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ABSTRACT 

The field of electroencephalography (EEG) has witnessed a dramatic development during the last 

decade. Electroencephalography (EEG) has been in continuous development over at least 70 years 

and is firmly established as a tool in the management of epilepsy. The electroencephalogram that 

had been principally used as a ‘post-hoc’ diagnostic procedure is now fully used as an ‘on-line’ 

monitor of neural function with its excellent temporal resolution. 

 

For a while, the technique fell into disregard because of difficulties with interpretation, specificity 

and sensitivity. Whilst clinicians have to be aware of these problems, they have been largely 

addressed by recent computer digitization of signals, which permits longer standard recordings 

and monitoring linked to a simultaneous video. Neurophysiological monitoring in the operating 

room, neurological intensive care unit (ICU) and during endovascular procedures allows early 

identification of impending neurological deficits before irreversible neurological impairment. 

 

These techniques are not only an essential component of a specialist epilepsy service, where 

inpatient video-EEG telemetry is vital both for diagnosis and assessment before neurosurgical 

treatment, but also in general and acute medical settings, particularly for the management of status 

epilepticus. Further developments in computing will extend the use of EEG in all of these roles 

and long-term monitoring for diagnosis and management of coma will become more widely 

available. The advent of digital EEG with digital storage and the ability to manipulate data with 

digital reformatting, filter and sensitivity changes has allowed us to maximize the information and 

reduce artifacts. These changes have revolutionized the way in which EEG is performed and 

interpreted. 

 

 

Keywords: EEG; Epilepsy; Technology; Telemetry; Clinical applications; Monitoring. 
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Chapter 1 
Introduction to Brain Signal 

 
 

Take a minute and put your hand onto your head and think about what you are touching. Within a 

centimeter of your fingers, there is a piece of the most mysterious and rarely understood matter in 

the universe. And that is our brain. 

Inside each of our brains, there are roughly 100 billion highly specialized cells called neurons. 

They make about 500 trillion connections called synapsis. These unique cells transmit important 

information alarming us the sense and interacts with the world around us. If you want to take a 

closer look, you will see that this information is transmitted between neurons using chemicals 

called neurotransmitters where tiny structures called synaptic vesicles fuse with the membrane of 

one neuron and release chemicals signals into the gap. The second neuron can receive them. 

Scientists already knew some about how this neurotransmission process works. But now after over 

10 years of collaborated research of Stanford University and SLAC national accelerator laboratory 

along with the ultra-bright X-rays, scientists now have a better idea of exactly how these tiny 

vesicles might fuse with the membrane of one neuron to transmit their signals. The key to this 

fusion is the collaboration between special proteins called snares and synaptotagmin-1. They are 

then triggered by calcium to cause the vesicle of fuse with the membrane of the neuron. When a 

synaptic vesicle comes close enough to the membrane, the proteins connect with the two and enter 

a pre-fusion state. Next when the neuron fires, calcium arrives and triggers the proteins which bend 

the neural membrane towards the vesicle membrane and draw the two together. This finally 

triggers fusion allowing the neurotransmitters to leave the neuron. This experiment represents the 

first time when scientists have seen how synaptotagmin-1 interacts with the snares of the atomic 

scale and scientists are more confident that this protein resembles before calcium arrives allowing 

the fusion process and resulting neurotransmission to happen very quickly getting information 

from point A to point B in less than a millisecond. The end result is that our nervous system can 

work at an incredible speeds enabling us to sense, react to and interact with the world around us.  
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                                                      Fig: 1.1 Activities inside human brain  

 

And now the scientists have been able to use the bright X-ray SSRL, the LCLS and the ANL light 

source to see how this particular process works. It opens the door to better understand our nervous 

system and ways that even our brains can think of.   
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Chapter 2 
Introduction to Electroencephalography (EEG) 

 

2.1 What is Electroencephalography (EEG)  

 Electroencephalography (EEG) is the recording of electrical activity along the scalp. 

 EEG measures voltage fluctuations resulting from activation of neurons of the brain. 

 We can use EEG techniques to detect brainwaves. 

 During the EEG test, small electrodes like cup or disc type are placed on the scalp. 

 They pick the brain’s electrical signal and send them to a machine called 

Electroencephalogram. 

                                                   

           

                          Fig: 2.1 Epileptic spike and wave discharges monitored with EEG        
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2.2 EEE generation 

Inside each of our brains, there are roughly 100 billion highly specialized cells called neurons. 

They make about 500 trillion connections called synapsis. These unique cells transmit important 

information alarming us the sense and interacts with the world around us.  

If you want to take a closer look, you will see that this information is transmitted between neurons 

using chemicals called neurotransmitters where tiny structures called synaptic vesicles fuse with 

the membrane of one neuron and release chemicals signals into the gap. The second neuron can 

receive them. 

Scientists already knew some about how this neurotransmission process works. But now after over 

10 years of collaborated research of Stanford University and SLAC national accelerator laboratory 

along with the ultra-bright X-rays, scientists now have a better idea of exactly how these tiny 

vesicles might fuse with the membrane of one neuron to transmit their signals.  

The key to this fusion is the collaboration between special proteins called snares and 

synaptotagmin-1. They are then triggered by calcium to cause the vesicle of fuse with the 

membrane of the neuron. When a synaptic vesicle comes close enough to the membrane, the 

proteins connect with the two and enter a pre-fusion state.  

Next when the neuron fires, calcium arrives and triggers the proteins which bend the neural 

membrane towards the vesicle membrane and draw the two together. This finally triggers fusion 

allowing the neurotransmitters to leave the neuron.  

This experiment represents the first time when scientists have seen how synaptotagmin-1 interacts 

with the snares of the atomic scale and scientists are more confident that this protein resembles 

before calcium arrives allowing the fusion process and resulting neurotransmission to happen very 

quickly getting information from point A to point B in less than a millisecond.  

The end result is that our nervous system can work at an incredible speeds enabling us to sense, 

react to and interact with the world around us. The key to this fusion is the collaboration between 

special proteins called snares and synaptotagmin-1. They are then triggered by calcium to cause 

the vesicle of fuse with the membrane of the neuron.  
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When a synaptic vesicle comes close enough to the membrane, the proteins connect with the two 

and enter a pre-fusion state.  

Next when the neuron fires, calcium arrives and triggers the proteins which bend the neural 

membrane towards the vesicle membrane and draw the two together. This finally triggers fusion 

allowing the neurotransmitters to leave the neuron.  

This experiment represents the first time when scientists have seen how synaptotagmin-1 interacts 

with the snares of the atomic scale and scientists are more confident that this protein resembles 

before calcium arrives allowing the fusion process and resulting neurotransmission to happen very 

quickly getting information from point A to point B in less than a millisecond. 

2.3 Types of EEG  

 
There are several different types of EEG and can be listed as the following: 

 

2.3.1 Normal EEG 

 
       This experiment represents the first time when scientists have seen how synaptotagmin-1 

interacts with the snares of the atomic scale and scientists are more confident that this protein 

resembles before calcium arrives allowing the fusion process and resulting neurotransmission to 

happen very quickly getting information from point A to point B in less than a millisecond. 

Scientists already knew some about how this neurotransmission process works. But now after over 

10 years of collaborated research of Stanford University and SLAC national accelerator laboratory 

along with the ultra-bright X-rays, scientists now have a better idea of exactly how these tiny 

vesicles might fuse with the membrane of one neuron to transmit their signals.  

This experiment represents the first time when scientists have seen how synaptotagmin-1 interacts 

with the snares of the atomic scale and scientists are more confident that this protein resembles 

before calcium arrives allowing the fusion process. 
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2.3.2 Sleep EEG 

If you want to take a closer look, you will see that this information is transmitted between neurons 

using chemicals called neurotransmitters where tiny structures called synaptic vesicles fuse with 

the membrane of one neuron and release chemicals signals into the gap. The second neuron can 

receive them. 

Scientists already knew some about how this neurotransmission process works. But now after over 

10 years of collaborated research of Stanford University and SLAC national accelerator laboratory 

along with the ultra-bright X-rays, scientists now have a better idea of exactly how these tiny 

vesicles might fuse with the membrane of one neuron to transmit their signals.  

2.3.3 Common Physiological Artifacts 

Scientists already knew some about how this neurotransmission process works. But now after over 

10 years of collaborated research of Stanford University and SLAC national accelerator laboratory 

along with the ultra-bright X-rays, scientists now have a better idea of exactly how these tiny 

vesicles might fuse with the membrane of one neuron to transmit their signals. The key to this 

fusion is the collaboration between special proteins called snares and synaptotagmin-1. They are 

then triggered by calcium to cause the vesicle of fuse with the membrane of the neuron.  

When a synaptic vesicle comes close enough to the membrane, the proteins connect with the two 

and enter a pre-fusion state. Next when the neuron fires, calcium arrives and triggers the proteins 

which bend the neural membrane towards the vesicle membrane and draw the two together. This 

finally triggers fusion allowing the neurotransmitters to leave the neuron. This experiment 

represents the first time when scientists have seen how synaptotagmin-1 interacts with the snares 

of the atomic scale and scientists are more confident that this protein resembles before calcium 

arrives allowing the fusion process and resulting neurotransmission to happen very quickly getting 

information from point A to point B in less than a millisecond.  
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5.3.4 The Posterior Dominant Rhythm 

The key to this fusion is the collaboration between special proteins called snares and 

synaptotagmin-1. They are then triggered by calcium to cause the vesicle of fuse with the 

membrane of the neuron. When a synaptic vesicle comes close enough to the membrane, the 

proteins connect with the two and enter a pre-fusion state. Next when the neuron fires, calcium 

arrives and triggers the proteins which bend the neural membrane towards the vesicle membrane 

and draw the two together. This finally triggers fusion allowing the neurotransmitters to leave the 

neuron. This experiment represents the first time when scientists have seen how synaptotagmin-1 

interacts with the snares of the atomic scale and scientists are more confident that this protein 

resembles before calcium arrives allowing the fusion process and resulting neurotransmission to 

happen very quickly getting information from point A to point B in less than a millisecond. The 

end result is that our nervous system can work at an incredible speeds enabling us to sense, react 

to and interact with the world around us.  

5.3.5 Provocation Techniques 

When a synaptic vesicle comes close enough to the membrane, the proteins connect with the two 

and enter a pre-fusion state. Next when the neuron fires, calcium arrives and triggers the proteins 

which bend the neural membrane towards the vesicle membrane and draw the two together. This 

finally triggers fusion allowing the neurotransmitters to leave the neuron. This experiment 

represents the first time when scientists have seen how synaptotagmin-1 interacts with the snares 

of the atomic scale and scientists are more confident that this protein resembles before calcium 

arrives allowing the fusion process and resulting neurotransmission to happen very quickly getting 

information from point A to point B in less than a millisecond. The key to this fusion is the 

collaboration between special proteins called snares and synaptotagmin-1. They are then triggered 

by calcium to cause the vesicle of fuse with the membrane of the neuron. When a synaptic vesicle 

comes close enough to the membrane, the proteins connect with the two and enter a pre-fusion 

state. Next when the neuron fires, calcium arrives and triggers the proteins which bend the neural 

membrane towards the vesicle membrane and draw the two together. This finally triggers fusion 

allowing the neurotransmitters to leave the neuron. 
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2.4 The Developmental EEG: Premature, Neonatal and Children 

      This finally triggers fusion allowing the neurotransmitters to leave the neuron. This 

experiment represents the first time when scientists have seen how synaptotagmin-1 interacts with 

the snares of the atomic scale and scientists are more confident that this protein resembles before 

calcium arrives allowing the fusion process and resulting neurotransmission to happen very 

quickly getting information from point A to point B in less than a millisecond. 

 

Figure 2.2 REM sleep is characterized by a more typically wake-appearing, desynchronized, 

mixed-frequency background, which may contain alpha frequencies, characteristic centrally 

dominant sharply contoured sawtooth waves, and rapid eye movement artifacts in lateral 

frontal electrode sites. Copyright 2013. Mayo Foundation for Medical Education and 

Research. All rights reserved. Figure courtesy of Erik K. St. Louis, MD.                                  

 

If you want to take a closer look, you will see that this information is transmitted between neurons 

using chemicals called neurotransmitters where tiny structures called synaptic vesicles fuse with 

the membrane of one neuron and release chemicals signals into the gap. The second neuron can 

receive them. 
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2.5 Benefits of using Electroencephalography (EEG) 

        Electroencephalography has several benefits. The main benefit of Electroencephalography is 

its high time conductivity. It can take hundreds to thousands of shots of electrical activity across 

within a second. It is very useful but it has some disadvantages too. 
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                              Chapter 3 
History of Electroencephalography (EEG) 

 
3.1 Invention of Electroencephalography 

 
Inside each of our brains, there are roughly 100 billion highly specialized cells called neurons. 

They make about 500 trillion connections called synapsis. These unique cells transmit important 

information alarming us the sense and interacts with the world around us. If you want to take a 

closer look, you will see that this information is transmitted between neurons using chemicals 

called neurotransmitters where tiny structures called synaptic vesicles fuse with the membrane of 

one neuron and release chemicals signals into the gap. The second neuron can receive them. 

Scientists already knew some about how this neurotransmission process works. But now after over 

10 years of collaborated research of Stanford University and SLAC national accelerator laboratory 

along with the ultra-bright X-rays, scientists now have a better idea of exactly how these tiny 

vesicles might fuse with the membrane of one neuron to transmit their signals. The key to this 

fusion is the collaboration between special proteins called snares and synaptotagmin-1. They are 

then triggered by calcium to cause the vesicle of fuse with the membrane of the neuron. When a 

synaptic vesicle comes close enough to the membrane, the proteins connect with the two and enter 

a pre-fusion state. Next when the neuron fires, calcium arrives and triggers the proteins which bend 

the neural membrane towards the vesicle membrane and draw the two together. This finally 

triggers fusion allowing the neurotransmitters to leave the neuron.  

 

3.2. Progress of Electroencephalography 

3.2.1 Richard Caton’s work 

         Richard Caton (1842– 1926) invented it in 1875. 
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3.2.2 Carlo & Emil Du’s work 

          Carlo Matteucci 1811 and Emil Du Bois-Reymond 1818 invented it first. 

3.2.3 First Electroencephalographic  

        Hans Berger 1873 discover EEG signals first. 

                           

                               

Fig: 3.1 The first human EEG recording obtained by Hans Berger in 1924. 

 

                                                

                                             

          Fig: 3.2 Hans Berger(1873-1941) 

 

This experiment represents the first time when scientists have seen how synaptotagmin-1 

interacts with the snares of the atomic scale and scientists are more confident that this protein 

resembles before calcium arrives allowing the fusion process and resulting neurotransmission to 

happen very quickly getting information from point A to point B in less than a millisecond. 
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3.2.4 Limitations 

         This experiment represents the first time when scientists have seen how synaptotagmin-1 

interacts with the snares of the atomic scale and scientists are more confident that this protein 

resembles before calcium arrives allowing the fusion process and resulting neurotransmission to 

happen very quickly getting information from point A to point B in less than a millisecond. 

 

                                               

                                Fig: 3.3 Frist String Galvanometer with recording apparatus 

3.2.5 Works by other scientists  

Take a minute and put your hand onto your head and think about what you are touching. Within a 

centimeter of your fingers, there is a piece of the most mysterious and rarely understood matter in 

the universe. And that is our brain. 

Inside each of our brains, there are roughly 100 billion highly specialized cells called neurons. 

They make about 500 trillion connections called synapsis. These unique cells transmit important 

information alarming us the sense and interacts with the world around us. If you want to take a 

closer look, you will see that this information is transmitted between neurons using chemicals 

called neurotransmitters where tiny structures called synaptic vesicles fuse with the membrane of 

one neuron and release chemicals signals into the gap. The second neuron can receive them. 
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Scientists already knew some about how this neurotransmission process works. But now after over 

10 years of collaborated research of Stanford University and SLAC national accelerator laboratory 

along with the ultra-bright X-rays, scientists now have a better idea of exactly how these tiny 

vesicles might fuse with the membrane of one neuron to transmit their signals. The key to this 

fusion is the collaboration between special proteins called snares and synaptotagmin-1. They are 

then triggered by calcium to cause the vesicle of fuse with the membrane of the neuron. When a 

synaptic vesicle comes close enough to the membrane, the proteins connect with the two and enter 

a pre-fusion state.  

 

3.3 Brief History of EEG 

 

Take a minute and put your hand onto your head and think about what you are touching. Within 

a centimeter of your fingers, there is a piece of the most mysterious and rarely understood matter 

in the universe. And that is our brain. 

Inside each of our brains, there are roughly 100 billion highly specialized cells called neurons. 

They make about 500 trillion connections called synapsis. These unique cells transmit important 

information alarming us the sense and interacts with the world around us. If you want to take a 

closer look, you will see that this information is transmitted between neurons using chemicals 

called neurotransmitters where tiny structures called synaptic vesicles fuse with the membrane of 

one neuron and release chemicals signals into the gap. The second neuron can receive them. 
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Fig: 3.4 Normal EEG recording from an adult using a longitudinal temporal and transverse bipolar 

montage. 

 

 

Fig: 3.5 Scalp EEG recording of ictal onset in a patient with absence epilepsy using a 

longitudinal bipolar montage. 
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Take a minute and put your hand onto your head and think about what you are touching. Within 

a centimeter of your fingers, there is a piece of the most mysterious and rarely understood matter 

in the universe. And that is our brain. 

 

Inside each of our brains, there are roughly 100 billion highly specialized cells called neurons. 

They make about 500 trillion connections called synapsis. These unique cells transmit important 

information alarming us the sense and interacts with the world around us.  

 

If you want to take a closer look, you will see that this information is transmitted between 

neurons using chemicals called neurotransmitters where tiny structures called synaptic vesicles 

fuse with the membrane of one neuron and release chemicals signals into the gap. The second 

neuron can receive them. 

Scientists already knew some about how this neurotransmission process works. But now after 

over 10 years of collaborated research of Stanford University and SLAC national accelerator 

laboratory along with the ultra-bright X-rays, scientists now have a better idea of exactly how 

these tiny vesicles might fuse with the membrane of one neuron to transmit their signals.  

The key to this fusion is the collaboration between special proteins called snares and 

synaptotagmin-1. They are then triggered by calcium to cause the vesicle of fuse with the 

membrane of the neuron.  

 

When a synaptic vesicle comes close enough to the membrane, the proteins connect with the two 

and enter a pre-fusion state. Next when the neuron fires, calcium arrives and triggers the proteins 

which bend the neural membrane towards the vesicle membrane and draw the two together.  

 

This finally triggers fusion allowing the neurotransmitters to leave the neuron. This experiment 

represents the first time when scientists have seen how synaptotagmin-1 interacts with the snares 

of the atomic scale and scientists are more confident that this protein resembles before calcium 

arrives allowing the fusion process and resulting neurotransmission to happen very quickly 

getting information from point A to point B in less than a millisecond.  

The end result is that our nervous system can work at an incredible speeds enabling us to sense, 

react to and interact with the world around us. 
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Fig: 3.6 Recording of ictal onset in a patient with right mesial temporal epilepsy due to 

hippocampal sclerosis using subdural electrodes inserted to cover the inferior surface of the 

temporal lobe cortex.  

 

Take a minute and put your hand onto your head and think about what you are touching. Within a 

centimeter of your fingers, there is a piece of the most mysterious and rarely understood matter in 

the universe. And that is our brain. 

Inside each of our brains, there are roughly 100 billion highly specialized cells called neurons. 

They make about 500 trillion connections called synapsis.  

These unique cells transmit important information alarming us the sense and interacts with the 

world around us. If you want to take a closer look, you will see that this information is transmitted 

between neurons using chemicals called neurotransmitters where tiny structures called synaptic 

vesicles fuse with the membrane of one neuron and release chemicals signals into the gap. The 

second neuron can receive them. 
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Scientists already knew some about how this neurotransmission process works. But now after over 

10 years of collaborated research of Stanford University and SLAC national accelerator laboratory 

along with the ultra-bright X-rays, scientists now have a better idea of exactly how these tiny 

vesicles might fuse with the membrane of one neuron to transmit their signals. The key to this 

fusion is the collaboration between special proteins called snares and synaptotagmin-1.  

 

They are then triggered by calcium to cause the vesicle of fuse with the membrane of the neuron. 

When a synaptic vesicle comes close enough to the membrane, the proteins connect with the two 

and enter a pre-fusion state. Next when the neuron fires, calcium arrives and triggers the proteins 

which bend the neural membrane towards the vesicle membrane and draw the two together. This 

finally triggers fusion allowing the neurotransmitters to leave the neuron. This experiment 

represents the first time when scientists have seen how synaptotagmin-1 interacts with the snares 

of the atomic scale and scientists are more confident that this protein resembles before calcium 

arrives allowing the fusion process and resulting neurotransmission to happen very quickly getting 

information from point A to point B in less than a millisecond.  

 

The end result is that our nervous system can work at an incredible speeds enabling us to sense, 

react to and interact with the world around us. 

 

Take a minute and put your hand onto your head and think about what you are touching. Within a 

centimeter of your fingers, there is a piece of the most mysterious and rarely understood matter in 

the universe. And that is our brain. 

Inside each of our brains, there are roughly 100 billion highly specialized cells called neurons. 

They make about 500 trillion connections called synapsis.  

These unique cells transmit important information alarming us the sense and interacts with the 

world around us. If you want to take a closer look, you will see that this information is transmitted 

between neurons using chemicals called neurotransmitters where tiny structures called synaptic 

vesicles fuse with the membrane of one neuron and release chemicals signals into the gap. The 

second neuron can receive them. 

Scientists already knew some about how this neurotransmission process works. But now after over 

10 years of collaborated research of Stanford University and SLAC national accelerator laboratory 
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along with the ultra-bright X-rays, scientists now have a better idea of exactly how these tiny 

vesicles might fuse with the membrane of one neuron to transmit their signals. The key to this 

fusion is the collaboration between special proteins called snares and synaptotagmin-1. They are 

then triggered by calcium to cause the vesicle of fuse with the membrane of the neuron. When a 

synaptic vesicle comes close enough to the membrane, the proteins connect with the two and enter 

a pre-fusion state. Next when the neuron fires, calcium arrives and triggers the proteins which bend 

the neural membrane towards the vesicle membrane and draw the two together. This finally 

triggers fusion allowing the neurotransmitters to leave the neuron. This experiment represents the 

first time when scientists have seen how synaptotagmin-1 interacts with the snares of the atomic 

scale and scientists are more confident that this protein resembles before calcium arrives allowing 

the fusion process and resulting neurotransmission to happen very quickly getting information 

from point A to point B in less than a millisecond. The end result is that our nervous system can 

work at an incredible speeds enabling us to sense, react to and interact with the world around us. 

 

Take a minute and put your hand onto your head and think about what you are touching. Within a 

centimeter of your fingers, there is a piece of the most mysterious and rarely understood matter in 

the universe. And that is our brain. 

Inside each of our brains, there are roughly 100 billion highly specialized cells called neurons. 

They make about 500 trillion connections called synapsis. These unique cells transmit important 

information alarming us the sense and interacts with the world around us. If you want to take a 

closer look, you will see that this information is transmitted between neurons using chemicals 

called neurotransmitters where tiny structures called synaptic vesicles fuse with the membrane of 

one neuron and release chemicals signals into the gap. The second neuron can receive them. 

Scientists already knew some about how this neurotransmission process works. But now after over 

10 years of collaborated research of Stanford University and SLAC national accelerator laboratory 

along with the ultra-bright X-rays, scientists now have a better idea of exactly how these tiny 

vesicles might fuse with the membrane of one neuron to transmit their signals. The key to this 

fusion is the collaboration between special proteins called snares and synaptotagmin-1. They are 

then triggered by calcium to cause the vesicle of fuse with the membrane of the neuron. When a 

synaptic vesicle comes close enough to the membrane, the proteins connect with the two and enter 

a pre-fusion state. Next when the neuron fires, calcium arrives and triggers the proteins which bend 
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the neural membrane towards the vesicle membrane and draw the two together. This finally 

triggers fusion allowing the neurotransmitters to leave the neuron.  

This experiment represents the first time when scientists have seen how synaptotagmin-1 interacts 

with the snares of the atomic scale and scientists are more confident that this protein resembles 

before calcium arrives allowing the fusion process and resulting neurotransmission to happen very 

quickly getting information from point A to point B in less than a millisecond. The end result is 

that our nervous system can work at an incredible speeds enabling us to sense, react to and interact 

with the world around us. 
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Chapter 4 
Electroencephalography (EEG) Signal Processing 

 
4.1. Fundamentals of Electroencephalography (EEG) Signal 

       Processing 

 
       These unique cells transmit important information alarming us the sense and interacts with the 

world around us. If you want to take a closer look, you will see that this information is transmitted 

between neurons using chemicals called neurotransmitters. 

Inside each of our brains, there are roughly 100 billion highly specialized cells called neurons. 

They make about 500 trillion connections called synapsis. These unique cells transmit important 

information alarming us the sense and interacts with the world around us. If you want to take a 

closer look, you will see that this information is transmitted between neurons using chemicals 

called neurotransmitters where tiny structures called synaptic vesicles fuse with the membrane of 

one neuron and release chemicals signals into the gap. The second neuron can receive them. 

Scientists already knew some about how this neurotransmission process works. But now after over 

10 years of collaborated research of Stanford University and SLAC national accelerator laboratory 

along with the ultra-bright X-rays, scientists now have a better idea of exactly how these tiny 

vesicles might fuse with the membrane of one neuron to transmit their signals. The key to this 

fusion is the collaboration between special proteins called snares and synaptotagmin-1. They are 

then triggered by calcium to cause the vesicle of fuse with the membrane of the neuron. When a 

synaptic vesicle comes close enough to the membrane, the proteins connect with the two and enter 

a pre-fusion state.  

4.1.1 EEE signal modeling     

Inside each of our brains, there are roughly 100 billion highly specialized cells called neurons. 

They make about 500 trillion connections called synapsis. These unique cells transmit important 

information alarming us the sense and interacts with the world around us. If you want to take a 

closer look, you will see that this information is transmitted between neurons using chemicals 
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called neurotransmitters where tiny structures called synaptic vesicles fuse with the membrane of 

one neuron and release chemicals signals into the gap. The second neuron can receive them. 

Scientists already knew some about how this neurotransmission process works. But now after over 

10 years of collaborated research of Stanford University and SLAC national accelerator laboratory 

along with the ultra-bright X-rays, scientists now have a better idea of exactly how these tiny 

vesicles might fuse with the membrane of one neuron to transmit their signals. 

 

4.2 Various Bands 

Inside each of our brains, there are roughly 100 billion highly specialized cells called neurons. 

They make about 500 trillion connections called synapsis. These unique cells transmit important 

information alarming us the sense and interacts with the world around us. If you want to take a 

closer look, you will see that this information is transmitted between neurons using chemicals 

called neurotransmitters where tiny structures called synaptic vesicles fuse with the membrane of 

one neuron and release chemicals signals into the gap. The second neuron can receive them. 

Scientists already knew some about how this neurotransmission process works. But now after over 

10 years of collaborated research of Stanford University and SLAC national accelerator laboratory 

along with the ultra-bright X-rays, scientists now have a better idea of exactly how these tiny 

vesicles might fuse with the membrane of one neuron to transmit their signals 

 

4.2.1 Delta band (1-4 Hz) 

      Delta waves lie within the range of 0.5– 4 Hz. These waves are primarily associated with deep 

sleep and may be present in the waking state. It is very easy to confuse artefact signals caused by 

the large muscles of the neck and jaw with the genuine delta response.  

 

4.2.2. Theta band (4-8 Hz) 

Theta waves lie within the range of 4– 7.5 Hz. The term theta might be chosen to allude to its 

presumed thalamic origin. Theta waves appear as consciousness slips towards drowsiness. Theta 

waves have been associated with access to unconscious material, creative inspiration and deep 

meditation.  
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                                Fig: 4.1 Frequency variance per second 

 

4.2.3. Alpha band (8 - 12 Hz)  

       These unique cells transmit important information alarming us the sense and interacts with the 

world around us. If you want to take a closer look, you will see that this information is transmitted 

between neurons using chemicals called neurotransmitters where tiny structures called synaptic 

vesicles fuse with the membrane of one neuron and release chemicals signals into the gap. 
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4.2.4. Beta band (12- 25 Hz)  

Scientists already knew some about how this neurotransmission process works. But now after over 

10 years of collaborated research of Stanford University and SLAC national accelerator laboratory 

along with the ultra-bright X-rays, scientists now have a better idea of exactly how these tiny 

vesicles might fuse with the membrane of one neuron to transmit their signals 

4.2.5 Gamma band (above 25 Hz)  

These unique cells transmit important information alarming us the sense and interacts with the 

world around us. If you want to take a closer look, you will see that this information is transmitted 

between neurons using chemicals called neurotransmitters where tiny structures called synaptic 

vesicles fuse with the membrane of one neuron and release chemicals signals into the gap. 

4.2.6 Other Waves 

Within a centimeter of your fingers, there is a piece of the most mysterious and rarely understood 

matter in the universe. And that is our brain. 

Inside each of our brains, there are roughly 100 billion highly specialized cells called neurons. 

They make about 500 trillion connections called synapsis.  

These unique cells transmit important information alarming us the sense and interacts with the 

world around us. If you want to take a closer look, you will see that this information is transmitted 

between neurons using chemicals called neurotransmitters where tiny structures called synaptic 

vesicles fuse with the membrane of one neuron and release chemicals signals into the gap.  

The second neuron can receive them. 

Scientists already knew some about how this neurotransmission process works. But now after over 

10 years of collaborated research of Stanford University and SLAC national accelerator laboratory 

along with the ultra-bright X-rays, scientists now have a better idea of exactly how these tiny 

vesicles might fuse with the membrane of one neuron to transmit their signals. 

The key to this fusion is the collaboration between special proteins called snares and 

synaptotagmin-1. They are then triggered by calcium to cause the vesicle of fuse with the 
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membrane of the neuron. When a synaptic vesicle comes close enough to the membrane, the 

proteins connect with the two and enter a pre-fusion state. 

Next when the neuron fires, calcium arrives and triggers the proteins which bend the neural 

membrane towards the vesicle membrane and draw the two together. This finally triggers fusion 

allowing the neurotransmitters to leave the neuron.  

This experiment represents the first time when scientists have seen how synaptotagmin-1 interacts 

with the snares of the atomic scale and scientists are more confident that this protein resembles 

before calcium arrives allowing the fusion process and resulting neurotransmission to happen very 

quickly getting information from point A to point B in less than a millisecond. The end result is 

that our nervous system can work at an incredible speeds enabling us to sense, react to and interact 

with the world around us. 

4.3 EEG Recording and Measurement 

        Scientists already knew some about how this neurotransmission process works. But now after 

over 10 years of collaborated research of Stanford University and SLAC national accelerator 

laboratory along with the ultra-bright X-rays, scientists now have a better idea of exactly how these 

tiny vesicles might fuse with the membrane of one neuron to transmit their signals. The key to this 

fusion is the collaboration between special proteins called snares and synaptotagmin-1. They are 

then triggered by calcium to cause the vesicle of fuse with the membrane of the neuron. When a 

synaptic vesicle comes close enough to the membrane, the proteins connect with the two and enter 

a pre-fusion state. Next when the neuron fires, calcium arrives and triggers the proteins which bend 

the neural membrane towards the vesicle membrane and draw the two together. This finally 

triggers fusion allowing the neurotransmitters to leave the neuron.  

This experiment represents the first time when scientists have seen how synaptotagmin-1 interacts 

with the snares of the atomic scale and scientists are more confident that this protein resembles 

before calcium arrives allowing the fusion process and resulting neurotransmission to happen very 

quickly getting information from point A to point B in less than a millisecond. The end result is 

that our nervous system can work at an incredible speeds enabling us to sense, react to and interact 

with the world around us. 
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These unique cells transmit important information alarming us the sense and interacts with the 

world around us. If you want to take a closer look, you will see that this information is transmitted 

between neurons using chemicals called neurotransmitters where tiny structures called synaptic 

vesicles fuse with the membrane of one neuron and release chemicals signals into the gap. 

 

 4.4 Conventional Electrode Positioning 

         The key to this fusion is the collaboration between special proteins called snares and 

synaptotagmin-1. They are then triggered by calcium to cause the vesicle of fuse with the 

membrane of the neuron. When a synaptic vesicle comes close enough to the membrane, the 

proteins connect with the two and enter a pre-fusion state. Next when the neuron fires, calcium 

arrives and triggers the proteins which bend the neural membrane towards the vesicle membrane 

and draw the two together. This finally triggers fusion allowing the neurotransmitters to leave the 

neuron. This experiment represents the first time when scientists have seen how synaptotagmin-1 

interacts with the snares of the atomic scale and scientists are more confident that this protein 

resembles before calcium arrives allowing the fusion process and resulting neurotransmission to 

happen very quickly getting information from point A to point B in less than a millisecond. The 

end result is that our nervous system can work at an incredible speeds enabling us to sense, react 

to and interact with the world around us. 

Points to note in the 10-20 system:  

 

 

Nasion (Nz)  

The noise between the eyes at the top of the nose.  

 

Inion (Iz)  

The bump at the back of the head. 
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                                                    Fig: 4.2 Placement of Electrodes 

 

The second neuron can receive them. Scientists already knew some about how this 

neurotransmission process works. But now after over 10 years of collaborated research of Stanford 

University and SLAC national accelerator laboratory along with the ultra-bright X-rays, scientists 

now have a better idea of exactly how these tiny vesicles might fuse with the membrane of one 

neuron to transmit their signals. The key to this fusion is the collaboration between special proteins 

called snares and synaptotagmin-1. They are then triggered by calcium to cause the vesicle of fuse 

with the membrane of the neuron. When a synaptic vesicle comes close enough to the membrane, 

the proteins connect with the two and enter a pre-fusion state. Next when the neuron fires, calcium 

arrives and triggers the proteins which bend the neural membrane towards the vesicle membrane 

and draw the two together. This finally triggers fusion allowing the neurotransmitters to leave the 
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neuron. This experiment represents the first time when scientists have seen how synaptotagmin-1 

interacts with the snares of the atomic scale and scientists are more confident that this protein 

resembles before calcium arrives allowing the fusion process and resulting neurotransmission to 

happen very quickly getting information from point A to point B in less than a millisecond. The 

end result is that our nervous system can work at an incredible speeds enabling us to sense, react 

to and interact with the world around us. 

 

4.5 Number and distribution of electrodes 

These unique cells transmit important information alarming us the sense and interacts with the 

world around us. If you want to take a closer look, you will see that this information is transmitted 

between neurons using chemicals called neurotransmitters where tiny structures called synaptic 

vesicles fuse with the membrane of one neuron and release chemicals signals into the gap. 

The second neuron can receive them. Scientists already knew some about how this 

neurotransmission process works. But now after over 10 years of collaborated research of Stanford 

University and SLAC national accelerator laboratory along with the ultra-bright X-rays, scientists 

now have a better idea of exactly how these tiny vesicles might fuse with the membrane of one 

neuron to transmit their signals. The key to this fusion is the collaboration between special proteins 

called snares and synaptotagmin-1. They are then triggered by calcium to cause the vesicle of fuse 

with the membrane of the neuron. When a synaptic vesicle comes close enough to the membrane, 

the proteins connect with the two and enter a pre-fusion state. Next when the neuron fires, calcium 

arrives and triggers the proteins which bend the neural membrane towards the vesicle membrane 

and draw the two together. This finally triggers fusion allowing the neurotransmitters to leave the 

Neuron. 

 

4.6 Clean Electroencephalography data and artefacts 

 

The second neuron can receive them. Scientists already knew some about how this 

neurotransmission process works. But now after over 10 years of collaborated research of Stanford 

University and SLAC national accelerator laboratory along with the ultra-bright X-rays, scientists 

now have a better idea of exactly how these tiny vesicles might fuse with the membrane of one 
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neuron to transmit their signals. The key to this fusion is the collaboration between special proteins 

called snares and synaptotagmin-1. They are then triggered by calcium to cause the vesicle of fuse 

with the membrane of the neuron. When a synaptic vesicle comes close enough to the membrane, 

the proteins connect with the two and enter a pre-fusion state. Next when the neuron fires, calcium 

arrives and triggers the proteins which bend the neural membrane towards the vesicle membrane 

and draw the two together. This finally triggers fusion allowing the neurotransmitters to leave the 

Shell. 

 

4.6.1 Physiological artefacts 

 

The second neuron can receive them. Scientists already knew some about how this 

neurotransmission process works. But now after over 10 years of collaborated research of Stanford 

University and SLAC national accelerator laboratory along with the ultra-bright X-rays, scientists 

now have a better idea of exactly how these tiny vesicles might fuse with the membrane of one 

neuron to transmit their signals. The key to this fusion is the collaboration between special proteins 
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called snares and synaptotagmin-1. They are then triggered by calcium to cause the vesicle. 

  
 

                                                Fig: 4.3 Muscle activity of electric current 

 

 

 Eye movements  

         They are then triggered by calcium to cause the vesicle of fuse with the membrane of the 

neuron. When a synaptic vesicle comes close enough to the membrane, the proteins connect with 

the two and enter a pre-fusion state. Next when the neuron fires, calcium arrives and triggers the 

proteins which bend the neural membrane towards the vesicle membrane and draw the two 

together. This finally triggers fusion allowing the neurotransmitters to leave the neuron. This 

experiment represents the first time when scientists have seen how synaptotagmin-1 interacts with 

the snares of the atomic scale and scientists are more confident that this protein resembles before 
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calcium arrives allowing the fusion process and resulting neurotransmission to happen very 

quickly getting information from point A to point B in less than a millisecond. 

 

                                                              

                                                         Fig: 4.4 Eye movement  

 

Blinking: 

 

 
 
                                                          Fig: 4.5 Blinking effect 
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The second neuron can receive them. Scientists already knew some about how this 

neurotransmission process works. But now after over 10 years of collaborated research of 

Stanford University and SLAC national accelerator laboratory along with the ultra-bright X-rays, 

scientists now have a better idea of exactly how these tiny vesicles might fuse with the 

membrane of one neuron to transmit their signals.  

The key to this fusion is the collaboration between special proteins called snares and 

synaptotagmin-1. They are then triggered by calcium to cause the vesicle of fuse with the 

membrane of the neuron. When a synaptic vesicle comes close enough to the membrane, the 

proteins connect with the two and enter a pre-fusion state. Next when the neuron fires, calcium 

arrives and triggers the proteins which bend the neural membrane towards the vesicle membrane 

and draw the two together. 

4.6.2 External sources of artefacts  

        Movement of an electrode can cause many artefacts (Fig 4.6).  

 

                                               Fig: 4.6 Movement of electrodes 

 

Line noise  

        Line noise (50 Hz in the United States, 60 Hz in the Europe) probably have strong artefacts 

on the electrode listing - it is quite common in the raw Electroencephalography data.  

 



©  Daffodil  International  University 
32 

 

 

 

                                               Fig: 4.7 Noise variation over frequency  
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Chapter 5 
Application of Electroencephalography (EEG) 

 

5.1 Medical or Clinical Applications 

It has severe medical applications. 

                                          

                                                     Fig: 5.1 An EEG recording setup 

The key to this fusion is the collaboration between special proteins called snares and 

synaptotagmin-1. They are then triggered by calcium to cause the vesicle of fuse with the 

membrane of the neuron. When a synaptic vesicle comes close enough to the membrane, the 

proteins connect with the two and enter a pre-fusion state. 

 

5.1.1 Dementia 

Dementia is a syndrome that consists of a decline in intellectual and cognitive abilities. This 

consequently affects the normal social activities, mode, and the relationship and interaction 

with other people. EEG is often used to study the effect of dementia. In most cases, such as 

in primary degenerative dementia, e.g. Alzheimer’s, and psychiatric disorder, e.g. depression 

with cognitive impairment, the EEG can be used to detect the abnormality. 
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Dementia is classified into cortical and subcortical forms. The most important cortical 

dementia is Alzheimer’s disease (AD), which accounts for approx- imately 50 % of the 

cases. Other known cortical abnormalities are Pick’s disease and Creutzfeldt– Jakob diseases 

(CJD).  They are characterized clinically by findings such as aphasia, apraxia, and agnosia. 

CJD can often be diagnosed using the EEG signals. Figure shows a set of EEG signals from 

a CJD patient.  On the other hand, the most common subcortical diseases are Parkinson’s 

disease, Huntington’s disease, lacunar state, normal pressure hydrocephalus, and progressive 

supranuclear palsy. These diseases are characterized by forgetfulness, slowing of thought 

processes, apathy, and depression. Generally, subcortical dementias introduce less 

abnormality to the EEG patterns than the cortical ones. 

In AD the EEG posterior rhythm (alpha rhythm) slows down and the delta and theta wave 

activities increase. On the other hand, beta wave activity may decrease. In severe cases 

epileptiform discharges and triphasic waves can appear. In such cases, cognitive impairment 

often results. The spectral power also changes; the power increases in delta and theta bands 

and decreases in beta and alpha bands and also in mean frequency. 

The EEG wave morphology is almost the same for AD and Pick’s disease. Pick’s disease 

involves the frontal and temporal lobes. An accurate analysis followed by an efficient 

classification of the cases may discriminate these two diseases. CJD is a mixed cortical and 

subcortical dementia. This causes slowing of the delta and theta wave activities and, after 

approximately three months of the onset of the disease, periodic sharp wave complexes are 

generated that occur almost every second, together with a decrease in the background 

activity [54]. Parkinson’s disease is a subcortical dementia, which causes slowing down of 

the background activity and an increase of the theta and delta wave activities. Some works 

have been undertaken using spectral analysis to confirm the above changes [55]. Some other 

disorders such as depression have a lesser effect on the EEGs and more accurate analysis of 

the EEGs has to be performed to detect the signal abnormalities for these brain disorders. 

       The key to this fusion is the collaboration between special proteins called snares and 

synaptotagmin-1. They are then triggered by calcium to cause the vesicle of fuse with the 

membrane of the neuron. When a synaptic vesicle comes close enough to the membrane, the 
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proteins connect with the two and enter a pre-fusion state. Next when the neuron fires, calcium 

arrives and triggers the proteins which bend the neural membrane towards the vesicle membrane 

and draw the two together. 

 

5.1.2 Additional work done by EEG  

The EEG wave morphology is almost the same for AD and Pick’s disease. Pick’s disease 

involves the frontal and temporal lobes. An accurate analysis followed by an efficient 

classification of the cases may discriminate these two diseases. CJD is a mixed cortical and 

subcortical dementia. This causes slowing of the delta and theta wave activities and, after 

approximately three months of the onset of the disease, periodic sharp wave complexes are 

generated that occur almost every second, together with a decrease in the background activity 

[54]. Parkinson’s disease is a subcortical dementia, which causes slowing down of the 

background activity and an increase of the theta and delta wave activities. Some works have been 

undertaken using spectral analysis to confirm the above changes [55].  

They are characterized clinically by findings such as aphasia, apraxia, and agnosia. CJD can 

often be diagnosed using the EEG signals. Figure shows a set of EEG signals from a CJD 

patient.  On the other hand, the most common subcortical diseases are Parkinson’s disease, 

Huntington’s disease, lacunar state, normal pressure hydrocephalus, and progressive 

supranuclear palsy. These diseases are characterized by forgetfulness, slowing of thought 

processes, apathy, and depression. Generally, subcortical dementias introduce less abnormality to 

the EEG patterns than the cortical ones. 

 5.1.3 Epileptic Seizure and Nonepileptic Attacks 

They are characterized clinically by findings such as aphasia, apraxia, and agnosia. CJD can 

often be diagnosed using the EEG signals. Figure shows a set of EEG signals from a CJD 

patient.  On the other hand, the most common subcortical diseases are Parkinson’s disease, 

Huntington’s disease, lacunar state, normal pressure hydrocephalus, and progressive 

supranuclear palsy. These diseases are characterized by forgetfulness, slowing of thought 

processes, apathy, and depression. Generally, subcortical dementias introduce less abnormality to 

the EEG patterns than the cortical ones. 
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Inside each of our brains, there are roughly 100 billion highly specialized cells called neurons. 

They make about 500 trillion connections called synapsis. These unique cells transmit important 

information alarming us the sense and interacts with the world around us. If you want to take a 

closer look, you will see that this information is transmitted between neurons using chemicals 

called neurotransmitters where tiny structures called synaptic vesicles fuse with the membrane of 

one neuron and release chemicals signals into the gap. The second neuron can receive them. 

Scientists already knew some about how this neurotransmission process works. But now after 

over 10 years of collaborated research of Stanford University and SLAC national accelerator 

laboratory along with the ultra-bright X-rays, scientists now have a better idea of exactly how 

these tiny vesicles might fuse with the membrane of one neuron to transmit their signal. 

 

5.1.4 Psychiatric Disorders 

Inside each of our brains, there are roughly 100 billion highly specialized cells called neurons. 

They make about 500 trillion connections called synapsis. These unique cells transmit important 

information alarming us the sense and interacts with the world around us. If you want to take a 

closer look, you will see that this information is transmitted between neurons using chemicals 

called neurotransmitters where tiny structures called synaptic vesicles fuse with the membrane of 

one neuron and release chemicals signals into the gap. The second neuron can receive them. 

Scientists already knew some about how this neurotransmission process works. But now after 

over 10 years of collaborated research of Stanford University and SLAC national accelerator 

laboratory along with the ultra-bright X-rays, scientists now have a better idea of exactly how 

these tiny vesicles might fuse with the membrane of one neuron to transmit their signal 

 

5.1.5 Physiologic 

Inside each of our brains, there are roughly 100 billion highly specialized cells called neurons. 

They make about 500 trillion connections called synapsis. These unique cells transmit important 

information alarming us the sense and interacts with the world around us.  
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If you want to take a closer look, you will see that this information is transmitted between 

neurons using chemicals called neurotransmitters where tiny structures called synaptic vesicles 

fuse with the membrane of one neuron and release chemicals signals into the gap.  

 

The second neuron can receive them. 

Scientists already knew some about how this neurotransmission process works. But now after 

over 10 years of collaborated research of Stanford University and SLAC national accelerator 

laboratory along with the ultra-bright X-rays, scientists now have a better idea of exactly how 

these tiny vesicles might fuse with the membrane of one neuron to transmit their signal 

 

5.2 External effects 
 

Inside each of our brains, there are roughly 100 billion highly specialized cells called neurons. 

They make about 500 trillion connections called synapsis. These unique cells transmit important 

information alarming us the sense and interacts with the world around us. If you want to take a 

closer look, you will see that this information is transmitted between neurons using chemicals 

called neurotransmitters where tiny structures called synaptic vesicles fuse with the membrane of 

one neuron and release chemicals signals into the gap. The second neuron can receive them. 

Scientists already knew some about how this neurotransmission process works. But now after over 

10 years of collaborated research of Stanford University and SLAC national accelerator laboratory 

along with the ultra-bright X-rays, scientists now have a better idea of exactly how these tiny 

vesicles might fuse with the membrane of one neuron to transmit their signals. The key to this 

fusion is the collaboration between special proteins called snares and synaptotagmin-1. They are 

then triggered by calcium to cause the vesicle of fuse with the membrane of the neuron. When a 

synaptic vesicle comes close enough to the membrane, the proteins connect with the two and enter 

a pre-fusion state. Next when the neuron fires, calcium arrives and triggers the proteins which bend 

the neural membrane towards the vesicle membrane and draw the two together. This finally 

triggers fusion allowing the neurotransmitters to leave the neuron. This experiment represents the 

first time when scientists have seen how synaptotagmin-1 interacts with the snares of the atomic 

scale and scientists are more confident that this protein resembles before calcium arrives allowing 

the fusion process and resulting neurotransmission to happen very quickly getting information 

from point A to point B in less than a millisecond. The end result is that our nervous system can 

work at an incredible speeds enabling us to sense, react to and interact with the world around us.  
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5.3 Applications of EEG monitoring 

 
. The key to this fusion is the collaboration between special proteins called snares and 

synaptotagmin-1. They are then triggered by calcium to cause the vesicle of fuse with the 

membrane of the neuron. When a synaptic vesicle comes close enough to the membrane, the 

proteins connect with the two and enter a pre-fusion state. Next when the neuron fires, calcium 

arrives and triggers the proteins which bend the neural membrane towards the vesicle membrane 

and draw the two together. This finally triggers fusion allowing the neurotransmitters to leave the 

neuron. This experiment represents the first time when scientists have seen how synaptotagmin-1 

interacts with the snares of the atomic scale and scientists are more confident that this protein 

resembles before calcium arrives. 

 

5.3.1 Long-term Video-EEG Monitoring 

Dementia is a syndrome that consists of a decline in intellectual and cognitive abilities. This 

consequently affects the normal social activities, mode, and the relationship and interaction with 

other people. EEG is often used to study the effect of dementia. In most cases, such as in primary 

degenerative dementia, e.g. Alzheimer’s, and psychiatric disorder, e.g. depression with cognitive 

impairment, the EEG can be used to detect the abnormality. 

Dementia is classified into cortical and subcortical forms. The most important cortical dementia is 

Alzheimer’s disease (AD), which accounts for approx- imately 50 % of the cases. Other known 

cortical abnormalities are Pick’s disease and Creutzfeldt– Jakob diseases (CJD).  They are 

characterized clinically by findings such as aphasia, apraxia, and agnosia. CJD can often be 

diagnosed using the EEG signals. Figure shows a set of EEG signals from a CJD patient. 

 

5.3.2 Pitfalls in Video-EEG Monitoring 

Inside each of our brains, there are roughly 100 billion highly specialized cells called neurons. 

They make about 500 trillion connections called synapsis. These unique cells transmit important 

information alarming us the sense and interacts with the world around us. If you want to take a 

closer look, you will see that this information is transmitted between neurons using chemicals 
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called neurotransmitters where tiny structures called synaptic vesicles fuse with the membrane of 

one neuron and release chemicals signals into the gap. The second neuron can receive them. 

Scientists already knew some about how this neurotransmission process works. But now after over 

10 years of collaborated research of Stanford University and SLAC national accelerator laboratory 

along with the ultra-bright X-rays, scientists now have a better idea of exactly how these tiny 

vesicles might fuse with the membrane of one neuron to transmit their signal 

 

 

5.3.3 Long-term Video-EEG Monitoring in a Preoperative Evaluation 

Dementia is a syndrome that consists of a decline in intellectual and cognitive abilities. This 

consequently affects the normal social activities, mode, and the relationship and interaction with 

other people. EEG is often used to study the effect of dementia. In most cases, such as in primary 

degenerative dementia, e.g. Alzheimer’s, and psychiatric disorder, e.g. depression with cognitive 

impairment, the EEG can be used to detect the abnormality. 

Dementia is classified into cortical and subcortical forms. The most important cortical dementia 

is Alzheimer’s disease (AD), which accounts for approx- imately 50 % of the cases. Other 

known cortical abnormalities are Pick’s disease and Creutzfeldt– Jakob diseases (CJD).  They 

are characterized clinically by findings such as aphasia, apraxia, and agnosia. CJD can often be 

diagnosed using the EEG signals. Figure shows a set of EEG signals from a CJD patient.  On the 

other hand, the most common subcortical diseases are Parkinson’s disease, Huntington’s disease, 

lacunar state, normal pressure hydrocephalus, and progressive supranuclear palsy. These diseases 

are characterized by forgetfulness, slowing of thought processes, apathy, and depression. 

Generally, subcortical dementias introduce less abnormality to the EEG patterns than the cortical 

ones. 

In AD the EEG posterior rhythm (alpha rhythm) slows down and the delta and theta wave 

activities increase. On the other hand, beta wave activity may decrease. In severe cases 

epileptiform discharges and triphasic waves can appear. In such cases, cognitive impairment 

often results. The spectral power also changes; the power increases in delta and theta bands and 

decreases in beta and alpha bands and also in mean frequency. 

5.4 Various Applications    

Dementia is a syndrome that consists of a decline in intellectual and cognitive abilities. This 

consequently affects the normal social activities, mode, and the relationship and interaction with 

other people. EEG is often used to study the effect of dementia. In most cases, such as in primary 

degenerative dementia, e.g. Alzheimer’s, and psychiatric disorder, e.g. depression with cognitive 

impairment, the EEG can be used to detect the abnormality. 
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Dementia is classified into cortical and subcortical forms. The most important cortical dementia is 

Alzheimer’s disease (AD), which accounts for approx- imately 50 % of the cases. Other known 

cortical abnormalities are Pick’s disease and Creutzfeldt– Jakob diseases (CJD).  They are 

characterized clinically by findings such as aphasia, apraxia, and agnosia. CJD can often be 

diagnosed using the EEG signals. Figure shows a set of EEG signals from a CJD patient.  On the 

other hand, the most common subcortical diseases are Parkinson’s disease, Huntington’s disease, 

lacunar state, normal pressure hydrocephalus, and progressive supranuclear palsy. These diseases 

are characterized by forgetfulness, slowing of thought processes, apathy, and depression. 

Generally, subcortical dementias introduce less abnormality to the EEG patterns than the cortical 

ones. 
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                              Chapter 6 
Advantages & Disadvantages of 

Electroencephalography (EEG) 
  

 

6.1   Advantages of Electroencephalography (EEG)  

        EEG has two clear advantages for brain research. Dementia is a syndrome that consists of a 

decline in intellectual and cognitive abilities. This consequently affects the normal social activities, 

mode, and the relationship and interaction with other people. EEG is often used to study the effect 

of dementia. In most cases, such as in primary degenerative dementia, e.g. Alzheimer’s, and 

psychiatric disorder, e.g. depression with cognitive impairment, the EEG can be used to detect the 

abnormality. 

Dementia is classified into cortical and subcortical forms. The most important cortical dementia is 

Alzheimer’s disease (AD), which accounts for approx- imately 50 % of the cases. Other known 

cortical abnormalities are Pick’s disease and Creutzfeldt– Jakob diseases (CJD).  They are 

characterized clinically by findings such as aphasia, apraxia, and agnosia. CJD can often be 

diagnosed using the EEG signals.  

6.2   Disadvantages Electroencephalography (EEG) 

         Dementia is a syndrome that consists of a decline in intellectual and cognitive abilities. 

This consequently affects the normal social activities, mode, and the relationship and interaction 

with other people. EEG is often used to study the effect of dementia. In most cases, such as in 

primary degenerative dementia, e.g. Alzheimer’s, and psychiatric disorder, e.g. depression with 

cognitive impairment, the EEG can be used to detect the abnormality. 

Dementia is classified into cortical and subcortical forms. The most important cortical dementia 

is Alzheimer’s disease (AD), which accounts for approx- imately 50 % of the cases. Other 
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known cortical abnormalities are Pick’s disease and Creutzfeldt– Jakob diseases (CJD).  They 

are characterized clinically by findings such as aphasia, apraxia, and agnosia. CJD can often be 

diagnosed using the EEG signals. Figure shows a set of EEG signals from a CJD patient.  On the 

other hand, the most common subcortical diseases are Parkinson’s disease, Huntington’s disease, 

lacunar state, normal pressure hydrocephalus, and progressive supranuclear palsy. These diseases 

are characterized by forgetfulness, slowing of thought processes, apathy, and depression. 

6.3 Limitations 

This consequently affects the normal social activities, mode, and the relationship and interaction 

with other people. EEG is often used to study the effect of dementia. In most cases, such as in 

primary degenerative dementia, e.g. Alzheimer’s, and psychiatric disorder, e.g. depression with 

cognitive impairment, the EEG can be used to detect the abnormality. 

Dementia is classified into cortical and subcortical forms. The most important cortical dementia 

is Alzheimer’s disease (AD), which accounts for approx- imately 50 % of the cases. Other 

known cortical abnormalities are Pick’s disease and Creutzfeldt– Jakob diseases (CJD).  They 

are characterized clinically by findings such as aphasia, apraxia, and agnosia. CJD can often be 

diagnosed using the EEG signals.  

6.4 Abnormal activity 

         Dementia is a syndrome that consists of a decline in intellectual and cognitive abilities. This 

consequently affects the normal social activities, mode, and the relationship and interaction with 

other people. EEG is often used to study the effect of dementia. In most cases, such as in primary 

degenerative dementia, e.g. Alzheimer’s, and psychiatric disorder, e.g. depression with cognitive 

impairment, the EEG can be used to detect the abnormality. 

Dementia is classified into cortical and subcortical forms. The most important cortical dementia is 

Alzheimer’s disease (AD), which accounts for approx- imately 50 % of the cases. Other known 

cortical abnormalities are Pick’s disease and Creutzfeldt– Jakob diseases (CJD).  They are 

characterized clinically by findings such as aphasia, apraxia, and agnosia. CJD can often be 

diagnosed using the EEG signals. Figure shows a set of EEG signals from a CJD patient.  On the 

other hand, the most common subcortical diseases are Parkinson’s disease, Huntington’s disease, 

lacunar state, normal pressure hydrocephalus, and progressive supranuclear palsy. These diseases 

are characterized by forgetfulness, slowing of thought processes, apathy, and depression. 
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Generally, subcortical dementias introduce less abnormality to the EEG patterns than the cortical 

ones. 

In AD the EEG posterior rhythm (alpha rhythm) slows down and the delta and theta wave activities 

increase. On the other hand, beta wave activity may decrease. In severe cases epileptiform 

discharges and triphasic waves can appear. In such cases, cognitive impairment often results. The 

spectral power also changes; the power increases in delta and theta bands and decreases in beta 

and alpha bands and also in mean frequency. 
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Chapter 7 
Discussion & Conclusion 

  

7.1 Discussion & Conclusion 

Dementia is a syndrome that consists of a decline in intellectual and cognitive abilities. This 

consequently affects the normal social activities, mode, and the relationship and interaction with 

other people. EEG is often used to study the effect of dementia. In most cases, such as in primary 

degenerative dementia, e.g. Alzheimer’s, and psychiatric disorder, e.g. depression with cognitive 

impairment, the EEG can be used to detect the abnormality. 
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