31] introduced Polyper, a boundary-sensitive method to
improve polyp segmentation, especially for small polyps. It employs a
specific feature aggregation strategy for small polyp detection. The
methodology involves refining the initial segmentation results, mainly
focusing on potential boundary extraction. The results exhibited sig-
nificant enhancements with different encoders, such as ResNet-50 and
MiT-B1, and showed marked improvements in mIoU and mDice scores.
On datasets like Kvasir and CVC-ClinicDB, Polyper achieved the highest
scores, with mIoU and mDice reaching up to 90.57 and 94.49, respec-
tively, when combined with Swin-T encoder. CoInNet by Samir et al.

Fig. 1. The comprehensive workflow of SAMU-Net: Custom Attention-Based U-Net, Polyp Detection and Bounding Box Creation, and Segment Anything Model
(SAM) for Quality Mask Prediction.
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[32] is evaluated on five datasets and outperforms thirteen
state-of-the-art models, demonstrating superior scores such as a mDice
of 93.0 % and a mIoU of 90.25 % on the CVC-ClinicDB dataset, alongside
92.6 % mDice and 87.2 % mIoU on the Kvasir dataset. LightCF-Net by
Zhanlin et al. [33] is a novel, lightweight, long-range context fusion
network designed for real-time polyp segmentation from colonoscopy
videos. This approach results in higher segmentation accuracy and ef-
ficiency than other lightweight networks. LightCF-Net demonstrated
superior accuracy and precision on the Kvasir-SEG and CVC-ClinicDB
datasets. It achieved the highest IoU and DSC values among the
models tested, with IoU of 79.02 % and DSC of 88.28 % on Kvasir-SEG
and IoU of 68.00 % and DSC of 80.95 % on CVC-ClinicDB.

Junqing et al. [34] propose the IECFNet model to address challenges
in polyp segmentation from gastrointestinal endoscopy images,
including low contrast boundaries and varied appearances. The meth-
odology involves using an attention encoding-decoding pair to generate
saliency maps, an implicit edge-enhanced context attention module for
feature aggregation, and a multi-scale feature reasoning module for final
predictions. IECFNet outperforms existing methods significantly,
particularly with a 7.9 % higher accuracy on the ETIS dataset and 90.7 %
Mean dice on the Kvasir Dataset. Guangyu et al. [35] aim to overcome
the challenges posed by labor-intensive and expensive annotation pro-
cesses in polyp segmentation. Their proposed semi-supervised method-
ology, employing collaborative and adversarial learning, introduces
collaborative segmentation networks featuring focused and dispersive
extraction modules. Under mutual consistency constraints, two net-
works are trained to mitigate biases stemming from limited labeled data.
Adversarial training, incorporating an auxiliary discriminator, enhances
segmentation performance using unlabeled data. The experimental
evaluation on Kvasir-SEG and CVC-Clinic DB datasets demonstrates the
model’s superiority over existing semi-supervised and fully supervised
methods. Faysal et al. [36] present a model designed for precise polyp
segmentation in medical images to aid in colorectal cancer diagnosis.
The methodology involves using a UNet architecture with an Incep-
tionResNetV2 encoder for feature extraction and applying Test Time
Augmentation (TTA) to improve segmentation accuracy, achieving the
best Kvasir-SEG and CVC-ClinicDB datasets performance. The highest
recorded DSC for this model is 0.8706, and a mean IoU of 0.8016.
IRv2-Net’s superior performance, real-time applicability.

3. Methodology

This study proposes a new dual stage approach for polyp segmen-
tation, a combination of a modified U-Net and a custom zero-shot

segmentation model based on SAM (Segment Anything Model). The first
stage includes a modified U-Net architecture in the meantime to come
up with a primary binary mask from the input image. The binary masks
produced from the original images are then applied to create bounding
boxes around the polyp ROI(Region Of Interest). In the second stage, the
bounding boxes and the original images are feeded to the custom SAM.
Mask decoder of SAM is fine-tuned on the same training dataset used on
the first stage. This fine-tuning enables SAM to produce higher-quality
binary masks based on the segmentation result by Custom U-Net. The
bounding box provides contextual information that helps the SAM
model accurately locate and segment the polyp regions within the
bounding box. By fusing these two stages, our methodology aims to
enhance the quality and reliability of polyp segmentation. Fig. 1 illus-
trates the overall architecture of SAMU-Net.

3.1. Dataset description

This study employs four separate datasets to assess the effectiveness
of the proposed SAMU-Net model for polyp segmentation. Fig. 2 shows
the patient’s colorectal organ represented by the datasets used in this
study and Table 1 provided an overall overview of datasets.

1. Kvasir-SEG Dataset [37]: A fiduciary dataset was generated based on
the Kvasir dataset, including images from the gastrointestinal tract.
In total, the dataset contains 1000 polyp images with associated
ground truth segmentation masks. All images are JPEG and vary in
resolution, while their segmentation masks are in PNG format.

2. CVC-ClinicDB [38]: It is also a publicly available dataset, containing
a total of 612 images of a resolution of 384 x 288 pixels. They have
been extracted from 29 colonoscopy videos, hence providing rich
variability regarding the different polyp appearances. There are
ground-truth segmentation masks available for every image in the
dataset.

3. CVC-ColonDB [39]: CVC-ColonDB includes 380 images from 15 co-
lonoscopy videos. All of the images within this dataset have a

Fig. 2. Representative sample images and corresponding ground truth segmentation masks from each dataset respectively: Kvasir-SEG, ClinicDB, CVC-ColonDB, and
ETIS-LaribPolypDB.

Table 1
An overview of the datasets used in this study.

Dataset Number of Images Image Resolution Format

Kvasir SEG 1000 Varying JPG
CVC-ClinicDB 612 384 x 288 PNG
CVC-ColonDB 380 574 x 500 PNG
ETIS-Larib 196 1225 x 966 TIF
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resolution of 574 x 500 pixels and are stored in PNG format. This
dataset provides much diversity concerning polyp shapes, sizes, and
textures with the ground-truth segmentation masks.

4. ETIS-Larib Polyp DB [40]: ETIS-Larib Polyp DB is constituted by 196
high-resolution colonoscopy images of 1225 x 966 pixels. The reason
this dataset is particularly challenging is that all images are
high-resolution and the polyps to be detected have a very different
appearance. Ground truth segmentation masks are provided for
every image.

3.2. Image preprocessing techniques

Image preprocessing is an essential step before they are ready to be
inputted in the models. It reduces the time needed for the calculation
and increases computational efficiency. The purposes are to generalize
and enhance the quality of images while bringing out unwanted dis-
tortions in it and emphasizing important features. Various types of ar-
tifacts could influence the performance of polyp segmentation in
colonoscopy pictures. Colonoscopy images may contain noises, light
reflections, and size and aspect ratio mismatch. For seamless handling of
segmentation of these images by the models, appropriate pre-processing
techniques are required. This section explains how techniques such as
scaling, sharpening, and removal of artifacts enhance the quality of
images obtained from colonoscopy. As for normalization, images are
resized to 256x356 resolution to ensure uniformity across the dataset.

3.2.1. Text removal
The performance of model could be affected by inappropriate text

existing in some images in the dataset. In this phase of preprocessing, the
use of a pre-trained OCR model is put into action in the removal of text
accompanied by openCV’s inpainting algorithm. First, obtain the
bounding frames by recognizing the text in the image. Second, generate
a mask. Third, paint areas with the test. These are the three phases.

Keras-OCR is used to find the text’s bounding frame. Keras-OCR pro-
vides infrastructure for end-to-end training and out-of-the-box OCR
models to rapidly develop novel OCR models [41]. The pretrained
weights for detectors and recognizers are automatically downloaded.
The pretrained model is used in this research because it serves the
purpose adequately. Passing an image through Keras-OCR will result in a
tuple of the form (word, box). The box contains the coordinates (x, y) of
the four corner boxes of the word. After the text is recognized, a mask of
the size of the input images is generated containing only the text. This
information is then fed into the algorithm to determine where exactly in
the image the painting needs to be done. Finally, the obscured regions of
the image are inpainted using an inpainting algorithm. We used cv2.
INPAINT_NS [42]. This algorithm thus uses fluid dynamics and relies on
partial differential equations. The output image does not show any text
upon inpainting. The entire process of removing text from an image is
illustrated in Fig. 3.

3.2.2. Artifact remove
Several morphological techniques for polyp segmentation are

applied in the preprocessing stage to enhance image quality and facili-
tate accurate segmentation. This section outlines the methods employed,
including specular reflection removal and sharpening the images.

3.2.2.1. Specular reflection removal. Specular reflections, caused by the
intense light source from the colonoscope reflected in the colon outline,
often cause bright spots or patches on colorectal images, obstructing
details for segmentation tasks. We employed a robust method based on
reflective region thresholding and morphological operations to remove
and inpaint those patches. Fig. 4 shows the specular reflection removal
process.

Specular regions are identified based on their distinctive intensity
range in the grayscale representation of the image. Given a grayscale

Fig. 3. Text Removal Process by utilizing a pre-trained OCR model and OpenCV’s inpainting algorithm to eliminate text from images.

Fig. 4. Specular Reflection Removal Process using reflective region thresholding and morphological operations to eliminate bright spots from colorectal images.
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image Igray(x, y) specular reflections are localized using a thresholding
approach:

mask (x, y)=
{

255, ifTmin ≤ Igray(x, y) ≤ Tmax
0, otherwise (1)

Here, Tmin and Tmax define the lower and upper bounds of the
reflective region threshold, respectively. From our observation, reflec-
tive spots have an RGB range of 245–255 for each channel. Based on that
observation, Morphological operations are applied to the binary mask to
enhance the accuracy of specular reflection removal. A closing operation
with a larger kernel size K× K where K = 15, is performed to fill small
holes and smooth out the edges:

maskclosed = close (mask,K) (2)

where close denotes the morphological closing operation.
The final step involves inpainting, where image I is restored by

replacing and brushing the pixels in the specular regions identified by
the mask closed with neighboring pixel values. This is achieved using the
following operation for seamless inpainting which can be written as
following:

Iprocessed(x, y)=
{

I(x, y), if maskclosed (x, y) = 0
inpaint(I,maskclosed, (x, y),7), if maskclosed (x, y) = 255

(3)

where inpaint I,mask, (x, y), r denotes the inpainting function applied to
image pixel coordinates (x,y) and radius r.

3.2.2.2. Image sharpening. The image sharpening technique in this
study utilizes a convolution operation with a standard image sharpening
kernel or filter. The sharpening kernel that was employed here can be
defined as follows:

K=

⎡

⎣
0 − 1 0

− 1 5 − 1
0 − 1 0

⎤

⎦ (4)

This kernel enhances the edges by amplifying the differences be-
tween adjacent pixel values, effectively highlighting the edges and de-
tails in the image. This operation applied to the input image I with the
kernel K can be mathematically represented as:

Isharpened(x, y)= I(x, y)*K (5)

where Isharpened(x, y) denotes the pixel value of the sharpened image at
coordinates (x, y) and * represents the convolution operation. The
application of this sharpening filter effectively removes blurriness from
the input images, enhancing the edge details and contrast.

3.3. Proposed model

The architecture of our proposed model starts with a modified U-Net
which is tailored to use an attention mechanism to detect and segment
polyp. The network follows the classic encoder-decoder structure of U-
Net but introduces significant modifications to improve feature extrac-
tion and mask precision. Fig. 5 illustrates the main architecture of our
proposed model.

The encoder of Custom U-Net consists of a series of convolutional
blocks with squeeze-and-excitation (SE) mechanisms. Each block in-
cludes two convolutional layers with 3x3 kernels, batch normalization,
and ReLU activation, followed by an SE block that adaptively recali-
brates channel-wise feature responses by explicitly modeling in-
terdependencies between channels. This process is repeated through
four stages, where each subsequent stage doubles the number of filters,
enhancing the model’s capacity to learn complex features. After each
stage, a max pooling layer is used to progressively down-sample the

Fig. 5. Architecture of SAMU-Net: Dual-stage Polyp Segmentation Model integrating custom attention-based U-net with advanced attention mechanisms, custom
blocks, and high-quality token utilization in custom SAM for refined output Segmentation.
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feature maps, thereby capturing multi-scale contextual information.
At the bottleneck of the network, a bridge layer is employed,

comprising a convolutional block followed by a spatial attention
mechanism. The spatial attention mechanism emphasizes important
regions by computing attention maps that capture the spatial de-
pendencies of the feature maps. This configuration aims to refine the
most salient features before up-sampling, guiding the model to focus on
areas of interest.

The Spatial Attention Block generates a spatial attention map by
applying average pooling and max pooling along the channel axis of the
input feature maps, concatenating the pooled features, and passing them
through a convolutional layer with sigmoid activation. This spatial
attention map is multiplied by input feature maps to focus on critical
spatial regions.

ψ = σ(W([AvgP(x),MaxP(x)]))⋅x (6)

The input feature maps x undergo average pooling x and max pooling
x: The results are concatenated and passed through a convolutional layer
W. Finally, a sigmoid activation function σ is applied, producing
attention weights highlighting important spatial regions in the input.

Upwards from the deepest part of the custom U-Net where resides the
spatial attention block, the decoder blocks are deployed. Each up-
sampling step in the decoder is preceded by generating a gating signal
through a 1x1 convolution, batch normalization, and ReLU activation.
The attention-gating blocks use these gating signals to selectively
highlight relevant features from the encoder path, ensuring that only the
most critical information is passed through. The up-sampling layers
progressively reconstruct the image resolution, with each layer concat-
enating the up-sampled feature maps with the corresponding attention-
weighted encoder outputs. This ensures a rich spatial and contextual
information fusion at each decoding stage.

As for the Attention Gating Block, it is designed to highlight salient
features passed from the encoder to the decoder. It takes two inputs: the
feature maps from the encoder and the gating signal generated in the
decoder. The block first performs a 2x2 convolution on the encoder
feature maps and a 1x1 convolution on the gating signal. These outputs
are summed and passed through a ReLU activation, followed by a 1x1
convolution and a sigmoid activation to generate attention coefficients.
These coefficients are up-sampled and multiplied with the original
encoder feature maps to focus on the relevant regions.

ψ = σ
(
Wg(g) +Wx(x)

)
⋅x (7)

where, x Encoder feature maps, g Gating signal from the decoder, Wg,
Wx: Convolutional layers for g and x. σ: Sigmoid activation function.

For the loss function of the first stage in Custom U-Net, we employ
the Dice loss function. The Dice coefficient D is defined as:

D=
2⋅|P ∩ G|
|P| + |G|

(8)

where P is the set of predicted pixels, and G is the set of ground truth
pixels. The Dice loss L is then given by:

L=1 − D = 1 −
2⋅

∑
(P⋅G) + ϵ

∑
P+

∑
G+ ϵ

(9)

Here, ϵ is a small constant to avoid division by zero.

3.4. Segment Anything model (SAM)

The second stage of our segmentation network utilizes the Segment
Anything Model (SAM). It’s a recently released general segmentation
model with robust zero-shot segmentation capabilities across a wide
range of images of objects. We focus on enhancing SAM’s mask decoder,
inspired by techniques used in "Segment Anything in High Quality" for
edge accurate mask prediction without extensive model retraining. The
other two major components that are Image and Prompt encode will

remain frozen during the training state.
SAM’s default mask decoder uses an output token akin to edge-to-

edge object Detection Transformer’s (DETR) [43] object query for dy-
namic MLP (Multi-Layer Perceptron) based mask prediction. In our
adaptation of HQ-SAM, we adapt the HQ-Output [44] token alongside
SAM’s output tokens and prompt tokens and then augment the mask
decoder’s input. This HQ-Output token is a learnable 1 × 256 vector that
undergoes self-attention with other tokens, enhancing global context
integration and refining mask details through token-to-image and
image-to-token attention mechanisms across decoder layers.

We adapted global-local fusion in HQ-SAM to enrich feature fidelity.
This process unites enriched features from SAM’s ViT(Visual Tran-
formers) encoder stages: early-layer local features capturing edge de-
tails, final-layer global features for semantic context, and mask decoder
features emphasizing shape information. These features are upsampled
to 256 × 256 and fused via element-wise summation that bolsters HQ-
SAM’s ability to preserve segmentation details effectively with minimal
computational overhead. The encoder Se takes an image I as input and
outputs the corresponding features f1:

fI = Se(I) (10)

The decoder Sd takes the features fi and a set of prompts P as input
and outputs the corresponding 2D initial segmentation mask MSAM,

MSAM = Sd(fI,P ) (11)

The prompts p ∈ P can be points, boxes, texts, and masks. We used
bounding boxes as our prompt in (x1, y1, x2, y2) coordination format.

To enhance the mask prediction, the HQ-Output token THQ was
employed which is a learnable 1 × 256 vector. The tokens (existing T
and HQ-Output THQ) undergo a self-attention mechanism:

T̂ = SelfAttention(T+THQ) (12)

We extract multi-scale features from different stages of the ViT
encoder as Early-layer features flocal for capturing edge details, Final-
layer features fglobal for semantic context and Mask decoder features
fmask emphasizing shape information.

f256
local=Upsample(flocal), f256

global=Upsample
(
fglobal

)
, f256

mask=Upsample (fmask)

(13)

The upsampled features are then fused via element-wise summation:

ffused = f256
local ⊕ f256

global ⊕ f256
mask (14)

where ⊕ denotes element-wise summation.
The final segmentation mask MHQ is produced from the fused fea-

tures using a final convolutional layer:

MHQ = conv
(
ffused

)
(15)

To train the model, we use a combination of Dice loss and Binary
Cross-Entropy (BCE) loss:

DiceLoss=1 −
2|Mpred ∩Mgt

⃒
⃒

⃒
⃒Mpred | + |Mgt

⃒
⃒

(16)

BCELoss= −
1
N

∑N

i=1

[
Mgt log

(
Mpred

)
+
(
1 − Mgt

)
log

(
1 − Mpred

)]
(17)

Where, Mpred is the predicted mask, Mgt is the ground truth mask and N
is the total number of pixels in the mask.

The combined loss is given by:

TotalLoss= λDice ⋅DiceLoss+ λBCE⋅BCELoss (18)

where λDice and λBCE are weighting factors.
The overall training procedure involves minimizing the total loss
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over the training dataset:

θ* = arg min
θ

∑

(I,P,Mgt)∈train set

Total Loss
(
I,P,Mgt; θ

)
(19)

where θ represents the model parameters.
Unlike conventional approaches that may require extensive fine-

tuning or additional heavy networks, our method focuses on
enhancing mask quality through efficient token learning and feature
fusion. This strategy significantly improves segmentation quality.

4. Results

This section discusses the results, including experimental setup, data

splitting, a statistical analysis of the segmentation models, and train loss.

4.1. Experimental setup

In our experiments, we implemented the model using the Tensor-
Flow, Pytorch framework and the model was trained on a system with an
Nvidia A100 GPU(Graphics Processing Unit) and standard 8 core CPU
(Central Processing Unit). We used the RMSprop optimizer with a
learning rate set to 1e-4. We defined the model with 16 filters for stage
one and to ensure reproducibility, we set a constant seed value. The
training process iterated for 60 epochs for each stage of SAMU-Net and
the model’s save checkpoint was threshold for 0.2 validation loss. The
dataset was divided into three subsets: 80 % for the training set, 10 % for
the validation set, and 10 % for the testing set. The data loading function

Fig. 6. Evaluate SAMU-Net and Other Models on the Kvasir SEG(a) and ColonDB(b) Datasets Using mDice Score Comparison.
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was used to handle 3 primary image file formats in four different data-
sets. Specifically, JPEG images were used for the Kvasir dataset, TIF
images for the ETIS-LaribPolypDB datasets, and PNG images for the
CVC-ClinicDB and CVC-ColonDB dataset.

4.2. Evaluation metric

We assess the model’s efficacy using six commonly used metrics:
Dice, IoU, Mean Absolute Error (MAE), Weighted F-measure (Fβ

w), S-
measure (Sα), and E-measure (Eξ). Two metrics that fall under this
category are IoU and Dice, both of which are regional similarity mea-
sures that primarily analyze the internal consistency of segmented ob-
jects. This report mentions the average value of Dice (mDic) and IoU
(mIoU). As an indication of pixel-by-pixel comparison, MAE depicts the
average absolute error between the anticipated and true values.

Weighted F-measure (Fβ
w) considers recall and accuracy thoroughly and

eliminates the impact of treating each pixel equally in traditional in-
dicators. S-measure (Sα) is centered around the structural similarity of
target possibilities at the level of both regions and objects. To assess the
segmentation outcomes on both the pixel and picture levels, the E-
measure (Eξ) is employed. As mEξ and maxEξ, we represent the average
and maximum values of the E-measure, respectively. Additionally,
Precision, Recall, and Accuracy are key metrics that measure the
model’s ability to correctly identify positive samples and avoid false
positives and negatives. Precision reflects the ratio of correctly predicted
positive pixels out of all predicted positive pixels, while Recall repre-
sents the ratio of correctly predicted positive pixels out of all actual
positive pixels. Accuracy measures the overall correctness of the pre-
diction, including both positive and negative samples. The evaluation
metrics are represented by Equations (20)–(28).

Fig. 7. Evaluate SAMU-Net and Other Models on the ColonDB(a) and ETIS(b) Datasets Using mDice Score Comparison.
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Dice=
2|A ∩ B|
|A| + |B|

(20)

where A is the set of ground truth pixels and B is the set of predicted
pixels.

IoU=
|A ∩ B|
|A ∪ B|

(21)

MAE=
1
N

∑N

i=1
|Pi − Gi| (22)

where N is the total number of pixels, Pi is the predicted value, and Gi is
the ground truth value.

Fβ =

(
1 + β2)⋅Precision Recall
β2.Precision + Recall

(23)

Sα = α⋅So + (1 − α)⋅Sr (24)

where So is the object-level similarity and Sr is the region-level simi-
larity, and α is a weight parameter.

Eξ =
1
N

∑N

i=1
ΦFG(Pi,Gi)+ΦBG(Pi,Gi) (25)

where ΦFG and ΦBG are the foreground and background similarities,
respectively, and N is the number of pixels.

Precision=
True Positives

True Positives+ False Positives
(26)

Recall=
True Positives

True Positives+ False Negatives
(27)

Accuracy=
TruePositives+TrueNegatives

TruePositives+TrueNegatives+FalsePositives+FalseNegatives
(28)

4.3. Experimental results

The performance of our proposed SAMU-Net model was evaluated on
four widely used polyp segmentation datasets and compared with fifteen
state-of-the-art models. These include U-Net [Olaf et al., 2015], U-
Net++ [Zongwei et al., 2018], SFA [Yuqi et al., 2019], ACSNet [Ruifei
et al., 2023], PraNet [Deng et al., 2020], DCRNet [Zijin et al., 2022], EU-
Net [Krushi et al., 2021], Polyp-Mixer [Jing et al., 2023], Polyp PVT
[Dong et al., 2024], M2SNet [Xiaoqi et al., 2023], PPNet [Keli et al.,
2023], CPSNet [Wang et al., 2024], ColnNet [Samir et al., 2023], and
XBound-Former [Jiacheng et al., 2022]. Figs. 6–7 and Tables 2–5 shows

Table 2
Performance evaluation on Kvasir-SEG dataset.

Study Model mIoU Fβ Sα mEξ maxEξ MAE

Olaf et al. [18] (2015) U-Net 0.746 0.794 0.858 0.881 0.893 0.055
Zongwei et al. [45] (2018) U-Net++ 0.743 0.808 0.862 0.886 0.909 0.048
Jiacheng et al. [46] (2022) XBound-Former 0.871 0.939 0.918 0.968 – 0.016
Yuqi et al. [47] (2019) SFA 0.611 0.670 0.782 0.834 0.849 0.075
Ruifei et al. [48] (2023) ACSNet 0.838 0.882 0.920 0.941 0.952 0.032
Deng et al. [29] (2020) PraNet 0.840 0.885 0.915 0.944 0.948 0.030
Zijin et al. [26] (2022) DCRNet 0.825 0.868 0.911 0.933 0.941 0.035
Krushi et al. [28] (2021) EU-Net 0.854 0.893 0.917 0.951 0.954 0.028
Jing et al. [49] (2023) Polyp-Mixer 0.864 0.908 0.932 0.959 0.967 –
Dong et al. [25] (2024) Polyp PVT 0.864 0.911 0.925 0.956 0.962 0.023
Xiaoqi et al. [50] (2023) M2SNet 0.861 0.901 0.922 0.953 – 0.025
Keli et al. [51] (2023) PPNet 0.878 0.911 0.927 0.949 – 0.024
Wang et al. [30] (2024) CPSNet 0.868 0.912 0.926 0.960 0.963 0.023
Samir et al. [52] (2023) ColnNet 0.872 0.939 0.926 0.979 – 0.02
Ours SAMU-Net 0.882 0.962 0.922 0.96 0.983 0.06

Table 3
Performance evaluation on the CVC-ClinicDB dataset.

Study Model mIoU Fβ Sα mEξ maxEξ MAE

Olaf et al.
[18]
(2015)

U-Net 0.755 0.811 0.889 0.913 0.954 0.019

Zongwei
et al.
[45]
(2018)

U-
Net++

0.729 0.785 0.873 0.891 0.931 0.022

Jiacheng
et al.
[46]
(2022)

Xbound-
Former

0.875 0.937 0.942 0.974 – 0.008

Yuqi et al.
[47]
(2019)

SFA 0.607 0.647 0.793 0.840 0.885 0.042

Ruifei et al.
[48]
(2023)

ACSNet 0.826 0.873 0.927 0.947 0.959 0.011

Deng et al.
[29]
(2020)

PraNet 0.849 0.896 0.936 0.963 0.979 0.009

Zijin et al.
[26]
(2022)

DCRNet 0.844 0.890 0.933 0.964 0.978 0.010

Krushi
et al.
[28]
(2021)

EU-Net 0.846 0.891 0.936 0.959 0.965 0.011

Jing et al.
[49]
(2023)

Polyp-
Mixer

0.856 0.902 0.943 0.963 0.968 –

Dong et al.
[25]
(2024)

Polyp
PVT

0.889 0.936 0.949 0.985 0.989 0.006

Xiaoqi
et al.
[50]
(2023)

M2SNet 0.880 0.917 0.942 0.97 – 0.009

Keli et al.
[51]
(2023)

PPNet 0.878 0.913 0.947 0.969 – 0.008

Wang et al.
[30]
(2024)

CPSNet 0.900 0.949 0.954 0.990 0.993 0.006

Samir et al.
[52]
(2023)

ColnNet 0.887 0.94 0.952 0.987 – 0.006

Ours SAMU-
Net

0.904 0.95 0.951 0.992 0.991 0.006
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the performance comparison with other models.
This bar chart in Fig. 6(a) shows the mDice scores of different models

on the well-uniformed Kvasir-SEG dataset, highlighting their high per-
formance. Our proposed model scores the highest at 0.946. models like
ColnNet, XBound-Former, and CPSNet also achieve strong results, with
scores between 0.926 and 0.921. Traditional models such as U-Net and
U-Net++ score lower, at 0.818 and 0.821, respectively, while the SFA
model has the lowest score of 0.723.

The mDice score of the ClinicDB dataset is shown in Fig. 6(b). Images
and masks in this dataset are in a decent shape which help models to
achieve good performance. CPSNet leads with a score of 0.945, closely
followed by SamUnet at 0.941. Models like Polyp PVT, ColnNet, and
XBound-Former also perform robustly, with scores ranging from 0.937
to 0.932. Under performing models are also slightly below acceptable
range, lowest score being 0.7 by SFA.

In this Fig. 7(a), the bar chart presents mDice scores of various
models on the ColonDB dataset. This dataset’s images are noticeably
inconsistent due to excessive blurriness and other artifacts which results
in variety in mdice scores. Our proposed model achieves a top score of
0.861 in this dataset. Other models like CPSNet, Polyp PVT, and
XBound-Former also perform well, with scores above 0.8. early released
models such as U-Net and U-Net++ show lower performance, with
scores of 0.512 and 0.483, respectively. Fig. 7(b) illustrates mDice scores
for multiple models on the ETIS-LaribPolypDB dataset. This chart re-
veals significant performance variations across different approaches.
The dataset’s heterogeneous nature likely contributes to the challenge,
resulting in diverse mDice scores. While some models struggle, others
demonstrate more robust performance. SAMU-Net achieves the highest
score of 0.815, showcasing its effectiveness in handling this complex
dataset’s intricacies. CPSnet, PolypPVT and a few other models show

good performance ranging from 0.81 to 0.75.
First, the model performance was tested on Kvasir-SEG and CVC-

ClinicDB. From the results shown in Table 2, for the Kvasir-SEG data-
set, the proposed SAMU-Net was superior to the rest of the state-of-the-
art approaches, with 88.2 % mIoU. This is a pretty good improvement
over the next-best model—that is, ColnNet—which obtained an mIoU of
87.2 %. Two more metrics are also improved by SAMU-Net, including an
Fβ of 96.2 % and maxEξ of 98.3 %. These are on the CVC-ClinicDB
dataset, shown in Table 3, where, with 90.4 %, SAMU-Net surpasses
all the baselines and achieves the highest mIoU. Notably, in a model, it
equally puts on a competitive Fβ score and mean absolute error of 0.006
but performs slightly below CPSNet.

To test the generalizability of SAMU-Net its performance was also
evaluated on two additional datasets: CVC-ColonDB and ETIS-Larib
Polyp DB. The results are recorded in Tables 4 and 5, respectively.
SAMU-Net shows remarkable perfor-mance on the CVC-ColonDB dataset
(Table 4) that significantly outperform all other models across most
metrics. It achieves a mIoU of 75.6 %, representing sub-stantial
improvement of 1.2 % over the next best model (CPSNet). For the
ETIS-Larib Polyp DB dataset (Table 5) our model again demonstrates
strong perfor-mance, achieving the highest scores in mIoU (75.8 %), Fβ
(87 %), Sα (90.1 %), and maxE (93.5 %) that indicate high accuracy in
polyp segmentation. It is clear from Tables 2–5 that SAMU-Net is the
only approach that consistently performs better than or on par with
state-of-the-art methods across most performance metrics on all four
datasets. This exemplifies the robustness and generalizability of our pro-
posed model. The superior performance of SAMU-Net particularly on
challeng-ing datasets like CVC-ColonDB and ETIS-Larib Polyp DB can be
attributed to its dual-stage architecture. That combines a custom
attention-based U-Net with the Segment Anything Model. This allows

Table 4
Performance evaluation on the CVC-ColonDB dataset.

Study Model mIoU Fβ Sα mEξ maxEξ MAE

Olaf et al. [18] (2015) U-Net 0.444 0.498 0.712 0.696 0.776 0.061
Zongwei et al. [45] (2018) U-Net++ 0.410 0.467 0.691 0.680 0.760 0.064
Jiacheng et al. [46] (2022) XBound-Former 0.724 0.866 0.855 0.907 – 0.030
Yuqi et al. [47] (2019) SFA 0.347 0.379 0.634 0.675 0.764 0.094
Ruifei et al. [48] (2023) ACSNet 0.649 0.697 0.829 0.839 0.851 0.039
Deng et al. [29] (2020) PraNet 0.640 0.699 0.820 0.847 0.872 0.043
Zijin et al. [26] (2022) DCRNet 0.631 0.684 0.821 0.840 0.848 0.052
Krushi et al. [28] (2021) EU-Net 0.681 0.730 0.831 0.863 0.872 0.045
Jing et al. [49] (2023) Polyp-Mixer 0.706 0.768 0.862 0.893 0.899 –
Dong et al. [25] (2024) Polyp PVT 0.727 0.795 0.865 0.913 0.919 0.031
Xiaoqi et al. [50] (2023) M2SNet 0.685 0.737 0.842 0.869 – 0.038
Keli et al. [51] (2023) PPNet 0.726 0.776 0.865 0.905 – 0.028
Wang et al. [30] (2024) CPSNet 0.744 0.810 0.870 0.927 0.930 0.026
Samir et al. [52] (2023) CoInNet 0.729 0.789 0.875 0.897 – 0.022
Ours SAMU-Net 0.756 0.872 0.881 0.936 0.921 0.004

Table 5
Performance evaluation on ETIS-Larib Polyp DB dataset.

Study Model mIoU Fβ Sα mEξ maxEξ MAE

Olaf et al. [18] (2015) U-Net 0.335 0.366 0.684 0.643 0.740 0.036
Zongwei et al. [45] (2018) U-Net++ 0.344 0.390 0.683 0.629 0.776 0.035
Jiacheng et al. [46] (2022) XBound-Former 0.650 0.824 0.831 0.850 – 0.031
Yuqi et al. [47] (2019) SFA 0.217 0.231 0.557 0.531 0.632 0.109
Ruifei et al. [48] (2023) ACSNet 0.509 0.530 0.754 0.737 0.764 0.059
Deng et al. [29] (2020) PraNet 0.567 0.600 0.794 0.808 0.841 0.031
Zijin et al. [26] (2022) DCRNet 0.496 0.506 0.736 0.742 0.773 0.096
Krushi et al. [28] (2021) EU-Net 0.609 0.636 0.793 0.807 0.841 0.067
Jing et al. [49] (2023) Polyp-Mixer 0.676 0.711 0.863 0.875 0.884 –
Dong et al. [25] (2024) Polyp PVT 0.706 0.750 0.871 0.906 0.910 0.013
Xiaoqi et al. [50] (2023) M2SNet 0.678 0.712 0.846 0.872 – 0.016
Keli et al. [51] (2023) PPNet 0.716 0.743 0.871 0.885 – 0.013
Wang et al. [30] (2024) CPSNet 0.727 0.769 0.882 0.918 0.926 0.014
Samir et al. [52] (2023) ColnNet 0.69 0.82 0.859 0.898 – 0.024
Ours SAMU-Net 0.75.8 0.854 0.901 0.909 0.935 0.015
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for better distinction of obscure bounda-ries between polyp regions and
normal mucosa, leading to a reduction in false positives and false neg-
atives. Fig. 8 illustrates the qualitative comparison of our proposed
model with other state-of-the-art methods for the segmentation task for
polyp segmentation in different scenarios.

In addition to the Dice Score, we evaluated the performance of
SAMU-Net using Precision, Recall, and Accuracy to provide a compre-
hensive analysis of its segmentation capabilities across multiple data-
sets. Table 6 below shows the model’s performance on the Kvasir-SEG,
CVC-ClinicDB, CVC-ColonDB, and ETIS datasets.The Kvasir-SEG data-
set achieved the highest Precision of 0.958, highlighting SAMU-Net’s
ability to minimize false positives during polyp identification. Mean-
while, CVC-ClinicDB exhibited the highest Recall at 0.938, demon-
strating the model’s effectiveness in capturing true positive regions. The
Accuracy values remained consistently high, with CVC-ClinicDB reach-
ing the highest value of 0.979.

Among all light source configurations tested, as well as regarding
types of polyp morphology, our approach was very constant in perfor-
mance, and this allows it to gain superiority in delimiting the edges of
the polyp correctly in front of the other models. For Large Polyps, our
model stands out in the segmentation results related to polyps occupying
a large part of the image. It shows robustness in handling complex cases
where polyps have irregular shapes or presence of a variety of internal
textures. While some other models need help with over- or under-
segmentation, our approach maintains accuracy in these challenging
scenarios.In each of these cases, our model—the column titled
’Ours’—maintains very near-accurate segmentation from the ground
truth and often surpasses classical approaches such as SFANet, UNet++,
UNet, PolypMixer, EU-Net, PraNet, and ACSNet. This comprehensive
comparison underscores the effectiveness of our approach in addressing
the diverse challenges presented in polyp segmentation tasks. Fig. 9 il-
lustrates the training loss of SAMU-Net on the CVC-ClinicDB and CVC-
ColonDB Dataset.

All datasets show that there is an effective early learning process
accompanied by a rapid initial drop in training loss, as depicted in Fig. 9
(a). ClinicDB maintained the most stable learning curve, and there was a
smooth, continuous takedown in loss during the training phase.
ColonDB was found to be with the highest initial loss but experienced a
gradual decline to converge eventually with those others. The perfor-
mance lies in between for the case of Kvasir-SEG and ETIS datasets;
however, Kvasir-SEG has the lowest final loss. Much more pronounced

Fig. 8. Qualitative comparison of SAMU-net and state-of-the-art Polyp Segmentation models: Input images, ground truth, SAMU-Net’s Segmentations, and Seg-
mentation results from competing models.

Table 6
SAMU-net precision, recall, accuracy across different datasets.

Dataset Precision Recall Accuracy

Kvasir SEG 0.958 0.924 0.973
CVC ClinicDB 0.936 0.938 0.979
CVC ColonDB 0.917 0.903 0.954
ETIS 0.921 0.918 0.941
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fluctuations are observed in the case of ETIS. This is evidence that the
learning process is much harder for this dataset. For all datasets, it is
seen that last epochs converge to low loss values ranging between 0 and
0.1. This comparison is thus interpretative in showing that the SAMU-
Net is powerful enough to learn any given polyp segmentation task
and can generalize its performance on different datasets while remain-
ing unaffected by the changes in their different characteristics and initial
challenges.

The ROC analysis on Fig. 9 (b) shows a boost in performance over the
state-of-the-art methods on ColonDB and ETIS datasets. The Area Under
the Curve (AUC) values further validate the robustness of our model,
with higher AUC value indicate better overall performance. It can be
shown from the AUC graphs that our model maintained a higher true
positive rate while keeping the false positives at a minimum for more
accurate and reliable results inCRC polyp segmentation.

4.3.1. Difficulties Encountered in Polyp Segmentation
Our polyp segmentation framework encountered two major

challenging scenarios for a few images. Firstly, If the custom U-Net
predicts the polyp ROI (Region of Interest) wrongly, then it causes
discrepancy that impacts the subsequent stage where SAM performs
segmentation based on the provided bounding box. Due to inherent
limitation of not segmenting outside the bounding box for SAM, inac-
curacies in the bounding box from stage 1 result in cropped segmenta-
tion outputs, thereby compromising the overall accuracy of the polyp
segmentation.

Another difficulty arises when multiple bounding boxes overlap in
stage 1. SAM attempts to unify overlapping bounding boxes into a single
segmentation mask when encountering overlapping bounding boxes.
This issue leads to inaccuracies in the unified mask creation, particularly
when the overlapping regions do not represent an actual polyp structure
predicted by custom U-Net. This issue underscores the complexity of
handling overlapping instances during the segmentation process and the
need for robust strategies to differentiate and accurately segment
intensely cluttered multiple polyps or misplaced bounding boxes due to
inaccurate ROI prediction. Fig. 10 shows the difficult cases of our model.

Fig. 9. (a) Train loss curves for SAMU-Net on CVC-ClinicDB, CVC-ColonDB, KvasirSEG, and ETIS Dataset (b) ROC curves on ColonDB and Etis Larib PolypDB for
different models.
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5. Ablation study

To rigorously evaluate the contributions of each stage within our
proposed framework, we conducted comprehensive ablation studies. We
systematically assess each stage with a combination to get its impact on
the overall model performance. The critical stages analyzed include the
Custom U-Net, Custom SAM, SAM and Pre-Processed Data. The results
from these experiments are measured across four datasets (Kvasir Seg,
CVC ClinicDB, CVC ColonDB, and ETIS Larib Polyp DB), are presented in
Table 7. Comparative analysis of qualitative results throughout experi-
mental stages shows in Fig. 11.

This experiment’s qualitative and quantitative results illustrate the

impact of each stage in mask localization and prediction. In the first
setup (1. CU + PP), the absence of the custom SAM for precise mask
prediction resulted in a low-quality yet somewhat acceptable binary
mask. This performance reduction suggests that the lack of SAM leads to
inferior mask quality.

To further evaluate the effectiveness of the custom SAM (CS), we
tested the performance of standalone SAM with and without pre-
processed images (2. CS + PP and 4. CS). SAM requires some form of
input to generate a comparable binary mask, so a single pointer input
was provided. However, without proper localization guidance, a poor-
quality mask was generated. The presence of pre-processed images
only marginally improved the results. In this case, two different polyps

Fig. 10. Difficult Cases of the SAMU-Net model in medical image segmentation.

Table 7
Ablation study results - mean dice scores for different module combinations across multiple Polyp Segmentation datasets.

SL# Custom U-Net Custom SAM SAM Pre-Processed mDice on Kvasir SEG mDice on ClinicDB mDIce on ColonDB mDice on ETIS

1 ✔ ​ ​ ✔ 0.853 0.869 0.765 0.703
2 ​ ✔ ​ ✔ 0.918 0.862 0.814 0.742
3 ✔ ​ ✔ ✔ 0.804 0.778 0.716 0.644
4 ​ ✔ ​ ​ 0.906 0.848 0.782 0.730
5 ✔ ​ ✔ ​ 0.795 0.767 0.698 0.629
6 ✔ ✔ ​ ✔ 0.946 0.941 0.861 0.815

Fig. 11. Comparative analysis of qualitative results across experimental stages: Custom U-net (CU), pre-processed Data (PP), custom SAM (CS), and default segment
Anything Model (SAM) with large Model checkpoint.
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were predicted and masked because the custom SAM identified a polyp
outside the true ROI (Region of Interest), resulting in a false positive in
mask prediction. This test indicates that without proper guidance from
the custom U- Net, detection can be challenging for the custom SAM.

We also tested the performance without training the mask decoder,
leaving all parameters at their default settings in SAM (vit_l checkpoint).
In this setup, the custom U-Net was present. However, the absence of
HQ-token and a trained mask decoder significantly degraded mask
quality (5. CU + SAM). The pre-processed images had a minimal effect in
this case (3. CU + SAM + PP). Reintroducing all stages simultaneously
provided the most acceptable results in this experiment (6. CU + CS +

PP).
We conducted more studies by experimenting with various attention

mechanisms to further enhance the stability and generalization ability of
SAMU-Net. Our goal was to evaluate the impact of different attention
strategies on segmentation performance and training efficiency. Table 8
presents the performance comparison of these attention mechanisms
including Dice scores on four widely used polyp segmentation datasets
along with the average training time required for each mechanism.

Despite Hierarchical Attention yielding a slightly better Dice score
(0.950) on the Kvasir-SEG dataset, it came with a major drawback—an
average training time of 5.0–5.5 h, compared to 2.0–2.5 h for our custom
attention mechanism. Given that our custom attention also performed
robustly across the other datasets, achieving comparable results on CVC-
ClinicDB and CVC-ColonDB, we prioritized efficiency for broader ap-
plications where computational resources and time are critical factors.
Therefore we chose Custom Attention over Hierarchical Attention due to
its significantly lower training time without a substantial sacrifice in
accuracy. This balance between performance and computational effi-
ciency makes the custom attention mechanism more suitable for prac-
tical use cases, where timely and accurate predictions are essential.

6. Discussion

Experimental results show that our proposed dual-stage polyps seg-
mentation architecture, SAMU-Net, has been leading the performance
on most benchmark datasets and metrics. This has been successful due to
the novel combination of a high degree of customization, attention-
based U-Nets, with the Segment Anything Model using the strengths of
both methods. Equipped with various attention mechanisms, including
squeeze-and-excitation blocks, spatial attention, and attention gating in
the Custom U-Net model, it could focus on the most relevant features in

the segmentation of polyps. As a result, it can significantly enhance its
handling capability with regard to diversified appearances of polyps and
challenging imaging conditions. Its good performance on four different
datasets is evidence of the robustness and generalizability of SAMU-Net
for various polyp types and imaging conditions. Whereas most of the
competing models present excellent performance either on some metrics
or in some datasets, SAMU-Net generally always performs top-tier across
most metrics and all evaluated datasets. Qualitative results show that
SAMU-Net can accurately segment polyps of different sizes, shapes, and
appearances, even in the presence of poor illumination or complex
backgrounds. That means obvious advantages in dealing with more
challenging and diversified polyp cases for SAMU-Net are critical to real-
world clinical applications. However, it is still clear that there is great
space for improvement in model stability and generalization from the
Difficulties Encountered in Polyp Segmentation.

7. Conclusion

SAMU-Net is a substantial improvement in automatic polyp seg-
mentation from images of colonoscopy. Our approach integrates an
attention-based U-Net model, specifically designed with the Segment
Anything Model, to achieve state-of-the-art performance across multiple
datasets and metrics. It works very well on generalization, stability, and
dealing with hard cases with diverse polyps in size, shape, and appear-
ance. The superior performance by SAMU-Net, especially on datasets
never seen before, offers a much greater potential for application in real-
world clinical scenarios of computer-aided detection and diagnosis of
CRC. With the precise and reliable polyp segmentation provided by
SAMU-Net, it is conjectured that clinicians could enhance the effec-
tiveness of screening against CRC and promote its early detection.
Future work might focus on further enhancement of the stability of the
model across different datasets using other attention mechanisms or
architectural modifications and clinical validation studies for investi-
gating in more depth the potential impact on polyp detection rate and
diagnosis accuracy in real clinical applications of colonoscopy. In
conclusion, SAMU-Net represents a promising step forward in auto-
mated polyp segmentation, potentially significantly enhancing the early
detection and diagnosis of colorectal cancer.

CRediT authorship contribution statement

Radiful Islam: Writing – original draft, Visualization, Validation,
Resources, Methodology, Formal analysis, Conceptualization. Rashik
Shahriar Akash: Writing – original draft, Validation, Software, Re-
sources, Methodology, Investigation, Formal analysis. Md Awlad Hos-
sen Rony: Writing – review & editing, Validation, Resources,
Methodology, Formal analysis, Conceptualization. Md Zahid Hasan:
Writing – review & editing, Validation, Supervision, Project adminis-
tration, Methodology, Investigation, Formal analysis,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

This study uses four publicly available datasets: Kvasir-SEG,
CVC-ClinicDB, CVC-ColonDB, ETIS-Larib Polyp DB.

References

[1] World Health Organization. Colorectal cancer. 2023. https://www.who.int/
news-room/fact-sheets/detail/colorectal-cancer. Accessed (11.07.24).

Table 8
Performance comparison of different attention mechanisms.

Attention
Mechanism Used

mDice
on
Kvasir
SEG

mDice on
ClinicDB

mDIce on
ColonDB

mDice
on ETIS

Average
Training
Time
(Hours)

Custom
Attention
(Spatial þ
Custom
Gating Block)

0.946 0.941 0.861 0.815 2.0–2.5

Conditional
Attention

0.900 0.890 0.820 0.760 2.5-3.5

Hierarchical
Attention

0.950 0.932 0.852 0.788 5.0–5.5

Channel
Attention

0.910 0.899 0.825 0.770 2.0–3.0

Multi-Head
Attention

0.870 0.860 0.800 0.730 3.0–4.0

Attention
Augmented
Convolution

0.922 0.910 0.835 0.780 2.5-3.0

Self-Attention 0.880 0.870 0.810 0.745 1.5-2.0
Dual Attention

(Position +

Channel)

0.915 0.902 0.828 0.775 3.5-4.0

R. Islam et al. Array 24 (2024) 100370 

15 

http://doi.org/10.5281/zenodo.7189337
http://doi.org/10.1016/j.compmedimag.2015.02.007
http://doi.org/10.1109/tmi.2015.2487997
http://doi.org/10.1007/s11548-013-0926-3
https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer
https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer


[2] Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040.
Translational Oncology Oct. 2021;14(10):101174. https://doi.org/10.1016/j.
tranon.2021.101174.

[3] Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global
patterns and trends in colorectal cancer incidence and mortality. Gut Jan. 2016;66
(4):683–91. https://doi.org/10.1136/gutjnl-2015-310912.

[4] Nachmani R, Nidal I, Robinson D, Yassin M, Abookasis D. Segmentation of polyps
based on pyramid vision transformers and residual block for real-time endoscopy
imaging. J Pathol Inf Jan. 2023;14:100197. https://doi.org/10.1016/j.
jpi.2023.100197.

[5] Korbar B, et al. Deep learning for classification of colorectal polyps on whole-slide
images. J Pathol Inf Jan. 2017;8(1):30. https://doi.org/10.4103/jpi.jpi_34_17.

[6] Dong G, Basu A. Medical image denosing via explainable AI feature preserving loss.
arXiv (Cornell University); Jan. 2023. https://doi.org/10.48550/
arxiv.2310.20101.

[7] Tomar NK, et al. DDANet: dual decoder attention network for automatic polyp
segmentation. In: Lecture notes in computer science; 2021. p. 307–14. https://doi.
org/10.1007/978-3-030-68793-9_23.

[8] Wen Y, Zhang L, Meng X, Ye X. Rethinking the transfer learning for FCN based
polyp segmentation in colonoscopy. IEEE Access Jan. 2023;11:16183–93. https://
doi.org/10.1109/access.2023.3245519.

[9] Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-
decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell
Dec. 2017;39(12):2481–95. https://doi.org/10.1109/tpami.2016.2644615.

[10] Dilmaghani S, Coelho-Prabhu N. Role of artificial intelligence in colonoscopy: a
literature review of the past, present, and future directions. Techniques and
Innovations in Gastrointestinal Endoscopy Jan. 2023;25(4):399–412. https://doi.
org/10.1016/j.tige.2023.03.002.

[11] Wang D, et al. AFP-mask: anchor-free polyp instance segmentation in colonoscopy.
IEEE Journal of Biomedical and Health Informatics Jul. 2022;26(7):2995–3006.
https://doi.org/10.1109/jbhi.2022.3147686.

[12] Duc NT, Oanh NT, Thuy NT, Triet TM, Dinh VS. ColonFormer: an efficient
transformer based method for colon polyp segmentation. IEEE Access Jan. 2022;
10:80575–86. https://doi.org/10.1109/access.2022.3195241.

[13] Wang K, Liu L, Fu X, Liu L, Peng W. RA-DENet: reverse attention and distractions
elimination network for polyp segmentation. Comput Biol Med Mar. 2023;155:
106704. https://doi.org/10.1016/j.compbiomed.2023.106704.

[14] Lu L, Chen S, Tang H, Zhang X, Hu X. A multi-scale perceptual polyp segmentation
network based on boundary guidance. Image Vis Comput Oct. 2023;138:104811.
https://doi.org/10.1016/j.imavis.2023.104811.

[15] Huang C-H, Wu H-Y, Lin Y-L. HarDNet-MSEG: a simple encoder-decoder polyp
segmentation neural network that achieves over 0.9 mean dice and 86 FPS. arXiv
(Cornell University); Jan. 2021. https://doi.org/10.48550/arxiv.2101.07172.

[16] Gu Q, Meroueh C, Levernier J, Kroneman T, Flotte T, Hart S. Using an anomaly
detection approach for the segmentation of colorectal cancer tumors in whole slide
images. J Pathol Inf Jan. 2023;14:100336. https://doi.org/10.1016/j.
jpi.2023.100336.

[17] Nogueira-Rodríguez A, et al. Deep Neural Networks approaches for detecting and
classifying colorectal polyps. Neurocomputing Jan. 2021;423:721–34. https://doi.
org/10.1016/j.neucom.2020.02.123.

[18] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical
image segmentation. In: Lecture notes in computer science; 2015. p. 234–41.
https://doi.org/10.1007/978-3-319-24574-4_28.

[19] Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL. DeepLab: semantic
image segmentation with deep convolutional nets, atrous convolution, and fully
connected CRFs. IEEE Trans Pattern Anal Mach Intell Apr. 2018;40(4):834–48.
https://doi.org/10.1109/tpami.2017.2699184.

[20] Siddique N, Paheding S, Elkin CP, Devabhaktuni V. U-net and its variants for
medical image segmentation: a review of theory and applications. IEEE Access
2021;9:82031–57.

[21] Yue G, Li S, Cong R, Zhou T, Lei B, Wang T. Attention-Guided pyramid context
network for polyp segmentation in colonoscopy images. IEEE Trans Instrum Meas
Jan. 2023;72:1–13. https://doi.org/10.1109/tim.2023.3244219.

[22] Kirillov A, et al. Segment Anything Oct. 2023. https://doi.org/10.1109/
iccv51070.2023.00371.

[23] Ahamed Md F, Islam Md R, Nahiduzzaman Md, Chowdhury MEH, Alqahtani A,
Murugappan M. Automated colorectal polyps detection from endoscopic images
using MultiResUNet framework with attention guided segmentation. Human-
centric Intelligent Systems Apr. 2024;4(2):299–315.

[24] Li Y, Hu M, Yang X. Polyp-SAM: transfer SAM for polyp segmentation Apr. 2024.
https://doi.org/10.1117/12.3006809.

[25] Dong B, Wang W, Fan D-P, Li J, Fu H, Shao L. Polyp-PVT: polyp segmentation with
pyramid vision transformers. CAAI Artificial Intelligence Research Dec. 2023:
9150015. https://doi.org/10.26599/air.2023.9150015.

[26] Yin Z, Liang K, Ma Z, Guo J. Duplex contextual relation network for polyp
segmentation. In: 2022 IEEE 19th international symposium on biomedical imaging
(ISBI); Mar. 2022. https://doi.org/10.1109/isbi52829.2022.9761402.

[27] Zhao X, Zhang L, Lu H. Automatic polyp segmentation via multi-scale subtraction
network. In: Lecture notes in computer science; 2021. p. 120–30. https://doi.org/
10.1007/978-3-030-87193-2_12.

[28] Patel K, Bur AM, Wang G. Enhanced U-Net: A Feature Enhancement Network for
Polyp Segmentation May 2021. https://doi.org/10.1109/crv52889.2021.00032.

[29] Fan D-P, et al. PraNet: parallel reverse attention network for polyp segmentation.
In: Lecture notes in computer science; 2020. p. 263–73. https://doi.org/10.1007/
978-3-030-59725-2_26.

[30] Wang H, et al. Unveiling camouflaged and partially occluded colorectal polyps:
introducing CPSNet for accurate colon polyp segmentation. Comput Biol Med Mar.
2024;171:108186. https://doi.org/10.1016/j.compbiomed.2024.108186.

[31] Shao H, Zhang Y, Hou Q. Polyper: boundary sensitive polyp segmentation. Proc
AAAI Conf Artif Intell Mar. 2024;38(5):4731–9. https://doi.org/10.1609/aaai.
v38i5.28274.

[32] Jain S, et al. CoInNet: a convolution-involution network with a novel statistical
attention for automatic polyp segmentation. IEEE Trans Med Imag Dec. 2023;42
(12):3987–4000. https://doi.org/10.1109/tmi.2023.3320151.

[33] Ji Z, et al. LightCF-net: a lightweight long-range context fusion network for real-
time polyp segmentation. Bioengineering May 2024;11(6):545. https://doi.org/
10.3390/bioengineering11060545.

[34] Liu J, Zhang W, Liu Y, Zhang Q. Polyp segmentation based on implicit edge-guided
cross-layer fusion networks. Sci Rep May 2024;14(1). https://doi.org/10.1038/
s41598-024-62331-5.

[35] Ren G, Lazarou M, Yuan J, Stathaki T. Towards Automated Polyp Segmentation
Using Weakly- and Semi-Supervised Learning and Deformable Transformers Jun.
2023. https://doi.org/10.1109/cvprw59228.2023.00458.

[36] Ahamed Md F, et al. IRv2-Net: a deep learning framework for enhanced polyp
segmentation performance integrating InceptionResNetV2 and UNet architecture
with test time augmentation techniques. Sensors Sep. 2023;23(18):7724. https://
doi.org/10.3390/s23187724.

[37] Jha D, et al. Kvasir-SEG: a segmented polyp dataset. In: Lecture notes in computer
science; 2019. p. 451–62. https://doi.org/10.1007/978-3-030-37734-2_37.

[38] Bernal J, Sánchez FJ, Fernández-Esparrach G, Gil D, Rodríguez C, Vilariño F. WM-
DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency
maps from physicians. Comput Med Imag Graph Jul. 2015;43:99–111. https://doi.
org/10.1016/j.compmedimag.2015.02.007.

[39] Tajbakhsh N, Gurudu SR, Liang J. Automated polyp detection in colonoscopy
videos using shape and context information. IEEE Trans Med Imag Feb. 2016;35
(2):630–44. https://doi.org/10.1109/tmi.2015.2487997.

[40] Silva JS, Histace A, Romain O, Dray X, Granado B. Toward embedded detection of
polyps in WCE images for early diagnosis of colorectal cancer. Int J Comput Assist
Radiol Surg Sep. 2013;9(2):283–93. https://doi.org/10.1007/s11548-013-0926-3.

[41] keras-ocr — keras_ocr documentation. 2019. https://keras-ocr.readthedocs.io/e
n/latest/ (Accessed 12.04.24).

[42] Bertalmio M, Bertozzi AL, Sapiro G. Navier-stokes, fluid dynamics, and image and
video inpainting Aug. 2005. https://doi.org/10.1109/cvpr.2001.990497.

[43] Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko S. End-to-End
object detection with transformers. arXiv (Cornell University); Jan. 2020. https://
doi.org/10.48550/arxiv.2005.12872.

[44] Ke L, et al. Segment anything in high quality. arXiv (Cornell University; Jan. 2023.
https://doi.org/10.48550/arxiv.2306.01567.

[45] Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J. UNet++: a nested U-net
architecture for medical image segmentation. In: Lecture notes in computer
science; 2018. p. 3–11. https://doi.org/10.1007/978-3-030-00889-5_1.

[46] Wang J, et al. XBound-former: toward cross-scale boundary modeling in
transformers. IEEE Trans Med Imag Jun. 2023;42(6):1735–45. https://doi.org/
10.1109/tmi.2023.3236037.

[47] Fang Y, Chen C, Yuan Y, Tong K-Y. Selective feature aggregation network with
area-boundary constraints for polyp segmentation. In: Lecture notes in computer
science; 2019. p. 302–10. https://doi.org/10.1007/978-3-030-32239-7_34.

[48] Zhang R, Li G, Li Z, Cui S, Qian D, Yu Y. Adaptive context selection for polyp
segmentation. In: Lecture notes in computer science; 2020. p. 253–62. https://doi.
org/10.1007/978-3-030-59725-2_25.

[49] Shi J-H, Zhang Q, Tang Y-H, Zhang Z-Q. Polyp-mixer: an efficient context-aware
MLP-based paradigm for polyp segmentation. IEEE Trans Circ Syst Video Technol
Jan. 2023;33(1):30–42. https://doi.org/10.1109/tcsvt.2022.3197643.

[50] Zhao X, et al. M2SNet: multi-scale in multi-scale subtraction network for medical
image segmentation. arXiv (Cornell University); Jan. 2023. https://doi.org/
10.48550/arxiv.2303.10894.

[51] Hu K, Chen W, Sun Y, Hu X, Zhou Q, Zheng Z. PPNet: pyramid pooling based
network for polyp segmentation. Comput Biol Med Jun. 2023;160:107028. https://
doi.org/10.1016/j.compbiomed.2023.107028.

[52] Jain S, et al. CoInNet: a convolution-involution network with a novel statistical
attention for automatic polyp segmentation. IEEE Trans Med Imag Dec. 2023;42
(12):3987–4000. https://doi.org/10.1109/tmi.2023.3320151.

R. Islam et al. Array 24 (2024) 100370 

16 

https://doi.org/10.1016/j.tranon.2021.101174
https://doi.org/10.1016/j.tranon.2021.101174
https://doi.org/10.1136/gutjnl-2015-310912
https://doi.org/10.1016/j.jpi.2023.100197
https://doi.org/10.1016/j.jpi.2023.100197
https://doi.org/10.4103/jpi.jpi_34_17
https://doi.org/10.48550/arxiv.2310.20101
https://doi.org/10.48550/arxiv.2310.20101
https://doi.org/10.1007/978-3-030-68793-9_23
https://doi.org/10.1007/978-3-030-68793-9_23
https://doi.org/10.1109/access.2023.3245519
https://doi.org/10.1109/access.2023.3245519
https://doi.org/10.1109/tpami.2016.2644615
https://doi.org/10.1016/j.tige.2023.03.002
https://doi.org/10.1016/j.tige.2023.03.002
https://doi.org/10.1109/jbhi.2022.3147686
https://doi.org/10.1109/access.2022.3195241
https://doi.org/10.1016/j.compbiomed.2023.106704
https://doi.org/10.1016/j.imavis.2023.104811
https://doi.org/10.48550/arxiv.2101.07172
https://doi.org/10.1016/j.jpi.2023.100336
https://doi.org/10.1016/j.jpi.2023.100336
https://doi.org/10.1016/j.neucom.2020.02.123
https://doi.org/10.1016/j.neucom.2020.02.123
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/tpami.2017.2699184
http://refhub.elsevier.com/S2590-0056(24)00036-5/sref20
http://refhub.elsevier.com/S2590-0056(24)00036-5/sref20
http://refhub.elsevier.com/S2590-0056(24)00036-5/sref20
https://doi.org/10.1109/tim.2023.3244219
https://doi.org/10.1109/iccv51070.2023.00371
https://doi.org/10.1109/iccv51070.2023.00371
http://refhub.elsevier.com/S2590-0056(24)00036-5/sref23
http://refhub.elsevier.com/S2590-0056(24)00036-5/sref23
http://refhub.elsevier.com/S2590-0056(24)00036-5/sref23
http://refhub.elsevier.com/S2590-0056(24)00036-5/sref23
https://doi.org/10.1117/12.3006809
https://doi.org/10.26599/air.2023.9150015
https://doi.org/10.1109/isbi52829.2022.9761402
https://doi.org/10.1007/978-3-030-87193-2_12
https://doi.org/10.1007/978-3-030-87193-2_12
https://doi.org/10.1109/crv52889.2021.00032
https://doi.org/10.1007/978-3-030-59725-2_26
https://doi.org/10.1007/978-3-030-59725-2_26
https://doi.org/10.1016/j.compbiomed.2024.108186
https://doi.org/10.1609/aaai.v38i5.28274
https://doi.org/10.1609/aaai.v38i5.28274
https://doi.org/10.1109/tmi.2023.3320151
https://doi.org/10.3390/bioengineering11060545
https://doi.org/10.3390/bioengineering11060545
https://doi.org/10.1038/s41598-024-62331-5
https://doi.org/10.1038/s41598-024-62331-5
https://doi.org/10.1109/cvprw59228.2023.00458
https://doi.org/10.3390/s23187724
https://doi.org/10.3390/s23187724
https://doi.org/10.1007/978-3-030-37734-2_37
https://doi.org/10.1016/j.compmedimag.2015.02.007
https://doi.org/10.1016/j.compmedimag.2015.02.007
https://doi.org/10.1109/tmi.2015.2487997
https://doi.org/10.1007/s11548-013-0926-3
https://keras-ocr.readthedocs.io/en/latest/
https://keras-ocr.readthedocs.io/en/latest/
https://doi.org/10.1109/cvpr.2001.990497
https://doi.org/10.48550/arxiv.2005.12872
https://doi.org/10.48550/arxiv.2005.12872
https://doi.org/10.48550/arxiv.2306.01567
https://doi.org/10.1007/978-3-030-00889-5_1
https://doi.org/10.1109/tmi.2023.3236037
https://doi.org/10.1109/tmi.2023.3236037
https://doi.org/10.1007/978-3-030-32239-7_34
https://doi.org/10.1007/978-3-030-59725-2_25
https://doi.org/10.1007/978-3-030-59725-2_25
https://doi.org/10.1109/tcsvt.2022.3197643
https://doi.org/10.48550/arxiv.2303.10894
https://doi.org/10.48550/arxiv.2303.10894
https://doi.org/10.1016/j.compbiomed.2023.107028
https://doi.org/10.1016/j.compbiomed.2023.107028
https://doi.org/10.1109/tmi.2023.3320151

	SAMU-Net: A dual-stage polyp segmentation network with a custom attention-based U-Net and segment anything model for enhanc ...
	1 Introduction
	2 Related works
	3 Methodology
	3.1 Dataset description
	3.2 Image preprocessing techniques
	3.2.1 Text removal
	3.2.2 Artifact remove
	3.2.2.1 Specular reflection removal
	3.2.2.2 Image sharpening


	3.3 Proposed model
	3.4 Segment Anything model (SAM)

	4 Results
	4.1 Experimental setup
	4.2 Evaluation metric
	4.3 Experimental results
	4.3.1 Difficulties Encountered in Polyp Segmentation


	5 Ablation study
	6 Discussion
	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	datalink6
	References


