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ABSTRACT  

With the advent of quantum computing, which offers exponential computational speedup compared to classical 
computers, and the constantly expanding field of machine learning, which focuses on extracting patterns and insights 
from data. The paper comprises two comprehensive case studies: Network Traffic Analysis and Earthquake Magnitude 
Classification. We were able to perform an overview of previous studies in this field and acknowledge the research gap 
while building a Quantum Machine Learning model that provides accuracy over 60% while using 4 Qubits and 
keeping the loss around 20%.  
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1. INTRODUCTION
The fusion of quantum computing with machine learning has recently become one of the most exciting areas of study. 
Quantum machine learning (QML) involves the development of algorithms that can make use of the capabilities of 
quantum systems for data analysis and prediction tasks [1]. Quantum bits, also known as qubits, are used in quantum 
computing, which is based on the concepts of quantum physics. Qubits may exist in superposition, concurrently 
expressing many states, as opposed to conventional bits, which can only be in a state of 0 or 1. Due to its ability to 
process information in parallel, quantum computers have the potential to exponentially speed up some tasks [2]. On the 
other hand, machine learning is concerned with creating algorithms that can learn from data and make predictions or 
judgments without being explicitly programmed. The classical machine learning (ML) algorithms, which are traditional 
machine learning algorithms, have excelled in many fields. These programs examine data to find patterns or insights 
using traditional computational models and methods [3]. The benefits of both quantum computing and machine learning 
are combined in quantum machine learning methods. Quantum machine learning (QML) algorithms have the potential to 
surpass traditional machine learning (ML) algorithms in terms of computing speed and problem-solving skills by taking 
use of the special features of quantum systems, such as superposition and entanglement [4]. Researchers have 
investigated a variety of algorithms and methods in the subject of quantum machine learning, including quantum support 
vector machines, quantum neural networks, and quantum clustering. These algorithms are designed to deal with issues 
that classical Machine Learning struggles with such processing high-dimensional data and large-scale optimization 
issues [5].  

Researchers want to exploit the potential benefits provided by quantum systems by applying Quantum Machine Learning 
approaches to certain fields. For instance, Quantum Machine Learning algorithms can help forecast molecular 
characteristics more accurately in the field of drug discovery, aiding the creation of novel medications. Quantum 
Machine Learning algorithms have the ability to improve fraud detection systems, investment portfolio optimization, and 
risk assessment models in the financial sector [6]. However, it's crucial to remember that Quantum Machine Learning is 
still a young discipline, and there are a number of obstacles to be addressed. The development of scalable Quantum 
Machine Learning algorithms that can efficiently utilize the available quantum hardware, addressing the problem of 
decoherence and noise in quantum systems, and ensuring the interpretability and explainability of Quantum Machine 
Learning models are some of the challenges that need to be overcome [7]. The interpretability and explainability of a 
machine learning model or algorithm refers to the extent to which it can offer clear and understandable explanations or 
justifications for its predictions or decisions. In industries like healthcare, banking, and law where accountability and 
openness are essential, explainability is a key factor. In this study, we want to investigate how Quantum Machine 
Learning may be used for classification. We increase knowledge of the subject and open the way for future 
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developments and real-world applications by examining the capabilities and possible advantages of Quantum Machine 
Learning algorithms. Quantum Machine Learning has the potential to transform many industries and result in major 
improvements in data analysis, prediction, and decision-making by fusing ideas from quantum computing with machine 
learning. 

1.1 Research Problem 

Machine learning has completely changed how we examine and draw conclusions from large, complicated information. 
Predictive analytics, image classification, and natural language processing are just a few of the many domains where 
traditional machine learning techniques have been effective [8]. However, effectively classifying and interpreting 
datasets that are intrinsically complex, high-dimensional, and dynamic still poses issues. Traditional machine learning 
algorithms face substantial difficulties when used in the context of network traffic analysis due to the complexity and 
volume of network data as it is only getting more complex [9]. The development of more reliable and effective models 
for the precise detection and classification of network abnormalities, such as distributed denial of service (DDoS) 
assaults, is necessary due to the exponential rise of network traffic as well as the constantly developing nature of cyber 
threats [10]. Modern networks create enormous amounts of data, which conventional approaches sometimes struggle to 
process. As a result, they may miss new threats or subtle attack patterns.  

Similar difficulties are encountered when attempting to classify earthquake magnitude using typical machine learning 
techniques. Geospatial data and seismic measurements are two examples of the many variables that affect earthquakes, 
which are complicated occurrences. To accurately identify the possible impact and danger associated with seismic 
occurrences, as well as to enable prompt reaction and efficient disaster management, earthquake magnitude classification 
is crucial [11]. Traditional machine learning models, on the other hand, have considerable difficulties and are constrained 
in their accuracy and dependability by the complex patterns and non-linear correlations present in seismic data. In recent 
years, quantum machine learning has emerged as a promising paradigm that makes use of the tenets of quantum physics 
to boost computing power and perhaps even get beyond the drawbacks of traditional machine learning methods. 
Quantum machine learning models have the potential to offer more precise and effective solutions for challenging 
classification tasks by utilizing quantum phenomena including superposition, entanglement, and interference [12]. 

The area of quantum machine learning is still in its infancy, and there is little existing research and useful applications, 
despite the fact that it shows great potential. Investigating the usability and efficiency of quantum machine learning 
models for network traffic analysis and earthquake magnitude classification is therefore necessary. On the whole, we 
investigate and evaluate how well quantum machine learning models may be used to handle the problems of network 
traffic analysis and earthquake magnitude classification. We want to assess the performance of quantum machine 
learning algorithms and assess the applicability of these algorithms in real-world contexts through rigorous testing and 
analysis. 

1.2 Significance of Study 

For the development of quantum machine learning and its use in the fields of network traffic analysis and earthquake 
magnitude classification, this discovery has important ramifications. This research's main relevance may be summed up 
as follows:  

The paper makes contributions to the development of quantum algorithms and techniques by investigating the use of 
quantum machine learning models in network traffic analysis and earthquake magnitude classification. The outcomes 
and understandings from this study extend the frontiers of quantum machine learning research, opening up new avenues 
for tackling practical issues with quantum computing.  

Increasing the accuracy and effectiveness of present approaches for identifying and categorizing network abnormalities 
is possible by looking at whether quantum models are appropriate for network traffic analysis. This research has the 
potential to result in the creation of more advanced and resilient solutions, improving network performance and security 
by utilizing the special properties of quantum computing.  

Improving approaches for estimating earthquake magnitude for earthquake monitoring and early warning systems, the 
assessment of the efficiency of quantum models in seismic magnitude categorization has significant ramifications. 
Quantum machine learning models can provide greater accuracy and reliability in categorizing earthquake magnitudes by 
utilizing geographical and seismic data, which will help with disaster management and mitigation efforts. 
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1.3 Scope and Limitations 

In this study, the potential of quantum machine learning models for network traffic analysis and earthquake magnitude 
classification is explored. The CICIDS2017 dataset and the Earthquake Magnitude Classification Dataset are the 
particular datasets utilized in this study. The CICIDS2017 dataset offers details on many aspects of network traffic and 
labels indicating whether the traffic is DDoS-related or not. Latitude, longitude, depth, and other characteristics of 
earthquakes are included in the Earthquake Magnitude Classification Dataset. The study's objective is to use quantum 
machine learning models to classify network traffic and earthquakes into the appropriate groups. Using well-known 
criteria like accuracy, precision, and recall, quantum machine learning models for network traffic analysis and 
earthquake magnitude classification will be assessed. These metrics will measure how well the algorithms perform at 
appropriately categorizing various network traffic categories and earthquake magnitudes. It's vital to remember that the 
study's reach is constrained by how advanced quantum computing is right now. Gate faults, readout errors, and ambient 
noise are some of the noise sources that can impair the correctness of quantum calculations in quantum devices. 
Additionally, the quantity and scalability of the datasets that can be efficiently processed and analyzed may be impacted 
by the availability of quantum hardware resources. 

2. LITERATURE REVIEW
2.1 Background 

Quantum computing has emerged as a revolutionary field with the potential to revolutionize various aspects of 
computation. This section presents a review of recent advancements and key concepts in quantum computing. By 
adopting a programmable superconducting processor to achieve quantum supremacy, the work [13] showed a substantial 
advancement in the field. Their research demonstrated a quantum computer's capacity to carry out calculations that are 
impractical for classical computers. They demonstrated the capability of quantum systems to effectively handle 
complicated problems by carrying out a specified task. On the other hand, Preskill et al. [14] gave insightful explanations 
of the Noisy Intermediate-Scale Quantum (NISQ) era of quantum computing. This research focused on the difficulties 
and possibilities presented by NISQ devices, establishing the groundwork for investigating the potential and constraints 
of quantum computing in real-world settings. The advancement of quantum computing technology has attracted a lot of 
interest recently. The use of photons for the benefit of quantum computation was proven by Zhong et al. [15]. Their 
efforts paved the path for scalable and reliable quantum computation by demonstrating the capability of photon-based 
systems for implementing quantum algorithms. These studies show how quickly quantum computing is developing. They 
advance our knowledge of the potential uses and difficulties in utilizing the power of quantum systems, from attaining 
quantum supremacy to investigating new quantum computing architectures. 

By enabling computers to learn from data and make precise predictions or judgments, machine learning has transformed 
a wide range of industries. A thorough study on deep learning, a branch of machine learning that has achieved great 
success in a number of applications, was published by Goodfellow et al. [16]. Foundational ideas, designs, and training 
techniques for deep neural networks are covered in it. The state-of-the-art in image identification, natural language 
processing, and other fields has greatly benefited from deep learning. The theoretical underpinnings of deep learning and 
its effects on the machine learning field were also examined. Convolutional neural networks (CNNs) were underlined as 
being crucial for computer vision applications, and deep learning's potential to solve challenging learning issues was also 
addressed. These works demonstrate the significant advancements in machine learning, particularly in deep learning and 
reinforcement learning. Further on we go through alternative paths for creating quantum machine learning algorithms 
and models that arise from the merging of machine learning and quantum computing. 

2.2 Quantum Machine Learning 

A relatively new discipline called quantum machine learning (QML) blends machine learning methods with the ideas of 
quantum computing. The fundamental ideas of QML were introduced by Biamonte et al. [17], who also covered the 
possible benefits and difficulties of using quantum resources for machine learning tasks. The use of quantum systems for 
data encoding, quantum feature spaces, and quantum-inspired algorithms are all explored in this work. It sets the basis 
for more research in the area and offers a thorough comprehension of the QML principles. A thorough analysis of QML 
algorithms and methods was presented by Schuld et al. [18]. The various methods for fusing quantum computing and 
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machine learning are discussed in the paper, including quantum-enhanced classical algorithms, quantum-inspired 
algorithms, and quantum algorithms for particular learning tasks. It also covers QML's difficulties and prospective uses, 
opening the door for later advancements in the area. For creating quantum data distributions, Tian et al. [19] developed a 
quantum generative adversarial network (QGAN). The research investigates the generation of quantum states that mirror 
the properties of the target quantum distributions using quantum circuits. The QGAN framework offers opportunities for 
creating accurate quantum datasets and shows promise for use in quantum chemistry and simulation. Quantum neural 
networks (QNNs), which are quantum circuits taught to carry out machine learning tasks, were first described by 
Thomas et al. [20]. A method for training QNNs using gradient-based optimization approaches is presented in this 
research, opening the door to the creation of quantum iterations of conventional machine learning models. The utilization 
of quantum characteristics for improved learning capacities is made possible by QNNs.  

2.3 Previous Studies and Research 

Quantum machine learning (QML) has been the subject of numerous studies to examine its possible applications, assess 
algorithm performance, and contrast it with conventional machine learning techniques. For the purpose of classifying 
images, Kavitha et al. [21] compared the performance of quantum machine learning algorithms and classical machine 
learning methods. They showed that some quantum algorithms, such the Quantum Support Vector Machine (QSVM), 
outperformed classical methods in terms of classification accuracy. This study focuses on the benefits of using quantum 
resources for particular learning task. The use of QML for anomaly identification in network traffic analysis was 
examined by Wang et al. [22]. They put forth a framework for anomaly detection that was influenced by quantum theory 
and made use of a hybrid classical-quantum model and quantum feature space representation. The outcomes showed 
QML's potential to improve anomaly detection accuracy in comparison to conventional approaches, underscoring its 
usefulness in cybersecurity applications. For stock market forecasting, Chen et al. [23] investigated the use of quantum 
machine learning methods. Based on previous market data, they used a neural network model influenced by quantum 
mechanics to forecast stock values. The study demonstrated that the quantum-inspired model performed better in terms 
of prediction accuracy than conventional models, pointing to the promise of QML in financial forecasting tasks. The use 
of quantum machine learning in natural language processing (NLP) was examined by Wu et al. [24]. They suggested a 
recurrent neural network model with quantum word embeddings that was influenced by quantum mechanics. The 
outcomes showed that the model influenced by quantum mechanics performed competitively in sentiment analysis and 
text classification tasks, demonstrating QML's promise in language-related applications.   

The results of these studies offer insightful information about the functionality and prospective uses of QML. They 
provide a framework for further research into and advancement of quantum machine learning approaches while also 
advancing the field's ongoing research activities.  

3. METHODOLOGY
3.1 Data Collection and Preprocessing 

In this section, we go over the steps for gathering data and prepping the datasets for earthquake magnitude classification 
and network traffic analysis (CICIDS2017) [25]. A common benchmark dataset for network traffic analysis is the 
CICIDS2017 dataset. It consists of an extensive collection of network traffic statistics that was recorded in a regulated 
setting. The dataset includes a wide variety of scenarios for network traffic, including both regular traffic and other kinds 
of network attacks. Each instance of data in the dataset has a label that designates the type of network traffic it belongs 
to, such as normal, DoS, or DDoS. We used the original source, which makes network traffic datasets for research use 
openly available, to gather the CICIDS2017 dataset. The dataset was chosen because it was pertinent to network security 
and has labeled traffic types that permitted supervised learning tasks. The Magnitude Classification of Earthquakes, 
Significant Earthquakes, (1965-2016) dataset published by the National Earthquake Information Center (NEIC) [26, 27], 
a publicly accessible data source from which the study's dataset was compiled. Latitude, Longitude, Depth, and 
Magnitude were the four features that were chosen to personalize the dataset. Classes in this dataset include Strong and 
Moderate.  

To make sure the data is suitable for analysis using quantum machine learning models, some preprocessing steps were 
applied to the earthquake magnitude classification dataset and the network traffic analysis dataset (CICIDS2017 and the 
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Earthquake Dataset, respectively). The pd.read_csv function, which reads the data from a CSV file, was used to load the 
datasets. Iloc was used to extract the features (X) and target (Y) values from the dataset. The final column was chosen as 
the target, and all other columns were chosen as features using the syntax iloc[:,:-1] and iloc[:, -1]. The target values (Y) 
were label-encoded using the Scikit-Learn LabelEncoder to accommodate category or string-based target variables. This 
encoding transforms the target values into numerical labels so that the quantum machine learning models can process 
them efficiently. 

3.2 Quantum Machine Learning Model 

Variational Circuit Design. A graphical quantum programming tool called IBM Quantum Composer enables us to drag 
and drop operations to construct quantum circuits and execute them on actual quantum hardware or simulators. States of 
qubits can be visualized while code is generated automatically. In our study we use this Composer to create a quantum 
circuit, as shown in Figure 1, and use the balance of the gates into our machine learning model. 

Figure 1. The circuit diagram generated in IBM Quantum Composer. 

Figure 2 shows the q-sphere which offers a comprehensive view of a multi-qubit quantum state in the computational 
basis, and the size of each node is inversely proportionate to the state probabilities. The color of each basis state also 
represents its phase. The q-sphere associates each computational basis state with a point on a sphere's surface to 
represent the state of a system of one or more qubits. Each point has a node that is discernible. The quantum phase ( k) 
is indicated by the node color, whilst the radius of each node is related to the probability ( k) of its base state [28]. Along 
with this, we also get the statevector simulation as shown in Figure 3. The ultimate output state of the qubits used in the 
calculation is entirely characterized by the statevector simulation where each basis state's phase is represented by its 
color [29]. This designed circuit can be accessed through IBM [30].  

Figure 2. The circuit diagram generated in IBM Quantum Composer 
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In the quantum neural network, the produced circuit or variational circuit architecture, which symbolizes the variational 
portion of the network, is crucial. It has parameterized operations that can be changed during training to enhance the 
functionality of the network. The variational_circuit function contains the variational circuit design implementation. 

A quantum circuit, qc, and a collection of rotation angles, theta, are inputs to the variational_circuit function. By 
implementing controlled-X (CNOT) gates, the function alters the circuit qc in order to create a ring-like structure that 
connects the qubits. The network can take advantage of quantum correlations thanks to this connectivity architecture, 
which makes it easier for qubits to exchange information and become entangled.  

The resulting circuit serves as the quantum neural network's variational component. It is defined by the rotation angles 
theta, which are iteratively adjusted throughout the training process to identify the ideal values that reduce the loss 
function and improve the performance of the network. 

Figure 3. The q-sphere from our designed circuit in IBM Quantum Composer 

Feature Map Construction. The creation of feature maps is essential in the context of quantum machine learning for 
converting classical input data (features) into a quantum state. A quantum neural network or other quantum algorithms 
are intended to process this quantum state effectively. The feature map transforms the incoming data to capture the key 
details needed for quantum processing.  

Table 1. The inputs and outputs of the Quantum Feature Map function.
Input Output 

X: Input data (features) 
qc: Quantum circuit representing the 

feature map N: Number of qubits 

We use the following novel algorithm to create a Quantum Feature Map function called feature_map, Table 1. shows the 
inputs and outputs of the Quantum Feature Map function.  

1. Set up a classical register, c, with one classical bit, and a quantum register, q, made up of N qubits.

2. Create a quantum circuit, qc, utilizing the registers q and c.
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3. Carry out the subsequent actions for each feature, x, in the input array X.

a. Obtain the feature's matching index, i.

b. Using the feature value x as the rotation angle, apply a rx gate to the qubit i in the quantum circuit qc.

4. Return the quantum circuit qc and the classical register c as the feature map.

A quantum register q with N qubits and a classical register c with 1 classical bit are first created via the feature_map 
function. The results of the classical measurements and the quantum state will be stored in these registers, respectively. 
The input array X's features are then iterated over in a loop. The feature value x is used to apply a rx gate to the 
corresponding qubit i for each feature. The feature_map function creates the required feature map by applying the rx gate 
to each qubit based on the feature values. The classical input features are converted into a quantum state via this feature 
map so that the subsequent parts of the quantum neural network may process them. 

Figure 4. Model generated circuit diagram from code. 

By applying the rx gate to each qubit in accordance with the relevant feature value, the feature_map function creates a 
straightforward yet useful feature map. This strategy makes sure the encoded data from the input characteristics is 
captured by the quantum state, permitting additional processing in the quantum neural network. Figure 4 shows the 
results of the code as they were produced. 

We can use the circuit_drawer function offered by Qiskit with the matplotlib library to see the created circuit diagram. A 
matplotlib figure is produced by calling circuit_drawer (qc, output='mpl'), which displays the quantum circuit qc. The 
'Rx' gate is first applied to qubit q58500_0 with a rotation angle of 14.088 degrees in the circuit shown in Figure 1. Then, 
between qubits q58500_0 and q58500_1, a controlled-X (or "CX") gate is applied. A second 'Rx' gate on qubit q58500_1 
with an angle of -90.869 degrees follows this. Additional gates and controlled operations, such as 'Ry' gates, 'CX' gates, 
and 'Rx' gates, are applied to qubits q58500_2 and q58500_3 in the circuit. The measurement result of qubit q58500_0 is 
stored in the traditional register 'c11700'. Only qubit q58500_0 is measured in this particular circuit using the 'measure(0, 
c)' command. The overall structure of the variational circuit employed in the quantum neural network for the specified 
dataset and parameters is represented by this circuit. To enable the effective operation of the circuit_drawer function and 
accurate representation of the circuit diagram, it is crucial to make sure that the required dependencies, such as 
matplotlib and pylatexenc, are installed.  

3.3 Training, Optimization Algorithm, and Parameter Tuning 

Iteratively changing the parameters of a quantum neural network during training and optimization will improve 
performance on a specific task. We go over the training procedure, optimization algorithm, and parameter tuning used in 
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the research in this part. The presented code [30] combines classical optimization algorithms with quantum circuit 
simulations to train the quantum neural network. The initialization of the network's parameters using an array of ones 
marks the start of the training phase (theta = np.ones(N)). The objective is to identify the theta values with the lowest 
loss function and the best prediction accuracy. “Gradient Descent”, a commonly used technique for updating the 
parameters of a machine learning model, is the optimization algorithm utilized in the code. To iteratively change the 
parameters and minimize the loss, it makes use of the gradient of the loss function. The gradient function in the code 
compares the loss values for mildly changed parameter values to compute the gradients numerically. The “Gradient 
Descent” algorithm then updates the settings using these gradients during the training loop. One very important 
hyperparameter that affects the gradient descent step size is the learning rate (eta). The learning rate in our final is set to 
0.05 (eta = 0.05). To make sure the model converges to the best solution without overshooting or becoming stuck in local 
minima, it is crucial to select an adequate learning rate. 

“Gradient Descent” is used to iteratively adjust the parameters (theta) throughout the training phase. By contrasting the 
predictions made by the quantum_nn function with the actual labels of the dataset, the performance of the model is 
assessed. Each input sample is iterated over by the accuracy function, which then obtains the prediction and compares it 
to the actual label. It counts the number of accurate predictions and calculates accuracy as the proportion of accurate 
forecasts to all samples. A crucial part of optimizing the quantum neural network is parameter adjustment. We can 
improve the convergence speed and general performance of the network on the given task or dataset by experimenting 
with different learning rates, initialization procedures, or even more sophisticated optimization techniques like 
momentum-based methods or adaptive learning rates. The model seeks to maximize the quantum neural network's 
performance, enhancing its accuracy and efficacy for the intended task, by including the training procedure, the Gradient 
Descent optimization algorithm, and parameter tuning. The model can be executed on either a quantum simulator or a 
real quantum backend, but we use a device with an Intel(R) Core(TM) i3- 10110U CPU @ 2.10GHz, with a 8.00 GB @ 
2.59 GHz RAM. 

4. CASE STUDY 1: NETWORK TRAFFIC ANALYSIS DATASET (CICIDS2017)

4.1 Data Processing 

The University of New Brunswick (UNB) [25] provided the Network Traffic Analysis Dataset (CICIDS2017) utilized in 
this case study. Four features—Flow Duration, Total Length of Fwd Packets, Flow Packets/s, and Packet Length Mean—
have been manually adjusted to the dataset. Each data is further classified as either belonging to the DDoS class or the 
benign class. 52% of the samples belong to the DDoS class, whereas 48% belong to the benign class.  

In the data preprocessing step, several transformations were applied to the CICIDS2017 dataset to prepare it for training 
the quantum machine learning model. Specifically, the following preprocessing techniques were employed: label 
encoding was carried out using the LabelEncoder module of the scikit-learn toolkit where the dataset's target values are 
categorical classes like "DDoS" and "benign". Through this translation, the categorical classifications are given 
numerical labels that the machine learning algorithms can use to their advantage. Min-Max Scaling: The characteristics 
in the dataset were standardized using Min-Max scaling to make sure that they are all within the same range and have a 
consistent scale. The feature values are rescaled using this scaling technique to a range between 0 and 1. By preventing 
some features from dominating the learning process due to their greater magnitude, it helps to improve the performance 
of the machine learning model. The CICIDS2017 dataset was modified into a format appropriate for training the 
quantum machine learning model by conducting Min-Max scaling on the features and label encoding on the target 
values. The data is properly represented and standardized owing to these preparation methods, which also improve the 
model's performance and speed up learning.  

4.2 Experimental Results 

The experimental findings and analyses of the quantum machine learning model used to analyze network traffic using 
the CICIDS2017 dataset are presented in this part. The evaluation's goal is to rate the model's performance and efficiency 
in dividing instances of network traffic into DDoS and benign categories. 
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Table 2. Outcome of Accuracy and Loss for CICIDS2017 Dataset 
 

Metrics Outcome 

Training Accuracy 59.05% 

Training Loss 24.06% 

Test Accuracy 60.40% 

Test Loss 22.90% 

 
 
From the Table 2 we see that the training accuracy was 59.05% which is measures the accuracy of the quantum neural 
network model on the training dataset of CICIDS2017 dataset. The training loss of 24.06% represents the average loss of 
the quantum neural network model on the training dataset. In reflection of the training accuracy, we get 60.40% as the 
test accuracy that measures the accuracy of the quantum neural network model on the test dataset i.e., unseen data. The 
test loss of 22.09% represents the average loss of the quantum neural network model on the test dataset. 
 

5. CASE STUDY 2: EARTHQUAKE MAGNITUDE CLASSIFICATION DATASET 

 
5.1 Data Processing 

The Significant Earthquake dataset [27] includes in-depth details about seismic occurrences, especially earthquakes. 
Latitude, Longitude, Depth, and Magnitude are the four key characteristics of the dataset that together help characterize 
each earthquake event. The dataset was modified to include two unique classes—Moderate and Strong—in order to meet 
the goals of this study. The modified dataset was then split into separate training and testing sets in order to evaluate the 
model's effectiveness and generalization potential. The dataset was divided into training and testing sets at a ratio of 75% 
to 25% using a stratified sampling technique for this partitioning. The testing set functioned as an independent 
assessment dataset to evaluate the model's performance on unobserved data, while the training set served as the 
foundation for model building and parameter estimation. 
 

Table 3. Outcome of Accuracy and Loss for Earthquake Dataset 

Metrics Outcome 

Training Accuracy 61.19% 

Training Loss 23.65% 

Test Accuracy 62.79% 

Test Loss 22.01% 

 

5.2 Experimental Results 

The Earthquake Magnitude Classification Dataset was utilized to examine earthquake categories based on different 
factors, and the experimental results and assessments of the quantum machine learning model are presented in this part. 
The purpose of the evaluation is to assess the model's performance and the accuracy with which it divides earthquake 
occurrences into the Strong and Moderate categories. The model correctly predicted the labels for 61.19% of the 
occurrences in the training dataset, resulting in a training accuracy of 61.19%, as shown in Table 3. The training loss, 
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which measures the discrepancy between the true and predicted labels in the training dataset, was 23.65%. On the test 
dataset, the model had a test accuracy of 54.4%, correctly classifying 62.79% of the unseen cases. According to the test 
loss, the average loss in these situations was 22.01%. 

6. COMPARATIVE PERFORMANCE ANALYSIS AND DISCUSSION 
 
6.1 Comparative Analysis 

We compare the model's performance on two datasets: the Network Traffic Analysis Dataset (CICIDS2017) and the 
Earthquake Dataset. The cross-dataset analysis provides insights into the model's ability to handle different types of data 
and assesses its potential for real-world applications across diverse domains. We evaluate key performance metrics such 
as accuracy and loss to assess the model's classification performance on each dataset. By comparing the model's 
performance on different datasets, we gain a deeper understanding of its strengths and weaknesses in different data 
scenarios. 
 

 
Figure 5. Training Accuracy and Loss of CICIDS2017 dataset 

 

 
Figure 6. Training Accuracy and Loss of Earthquake dataset 
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The comparative analysis reveals that on the CICIDS2017 dataset, the model achieved a training accuracy of 59.05% and 
a test accuracy of 60.40%. The training loss was 24.06%, and the test loss was 22.90%. On the Earthquake dataset, the 
model achieved a training accuracy of 61.19% and a test accuracy of 62.79%. The training loss was 23.65%, and the test 
loss was 22.01%. These results indicate that the model performs slightly better on the Earthquake dataset compared to 
the CICIDS2017 dataset in terms of accuracy and loss, as shown in Figure 5 and 6 respectively. Along with this we see 
that the overall fluctuation throughout the epochs varied much more widely in the CICIDS2017 dataset than in the 
Earthquake dataset owing to the feature type of the datasets. A similar pattern can be noticed in the Training Loss 
percentages over the 30 epochs as the CICIDS2017 faces a larger loss trend and Earthquake Dataset remains consistent. 
 
6.2 Discussion 

The quantum machine learning model used in this work has a number of advantages. First off, the model has the capacity 
to process and analyze data in parallel using the principles of quantum computing, potentially achieving exponential 
speedups over traditional machine learning techniques. In order to capture complex patterns and correlations in the data, 
the model also makes use of special aspects of quantum systems, such as superposition and entanglement, which may 
improve its capacity for prediction. Additionally, iterative parameter updates are possible because to the combination of 
conventional optimization techniques with quantum circuit simulations, allowing the model to improve performance by 
learning from the data. It's crucial to recognize the limits of the quantum machine learning approach, though. The 
existing limits of quantum hardware, such as noise, decoherence, and restricted qubit connection, represent one of the 
main difficulties. These elements might affect the model's precision and scalability, especially when used with bigger 
and more complicated datasets. Additionally, it is difficult to comprehend the quantum machine learning model. Since 
quantum systems work in high-dimensional regions, it is challenging to give precise justifications or insights into the 
model's decision-making process. Its lack of interpretability could prevent it from being used in fields where 
transparency and comprehensibility are essential. 
 
For the topic of quantum machine learning and its prospective applications, the study's findings have various 
ramifications. First off, quantum techniques have the potential to improve the identification and classification of network 
security risks, as shown by the quantum machine learning model's success in network traffic analysis. This may result in 
stronger anomaly detection capabilities, better network security systems, and better defense against cyberattacks. 
Second, the application of the quantum machine learning model to the classification of earthquake magnitudes 
successfully illustrates the promise of quantum methods in seismology and earthquake monitoring. The intensity and 
possible effect of seismic occurrences may be determined with the use of accurate and prompt earthquake magnitude 
categorization, enabling pro-active actions for disaster management and response.  
 
The results also highlight the necessity of more research and advancement in quantum machine learning approaches. 
Future research must focus on overcoming the constraints of the available quantum hardware, as well as enhancing 
interpretability and scalability. In addition, the creation of hybrid models that integrate classical and quantum elements 
may be a workable strategy to take use of both paradigms' advantages and address the problems with quantum machine 
learning. 
 
Exploring quantum machine learning approaches further the limits, noise, and decoherence of the available quantum 
hardware must be addressed by continued study. A critical area of research continues to be the development of methods 
to improve the interpretability of quantum machine learning models. Hybrid vehicles Examining the possibility of hybrid 
models that incorporate both classical and quantum elements may provide a means to take use of the advantages of both 
paradigms while minimizing their drawbacks. Finding ways to combine traditional and quantum machine learning 
methods might result in more durable and scalable solutions. 
 
Application to many fields: Extending the use of quantum machine learning to fields other than network security and 
earthquake research might yield insightful information and open new possibilities. The potential advantages of quantum 
machine learning in tackling complicated issues can be discovered through investigating applications in industries like 
healthcare, finance, and materials research. 
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7. CONCLUSION 
In this study, we investigated the possibility of quantum machine learning models for analyzing network data and 
identifying earthquake magnitude. Following is a summary of the research findings: 

- The quantum machine learning model showed encouraging results in both the classification of earthquake 
magnitude and network traffic analysis. The quantum machine learning model was able to grasp intricate 
patterns and correlations in the data because of how the feature map design efficiently translated the input 
attributes into a quantum state. 

- The proposed model's variational circuit architecture created connection between qubits and added flexibility 
through parameterized rotations, improving the model's ability to learn from the data. The model's parameters 
were iteratively modified throughout the training phase, which used the Gradient Descent technique to optimize 
performance on the provided tasks. 

- The study emphasized the challenges given by the constraints of the available quantum hardware, 
interpretability problems, and scalability issues. It also highlighted the merits and limitations of the quantum 
machine learning paradigm. 

The use and efficacy of quantum models for network traffic analysis and earthquake magnitude classification are 
discussed in this study, which advances the field of quantum machine learning. The results show the potential benefits of 
quantum computing principles for handling complicated patterns and processing large amounts of data. Additionally, the 
comparison of quantum models to conventional machine learning techniques demonstrates the potential advantage of 
quantum models in several fields. This research also broadens our understanding of how feature maps are built, 
variational circuits are designed, and parameter tweaking in quantum machine learning. Real-world datasets used for 
experimentation and assessment of the quantum machine learning model offer useful insights and empirical proof of its 
capabilities and limits. Overall, this research paves the path for the practical use of quantum models in real-world 
settings and establishes the groundwork for future developments in quantum machine learning. The study results add to 
our understanding of the potential and constraints of quantum machine learning and offer useful information for 
academics and industry professionals. 
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