Development and Validation of a RP-HPLC Method for the Analysis of Trimetazidine Hydrochloride in Bulk Drug and Pharmaceutical Dosage Forms

A thesis presented for the partial fulfillment of the requirement for the degree of Master of Pharmacy

> **Chayanpria Sarker** ID : 171-46-181 Master of Pharmacy Daffodil International University

Prepared Under the Supervision

Professor Dr. Ahmad Ismail Mustafa

Dean Faculty of Allied Health Sciences Daffodil International University

Suriya Sharmin Scientific Officer Pharmaceutical Science & Research Division BCSIR Laboratories Dhaka

DEDICATED TO

MY BELOVED PARENTS

DECLARATION

I hereby certify to declare that, this thesis report is done by me under the supervision of Professor **Dr. Ahmad Ismail Mustafa,** Dean, Department of Pharmacy, Faculty of Allied Health Science, Daffodil International University and **Suriya Sharmin**, Scientific Officer, PSRD, Bangladesh Council of Scientific and Industrial Research (BCSIR), impartial fulfillment of the requirement for the degree of Master of Pharmacy. I am declaring that this research is my original work. I am also declaring that thesis nor has any part there of been submitted elsewhere for the award of Master or any degree.

Supervised By

Signature of Supervisor **Professor Dr. Ahmad Ismail Mustafa** Dean Faculty of Allied Health Science Daffodil International University

Signature of Co-Supervisor Suriya Sharmin Scientific Officer, PSRD, BCSIR Laboratories, Dhaka

Submitted By

chaycon poia Sarker

Chayanpria Sarker

ID: 171-46-181 Department of Pharmacy Daffodil International University 06-09-2018 Date

06-09-2018

Date

06-09-2018

Date

ACKNOWLEDGEMENTS

Nothing should be performed alone successfully. Contribution of other person must present behind every successful work as boost. So this successful research work is also not exceptional to this natural law. The success and final outcome required a lot of guidance and I am extremely fortunate to have got this all along the completion of research work. Whatever I had done it only due to such guidance and I would not forget to thank them.

First I would like to praise to the Almighty by the kind of whom alive & I have got chance to my research work & I have become enable to complete this research work & finally write up the outcome in my thesis drive towards the fulfillment of the degree of Master of Pharmacy.

I have to thank my research supervisor, **Professor Dr. Ahmad Ismail Mustafa**, Dean, Faculty of Allied Health and Science, Daffodil International University. His inspiration, constant guidance, valuable suggestion, instructive advice encouragement during the thesis work and Co-supervisor **Suriya Sharmin**, Scientific Officer, Pharmaceutical Sciences & Research Division, BCSIR Laboratories, Dhaka. There sincere, active, enthusiastic guidance and competent supervision during the tenure of research has enabled me to reach the end and I express my thanks to **Dr. Farhana Afroze**, who helped me to prepare this dissertation.

It would be unfair and unjust if I do not mention the contribution of **Dr. Md. Hossain Sohrab**, Principle Scientific Officer and Scientist-in-Charge, Pharmaceutical Sciences and Research Division, BCSIR Laboratories, Dhaka. His suggestions, corrections, analysis and overall his contribution for this research make this work more valuable and perfect.

I am highly indebted to Dr. Samina Ahmed, Director, BCSIR Laboratories, Dhaka, for providing the lab facilities related to the work.

This study involved many different specific task, which where performed in cooperation with the scientific officers. For this thanks go to Mr. Satyajit Roy Rony, Mrs Fatema Moni, Mrs. Shammi Akter for support.

I am also grateful to all of my teachers, laboratory assistants of Pharmacy department for their help and cooperation in doing my research work. I would like to thank all of my fellow lab mates and collaborators for many helpful suggestions, support to prepare the dissertation.

> Chayanpria Sarker Author

ABSTRACT

This study presents the development, optimization and validation of a simple HPLC method for the determination of Trimetazidine Dihydrochloride in bulk drug and modified release dosage tablets as Trimetazidine Dihydrochloride modified release tablets is not included in any of the official monographs. Method development was carried out by using different columns to get satisfactory result. Mobile phase composition giving symmetrical peak shape was selected. It was also found that C18 column gives symmetric peaks with high theoretical plates and low tailing factor. Simple, fast, economical, accurate, precise and reproducible HPLC method was developed for the determination of Trimetazidine which works as a myocardial metabolism modifier antianginal agent. A simple and reproducible method was developed for Trimetazidine by Reverse phase high performance liquid chromatography (RP-HPLC). The separation was performed by C18 column at ambient temperature with mobile phase of 10 mM Trietylamine, pH 4.0 adjusted with acetic acid buffer and Acetonitrile at a ratio of 85:15 and flow rate of 1 mL/min. The wavelength for maximum absorbance was selected as 232 nm by spectral scan of the Trimetazidine standard solution in UV-VIS Spectrophotometer. The detection was performed by PDA (Photodiode array detection) detector at 232 nm. . The method which was developed was also validated in complete compliance with the current regulatory guidelines by using well developed analytical method validation techniques and tools which comprises with the analytical method validation parameters like linearity, accuracy, method precision, specificity, system suitability and robustness. The proposed method's results were found to be satisfactory and are suitable for determination of Trimetazidine for routine quality control of drugs in bulk drug and formulation wavelength. The method was found to be linear with regression coefficient value of 0.999 at concentration of $1.859 - 55.763 \,\mu\text{g/mL}$ of Trimetazidine. The range was determined at concentration of $39.67 - 65.25 \,\mu$ g/mL with acceptable accuracy (% Recovery: 93.6 - 101.2) and precision study (% RSD: 0.67 - 2.25) in three replicate analysis at three different concentration level of Trimetazidine sample solution. The method showed good precision with %RSD value of 0.16 – 0.64 for repeatability or intraday precision study and %RSD value of 0.20 - 2.02 for intermediate precision or interday precision study. Accuracy was checked for replicate analysis of three concentration level by standard addition method. % recovery value obtained was 97.40 -

99.42 % with % RSD of 0.08 – 0.78. LOD (Limit of Detection) and LOQ (Limit of Quantification) were found to be 0.307 μ g/mL and 1.021 μ g/mL respectively. Specificity was checked by comparing the peaks of standard and sample with excipients for presence of any interference. The developed method was found to be robust with pH variation of 3.95 – 4.05 and column temperature variation of 20 °C – 30 °C. System suitability parameters were checked for acceptance limit in terms of asymmetry, theoretical plates, capacity factor and relative standard deviation (%) of the six replicate injection in 10 μ L value of standard solution at specific concentration. which is useful for the routine determination of Trimetazidine in bulk drug and in its pharmaceutical about the stability indicating nature of the method to discriminate the active constituent, Trimetazidine from its related impurities and degradants.

Keywords: Trimetazidine Dihydrochloride, Myocardial metabolism modifier, HPLC, Photodiode array detection, Method validation.

CONTENTS

CHAPTER ONE : INTRODUCTION

Topics	Page No.	
Abstract	v-vi	
Introduction	1	
Pharmaceutical Analysis	2	
Pharmaceutical Analysis: Role	2	
Pharmaceutical Analysis: Major activities	3	
Pharmaceutical Quality Management System	4	
Quality Assurance	4	
Good Practices in Quality Control	4	
Standards of the Quality	5	
Analytical Method Development: Choice of Instrumentation	5	
Purposes of analytical method development	6	
Method Validation	6	

Forced Degradation	11
Titrimetric Techniques	14
Chromatographic Techniques	14
Spectroscopic Techniques	15
Technique Used in this Work	16
HPLC	16
HPLC Method Development	18
Aims and Objectives	18

CHAPTER TWO : REVIEW OF LITERATURE

Topics	Page No.
Review of Literature	20-22

CHAPTER THREE: DRUG INFORMATION

Page No.
23
24
24
25

CHAPTER FOUR: MATERIALS AND METHODS

Topics	Page No.
Materials and Methods	26
Pharmaceutical ingredients	27
Solvents and reagents	27
Apparatus	27

Instruments	28
Method	28
Wavelength Determination	28
Mobile Phase Selection	28
Buffer preparation	29
Assay of Trimetazidine Tablets	29
Diluent preparation	30
Standard solution preparation	30
Sample solution preparation	30
Method validation Parameters of Trimetazidine using HPLC	31

CHAPTER FIVE: RESULT

Topics	Page No.
Result	36
Wavelength Determination	37
Assay	37
Linearity	41
Range	45
Precision	51
Repeatability	51
Intermediate precision	53

Accuracy	55
Sensitivity	58
Specificity	60
Robustness	67
System Suitability	68

CHAPTER SIX: DISCUSSION

Page No.
70
71
71
71
71
71
72
72
72
72
72
73

CHAPTER SEVEN: CONCLUSION

Topics	Page No.
Conclusion	74-75

CHAPTER EIGHT: REFERENCES

Topics	Page No.
References	76-81

CHAPTER : ONE INTRODUCTION

INTRODUCTION

Pharmaceutical Analysis:

Pharmaceutical Analysis determines the quality of drug products via analytical chemistry. The aim of pharmaceutical analysis is to build and ensure quality in the finished drug product. In the field of pharmaceutical research, the analytical investigation of bulk drug materials, intermediates, drug products, drug formulations, impurities and degradation products, and biological samples containing the drugs and their metabolites is necessary to ensure the quality and safety of the drug products. Briefly it is the process which identifies, determines, quantifies, purifies and separates the active compound from the mixture (Garshell et. al. 2003).

Pharmaceutical Analysis: Role

Pharmaceutical analysis plays a major role in assuring the identity, safety efficacy and quality of a drug product. Safety and efficacy studies required that the new drug entity considered for drug substance and drug product should have the following critical requirements;

- Established Identity/purity
- •Established dissolution/bioavailability
- •Identity and purity requirements
- Regulatory compliance

Pharmaceutical Analysis: Major activities

Modern pharmaceutical analysis entails following major activities from discovery of chemical entity to final inclusion as a drug product:

- Discovery of new chemical entity and high throughput screening
- Solid-state analysis of the drug substance
- Degradation and impurity analysis of the drug substances
- Preformulation analysis
- Analysis of solid oral dosage forms
- Analysis of injectable dosage forms
- Development of new dosage forms
- Compendial testing
- Method development
- Setting specification
- Method validation
- Stability studies
- Analytical methodology transfer
- Documentation and inspections
- Innovative analytical platforms

Pharmaceutical Quality Management System

Quality management system (QMS) is the application of quality policies and objectives systematically to the organizational structure, procedures, processes and resources involved throughout the products lifecycle with a provision of continuous improvement of the policies to allow delivery of products, with quality attributes appropriate to meet the needs of patients, health care professionals, regulatory authorities (including compliance with approved regulatory filings) and other internal and external customers. The product lifecycle includes the following technical activities for new and existing products (Avdeef A et al, 2002).

Quality Assurance

"Quality assurance" is a wide-ranging concept covering all matters that individually or collectively influence the quality of a product. It is the totality of the arrangements made with the object of ensuring that pharmaceutical products are of the quality required for their intended use. Quality assurance therefore incorporates GMP and other factors, including product design and development.

Good practices in Quality Control

Quality control is the part of GMP concerned with sampling, specifications and testing, organization, documentation and release procedures which ensure that the necessary and relevant tests are actually carried out and that materials are not released for use, nor products released for sale or supply, until their quality has been judged to be satisfactory. Quality control is not confined to laboratory operations but must be involved in all decisions concerning the quality of the product (Anu. Linna. et al. 2008).

Standards of the Quality

These compendial monographs are considered as standards for quality service to the people. Pharmaceutical products can usually be qualified by various Pharmacopoeias. Current existing pronounced standards include:

British Pharmacopoeia (BP)

European Pharmacopoeia (EP)).

Japanese Pharmacopoeia (JP).

The International Pharmacopoeia (IP).

United States Pharmacopoeia (USP).

Analytical Method Development: Choice of Instrumentation

The choice of analytical instrumentation and methodology should be based on the intended purpose and scope of the analytical method. So, analytical method development is the process of selecting an accurate assay procedure to determine the composition of a formulation.

The prerequisite for method development are follows:

- 1. Qualified and calibrated instruments
- 2. Documented methods
- 3. Reliable reference standards
- 4. Qualified analysis
- 5. Sample selection and integrity
- 6. Change control

Purposes of analytical method development

Analytical method development and finalizing the methods consist of

1. Standardizing the working standard from reference standard.

2. Optimizing the chromatographic condition, concentration of standard and sample solution and extraction procedure of the sample.

3. Analytical method verification or mini validation to be done before analyzing (routine samples) tests like assay, dissolution and related substance in development laboratories.

4. Prior starting the validation the satisfactory result should be found in mini validation and formulation should be finalized (MC Dowall R.D et al,2009).

Method Validation

Method validation is the process to confirm that the analytical procedure employed for a specific test is suitable for its intended use (Gaurav T et al, 2010). Validation refers to

CHAPTER ONE: INTRODUCTION

establishing documented evidence that a process or system, when operated within established parameters, can perform effectively and reproducibly to produce a medicinal product meeting its pre-determined specifications and quality attributes. The international standard ISO/TEC requires validation of nonstandard methods, laboratory designed or developed methods, standard methods used outside their intended scope, and amplifications and modifications of standard methods to confirm that the methods are suitable for their intended use. Analytical methods need to be validated or revalidated before their introduction into routine use. Whenever the conditions change for which the method has been validated (e.g., an instrument with different characteristics or samples with a different matrix); and whenever the method is changed and the change is outside the original scope of the method. (J. Ermer et al. 2006)

According to ICH guidelines the validation parameters are ICH Q2B guideline:

Linearity
Range
Range
Accuracy
Precision
Repeatability,
Intermediate Precision
Specificity
Detection Limit, & Quantitation Limit
Robustness
System Suitability

1. Linearity

The linearity of an analytical procedure is its ability (within a given range) to obtain test results which are directly proportional to the concentration (amount) of analyte in the sample.

Linearity should be evaluated by visual inspection of a plot of signals as a function of analyte concentration or content. If there is a linear relationship, test results should be evaluated by appropriate statistical methods, for example, by calculation of a regression line by the method of least squares. In some cases, to obtain linearity between assays and sample concentrations, the test data may need to be subjected to a mathematical transformation prior to the regression analysis. Data from the regression line itself may be helpful to provide mathematical estimates of the degree of linearity. The correlation coefficient, y-intercept, slope of the regression line and residual sum of squares should.

2. Range

The range of an analytical procedure is the interval between the upper and lower concentration (amounts) of analyte in the sample (including these concentrations) for which the analytical procedure has a suitable level of precision, accuracy and linearity.

- for the assay of a drug substance or a finished (drug) product: normally from 80 to 120 percent of the test concentration;

- for content uniformity, covering a minimum of 70 to 130 percent of the test concentration, unless a wider more appropriate range, based on the nature of the dosage form (e.g., metered dose inhalers), is justified;

3. Accuracy

The accuracy of an analytical procedure expresses the closeness of agreement between the value which is accepted either as a conventional true value or an accepted reference value and the value found. This is sometimes termed trueness. Accuracy may be inferred once precision, linearity and specificity have been established.

Accuracy Determination for Drug Substance

a) Application of an analytical procedure to an analyte of known purity (e.g. reference material);

b) Comparison of the results of the proposed analytical procedure with those of a second well-characterized procedure, the accuracy of which is stated and/or defined.

Accuracy Determination for Drug Product

a) Application of the analytical procedure to synthetic mixtures of the drug product components to which known quantities of the drug substance to be analyzed have been added;

4. Precision

The precision of an analytical procedure expresses the closeness of agreement (degree of scatter) between a series of measurements obtained from multiple sampling of the same homogeneous sample under the prescribed conditions. Precision may be considered at three levels: repeatability, intermediate precision and reproducibility. The precision of an analytical procedure is usually expressed as the variance, standard deviation or coefficient of variation of a series of measurements.

i) Repeatability

Repeatability should be assessed using a minimum of 9 determinations covering the specified range for the procedure (e.g., 3 concentrations/3 replicates each); or a minimum of 6 determinations at 100% of the test concentration.

ii) Intermediate Precision

The extent to which intermediate precision should be established depends on the circumstances under which the procedure is intended to be used. Typical variations to be studied include days, analysts, equipment, etc.

iii) Reproducibility

Reproducibility is assessed by means of an inter-laboratory trial. Reproducibility should be considered in case of the standardization of an analytical procedure, for instance, for inclusion of procedures in pharmacopoeias.

Forced Degradation

Forced degradation is the degradation of new drug substance and drug product at conditions more severe than accelerated conditions. It is required to demonstrate specificity of stability indicating methods when no known impurities or degradants are present and also provides an insight into degradation pathways and degradation products of the drug substance that could form during storage, and helps in elucidation of the structure of the degradation products (G Ngwa et al. 2010).

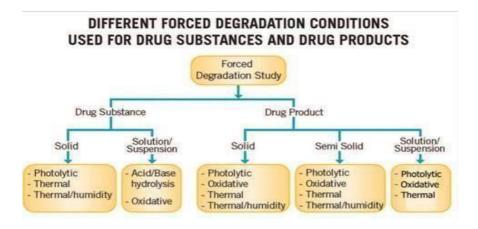


Figure 1: An illustrative flow diagram showing the different forced degradation conditions.

5. Limit of Detection and Limit of Quantitation

Limit of detection (LOD) and Limit of quantitation (LOQ) can be calculated by using the formula

- 1. By visual evaluation,
- 2. Based on S/N ratio for procedures exhibiting base line noise,
- 3. Based on Standard Deviation of response and slope, where

LOD = 3.3 x s/s

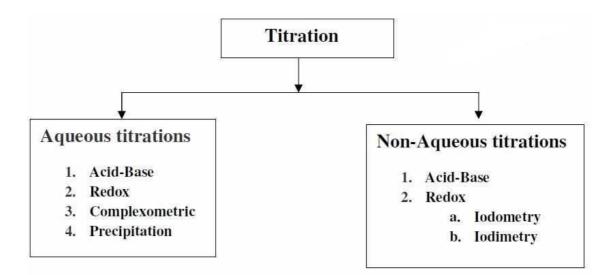
 $LOQ = 10 \text{ x } \sigma/s.$

 σ = Standard deviation of response can be obtained by Standard deviation of blank response, Residual standard deviation of the regression line, or Standard deviation of the y-intercept of the regression line;

S = Slope of regression equation.

7. Robustness

The robustness of an analytical procedure is the characteristic of its stability with respect to small variations of the system parameters possible under real conditions. This stability is usually evaluated in terms of the RSD of the results of analyses compared to the analogous data obtained using strictly observed conditions according to the validated analytical procedure.


8. System Suitability

System suitability tests are based on the concept that the equipment, electronics, analytical operations, and samples constitute an integral system that can be evaluated as a whole. These tests are used to verify that the resolution and repeatability of the system are adequate for the analysis to be performed. System suitability is the checking of a system to ensure system performance before or during the analysis of unknowns. The parameters to be measured and their recommended limits for chromatographic procedures obtained from the analysis of the system suitability sample are shown below:

Parameters	Accepted Value	
Theoretical Plate /Column efficiency (N)	Should be ≥ 2000	
Capacity (Retention) factor	Should be ≥ 2	
Tailing factor/Peak asymmetry	Should be ≤ 2	
Relative retention time	The relative retention time of the analyte, shall correspond to that of tolerance of ± 2.5 %.	
Resolution	Should be > 2 for main peaks and	
	Should be > 1.5 between main peak and impurities	
Relative Standard Deviation	Should < 1.	

Titrimetric techniques

Chromatographic techniques

'Chromatography' is an analytical technique commonly used for separating a mixture of chemical substances into its individual components due to the differential affinities (strength of adhesion) of the various components of the analyte towards the stationary and mobile phase based on their polarity, charge, size etc.

- Thin layer chromatography (TLC)
- High performance thin layer chromatography (HPTLC)
- High performance liquid chromatography (HPLC)
- Gas chromatography (GC)

Spectroscopic techniques

Spectroscopy also known as absorption spectroscopy is of fundamental importance in pharmaceutical analysis. Many chemical substances absorb electromagnetic radiation. Through proper instruments and techniques the absorbed radiation can be measured. These will determine the amount and nature of drug substance, impurities and other substances in dosage form, reaction vessel or in biological systems. Most commonly used spectroscopic techniques used in pharmaceutical analysis are:

- UV-Visible spectrophotometry,
- Near infrared spectroscopy (NIRS),
- Atomic absorption spectroscopy,
- Mass Spectrometry,
- Raman Spectroscopy,
- Nuclear magnetic resonance (NMR) Spectroscopy,
- Fluorimetry and phosphorimetry,
- X-Ray diffraction, Emission and Absorption Spectrometry.

Hyphenated techniques

- GC-MS Technique,
- LC-MS Technique,
- CE-MS Technique,
- GC-MS Technique,
- LC-NMR Technique etc.

Technique Used in this Work

UV/VIS spectrophotometry

UV/VIS spectrophotometry involves measuring the amount of ultraviolet or visible radiation absorbed by a substance in solution that results in the excitation of electrons, in both atoms and molecules, from lower to higher energy levels. After absorbing a particular amount of energy in the form of fixed wavelength of light one of these electronic transitions will occur resulting in the excitement of an electron is excited from a full (low energy, ground state) orbital into an empty (higher energy, excited state) antibonding orbital. For each wavelength the intensity of light passing through both a reference cell (Io) and the sample cell (I) is measured and detector converts the incoming light into a current. The absorbance (A) of the sample is related to I and Io according to the following equation:

 $A = \log_{10}(Io/I)$

The fundamental law that governs the quantitative spectrophotometric analysis is the Beer-Lambert law.

Chromatographic Techniques:

In chromatographic tecnique, only separation is variation in the distribution of different compounds between two dissimilar phases-a stationary phase and a mobile phase based on their polarity, size, ionic charge etc.

High-performance liquid chromatography

There are different types of detectors as given in Table.

Detector	Key Attributes	Limitations
UV/Vis/PDA	Most widely used and accepted; Near "universal" at low UV; Gradient compatible Qualitative and Quantitative; PDA peak purity/ homogeneity, spectral library searches/ID, contour maps and 3D spectral display; Nondestructive Cost; Very Reliable; Easy to use	Must have a chromophore; Solvents must be transparent; Widely varying response for different solutes
Light Scattering	Detects most non volatile analytes; Works well with gradient HPLC; Better sensitivity than RI detection	Requires the use of volatile buffers, optimization; Limited dynamic range; Reproducibility of methods
Corona discharge	Highest sensitivity of "universal" type detector; Wide dynamic range; Detects any non volatile or semi-volatile; Consistent response; Ease of use	Requires the use of volatile buffers
FL	Very selective and sensitive; Works well with gradients	Not all compounds fluoresce; Often requires derivative formation; Quenching; Cost for performance
Radioactivity	Gradient compatible; can determine distribution and mass balance for drug metabolite studies, wide response range	Large flow cell volumes increase peak broadening and decrease resolution
EC	Very selective and sensitive; Modern ECs are reliable and easy to use	Mobile phase must be conductive; susceptible to background noise and electrode fouling; only applicable to compounds that can be oxidized or reduced
Conductivity	Detector of choice for ion chromatography-inorganic ions and organic acids; Very selective; Low cost	Requires suppression of mobile phase background conductivity; Not all compounds are detected; Requires special HPLC systems and columns
RI	Original detector for HPLC in many methods; Excellent versatility/ Universal detection; Solvent compatibility; Nondestructive; Cost; reliable and easy to operate	Sensitivity; Gradient incompatible; Stability (Temperature and Flow)

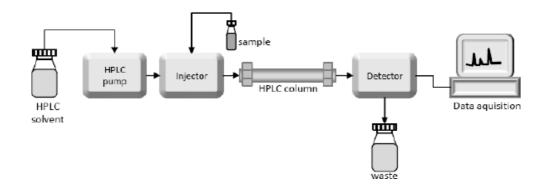


Figure 2: Block diagram of HPLC System

1) Mobile Phase in Solvent Reservoir: The main requirement for the mobile phase is that it has to dissolve the analytes up to the concentration suitable for the detection. In reverse phase applications water is usually the solvent. Other polar solvents such as Methanol, Acetonitrile or Tetrahydrofuran are added, pH is adjusted by buffers to modify separations of ionizable solutes. Ion- pairing reagents also enhance separation selectivity of charged analytes by increasing retention on hydrophobic bonding phases. Non polar solvents such as hexane, heptane iso-octane used in combination with slightly more polar solvents such as isopropanol, ethyl-acetate or chloroform in normal phase applications. Mobile phase degassing is important prior use to remove mobile phase entraped air from the atmosphere. Such bubbles can load to noise in detector, response or hinder flow of mobile phase through columns.

HPLC Method Development

The process is influenced by the nature of the analytes and generally follows the following steps:

- Step 1 Initial studies
- Step 2 Selection of initial conditions
- Step 3 Selectivity optimization
- Step 4 System optimization
- Step 5 method validation

Aims and Objectives

Analytical methods development and validation play important roles in the discovery, development, and manufacture of pharmaceuticals. Analytical methods are continuously developed, improved, validated and finally included in the official monographs. The official test methods that result from these processes are used by quality control laboratories to ensure the identity, purity, potency, and performance of drug products.

Research on development of analytical methods can be done for drugs or drug products not included in pharmacopoeia or in cases of modification in the official methods. As HPLC is most efficient and reliable separation technique it is most widely used in pharmaceutical industry for qualitative and quantitative analytical method development and validation purposes. Development of stability-indicating analytical methods by

CHAPTER ONE: INTRODUCTION

forced degradation study will ensure the capability of the analytical procedures to discriminate between the major active (intact) pharmaceutical ingredients (API) from any degradation (decomposition) product(s) formed under defined storage conditions.

Therefore, the aim of this research is to conduct method development and validation studies of the selected drug namely Trimetazidine by using high performance liquid chromatography as there is no standard compendial method present for analysis of this drug.

CHAPTER : TWO REVIEW OF LITERATURE

REVIEW OF LITERATURE

Literature survey is done on different analytical method development and validation documents available in order to recognize the work done till date, approach followed for development and validation. They were utilized as the basis for decisions relating to administering the drug to patients, play important role in new drug discovery, development, manufacture of pharmaceutical drugs and various other studies related to humans and animals. To analyze Trimetazidine Dihydrochloride (TMZ), a non-pharmacopoeial product novel method can be developed to reduce the cost besides time for better precision and ruggedness.

Gan Zhou et. al. (2010) Development and validation of a simple and sensitive liquid chromatography-tandem mass spectrometry method for quantifying trimetazidine in human plasma

Here, a simple and sensitive liquid chromatography–tandem mass spectrometry (LC-MS-MS) method was used. Sample preparation was based on deproteinating with acetonitrile. Chromatography was performed on a C18 analytical column (5 μ m; 150 \times 2.1, mm) and the retention times for trimetazidine and cetirizine (IS) were 1.8 and 3.0 min, respectively. The ionization was optimized using an electrospray ionization source. The calibration curve ranged from 0.1 to 200 ngmL-

A. Rajani et.al. (2014) RP-HPLC method development and validation for estimation of trimetazidine in tablet dosage forms.

In this method, a C-18 column (4.6 x 150mm, 5μ particle size) was used as stationary phase and Phosphate buffer:Acetonitrile (90:10, %v/v) was used as mobile phase at a flow rate of 1.0 mL/min. The column temperature was maintained at 30°C and the detection was carried out using a PDA detector at 233 nm. The retention time for TMZ was 3.2 min.

B. Jeraldmaria antony et.al (2009) A new validated spectrophotometric method for determination of Trimetazidine in Formulation and comparison with UV method.

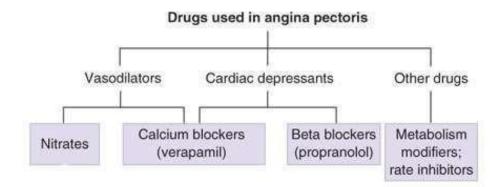
This method was based on the formation of a yellow ion pair complex between Trimetazidine and methyl orange using chloroform as solvent at pH 4 phosphate buffer. The lambda max and molar absorptivity of the chromogen were 427 nm and 5.0216 X 10^3 lit.mol.cm⁻¹, respectively. Chromogen obeys Beer's in the concentration range of 15-21 | P a g e

50 µgmL⁻¹ with linear regression of 0.9993, while the percentage recovery, LOD and LOQ were 99.65-99.98 %, 4.5 μ gmL⁻¹ and 10 μ gmL⁻¹ respectively.

C. Nagula et.al. (2014) Development and validation of a stability indicating RP-HPLC method for the determination of trimetazidine dihydrochloride.

In this method, the chromatographic conditions comprised of a reversed phase C18G column (250×4.6 mm, 5µm), with a mobile phase consisting of methanol:0.05% formic acid (90:10,%v/v) with flow rate of 1.0 mL/min. Detection was carried out at 232 nm. The retention time of TMZ was found to be 3.8 min. The linear regression analysis data for the calibration plots showed good linear relationship within the concentration range 10–80 µgmL⁻¹. The value of correlation coefficient wasfound to be 0.999. The recovery of trimetazidine hydrochloride was about 95-105%. TMZ is more sensitive to wards acidic degradation. The method was validated as per ICH guidelines.

CHAPTER : THREE DRUG INFORMATION



Coronary Artery Disease: Angina Pectoris

Angina also known as angina pectoris, is chest pain or pressure, usually due to absence of enough blood flow to the heart muscles to suppy the oxygen required by the heart.

Angina occurs usually due to the obstruction or spasm of the coronary arteries. Other causes include anemia, abnormal heart rhythms and heart failure. The main mechanism of coronary artery obstruction is an atherosclerosis. The term derives from the Latin angere ("to strangle") and pectus ("chest"), and can therefore be translated as "a strangling feeling in the chest". There is a weak relationship between severity of pain and degree of oxygen deprivation in the heart muscle (i.e., there can be severe pain with little or no risk of a myocardial infarction (heart attack) and a heart attack can occur without pain (M Prinzmetal, et al. 1959).


Drug Choice: Trimetazidine (Antianginal agent)

Trimetazidine: Physicochemical Properties

With evidence for efficacy in such diverse clinical settings such as stable coronary artery disease, reperfusion injury, and contrast-induced nephropathy, Trimetazidine (TMZ) is novel among cardiovascular agents. Although no single pharmacological mechanism has been hitherto universally accepted, TMZ is known to target deranged cellular energetics particularly in ischaemic myocardial tissue. Mechanistically, this separates the drug from conventional anti-anginal therapies, namely beta-adrenergic antagonists, calcium channel blockers, and nitrates.

Formula	C14H22N2O3	C14H24Cl2N2O3		
Molar mass	266.336 g/mol	339.257 g/mol		
Water Solubility	0.754 mg/mL	0.754 mg/mL		
pKa (Strongest Basic)	9.21	9.21		
Solubility (25°C)	Soluble in Methanol.			

CHAPTER : FOUR MATERIALS AND METHODS

Materials and Methods

Materials:

All the materials, such as, active pharmaceutical ingredients, solvents, reagents, excipients etc. used were pharmaceutical grade.

Pharmaceutical ingredients:

- a. Trimetazidine HCL standard (Beximco Pharmaceuticals Ltd., Bangladesh).
- b. Trimetazidine HCL tablet sample (Square Pharmaceuticals Ltd., Bangladesh)

Solvents and reagents:

- a. De-ionized water,
- b. Ammonium Acetate,
- c. Ammonia solution (25%),
- d. Trifluroacetic acid,
- e. Triethylamine,
- f. Acetic Acid,
- g. Acetonitrile
- h. Excipients [Povidone, Hydroxypropyl Methylcellulose (HPMC), Microcrystaline Cellulose, Purified Talc, Magnesium Stearate, Lactose).

Apparatus:

- i. Volumetric flask (100 ml, 50 ml, 25ml, 10ml)
- j. Conical flask
- k. Measuring cylinder

- l. Beaker
- m. Spatula
- n. Filter paper
- o. Pipette
- p. Micropipette
- q. Mortar pestle

Instruments:

- r. HPLC (Hitachi Chromaster) equipped with PDA detector.
- s. Digital pH meter (SENSION, Spain).
- t. Electronic balance (COPLEY, England)
- u. UV- spectrophotometer (ANALYTIKJENA, Spectord 250 plus)
- v. Sonicator (Wisd, Germany)
- w. Hot air oven/Drier

Method:

Wavelength Determination:

A suitable standard solution was scanned in the wavelength range of 200-800 nm in the UV-VIS spectrophotometer, the wavelength for maximum absorbance λ max was determined.

Mobile Phase Selection:

Mobile phase effects resolution, selectivity and efficiency. Mobile phase composition (or solvent strength) plays an important role in HPLC separation.

Most common solvents for RP-HPLC are:

Organic: Methanol, Acetonitrile, Tetrahydrofuran etc.

Aqueous: Water, Buffer

The drug substance being analyzed should be stable in mobile phase solution (diluent). Satisfactory peak shape of analyte should be obtained by the selected mobile phase.

Different solvent systems were prepared for the selection of right solvent ratio as a mobile phase in which the peak of Trimetazidine HCL was stable and correct. Buffer solution checked are:

- x. Ammonium acetate buffer, pH 5.0
- y. Ammonium acetate buffer, pH 8.2
- z. 0.1% Trifluroacetate buffer
- aa. 10 mM Trietylamine buffer, pH 4.0

For this standard stock solution was prepared in the mobile phase (Buffer:Acetonitrile=50:50) and the standard solution was injected in the HPLC system for subsequent five days. The peak shape was observed.

Buffer preparation:

10 mM triethylamine of pH 4.0 adjusted with acetic acid was selected as buffer for the method. To prepare the buffer, 1.394 ml Triethylamine and approximately 0.572 ml acetic acid was well mixed with de-ionized water in a conical flask. Additional acetic acid was introduced to adjust the pH at 4. Then the mixture sample was kept into the sonicator for 3 minutes for proper mixing.

Assay of Trimetazidine Tablets:

Chromatographic condition used in assay is as follows:

Mode: LC

Detector: UV, 232 nm

Column: 4.6-mm x 25-cm; 5-úm packing (C18)

Mobile Phase: Buffer:Acetonitrile = 85:15

Diluent: Mobile phase

Flow Rate: 1 .0 mL/min

Injection Volume: 10 µL

Retention Time: Approximately 9 minutes

Diluent preparation:

In a 1000 mL conical flask, 850 mL Buffer and 150 mL Acetonitrile was heavily mixed with a stirrer by maintaining the ratio (Buffer:Acetonitrile = 85:15).

Standard solution preparation:

34.1 mg Trimetazidine HCL standard was mixed with diluent and the volume was increased up to 100 ml. After 5 minutes sonication the stock solution was then suitably diluted to obtain concentration of 21.693, 27.116, 32.540, 37.963 and 43.386 μ g/mL. The standard solution was transferred into vial by passing through 0.2 μ m membrane filter.

Sample solution preparation:

10 tablets were weighed and finely powdered in a mortar pestle. Accurately weighed portions of the powder equivalent to 35 mg of Trimetazidine HCL was taken in a 50 mL volumetric flask and the volume was diluted up to 50 mL. The sample solution was filtered by the Whatman No. 1 filter paper. After discarding first few mL of the filtrate 2 mLof it was transferred into another volumetric flask and volume was increased up to 25 mL with diluent. The sample solution was transferred into vial by passing through 0.2µm membrane filter.

Concentration of the sample was calculated from the regression equation of the calibration graph.

Method validation of Trimetazidine using HPLC:

10 mM triethylamine of pH 4.0 adjusted with acetic acid buffer was prepared. The solvent system at ratio Buffer:Acetonitrile= 85:15 was used for development of analytical method and validation for Trimetazidine assay in bulk drug and tablet dosage form.

Linearity

The linearity of measurement was evaluated by analyzing different concentrations of the standard solution. A standard stock solution was prepared by dissolving 37.4 mg of Trimetazidine standard in 100 ml volumetric flask. Different amount of solution were taken into volumetric flask separately and increased up to 50 mL with diluents to obtain the concentration of 1.859, 3.718, 7.435, 18.588, 29.740, 33.458, 37.176, 40.893, 44.611 and 55.763 μ g/mL.A standard curve was prepared with the peak response (area) against these concentrations and linear correlation was determined using least square method.

Range

Range was determined by analysis of the marketed sample at 80%, 100%, and 120% of the nominal test concentration for assay in triplicate. For this standard solution was prepared by dissolving 32.6 mg of Trimetazidine standard in 50 mL volumetric flask. The sample was then suitably diluted to obtain a fixed concentration of 51.951 μ g/mL. The assay result was calculated for the samples tested. Linearity of the tested sample was evaluated by the visual inspection of the graph and reported by linear regression analysis of the curve. % RSD was determined at each concentration of tested sample for precision study and accuracy was determined by obtaining % recovery.

Precision

Repeatability

The precision was checked by repeated scanning and measurement of the response (peak area) of Trimetazidine standard solution at fixed concentration.

Intermediate precision

Precision of method was determined in terms of inter-day variations. Inter day precision was assessed from by analyzing three replicates of the nominal concentration of the standard drug solutions on consecutive three days in a week by maintaining proposed condition.

In both cases, % RSD of the peak area was calculated by the following equation:

% RSD = (Standard Deviation/Mean) x 100 %

Accuracy:

Percent recovery was determined by standard addition method. A known amount of previously assayed sample solution was added at 80%, 100% and 120% of the test concentration of the standard solution and the sample was analyzed. Accuracy is defined as the ratio of the observed result to the expected result expressed as a percentage. For this a standard stock solution was prepared by dissolving 34.1 mg of Trimetazidine HCL standard in 100 mL diluent. Then 3.2, 4.0 and 4.8 ml standard stock solution were transferred into 50 mL volumetric flask separately to obtain 80%, 100% and 120% of the nominal test concentration respectively. One previously tested marketed tablet was taken into a 50 mL volumetric flask and dissolved properly in diluent by sonication. After sonication and filtration 1 mL of the sample solution were transferred into each of the 50 ml volumetric flasks containing 80%, 100%, and 120% of the test concentration of standard separately. Accuracy study (% recovery level and % RSD) was carried out at similar operating condition.

Calculation of % Recovery of the test concentration sample:

Actual concentration of added sample ($\mu g/mL$):

= Concentration of standard solution + Concentration of added sample solution

% Recovery = (Sample Recovered/Sample Added)* 100

Sensitivity:

For this baseline noise value was calculated from software. Low concentration of Trimetazidine solution was prepared by suitable dilution of the standard stock solution and checked for any visible peak at the retention time of the analyte. The peak obtained at this low concentration was compared with blank as per ICH guideline. LOD and LOQ of the drug should be within the following limits:

LOD=3 x (S/N)

LOQ = 10 x (S/N)

Specificity

By Checking the Chromatogram

Specificity was evaluated by comparing the chromatogram of standard, sample and placebo with blank at LOQ level of drug substance. Chromatogram was checked and peak purity value was determined.

By Checking the Response of Placebo

Placebo preparation:

Excipient stock powder was prepared using some common excipients used for modified release formulation within their acceptable usage range and taken into vial maintaining the ambient temperature for further use.

Placebo Constituents						
Lactose	:	390 mg				
НРМС	:	400 mg				
Microcrystalline Cellulose	:	400 mg				
Povidone	:	300 mg				
Talc	:	80 mg				
Magnesium Stearate	:	80 mg				

Standard Stock Preparation:

mg of standard was dissolved in 100 ml diluent to prepare standard stock solution.

Placebo Stock Preparation:

mg of the placebo mixture was dissolved in 100 mL of the diluent in a volumetric flask.

Working solutions preparation with fixed excipient stock solution and different standard solution:

The standard stock solution was taken at specified amount to five (05) 50 mL volumetric flasks to obtain a concentration of 80, 90, 100, 110 and 120 % of the nominal concentration of Trimetazidine present in the final assay sample. Fixed amount of the excipient stock solution was added to each of the previously 05 standard solution after filtration with Whatman No. 1 filter paper to obtain a concentration present in the final assay sample. The solution was adjusted to 50 mL with diluent. The sample solution was transferred into vial by passing through 0.2 µm membrane filter.

Working solutions preparation with fixed standard stock solution and different excipients solution:

The standard stock solution was taken at specified amount to five (05) 50 mL volumetric flasks to obtain a concentration of 100 % of the nominal concentration of Trimetazidine present in the final assay sample. Fixed amount of the excipient stock solution was added to each of the previously 05 standard solution after filtration with Whatman No. 1 filter paper to obtain a concentration of 80, 90, 100, 110 and 120% of the nominal concentration of excipient present in the final assay sample. The solution was adjusted to 50 mL with diluent. The sample solution was transferred into vial by passing through 0.2 µm membrane filter.

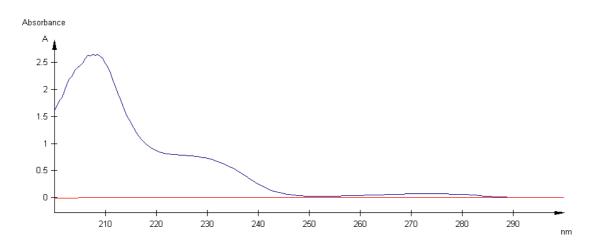
Robustness

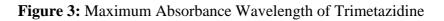
- Content of the organic solvent in the eluent($\pm 2\%$);
- pH of the buffer solution (± 0.05) ;
- HPLC column temperature (\pm 5 °C);
- Mobile phase flow rate; and
- Changing wavelength of analysis.

Robustness study was carried out by three (03) injection of the standard solution at the same chromatographic condition.

System suitability

32.6 mg standard was transferred into 50 mL volumetric flask and the volume was adjusted with diluents. 2 mL of this solution was diluted up to 25 mL in a volumetric flask. System suitability study was carried out by six (06) injection of this solution at the same chromatographic condition.


CHAPTER : FIVE RESULT



Result:

Wavelength Determination

Maximum Absorbance Wavelength of Trimetazidine:

Meas. values

Sample 1 - C 1 227 nm : 0.7757 A 228 nm : 0.7600 A	227 nm : 0.7712 A 229 nm : 0.7531 A	228 nm : 0.7660 A 229 nm : 0.7452 A
230 nm : 0.7359 A	230 nm : 0.7254 A	231 nm : 0.7133 A
231 nm : 0.6998 A	232 nm : 0.6848 A	232 nm : 0.6682 A
233 nm : 0.6501 A	233 nm : 0.6304 A	234 nm : 0.6093 A

The maximum absorption was observed at 232 nm.

Assay:

Assay result was calculated from calibration curve of the standard solution. Calibration standard concentration at each of the five concentration levels was determined from the following equation:

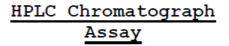
Sequence Summary Report

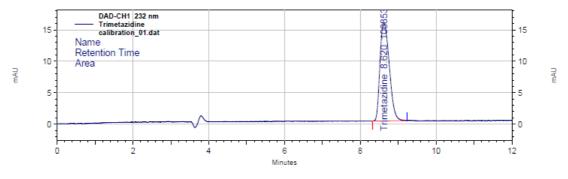
HPLC DATA

Assay1_9.8.18.rst Sequence name:

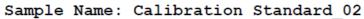
Description:

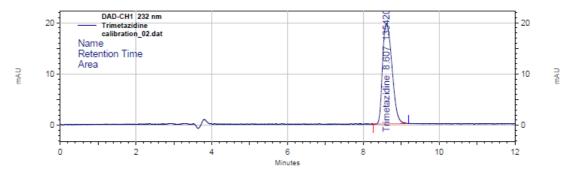
8/9/2018 12:44:48 PM Acquisition date:

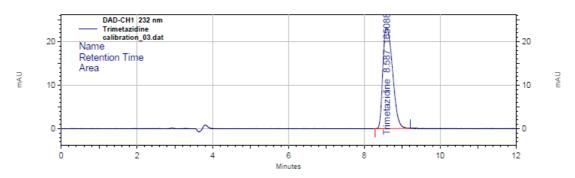

.::Standard statistics::.

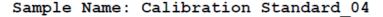

Compound:	Trimetazidine		Signal:	DAD	-CH1 232 nm				
Injection Data File Name	Sam <mark>ple</mark> Name	RT [min]	Peak Asymmetry	Peak Purity	Peak Theoretical Plates USP	Area	Height	Concentration	Unit
Calibration_01.d at	Trimetazidine	8.62	1.35	0.9493	5921	1068532	62300	21.693	µg/ml
Calibration_02.d at	Trimetazidine	8.61	1.38	0.9729	5806	1354202	77989	27.116	µg/ml
Calibration_03.d at	Trimetazidine	8.59	1.44	1.0000	5461	1650885	92969	32.540	µg/ml
Calibration_04.d at	Trimetazidine	8.57	1.53	0.9929	5318	1905343	106504	37.963	µg/ml
Calibration_05.d at	Trimetazidine	8.56	1.54	0.9975	5215	2209707	122659	43.386	µg/ml
	Standard Devi	0.03	0.08461						
	RSD	0.30	5.84096						
	Average	8.59	1.44859						

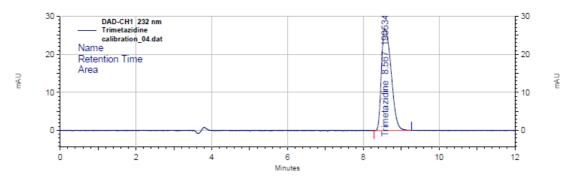
.::Sample statistics::.

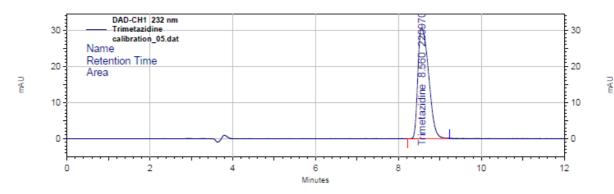

Compound:	Trimetazidine		Sign	al:	DAD-CH1 232 nm	n			
Injection Data File Name	Sample Name	RT [min]	Peak Asymmetry	Peak Purity	Peak Theoretical Plates USP	Area	Height	Compound Concentration	Unit
Sample_01.dat	Trimetazidine	8.59	1.445	0.9778	5567	1436606	81443	28.69	µg/ml
Sample_02.dat	Trimetazidine	8.56	1.535	0.9867	5110	1433691	79531	28.64	µg/ml
	Mean	8.577							
	StdDev	0.024							
	RSD	0.275							

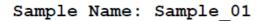


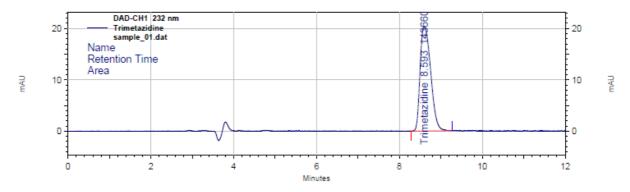


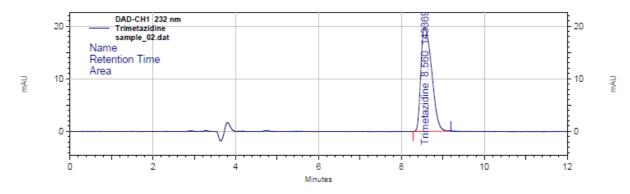

Sample Name: Calibration Standard 01




Sample Name: Calibration Standard 03







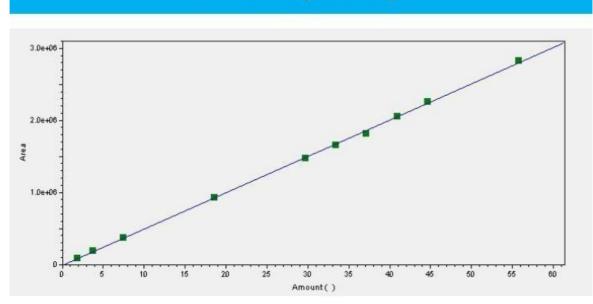
Sample Name: Calibration Standard 05

Sample Name: Sample 02

Sample concentration was calculated by the regression equation obtained from the calibration graph:

y = 50431.4x

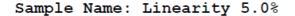
Sample	Weight Taken (mg)	Peak Area	Amount (mg/Tablet)
Sample_01	208.1 mg	1436606	34.64
Sample_02	207.4 mg	1433691	34.69


Linearity

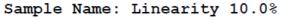
Concentration of the standard solution was prepared from the following equation:

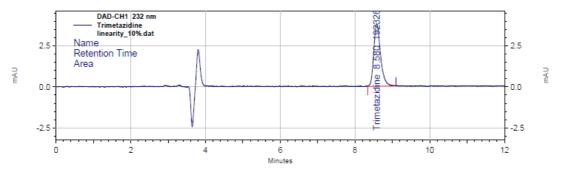
Nominal	Concentration (µg/mL)	Peak Area				
Concentration						
	1.859	89602				
	3.718	192326				
	7.435	373365				
	18.588	929157				
37.176	29.740	1475110				
	33.458	1656044				
	37.176	1812736				
	40.893	2058421				
	44.611	2260168				
	55.763	2823560				
	Correlation coefficient (r ²): 0.99	99				
	y-intercept: 0.00					
	Slope of the regression line: 50328.8					

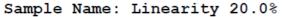
Table 2: Linearity Study of Trimetazidine

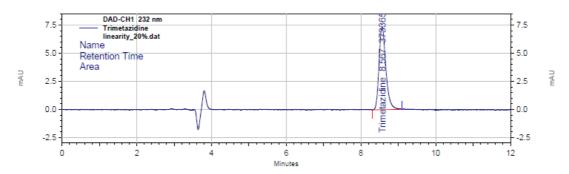

Linearity Study

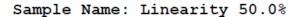


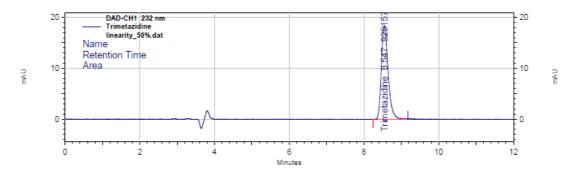

Figure 4: Linearity study of Trimetazidine

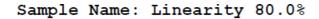


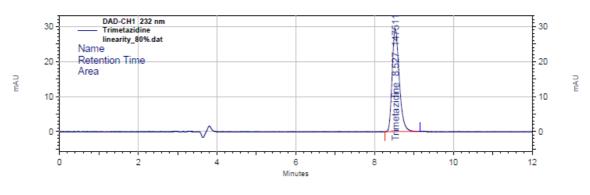

HPLC Chromatograph Linearity Study

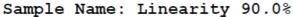


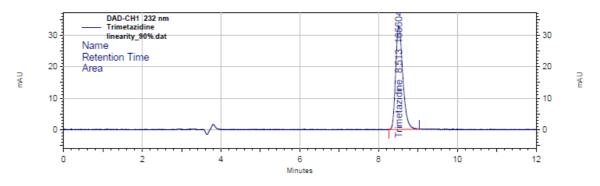


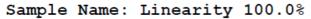


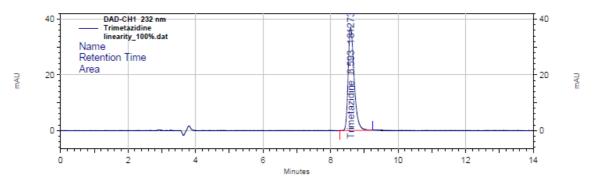


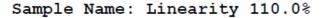


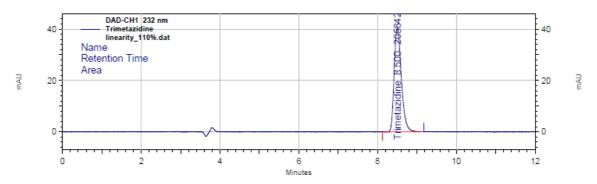


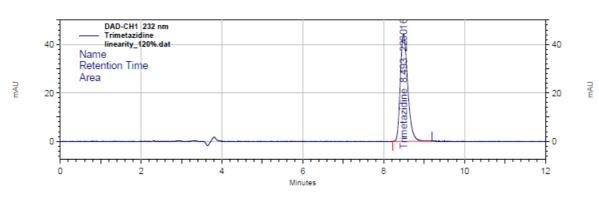


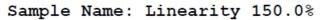


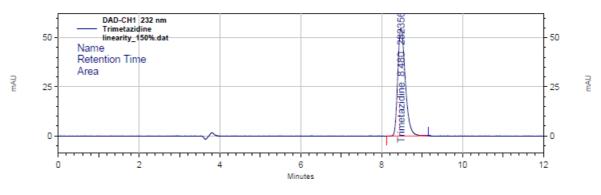




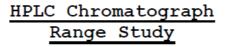


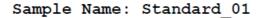


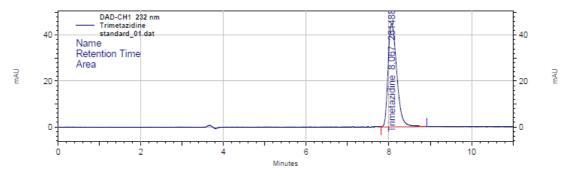


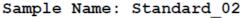


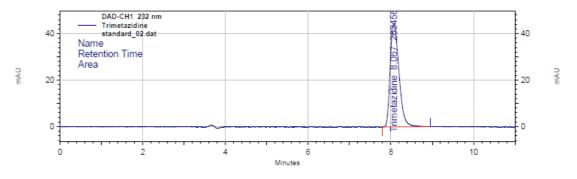
Sample Name: Linearity 120.0%

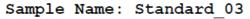


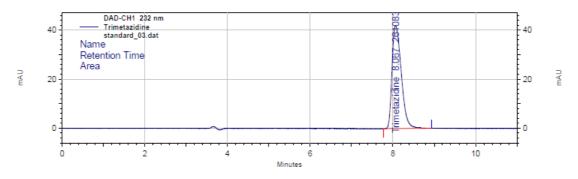


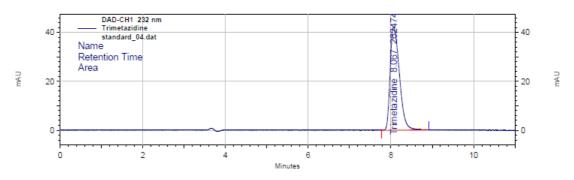

Range

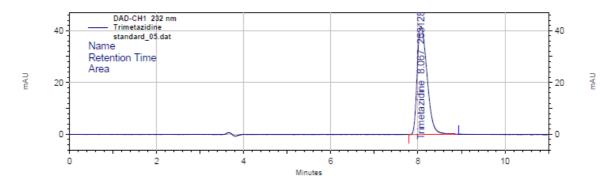

Range was calculated by comparing the samples with known concentration of Trimetazidine standard.

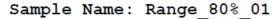


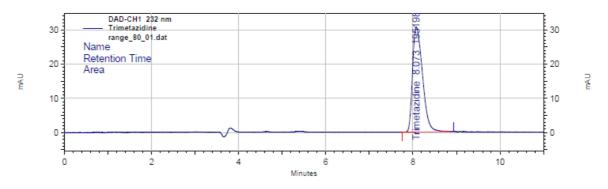


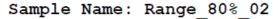


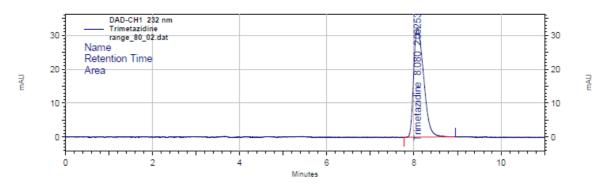


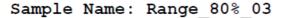


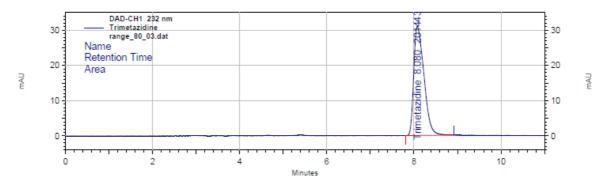


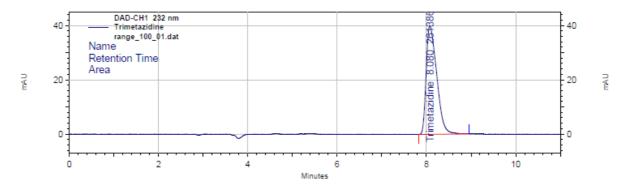


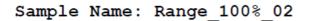


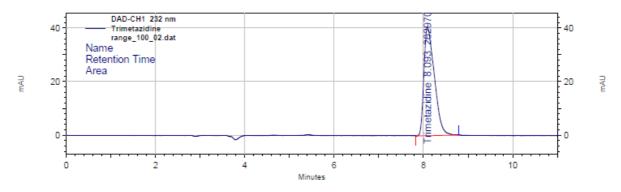


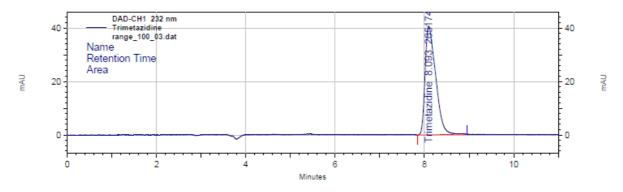

Sample Name: Standard 05

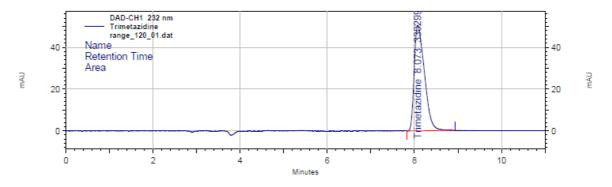


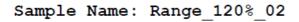


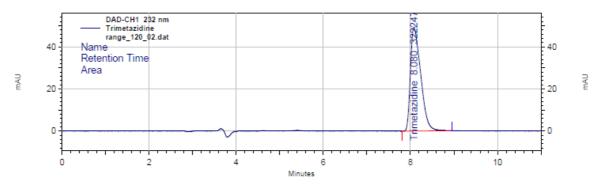


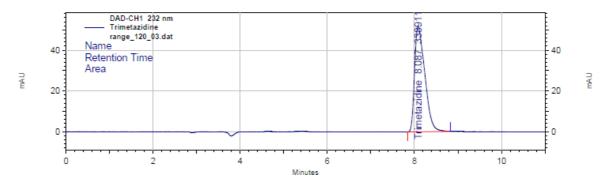



Sample Name: Range_100%_01



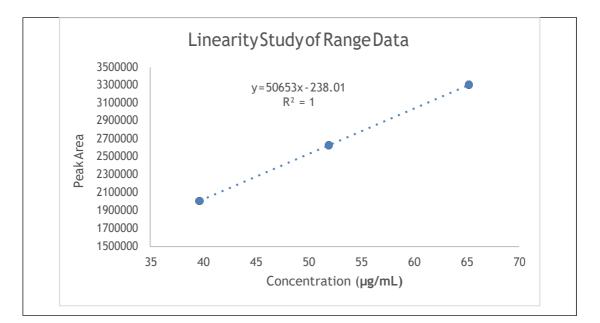

Sample Name: Range_100%_03





Sample Name: Range 120% 01

Nominal	Percent	Sample	Concentration	Peak	Amount
Concentration		Weight (mg)	(µg/mL)	Area	(mg/Tablet)
		191.4	38.54	1951986	32.56
	80	194.2	40.72	2062536	34.41
		193.6	39.77	2014438	33.22
		194.6	51.61	2613867	34.31
51.951 μg/mL	100	194.2	51.92	2629707	34.59
		195.3	52.36	2651741	34.69
		196.9	65.21	3302994	34.67
	120	196.3	63.62	3222478	33.93
		197.6	66.91	3389110	35.45


 Table 3: Range Study

Standard deviation and % relative standard deviation at each concentration was calculated.

Table 4: Range Study (%RSD Calculation)

Concentration Level	Average Concentration (µg/mL)	Average Peak Area	% RSD of Concentration
80%	39.68	2009653	2.25
100%	51.96	2631772	0.68
120%	65.25	3304861	2.07

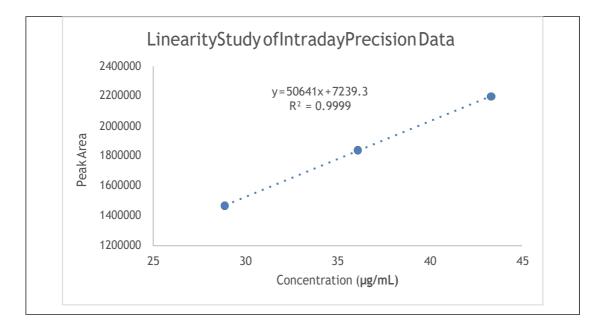
Precision:

Repeatability:

Repeatability or intraday precision was determined by replicate analyses of standard solution at 80%, 100% and 120% of the nominal test concentration in a single day at different time interval.

Table 5: Intraday	Precision Study:
-------------------	------------------

Nominal Test	Percent	Concentration	Peak	Average	%RSD
Concentration		(µg/mL)	area		
			1454968		
		Initial	1466219	1464851	0.52
			1473365		
	20.001		1461644		
	28.881µg/mL, (80%)	2 nd Hour	1477248	1476090	0.77
36.102			1489379		
			1460998		
		6 th Hour	1467772	1462513	0.26
			1458770		
	36.102	Initial	1826893	1839517	0.49
	μg/mL,	mitiai	1845856	1057517	0.49



	(100%)		1845802		
			1835527		
		2 nd Hour	1844115	1842992	0.31
			1849334		
			1840753		
		6 th Hour	1814856	1835890	0.85
			1852060		
			2222197		
		Initial	2208864	2215085	0.25
			2214194		
	43.322		2214194		
	μg/mL,	2 nd Hour	2208864	2201595	0.65
	(120%)		2181728		
			2163309		
		6 th Hour	2182944	2180701	0.61
			2195850		
Relative standard	deviation at each	concentration was	calculated. Lir	earity data wa	s also
evaluated.					

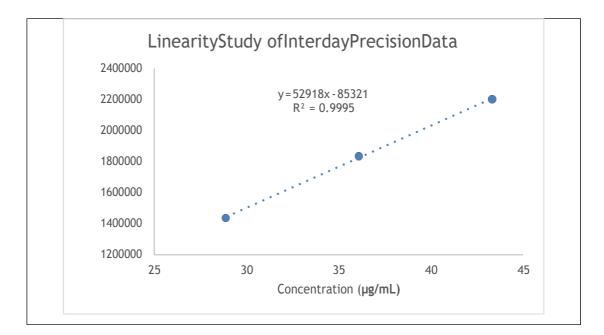
Table 6: Intraday Precision Study (%RSD Calculation)

Concentration Level	Concentration	Average Peak	% RSD of
Concentration Lever	(µg/mL)	Area	Concentration
80%	28.881	1467818	0.40
100%	36.102	1839466	0.16
120%	43.322	2199127	0.64

Intermediate precision:

Intermediate precision or Interday precision was determined by replicate analyses of standard solution at 80%, 100% and 120% of the nominal test concentration for three (03) consecutive days.

Nominal Test	Percent	Concentration	Peak area	Average	%RSD
Concentration		(µg/mL)			
			1464851		
		1 st Day	1476090	1467818	0.40
			1462513		
	20 001.u.g/mI		1378030		
	28.881µg/mL, (80%)	2 nd Day	1380004	1398759	2.00
36.102	(80%)		1438242		
			1445577		
		3 rd Day	1456616	1447886	0.44
			1441464		
	36.102	1 st Day	1839517	1839466	0.16
	μg/mL,	i Day	1842992		


CHAPTER FIVE:RESULTS

	(100%)		1835890		
			1821338		
		2 nd Day	1843517	1830495	0.52
			1826630		
			1820442		
		3 rd Day	1848062	1834411	0.61
			1834730		
			2215085		
		1 st Day	2201595	2199127	0.64
			2180701		
	43.322		2227354		
	μg/mL,	2 nd Day	2265710	2229566	1.29
	(120%)		2195633		
			2190269		
		3 rd Day	2173787	2178319	0.39
			2170901		
Relative standard	deviation at each	concentration was	calculated. Line	earity data was	also
evaluated.					

Table 8: Interday Precision Study (%RSD Calculation)

Concentration Level	Concentration	Average Peak	% RSD of
Concentration Level	(µg/mL)	Area	Concentration
80%	28.881	1438154	2.02
100%	36.102	1834791	0.20
120%	43.322	2202337	0.96

Accuracy:

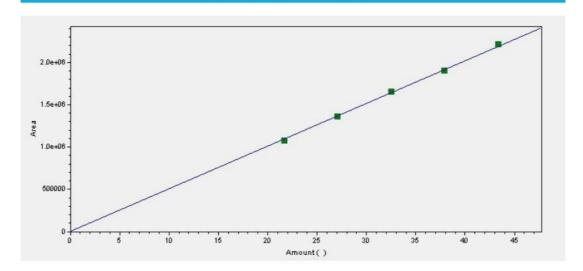
% Recovery of the test sample was determined by the following formula:

= (Actual Sample Recovered/Theoretical Sample Added) X 100

Level	Standard Solution	Sample Solution	Theoretical
	Concentration	Added	Concentration(µg/mL)
	(µg/mL)	(µg/mL)	
	21.693		28.707
80%	21.693		28.707
	21.693		28.707
	27.116		34.13
100%	27.116	7.014	34.13
	27.116		34.13
	32.539		39.553
120%	32.539		39.553
	32.539		39.553

Table 9: Accuracy Study (Theoretical Concentration)

Actual Sample Recovered Concentration Calculation:


Sample recovered from the HPLC assay was determined by the Calibration curve of the standard solution. Calibration standard concentration at each level was determined by the following formula:

Sample concentration was calculated by the regression equation obtained from the calibration graph:

y = 50431.4x

Accuracy Study

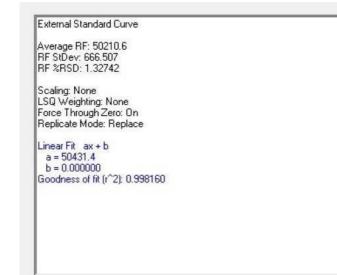


Figure 5: Accuracy study of Trimetazidine

Level	Theoretical	Actual Solution	% Recovery	%RSD
	Concentration(µg/mL)	Concentration		
		(µg/mL)		
	28.707	29.18	98.38	
80%	28.707	28.94	99.19	0.38
	28.707	29.17	98.41	
	34.13	34.79	98.10	
100%	34.13	34.97	97.60	0.78
	34.13	34.33	99.42	
	39.553	40.56	97.52	
120%	39.553	40.61	97.40	0.08
	39.553	40.53	97.59	

Table 10: Accuracy Study

Sensitivity:

Sensitivity was determined using signal to noise ratio.

Noise Value for Sensitivity Study

To Sto	neral pass, the baseline must mee up checking baseline if cond ise test method:			minutes minutes t (unscaled)	Overall Statu Noise: Drift: End time:	s Passed Passed 4/19/2018 12:	34:22 PM
	Channel	Enable Noise Test	Threshold (Noise)	Status (Noise)	Enable Drift Test	Threshold (Drift/hr)	Status (Drift)
1	DAD-CH1	v	500.000	199.787 - Passed	7	5000.000	0.066 - Passed
2	DAD-CH2		50.000	Untested	Г	5000.000	Untested
3	DAD-CH3		50.000	Untested	Г	5000.000	Untested
4	DAD-CH4		50.000	Untested	Г	5000.000	Untested

Figure 6: Noise Data for the method obtained from HPLC

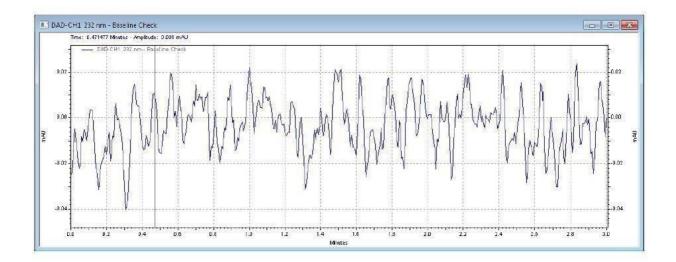


Figure 7: Noise Chromatogram for the method obtained from HPLC

Limit of Detection (LOD):

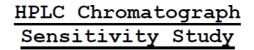
Concentration of LOD was determined by the following equation,

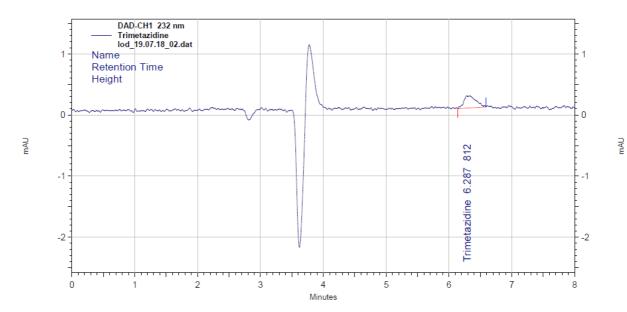
 $LOD = 0.307 \ \mu g/mL$

Here, Height = 851

S/N = 851/199.8 = 4.23

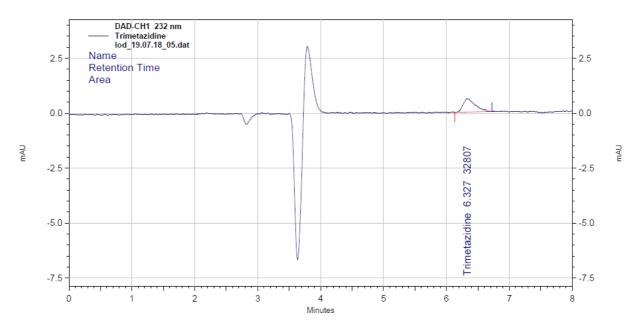
Limit of Quantitation (LOQ):


Concentration of LOD was determined by the following equation,


 $LOQ = 1.021 \ \mu g/mL$

Here, Height = 2359

S/N = 2359/199.8 = 11.81

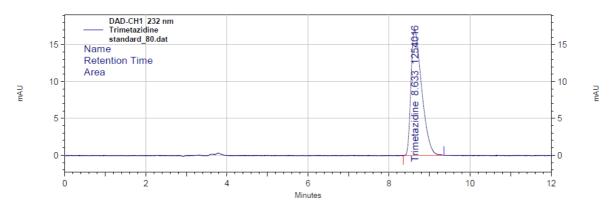


Sample Name: Limit of Detection (LOD)

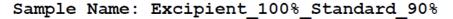


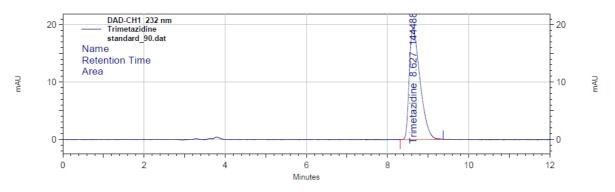
Specificity

Chromatogram Observation: Chromatogram of diluent (blank), standard, sample and excipient solution at LOQ level was observed for any interference.

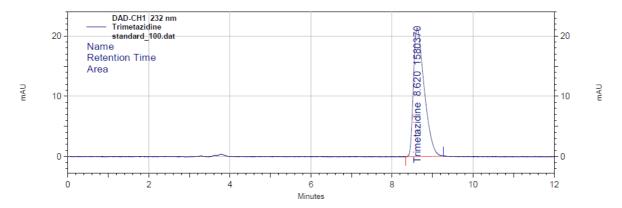


Nominal Excipient	Drug Substance	Area	Peak Purity		
Concentratio	Concentration				
n (µg/mL)	(µg/ml)				
	25.62	1254016	0.9869		
	28.83	1444884	0.9579		
216.00	32.03	1580370	0.9743 0.9661		
	35.23	1725559			
	38.44	1910064	0.9945		
	Specificity	Study			
2000000 1900000	y = 49714x - 935				
1800000	$R^2 = 0.9965$				
1700000					
1600000					
1500000					
1400000					
1300000					
1200000					
25		33 35 37	39 41		
	Concentra	ation (µg/mL)			
			•		
Beak Area					
Deak					
<u> </u>	•				
_ * *	**************************************				

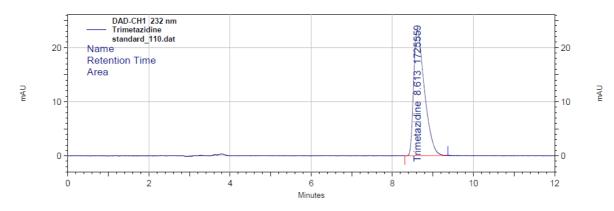

Table 11: Fixed excipient concentration with different standard concentration

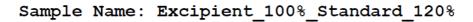


HPLC Chromatograph Specificity Study

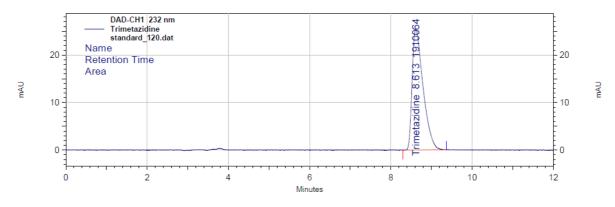
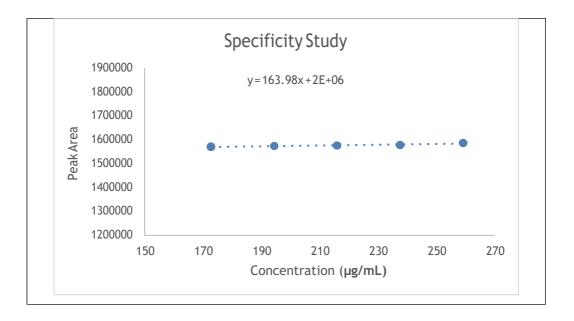
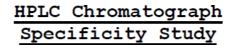


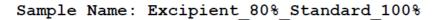
Sample Name: Excipient 100% Standard 80%

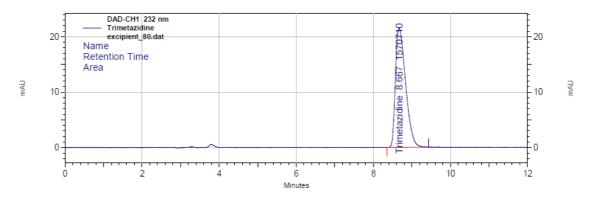


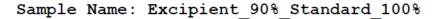

Sample Name: Excipient 100% Standard 100%

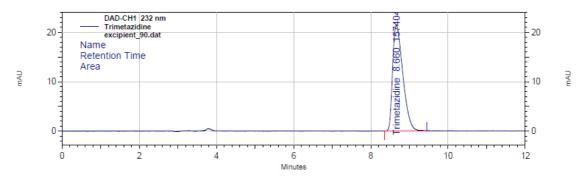
Sample Name: Excipient 100% Standard 110%

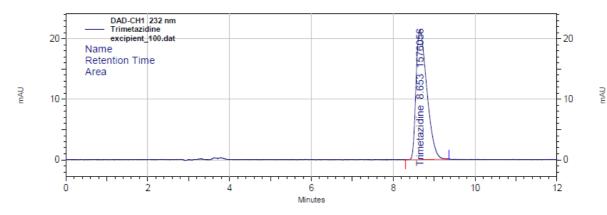




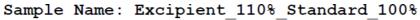

Table 12: Fixed standard concentration with different excipient concentration

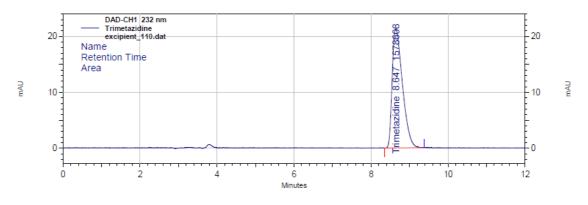

Nominal Standard	Excipient	Area	Peak Purity	
Concentration	Concentration			
(µg/mL)	(µg/ml)			
	172.8	1570710	0.9975	
32.03	194.4	1574043	0.9670	
	216.00	1576056	0.9726	
	237.6	1578608	0.9898	
	259.2	1586137	0.9798	
		% RSD = 0.39		

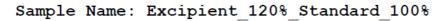


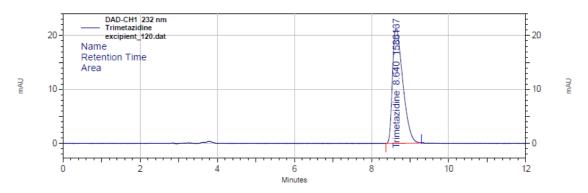












Sample Name: Excipient 100% Standard 100%

Robustness

Robustness was determined by 03 replicate injection of the standard solution by changing the different system parameters at approximately LOQ concentration level.

Buffer:Methanol	RT (min)	Peak area±RSD
83:17	8.03	2111464±0.36
84:16	8.33	2114985±0.22
85:15	10.87	2293058±0.38
86:14	11.08	2116807±0.07
87:13	12.68	2119580±0.77

(i) Changing the organic solvent content in the eluent $(\pm 2\%)$:

(ii) Changing pH of the buffer solution (± 0.5):

Buffer pH	RT (min)	Peak area±RSD
3.95	7.75	2574578±0.15
4.00	7.39	2531470±0.81
4.05	7.89	2570966±0.40

(iii) Changing HPLC column temperature (± 5 °C):

Column Temp. (°C)	RT (min)	Peak area±RSD
20	7.37	2356860±0.18
22	7.35	2354750±0.42
25	7.33	2359176±0.35
28	7.29	2371109±0.53
30	7.22	2345364±0.62

(iv) Changing mobile phase flow rate:

Flow rate (mL/min)	RT (min)	Peak area±RSD
0.8	8.29	3120490±0.44
0.9	7.35	2779178±0.44
1.0	6.67	2522700±0.15
1.1	6.03	2283218±0.03
1.2	5.53	2098107±0.81

(vi) Changing wavelength:

Wavelength (nm)	RT (min)	Peak area±RSD
228	6.38	3125146±0.24
230	6.38	2995947±0.29
232	6.35	2694533±0.46
234	6.38	2415024±0.29
236	6.38	2043068±0.20

System Suitability

System suitability result was obtained six replicate injection of the standard solution and following parameters were checked

Parameters	Obtained value
Theoretical Plate	6529
/Column efficiency (N)	0329
Capacity (Retention)	1.20
factor	1.20
Tailing factor/Peak	1.45
asymmetry	1.15
Relative Standard	1.43
Deviation	1.15

Sequence Summary Report

HPLC DATA

Sequence name: System suitability.rst

Description:

Acquisition date: 9/5/2018 11:02:15 AM

Compound: Tr	imetazidine		Signal:	DAD-C	H1 232 nr	n		
Injection Data File Name	Sample Name	RT [min]	Peak Asymmetry	Peak Capacity Factor	Peak Purity	Peak Theoretical Plates USP	Area	Height
standard_01.dat	Trimetazidine	8.07	1.39	1.20	1.00	7188	2603443	178744
standard_02.dat	Trimetazidine	8.07	1.42	<mark>1.</mark> 20	0.99	7000	2621890	177211
standard_03.dat	Trimetazidine	8.07	1.45	1.20	0.98	6325	2603190	168162
standard_04.dat	Trimetazidine	8.07	1.48	1.20	1.00	6232	2615445	168475
standard_05.dat	Trimetazidine	8.07	1.51	1.20	0.99	6106	2620447	167147
standard_06.dat	Trimetazidine	8.07	1.45	1.20	0.98	6324	2604113	<mark>168170</mark>
	Mean	8.067	1.453	1.204	0.990	6529	2611421	171318
	StdDev	0.000	0.043	0.000	0.010	448.671	8855.122	5200.443
	RSD	0.000	2.942	0.000	0.991	6.872	0.339	3.036

CHAPTER : SIX DISCUSSION

Discussions:

Wavelength Determination

Every compound absorb energy at a particular wavelength depending on its chromophore group constituent. The UV absorption spectrum of Trimetazidine in methanol showed two absorption peaks with maximaat approximately 232 nm and 278 nm, with greater intensity at theshorter wavelength, 232 nm which is λ max for Trimetazidine. To increase sensitivity and specificity of the method 232 nm was selected for this work.

Buffer Solution Selection

From different buffer solution checked 10mM triethylamine buffer, pH 4.0 adjusted with acetic acid was selected for solution stability and acceptable peak property such as peak asymmetry, peak purity etc. of Trimetazidine in the buffer solution.

Assay

Marketed sample of Trimetazidine dihydrochloride 35 mg MR tablets were checked for their content by the developed method. The average assay result was 34.67 which is 98.76% content of Trimetazidine dihydrochloride in sample.

Linearity

Linearity checked at a concentration of $1.859 - 55.763 \mu g/mL$ of Trimetazidine with a regression coefficient value of 0.999.

Range

The marketed sample was assayed at three different concentration in three replication. The assay result was within 94.3% - 101.2% with %RSD value of 0.67 - 2.25 at these three concentrations.

Precision:

Repeatability or intraday precision study at three different concentration in three replication exhibited a %RSD value of 0.16 - 0.64 at these three concentrations with a regression coefficient value of 0.999.

Intermediate precision or interday precision study at three different concentration in three replication exhibited a %RSD value of 0.20 - 2.02 at these three concentrations with a regression coefficient value of 0.995.

According to FDA guidance within a day and day to day variations for Trimetazidine revealed that the proposed method is precise and repeatable.

Accuracy:

% recovery at three concentration level was 97.40 - 99.42 % with % RSD value of 0.08 - 0.78.

Sensitivity:

From the signal to noise ratio LOQ was found to be 0.307 μ g/mL and 1.021 μ g/mL respectively. S/N value was 4.23 for LOD and 11.81 for LOQ.

Specificity

No chromatographic interference was observed at the retention time of the standard solution for the excipients.

Addition of different amount of excipient solution with specific amount of standard solution produce response with a %RSD of 0.39.

The result of both experiments indicate the specificity of the method for analysis of Trimetazidine.

Robustness

Robustness study gives an idea about the changes may occur in the peak property with slight variation in the system parameters.

(i) Changing the organic solvent content in the eluent $(\pm 2\%)$ exhibited a change in the retention time of ± 2.8 value. No significant change in peak area was observed here.

(ii) The method was found to be robust within the pH of 3.95 to 4.05 of the buffer solution. No significant change in peak area was observed here.

(iii) Changing HPLC column temperature from 20°C to 30 °C (\pm 5 °C) did not produce any significant change in the response.

(iv) Changing mobile phase flow rate from 0.8 to 1.2 mL/min changes the retention time from 8.29 to 5.53 minute with significant change in peak response.

(vi) Changing wavelength from 228 to 236 nm exhibited significant change in peak response.

System Suitability

System suitability was found to be acceptable in comparision with the standard value.

CHAPTER : SEVEN CONCLUSION

CONCLUSION

Controlling and minimizing the side effects of drugs are the key issues in assuring the safety of drug therapy. At the same time drug analysts play a predominant role in assuring the quality of bulk drug materials and drug formulations and this is also closely related to the safety issue. The goal of an analytical method development is tocreate a method that is suitable for its intendedpurpose. The performance of the analytical procedure is established by conforming to the appropriate acceptance criteria of the validation parameters. Trimetazidine works as an antianginal agent by inhibiting fatty acid oxidation in the heart in response to to inhibition of 3-ketoacyl-CoA thiolase (3-KAT).High performance liquid chromatography at present is one of the most sophisticated tool of the analysis. The proposed RP-HPLC method for analysis of Trimetazidine was found to be simple and rapid. The method was found to be accurate, precise, linear, specific and robust. The sample recoveries in the formulation were in good agreement with their respective label claims suggested noninterference in the estimation. Hence, the methods can be easily and conveniently adopted for routine analysis of Trimetazidine bulk drug and tablet formulation. The simplicity ensures that the RP-HPLC method can be applied for estimation of Trimetazidinein different dosage forms. The method was found to be accurate, precise, linear, specific and robust. Mobile phases used in the method are simple to prepare and economical in terms of solvent consumption. The system suitability parameters were within limit, hence all the system as a whole were suitable to perform the assay. The methodcan be considered for routine quality control analysis of Trimetazidine in bulk drug and tablet formulation.

CHAPTER : EIGHT REFERENCES

REFERENCES

1. Naga P, Archana S, Poornima, Lalitha S, Lalitha M. Development and validation of spectrophotometric method for determination of trimetazidine in pharmaceutical dosage forms. Int J Pharma Sci Res, 2013; 4(3): 1131-1134.

2. Krishnamoorthy G, Ganesh M, Spectrophotometric determination of trimetazidine dihydrochloride in bulk and solid dosage forms. Ind J Pharm Sci 2001; 63:436.

3. Thoppil S.O., Cardoza R.M., Amin P.D., Stability indicating HPTLC determination of Trimetazidine as bulk drug and in pharmaceutical formulations. J Pharm Biomed Anal 2001;25:15.

4. Ghoneim M.M., Khashaba P.Y., Beltagi A.M., Determination of trimetazidine HCl by adsorptive stripping square-wave voltammetry at a glassy carbon electrode. J Pharm Biomed Anal 2002; 27: 235.

5. Jiao Y., Su M., Chen M., Jia W., Chou Y., Huang Z., Yang, N., Tong W., LC/ESI-MS method for the determination of trimetazidine in human plasma: application to a bioequivalence study on Chinese volunteers. J Pharma Biomed Anal 2007; 43: 5: 1804-1807.

6. Min K.J., Kyoung S.K., Chang S.K., Nam H.K., Youn-Bok C., Jin T.H., Dong-Cheul M., An HPLC Determination of Trimetazidine in Human Plasma Using Liquid-Liquid Extraction for Sample Clean-Up. J Liquid Chromatogr Rel Tech 2005; 28: 9: 1299-1309.

7. Bari V.R., Dhorda U.J., Sundaresan M, Trace determination of trimetazidinedine hydrochloride inhuman blood plasma. Ind Drugs 1999; 36:289.

8. The British Pharmacopoeia. H.M. Stationary Office, London, 1985. Jorge P.R., Efficacy of trimetazidine: lessons from meta-analyses, Heart Metab. 2012; 55: 25–28.

9. The United States Pharmacopeia, The National Formulary 19, US Pharmacopeial Convention Inc., Rockville, MD, 2000.

10. Methodology ICH Harmonised Tripartite Guideline –Validation of analytical procedures Having reached Step 4 of the ICH Process at the ICH Steering Committee meeting on, 6 November, 1996.

11. A. Onay-Besikci, S.A. Ozkan. Cardiovascular Therapeutics, 2008, 26, 147–165.

12. Stability Testing of New Drug Substances and Products, Proc. Int. Conf. on Harmonization, Genewa, 2003, ICHQ1A (R2); http://www.ichorg/cache/cmpo/363-272.html.

13. A. Ciapponi, R. Pizarro, J. Harrison. Cochrane Database Syst. Rev, 2005, 19, 1-54.

14. K.J. McClellan, G.L. Plosker. Drugs. 1999, 58, 143-57.

15. Anu Linna, Good practice of quality control in pharmaceuticals, 2007

16. Avdeef, Development and validation of a stability indicating RP-HPLC method for the determination of trimetazidine dihydrochloride

17. Abidi SL High-performance Liquid Chromatography of Phosphatidic Acids and Related Polar Lipids. J. Chromatogr. 1991, 587: 193-203.

18. J. Ermer, Validation in pharmaceutical analysis. Part I: An integrated approach, 2001

19. Alvarenga L, Ferreira D, Altekruse D, Menezes J.C, Lochman D. High Performance Liquid Chromatography: A Short Review. J. Pharm. Biomed. Anal. 2010, 48, 62-69.

20. Bansal KS, Layloff T, Bush ED, Hamilton M, Hankinson EA. Qualification of Analytical Instruments for Use in the Pharmaceutical Industry, A Scientific Approach. J. of Pharm. Sci. 2005, 1-8.

21. B.Rajani, K. Mukkanti RP-HPLC method development and validation for estimation of trimetazidine in tablet dosage forms, 2014, 2, 10-14.

22. G. Jeraldmaria antony, A new validated spectrophotometric method for determination of Trimetazidine in Formulation and comparison with UV method 2009, 15-19

23. M. A. Naushad, Development and Validation of the HPLC Method for the Analysis of Trimetazidine Hydrochloride Bulk Drug and Pharmaceutical Dosage Forms. 2008.

24. Andrei Medvedovici, Non-extractive procedure followed by LC/APCI MS/MS analysis of trimetazidine in plasma samples for assessing bioequivalence of immediate/modified release formulations. 2006

25 Mistri, Sensitive and Rapid Method to Determine Trimetazidine in Human Plasma by Liquid Chromatography/Tandem Mass Spectrometry, 2008

26. Wang, Z. B, Quantification of trimetazidine in human plasma by liquid chromatographyelectrospray ionization mass spectrometry and its application to a bioequivalence study, 2007

27. British Pharmacopoeia 2003.

28. British Pharmacopoeia 2007.

29. Breaux J, Jones K, Boulas P. Pharmaceutical Technology, Analytical Technology and Testing 2003, 6-13

30. British Pharmacopoeia 2018.

31. Chauhan A, Mittu B, Chauhan P. Analytical Method Development and Validation. J. of Bioana1. Tech. 2012, 2155-9872.

32. Chung Chow Chan, L, Y. C. LEE, Xueming MZ. Analytical Method Validation and Instrument Performance Verification. A John Wiley & Sons. Inc Publication, 2004.

33. Cimpoiu C, Hosu A, Hodison. Ultrahigh Pressure Liquid Chromatography Using Elevated Temperature. J. Pharm. Biomcd. Anal. 2006, 41, 633–637.

34. Ebrahim, Z.A.J Balalau, D Baconi, D.L. Gutu, c.M. Ilie. UV-Visible Spectrophotometric Method Development and Validation of Assay of Paracetamol. Tablet Formulation. Farmacia. J. of Anal. Chem. 2011, 59, 381–387.

35. European Pharmacopoeia.

36. Gaurav T, Ruchi T. Bioanalytical method validation: An updated reviews J. of Methods. 2010,

 Guidance for Industry. Q2B Validation of Analytical Procedures: Methodology, CDER, FDA, 1996.

38. Guidance for Industry - UCM070337.pdf Microsoft Word 8515fnl.doc.

 Good Manufacturing Practices (GMP) Guidelines 2009 Edition, Version 2 (GUJ- doi:IO. 1016/jjpba.200T 1008

40. Hsu, C. P. S. Infrared spectroscopy. John Wiley & sons: New York, 1981 ; p. 249.

41. ICH Q2B Guideline: Validation of Analytical Procedures Methodology, Comments for its Application.

42. DR Jenke, Chromatographic method validation: A review of current practices and procedures.

III. Ruggedness, re-validation and system suitability, 1996

43. International Conference on Harmonization (ICH) of Technical Requirements for Registration

of Pharmaceuticals for Human Use. Good Manufacturing Practices for Pharmaceutical Ingredients.

44. Japanese Pharmacopoeia.

45. L. Nandhakumar, G. Dhamamoorthy, S, Ramesh Kumar, S. Chandrasekaran. An overview of pharmaceutical validation. Int. J. R. P. 2011, 104-110.

46. Lachman L, Lieberman H, Kanig G. The theory and practice of industrial pharmacy. Edn 3, 2009.

47. M Prinzmetal, Angina pectoris I. A variant form of angina pectoris, 1959.

48.. Levin S. High Performance Liquid Chromatography in the pharmaceutical analysis. J. Pharma. Biotech. Ana. 2008, 43, 89-98.

49. Liu Y, Lee ML. Ultrahigh Pressure Liquid Chromatography Using Elevated Temperature. J. Chromatogr. 2006, 1104 (1-2): 198–202

50.. Ludwig H. Validation of Analytical Methods, Int. pharm, Informa. Healthcare, New York, USA, 2007

51. Malviya R. Bansal V, Pal OPS Sharma PK. High Performance Liquid Chromatography: A Short Review. J. of Glob. Pharma. Tech. 2010, 2(5): 22-26.

52. Martin M, Guiochon G. Effects of High Pressures in Liquid Chromatography. J, Chromatogr. Anal. 2005, (1-2)7: 16-38.

53. MC Dowall R D. The Role of Laboratory information Management systems in Analytical Method Validation. Anal Chim Acta. 2007; 54:149-58.

54. McDowall RD. Effective and Practical risk management options for computerized system validation. Quality Assurance Journal. 2007, 196-227.

55. Nagula, Development and validation of a stability indicating RP-HPLC method for the determination of trimetazidine dihydrochloride. 2014, 145-146

56. Simmy O Thoppil, Trimetazidine: stability indicating RPLC assay method, 2001

57. Simmy O Thoppil, Stability indicating HPTLC determination of Trimetazidine as bulk drugand in pharmaceutical formulations. 2001.

58. S.O. Thoppil, P.D. Amin. J Pharm Biomed Anal, 2001, 25, 191–195.

59. Göksel Altıokka, Rapid HPLC and Direct Flow Injection Analysis Assay for the Determination of Trimetazidine HCl in Pharmaceutical Tablet Formulation. 12-17

60. Gan Zhou, Development and validation of a simple and sensitive liquid chromatography– tandem mass spectrometry method for quantifying trimetazidine in human plasma, 2010112-115

61. Xin xiong, Validation of A rapid and simple LC-MS/MS method to determine Trimetazidine in Rat plasma, 2011

62. Quality Assurance of Pharmaceuticals: A Compendium of Guidelines and Related materials.

Edn 2, V012, Good Manufacturing Practices and Inspection, WHO, 2007.

63. Reddy BOP, Reddy M.S. Analytical Method Validation and Instrument Performance Verification. Int, Pharm. Tech. Res. 2009, 1, 230-234.

64. Reinscheid U.M. Analytical Method Development and Validation. J. Pharm

65. Quality management system in pharmaceutics - Google Search

66. Li Ding, Sensitive and rapid LC–ESI-MS method for the determination of trimetazidine in human plasma, 2007

67. Pravin G. Vanol, Overcoming interference of plasma phospholipids using Hybrid SPE for the determination of trimetazidine by UPLC–MS.

68. Tianhong Zhang, Rapid and Sensitive UPLC-MS–MS for the Determination of Trimetazidine in Human Plasma.

69. Xin Xiong, Salting-out-assisted liquid–liquid extraction with acetonitrile for the determination of trimetazidine in rat plasma using liquid chromatography–mass spectrometry. 2015

70. Pai Nandini, Newer Process Development of Trimetazidine Dihydrochloride, 2013

71. The International Pharmacopoeia.

72. US Pharmacopoeia 29-NF 24, US Pharmacopoeia 30-NF 25, US Pharmacopoeia 31-NF 26.

73. JA Ambrose, Angiographie morphology and the pathogenesis of unstable angina pectoris 1985.