COMPARATIVE ANALYSIS OF INTRUSION PREVENTION
SYSTEM

BY
MD. NAZRUL ISLAM
ID: 151-15-5503

This Thesis Presented in Partial Fulfillment of the Requirements for the
Degree of Bachelor of Science in Computer Science and Engineering

Supervised By

Dr. Sheak Rashed Haider Noori
Associate Professor and Associate Head
Department of CSE

Daffodil International University

DAFFODIL INTERNATIONAL UNIVERSITY
DHAKA, BANGLADESH

DECEMBER 2018

APPROVAL

This Thesis titled “Comparative Analysis of Intrusion Prevention System”, submitted
by Md. Nazrul Islam, ID No: 151-15-5503 to the Department of Computer Science and
Engineering, Daffodil International University, has been accepted as satisfactory for the
partial fulfillment of the requirements for the degree of B.Sc. in Computer Science and
Engineering and approved as to its style and contents. The presentation has been held on
11" December 2018

BOARD OF EXAMINERS

Dr. Syed Akhter Hossain Chairman
Professor and Head

Department of Computer Science and Engineering

Faculty of Science & Information Technology

Daffodil International University

Narayan Ranjan Chakraborty Internal Examiner
Assistant Professor

Department of Computer Science and Engineering

Faculty of Science & Information Technology

Daffodil International University

Md. Tarek Habib Internal Examiner
Assistant Professor

Department of Computer Science and Engineering

Faculty of Science & Information Technology

Daffodil International University

Dr. Mohammad Shorif Uddin External Examiner
Professor

Department of Computer Science and Engineering

Jahangirnagar University

DECLARATION

| hereby declare that, this thesis has been done by me under the supervision of Dr. Sheak
Rashed Haider Noori, Associate Professor and Associate Head, Department of CSE
Daffodil International University. | also declare that neither this thesis nor any part of this
thesis has been submitted elsewhere for award of any degree or diploma.

Supervised by:

Dr. Sheak Rashed Haider Noori
Associate Professor and Associate Head
Department of CSE

Daffodil International University

Submitted by:

Md. Nazrul Islam

ID: 151-15-5503

Department of CSE

Daffodil International University

ACKNOWLEDGEMENT

First | express my heartiest thanks and gratefulness to almighty Allah for His divine

blessing makes me possible to complete this thesis successfully.

| fell grateful to and wish my profound my indebtedness to Dr. Sheak Rashed Haider
Noori, Associate Professor and Associate Head, Department of CSE Daffodil
International University, Dhaka. Deep Knowledge & keen interest of my supervisor in the
field of network security influenced me to carry out this. His endless patience, scholarly
guidance, continual encouragement, constant and energetic supervision, constructive
criticism, valuable advice, reading many inferior draft and correcting them at all stage have
made it possible to complete this.

I would like to express my heartiest gratitude to Dr. Sheak Rashed Haider Noori,
Associate Professor and Associate Head, for his kind help to finish my thesis and also to
other faculty member and the staff of CSE department of Daffodil International University.

I would like to thank my entire course mate in Daffodil International University, who took
part in this discuss while completing the course work.

Finally, I must acknowledge with due respect the constant support and patients of my

parents.

ABSTRACT

This thesis is on “Comparative Analysis of Intrusion Prevention System.”. The main
domain of this thesis is network security. Intrusion Prevention System is a well-known and
important part of network security. Intrusion Prevention System provides critical
infrastructures security by preventing intrusions in the network and computer systems. The
aim of this thesis is to learn more about Intrusion Prevention System, know their
implementation procedures, knowledge gathering on deep level packet inspection and find
out the performance of most common open Intrusion Prevention Systems. In this study two
most common Intrusion Prevention System (Snort and Suricata) is used to learn and
experiment the performance on latest intrusion dataset named CICIDS2017. Performance
are measured based on the CPU Utilization, Packet Processing speed, and on detection and
prevention accuracy rate. Detection and prevention accuracy is measured using data mining

techniques where different Machine Learning algorithms has been used.

TABLE OF CONTENTS

CONTENTS

Board of examiner
Declaration
Acknowledgements
Abstract

Table of contents
List of tables

List of figures

CHAPTER

CHAPTER 1: INTRODUCTION
1.1 Introduction
1.1.1 Snort
1.1.2 Suricata
1.2 Motivation
1.3 Research Questions
1.4 Expected Output

1.5 Thesis Layout

PAGE

V-Vii

viii

iX-X

CHAPTER 2: BACKGROUND 8-9

2.1 Related Works 8

2.2 Research Challenges 9
CHAPTER 3: RESEARCH METHODOLOGY 10-12

3.1 Introduction 10

3.2 Research Design 10

3.3 Lab Architecture 10

3.4 Dataset Collection 11
CHAPTER 4: REQUIREMENT ANALYSIS, 13-23
INSTALLATION AND CONFIGURATION

4.1 Introduction 13

4.2 Requirements Analysis 13

4.3 Requirement Installation 14

4.3.1 Snort, DAQ, Barnyard2, PulledPork and WebSnort 15
Installation

4.3.2 Suricata Installation 19

CHAPTER 5: EXPERIMENTAL RESULTS AND 24-30
DISCUSSION

5.1 Introduction 24
5.2 Experimental Results on CPU Utilization 24

5.3 Experimental Results on CICIDS2017 dataset 28

5.4 Descriptive Analysis and Results Comparison 29

5.5 Summary 30
CHAPTER 6: CONCLUSION AND FUTURE WORKS 31
6.1 Conclusion 31
6.2 Future Work 31
APPENDIX 32-35
Appendix A: List of Abbreviation 32
Appendix B: Related Issues 33-35

REFERENCES 36-37

Vi

LIST OF TABLES

TABLES

Table 3.1: Attack Types and flows in CICIDS2017

Table 4.1: Overview of hardware and software requirements
Table 4.2: Specific version of used software

Table 5.1: Experimental results of Suricata

Table 5.2: Experimental results of Snort

Table 5.3: Key difference between Suricata and Snort

PAGE NO

2

13

14

28

28

30

viii

LIST OF FIGURES

FIGURES

Figure 1.1: Intrusion Prevention System Placement

Figure 1.2: Architecture of Snort

Figure 1.3: Architecture of Suricata

Figure 3.1: Research Design

Figure 3.2: Lab Architecture

Figure 4.1: nghttp2_install function

Figure 4.2: Running Snorter_IPS.sh script

Figure 4.3: Downloading DAQ and Snort with automated script
Figure 4.4: NFQ DAQ modules functions

Figure 4.5: Snort

Figure 4.6: PulledPork download IPS rules automatically
Figure 4.7: Installing Suricata dependencies

Figure 4.8: Suricata installation files

Figure 4.9: NFQueue support of Suricata

Figure 4.10: Suricata installation

Figure 4.11: Suricata detection and prevention rules
Figure 4.12: Suricata ICMP detection and prevention rules
Figure 4.13: Suricata configuration

Figure 5.1: Suricata /O of packet

Figure 5.2: Snort I/0O of packet

PAGE NO

2

3

5

10

11

15

16

17

17

18

19

20

20

21

21

22

22

23

24

25

Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure Al:
Figure A2:
Figure A3:
Figure A4:
Figure A5:

Figure A6:

Interface of atop tool.

CPU usage of Suricata

CPU Usage of Snort

Analysis of UDP packet using Wireshark
Multi-thread, Multi-thread CPU affinity of Suricata
Atop output for experimenting CPU utilization
Checking Snort NFQ mode

Prove of Suricata’s multi-threading capability
Netfilter Queue (NFQ)

Packet dropping in Suricata

Packet dropping in Snort

25

26

26

27

29

33

33

34

34

35

35

CHAPTER 1
INTRODUCTION

1.1 Introduction

The worldwide system named due to the fact the Internet has become a part and parcel of
our existence. Consistently peoples have interaction with the Internet and plenty of them
link their life with it. The Internet carried out numerous parts of life for example banking,
shopping, learning, installments, business, payments and transactions. In this term due to
the rapid growth of computer networks during the past two decades security has turn into
a critical issue for the Internet. This quick growth has exposed computer networks to an
increasing number of security threats. There are a variety number of security threats such
as worms, viruses, adware, malware and approach to hack something on Internet
developing every day. The threats don't seem to be solely to computers and hardware that
we tend to connect with the Internet, however to the information and knowledge that

resides among that infrastructure.

There are a lot of diverse ways and technique to increase the security of network and
computer systems. However, in this study, | focus on Intrusion Prevention Systems (IPS).
IPS are a hardware device or software system of network and computer security which
detect and prevent intrusive activity both from insider network and outsider network. They
cowl the large part of network security which allow us to manage major aspects. The aim
of the Intrusion Prevention System is to prevent different kinds of intrusions and activities
that are very dangerous for network and computer systems. Intrusions can be an attack
against privilege escalation, unauthorized access to various sensitive files, network attacks
against different critical vulnerable services, actions of harmful malware can be Trojans,
viruses and worms. In general, IPS are placed either after or before the placement of
firewall device in an organized network. In Figure 1.1, indicates general placement of

Intrusion Prevention System in a pictorial format.

:

Printer Server

_,@E.

Web Server

<
©

Firewall

Router Switch

Normal User

=

T

—E . -,

Database Server

Intrusion Prevention System

|

h@

Mail Server

Figure 1.1: Intrusion Prevention System Placement

There are many valid ways to classify the Intrusion Prevention Systems. Scarfone et. al.,
[1] have used three types of IPS classification in a research. These are i) Host-based
Intrusion Prevention Systems (HIPS), ii) Network-based Intrusion Prevention System
(NIPS), and iii) Wireless Intrusion Prevention System (WIPS). Purpose of these IPS are

given below.

e Host-based Intrusion Prevention System (HIPS): Host-based IPS detect and
prevent intrusions that are generally affect end user. These type of IPS analyze
traffics those are communicate with between the insider program and the internet
or external network of a host. Host-based IPS must be installed to a host to make it
workable.

e Network-based Intrusion Prevention System (NIPS): Network-based IPS
monitors the network traffic and prevent suspicious data stream or packet. NIPS are

work as a router also. All the traffics are passed over NIPS in network.

e Wireless Intrusion Prevention Systems (WIPS): Wireless IPS monitor actions in
the wireless networks. Generally, it prevent the network from man-in-the-middle
attacks, MAC address spoofing, wrong configured wireless access points and so

on.

This study is conducted based on the performance, and prevention accuracy comparison of
two most famous free and open source Network-based Intrusion Prevention called Snort

and Suricata. These NIPS are helping the network security community way better.
1.1.1 Snort

The Snort IDS and IPS system became a worldwide famous feature to protect network.
Snort is built based on five import unique module. There are i) Packet capture, ii) Packet

Decoder, iii) Preprocessor, iv) Detection Engine and v) Output module.

R

1)

e
- —

Internet Signature
Database

:

Packet | Packet +| Prenrocessor _| Detection
Capture Decoder P Engine

A

Output
Module

7

Z

-1

~—
-

@- i
Alert H
Server

[n. |

Figure 1.2: Architecture of Snort

Packet capture: In this module packets are captured using sniffer in the backend part of
Snort. This module is responsible for capture the data transmitted over the network. For
subsequent transmission to decoder with the help of a library named Data Acquisition
(DAQ), it has done it job.

Packet decoder: Packet decoder deals with parsing the headers of captured packets.
Decoding human readable information from raw packet by parsing them, the analysis of
TCP flags, except for certain protocols of further analysis, finding anomalies and

deviations from the RFC, and other similar work packet decoder done its job.

Preprocessor: The preprocessors of Snort are intended to do in-depth analysis and
normalization protocols at each layer of TCP/IP model. Amongst most used preprocessor
in Snort frag3, stream5, http_inspect, RPC2, sfPortscan are very popular. To work with
fragmented traffic frag3 preprocessor is used. Similarly, for the reconstruction of TCP
flows stream5, for normalizing HTTP traffic http_inspect preprocessor are used. To detect
port scans in network sfPortscan preprocessor is used in Snort. And decoders for different
types of protocol such as SSH, IMAP, SMTP, FTP, SIP, Telnet are also used in this module.

Detection engine: Detection engine of Snort consist of two parts. Of them one part is used
to collect various signature from its database, and another is responsible for deep-level

inspection where it match the signatures with the real-time network traffic.

Output module: Output module is responsible for alert to the administrator based on the
detection of attacks, for logging the attacks, capture the network traffic for further analysis

as pcap format and writing them in binary format on the base machine using Unified2.

1.1.2 Suricata

Suricata is a referred to as a free and open source, advanced, robust and fast network
intrusion detection and prevention engine. It is capable of real-time intrusion detection and
inline prevention (IDPS), monitoring network security and offline processing of captured

pcap files. Suricata analyze network traffic with its powerful and sizable rules and signature

language, and has effective Lua scripting support for the detection of complicated modern

Event
Generation
Custom
Modules

intrusion.

Packet | Packet | Packet _| Detection
Capture Decoder Stream Engine
y
Output
Module

Vs
@. pet @
E A\NY

Server

~__—7
-

Figure 1.3: Architecture of Suricata

Architecture of Suricata is almost similar to Snort but has difference in some parts of its
module. Suricata use PF_RING a high-speed packet processing framework which a new
type of network socket that dramatically improves the packet capture speed [2] for
capturing packet from the internet or other source. Packet stream is like preprocessor which
is basically deals with network streams. Detection engine of Suricata support multi-

threading techniques and that’s why its processing speed is way better.

1.2 Motivation

Security threats are an alarming issue for the modern world. Attacks which are success in
their motive called intrusion. In recent years from various study it is said that, cyber threats
are increasing rapidly with modern techniques and tactics. Due to the increasing threat

Cyber Crime is a big issue that hampers regular activity of our society and our systems.

Intellectual Property Theft and Cybercrime become commonplace during the 2000s. So, to
protect our critical infrastructures, network and computer system necessary steps should
be taken. Intrusion Prevention Systems are a solution to protect network and computer

system from different threats and attack.
1.3 Research Questions

Research question of this study are as follows:

» Are Network-based IPSs are capable to protect network and computer systems,
critical infrastructures from modern intrusion?

» Does IPS are enough to secure todays networks?

» Does Snort with single-thread processing capability better than Suricata?

» Does Suricata’s CPU Utilization better than Snort?

1.4 Expected Output

From this study is expected to learn deep level packet analysis, know how to analyze real
time network traffic in a structured way with well-known solutions. It is a great way to
learn about intrusion, cyber threat, detection and prevention techniques and so on. Expected
outcome would be identify the best solution to prevent modern threat in real world. Another

would be to know about the way to secure critical infrastructures.

1.5 Thesis Layout

This study contains of six chapter in which have described the whole of the thesis. Thesis

layout consists of the preview of all the chapters.

1. Chapter one covers introduction, motivation, research questions, expected output
and thesis layout of the study.

2. Related research work have discussed in Chapter two.

3. Chapter three research methodology includes introduction, research design, lab

architecture, and dataset collection procedure.

Chapter four of this study discussed on requirement analysis, requirement
installation, and requirement configuration for the success of the experiment.
Experimental results on CPU Utilization, experimental results on CICIDS2017
dataset, descriptive analysis and result comparison are discussed in Chapter 5.

Finally, in chapter six have discussed about conclusion and future study.

CHAPTER 2
BACKGROUND

2.1 Related Works

Intrusion prevention has become significantly more important due to, with the increase in
difficulty and regularity of Internet threats in recent years. Various tech companies and
organizations working to develop the equipment and produces different product including
open source and proprietary. One amongst the most well-known and widespread open-
source intrusion detection and prevention system is Snort which works on signature-based
detection and prevention. Snort was maintained by SourceFire Company, now acquired by
Cisco Systems Limited. Martin Roesch developed Snort in 1998. It was mainly developed
to monitor the network packet of layer 7 which is application layer of OSI model. But
nowadays it is used in the backend part of most of the next-generation firewall and intrusion
prevention systems. In 2009, after a decade another open source community named Open
Information Security Foundation (OISF) announced another signature-based intrusion
detection and prevention system called Suricata. The signification difference between
Snort and Suricata is in their internal architecture. The advancement in Suricata is it’s able
to execute native multithreaded processes. Many research has been done in terms of testing
and comparing different type intrusion prevention system in recent years. Researcher
Sergey identified pros and cons of Snort and Security Onion in his thesis [3]. Ahmad
Iftikhar, et al. recognized intrusion detection approached in their research with comparison
[4]. Study on intrusion detection and prevention system are huge. Researcher B.Santos
Kumar et al., identified type and prevention of intrusion detection system in their research
[5]. A great thesis on analysis and comparison of Snort and Suricata was published in 2011
by Eugene [6]. Also many article has been published focused on intrusion detection and
prevention system. Due to the rapid growth of Internet, need to be ensure its security first.

And Intrusion prevention system can be a great technology in terms of its solution.

2.2 Research Challenges

Challenges of the study relies on the experiment part.

>
>

Resources are limited and most of them not rich.

A strong background on networking and OSI layer is must.

In-depth knowledge on networking packet architecture is necessary to deploy the
experiment.

Previous basic knowledge on Intrusion Detection and Prevention Systems is also
necessary.

Hand-on working knowledge and experience on Linux is a must to fulfil the goal
of this study.

CHAPTER 3
RESEARCH METHODOLOGY
3.1 Introduction

The research methodology discussed how the research has been done to complete the
thesis. In-depth study on Intrusion Prevention System has been done prior to the
experiment. This chapter includes the research design, lab architecture and dataset
collection procedure and reason behind choosing the dataset.

3.2 Research Design

Research design shown in Figure 3.1 indicates how the whole research has been conducted.

Review related
approaches and works

Define research
motivation, research
question, expected
output and thesis layout

Research design, lab
architecture

\ 4

Latest Intrusion

Comparative analysis

of Intrusion Prevention Rgsegrch Prevention System
Systems esign dataset collection
Analysis and Analysis and Analysis the

experiment of IPS on
collected dataset using
data mining

experiment of CPU

« utilization of Intrusion

Prevention Systems

-

requirements,
implementation and
configuration

Figure 3.1: Research design

3.3 Lab Architecture

Lab architecture includes 4 PC (Attacker, Normal User, Victim PC1 and Victim PC2), 1
network switch, 1 network router PC (Intrusion Prevention System) and 2 logical Class B
private networks which include 172.16.10.0/24 and 172.16.20.0/24 where each network

10

hosts are connected with the switch and IPS router. Figure 3.2 shows the lab architecture

of this research.

Normal PC

IP: 172.16.10.10 Victim PC1
GW: 172.16.10.1 1 IP: 172.16.20.5
\ GW 172.16.20.1

O,)

\ \“ ‘l,'
@ . Swich @
Attacker Victim PC2
IP: 172.16.10.5 IP: 172.16.20.10
GW: 172.16.10.1 GW: 172.16.20.1
_—

>

'@

(€ememccnaa

T029T2LT “2dl
TOT9T'CLT -Tdl

Intrusion Prevention System

Figure 3.2: Lab Architecture

3.4 Dataset Collection

The experiment of this study has been conducted on one of the latest IPS dataset named
CICIDS2017 collected from Canadian Institute for Cybersecurity (CIC) which is not
publicly available on the Internet. Many researchers has been used this dataset for inventive
research purpose. Among many researchers, Gobinath Loganath used this dataset for Real-
time Intrusion Detection purpose [7]. Darya Lavrova et. al., also used CICIDS2017 dataset
for “Wavelet-analysis of network traffic time-series for detection of attacks on digital
production infrastructures” [8] purpose. The CICIDS2017 dataset contains benign and the
most up-to-date common attacks, which resembles the true real-world data (PCAPS).
Attack diversity and count of flows can be found on Table 4.1. This dataset also includes
the results of the network traffic analysis using CICFlowMeter with labeled flows based

on the time stamp, source and destination IPs, source and destination ports, protocols and

11

attack (CSV files) [9]. That’s why CICIDS2017 dataset has been used in this study for

experiment.

Table 3.1: Attack Types and flows in CICIDS2017

Attack Type Total flow
1 Heartbleed 11

9 }/r\]/jeet():t,ib(\)t;ack: SQL 21

3 Infiltration 36

4 Web Attack: XSS 652

5 Web Attack: Brute Force 1507

6 Botnet 1966

7 DoS Slowhttptest 5499

8 DoS Slowloris 5796

9 SSH Patator 5897

10 FTP Patator 7938

11 DoS GoldenEye 10293
12 DDoS 41835
13 Port Scan 158930
14 DoS Hulk 231073
15 BENIGN 2358036

Next chapter will discuss the requirement analysis, installation and configuration.

12

CHAPTER 4

REQUIREMENT ANALYSIS, INSTALLATION AND
CONFIGURATION

4.1 Introduction

This chapter discussed on requirement analysis, installation and environment configuration
for the experiment. Requirement analysis includes hardware and software requirements

which are the most important part for the experiment of this research.

4.2 Requirement analysis

Both hardware and software requirements are necessary to study the experiment. Table 4.1
shows the overview of both hardware and software requirements. Requirements are needed
to be ready before the experiment. PCs of victim network and Attacker network both have
4GB of RAM. Intrusion Prevention System has 4 GB of RAM. After successful
implementation of hardware requirements, software requirements was implemented where

different software were installed and configured for the experiment.

Table 4.1: Overview of hardware and software requirements

Hardware Requirements
Software
Requirements
Machine Operating System IP Address
= §| vidimpcr | windows10x64 | 17216205 | 0T
§ *a% Victim PC2 Ubuntu 16.04.5 172.16.20.10 Apache2,
< DVWA
Snort,
Intrusion 172.16.10.1 DAQ,
Prevention System Ubuntu 16.04.5 Barnyard,
(IPS) 172.16.201 1 piiledpork,
Mysaql,

13

Suricata,
WebSnort,
Wireshark,

Atop
% 5 Attacker Kali Linux 172.16.10.5 Tcpreplay,
S 2| Normal User Windows 10x64 | 172161010 | ireshark
< =z Nmap, Atop

4.3 Requirements Installation

To make the environment ready for the experiment, firstly hardware requirements were
setup properly. According to the lab architecture can be found on Chapter 3 Switch, Router
and PCs were connected with necessary network cables. And two logical private network
172.16.10.0/24 and 172.16.20.0/24 has been configured and tested on Router and PCs prior
to the installation of software requirements. It is mentioned that Internet connection was
ensured to download necessary software for the experiment. Table 4.2 shows the specific

version of software which were used in this research.

Table 4.2: Specific version of used software

Software Version Software Version
XAMPP 7.2.10 Websnort 0.8
MySQL 5.7.16 Wireshark 2.6.4
Apache2 24.34 Atop 2.3.0
DVWA 1.9 Tcpreplay 4.2.5
Snort 29.11.1 Nmap 7.70
DAQ 2.0.6
Barnyard?2 2-1.14
PulledPork 0.7.4
Suricata 4.0.5

14

4.3.1 Snort, DAQ, Barnyard2, PulledPork and WebSnort installation

Here for installing Snort, DAQ, Barnyard2, PulledPork and WebSnort have used an
interactive automated script named Snorter_IPS.sh developed by Joan Bono along with
one of the contributor named Md. Nazrul Islam [10]. This script was taken from open

source platform GitHub and then modified. Function of the script includes-

function main(),

function update_upgrade(),
function nghttp2_install(),
function snort_install(),
function snort_edit(),
function snort_test(),
function barnyard2_ask(),
function pulledpork_ask() ,
function service_create(),
function websnort_ask(),
function last_steps(),
function system_reboot()

The script start from the function main() and step by step and install and configured
NGHTTP2, Snort, DAQ, Barnyard, PulledPork and WebSnort along with their
dependencies. Figure 4.1 shows nghttp2_install a function of Snorter_IPS.sh script which
install and configure NGHTTP2. NGHTTP2 is necessary for Snort to run as IPS mode.

File Edit Selection Find View Goto Tools Project Preferences Help
4ar Snorter_IPS.sh

1
I

function nghttp2 install() {

An\t${CYAN}[i] INFO OCOLOR} Installing dependencies for NGHTTP2. \n\n"
= pt-get install -y g++ make binutils autoconf automake autotools-dev libtool pkg-config \
z1liblg-dev libcunitl-dev libssl v libxml2-dev libewv-dev libewvent-dewv libjansson-dev \
libc-ares-dev libjemalloc-dev libsystemd-dev libnghttp2-dev \
cython python3-dev python-setuptoels git
rm -rf snort_src fdev/null 2:81

mkdir snort_src cd snort_src
An\t${CYAN}[i] INFO:${NOCOLOR} Downloading nghttp2-${BOLD}$NGHTTP2${NOCOLOR}.\n\n™

P $HOME/snort_src $DOWNLOAD NGHTTP2

sudo make install

Figure 4.1: nghttp2_install function

Dependencies for Snorter_IPS.sh script:

15

jq, curl

Dependencies for NGHTTP2:

cython 1libxml2-dev python3-dev binutils libevent-dev git libev-dev libssl-dev
libjansson-dev zliblg-dev python-setuptools automake libjemalloc-dev pkg-config
libnghttp2-dev libc-ares-dev autotools-dev g++ make autoconf libtool libcunitl-
dev libsystemd-dev

Dependencies for Snort:

gcc libpcre3-dev libnghttp2-dev openssl libdnet bison zliblg-dev libpcap-dev
libssl-dev libdumbnet-dev flex

Dependencies for Barnyard?2:

mysql-server libmysqlclient-dev mysqgl-client autoconf 1libtool libdnet
checkinstall yagiuda libdnet-dev locate

Dependencies for PulledPork:

libcrypt-ssleay-perl liblwp-useragent-determined-perl

Figure 4.2 shows the running script where options —i indicates the interface of the machine
and —o indicates the oinkcode (A unique code for snort individual user).

ridoy@anips: ~/Downloads 1y E) 440PM 1%
ridoy@anips:~/Downloads$ sudo ./Snorter_IPS.sh -i enp2sé -o 86aee43ca84134204b2435f071fdfal13c8896150

T

86aee43ca84134204b2435f071fdfa13c8896150
enp2s@
vi.34.0
daq-2.0.6
snort-2.9.11.1
X86_64

[1] INFO: Updating and Upgrading repositories...

Hit:1 http://mirror.xeonbd.com/ubuntu-archive xenial InRelease

Hit:2 http://mirror.xeonbd.com/ubuntu-archive xenial-updates InRelease
Hit:3 http://mirror.xeonbd.comfubuntu-archive xenial-backports InRelease
Hit:4 http://mirror.xeonbd.com/ubuntu-archive xenial-security InRelease
Reading package lists... Done

Reading package lists... Done

Building dependency tree

Reading state information... Done

Calculating upgrade... Done

0 upgraded, ® newly installed, ® to remove and ©® not upgraded.

()
C
©)
B
&
a)
iz

4

[1] INFO: Installing dependencies for NGHTTP2.

Reading package lists... Done

Building dependency tree

Reading state information... Done

autoconf is already the newest version (2.69-9).

automake is already the newest version (1:1.15-4ubuntul).
autotools-dev is already the newest version (20150820.1).
g++ is already the newest version (4:5.3.1-1ubuntul).
libtool is already the newest version (2.4.6-0.1).

Figure 4.2: Running Snorter_IPS.sh script

16

Figure 4.3 shows that dag-2.0.6 and snort-2.9.11.1 is downloading automatically. It is
mentioned that the script always find the latest version of required softwares. At the time

of the experiment dag-2.0.6 and snort-2.9.11.1 was the latest version.

ridoy@anips: ~/Downloads
[i] INFO: Downloading dag-2.6.6.

--2018-10-24 16:48:56-- https://www.snort.org/downloads/archive/snert/daq-2.08.6.tar.gz
Resolving www.snort.org (www.snort.org)... 104.16 .75, 104.16.63.75, 104.16.65.75,
Connecting to www.snort.org (www.snort.org)|104.16.64.75|:443... connected.
HTTP request sent, awaiting response... 3062 Found
Location: https://snort-org-site.s3.amazonaws.com/production/release_files/files/000/002/146/original/daq-2.0.6.tar.gz?X-Amz-Algorithm=AWS4-HMA
C-SHA256&X-Anz -Credential=AKIAIXACIED2SPMSC7GA%2F20181024%2Fus-east- 1%2Fs3%2Faws4_request&X-Anz-Date=20181024T104858Z&X-Anz -Expires=3600&X-Amz -
SignedHeaders=host&X-Anz-Signature=d7e95cobalc7233fc062cedbef7de96afe24a3ec191bd8a5c2e2521cfcf29c4e [following]
:58-- https://snort-org-site.s3.amazonaws.com/production/release_files/files/000/002/146/original/daq-2.0.6.tar.gz?X-Amnz-Alg
WS4 - HMAC SHA256&X-Amz -Credential=AKIAIXACIED2SPMSC7GA%2F20181024%2Fus-east- 1%2Fs3%2Faws4_request&X-Amz-Date=20181024T104858Z&X-Anz-Expi
res=36008X-Amz-SignedHeaders=hostax-Amz-Signature=d7e95cobalc7233fco62cedbef7de96afe24a3ec191bdg9sc2e2521cfcf29c4e
Resolving snort-org-site.s3.amazonaws.com (snort-org-site.s3.amazonaws.com)
Connecting to snort-org-site.s3.amazonaws.com (snort-org-site.s3.amazonaws.c .216.169.155| :443... connected.
HTTP request sent, awaiting response... 200 0K
Length: 514687 (583K) [,application/x-gzip]
saving to: ‘/home/ridoy/snort_src/daq-2.0.6.tar.gz’

dag-2.0.6.tar.gz 100% .62K 159KB/s in 3.2s

2018-10-24 16:49:05 (159 KB/fs) - ‘/home/ridoy/snort_src/daq-2.0.6.tar.gz” saved [514687/514687]

[i] IN Downloading smort-2.9.11.1.

--2018-10-24 16:49:05-- https://www.snort.org/downloads/archive/snort/snort-2.9.11.1.tar.gz
Resolving www.snort.org (www.snort.org)... 104.16.63.75, 104.16.65.75, 104.16.66.75,
Connecting to www.snort.org (www.snort.org)|104.1i 3.75|:443... connected.
HTTP request sent, awaiting response... 382 Found
Location: https://snort-org-site.s3.amazonaws.com/production/release_files/files/000/006/867 /original/snort-2.9.11.1.tar.gz?X-Amz-Algorithm=AWS

HA256&X-Anz-Credential; TATXACIED2SPMSC7GA%2F20181024%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20181024T104906Z&X-Amz -Expires=3600&X

o<tﬁx Amz-Signature=6c88d90d2a10d6ef078e8637b29f2a624912c4122f848f80682dcd6311e0cddc [following]
https://snort-org-site.s3.amazonaws.com/production/release_files/files/806/606/867 /original/snort-2.9.11.1.tar.gz?X-An
z-Algorithm=AWS4- HMAC SHA256&X-Amz-Credential=AKIAIXACIED2SPMSC7GA%2F20181024%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20181024T104906Z&X - Amz
Expires=3600&X-Amz-SignedHeaders=host&X-Amz-Signature=6c88d90d2a10d6ef078e8637b2972a624912c4122f848f80682dcd6311e0c4dc
Resolving snort-org-site.s3.amazonaws.com (snort-org te.s3.amazonaws.com)... 52.216.160.235
Connecting to snort-org-site.s3.amazonaws.com (snort-org-site.s3.amazonaws.com)|52.216.160.235]|:443... connected.
HTTP request sent, awaiting response... 208 OK
: 6442755 (6.1M) [binary/octet- <tream]
‘ /home/ridoy/snort_src/snort-2.9.11.1.tar.gz’

t-2.9.11.1.tar.gz 100% 6.14M 77.6KB/s in 44s

Figure 4.3: Downloading DAQ and Snort with automated script

To run Snort software as intrusion prevention mode nfqueue is necessary. So it must be

needed to ensure that nfqueue is enable in DAQ module before compiling.

ridoy@anips: ~/Downloads 1y m) 451PM {F
3 checking for strchr... yes
@ checking for strecspn... yes
. \checking for strdup. yes
checking for strerror... yes
checking for strrchr... yes

checking for strstr. yes
checking for strtoul... yes

checking that generated files are newer than configure... done
3 configure: creating ./config.status
config.status: creating Makefile
config.status: creating api/Makefile
config.status: creating os-dag-modules/Makefile
config.status: creating os-dag-modules/daq-modules-config
config.status: creating sfbpf/Makefile
config.status: creating config.h
config.status: executing depfiles commands
config.status: executing libtool commands

Build AFPacket DAQ module.. : yes
Build Dump DAQ module...... yes
Build IPFW DAQ module...... yes
Build IPQ DAQ module....... no
Build NFQ DAQ module....... es

Build netmap DAQ module.... : no

make all-recursive
make[1]: Entering directory '/home/ridoy/snort_src/daq’
Making all in api
make[2]: Entering directory '/home/ridoy/snort_src/daq/api
/bin/bash ../libtool --tag=CC --mode=compile gcc -DHAVE_CONFIG_H -I. -I.. -I/usr/include -g -02 -fvisibility=hidden -Wall -wWwrite-strings
-Wsign-compare -Wcast-align -Wextra -Wformat -Wformat-security -Wno-unused-parameter -fno-strict-aliasing -fdiagnostics-show-option -pedantic
td=c99 -D_GNU_SOURCE -MT daq_base.lo -MD -MP -MF .deps/dag_base.Tpo -c -o daq_base.lo daq_base.c
libtool: compile: gcc -DHAVE_CONFIG_H -I. -I.. -Ijusr/include -g -02 -fvisibilit: idden -Wall -Wwrite-strings -Wsign-compare -Wcast-align -We
xtra -Wformat -Wformat-security -Wno-unused-parameter -fno-strict-aliasing -fdiagnostics-show-option -pedantic -std=c99 -D_GNU_SOURCE -MT daq_b
ase.lo -MD -MP -MF .deps/daq_base.Tpo -c daq_base.c -fPIC -DPIC -o .libs/daq_base.o
daq_base.c: In function ‘daq_config_set_value
daq_base.c:535:21: IS0 C does not support FUNCTION__’ predefined identifier [-Wpedantic]
__, (unsigned long) sizeof(struct _daq_dict_entry)

i Build PCAP DAQ module...... : yes

daq_base.c:542:21 1S0 C does not support FUNCTION__’ predefined identifier [-Wpedantic]
FUNCTION (unsigned long) (strlen(key) + 1));

Figure 4.4: NFQ DAQ modules functions

17

Figure 4.4 shows DAQ modules where NFQ DAQ module is successfully enabled with yes
notation. After downloading and DAQ and Snort, DAQ module was compiled before Snort
installation. Because DAQ module is a must pre-requirement module of Snort software.
Figure 4.5 indicates Snort successfully installed and configured. Snort installation can also

be verified using the command-

sudo /usr/bin/snort -T -c /etc/snort/snort.conf

ridoy@anips: ~/Downloads 1y m) 456PM {lF
[event-filter-global]
---[event-filter-local]---

---[suppression]----

Rule application order: activation-sdynamic->pass->drop->sdrop->reject- salert- ,log
verifying Preprocessor Configurations!

[Port Based Pattern Matching Memory]
[Number of patterns truncated to 20 bytes: @]

nfq DAQ configured to inline.
Decoding Raw IP4
i --== Initialization Complete ==--
-*> Snort! <*-

Version 2.9.11.1 GRE (Build 268)

By Martin Roesch & The Snort Team: http://www.snort.org/contact#team
Copyright (C) 2014-2017 Cisco and/or its affiliates. All rights reserved.
Copyright (C) 1998-2013 Sourcefire, Inc., et al.

Using libpcap version 1.7.4

Using PCRE version: 8.38 2015-11-23

Using ZLIB version: 1.2.8

Rules Engine: SF_SNORT_DETECTION_ENGINE Version 3.8 <Build 1>

Preprocessor Object: SF_SDF Version 1.1 <
Preprocessor Object: SF_MODBUS Version 1.1
Preprocessor Object: SF_SSH Version 1.1 <
Preprocessor Object:
Preprocessor Object: SF_IMAP Version 1.0 <Bu
Preprocessor Object: SF_DNS Version 1.1 <Bui

E Preprocessor Object: SF_GTP Version 1.1 <Build 1>

Preprocessor Object: SF_SMTP Version 1.1

Preprocessor Object: SF_DNP3 Version 1.1 <Bui
Preprocessor Object: SF_REPUTATION Versio

Preprocessor Object: SF_SSLPP Version 1.1

Preprocessor Object: SF_SIP Version 1.1 <

Preprocessor Object: SF_POP Version 1.8 <Build 1=
Preprocessor Object: SF_FTPTELNET Version 1.2 <Build 13>

Snort successfully validated the configuration!
- Snort exiting

Figure 4.5: Snort

If the command returned successful indication without any error means that snort
installation and its configuration is ok. Snort works based on detection and prevention
rules. Everyday new intrusion are discovered and new rules are generated against them to
prevent propagation in the world. So it is necessary to have the latest detection and
prevention rules. Using pulledpork an open source software automatically download the
latest rules every day at a scheduled time. Figure 4.6 shows pulledpork is downloading
latest community, opensource, emerging-rules and snort-snapshot rules. Snort-snapshot
rules are especially for snort user. These rules are identified and download based on the

unique oinkcode.

18

ridoy@anips: ~/Downloads ty B <) sospm i
[!] IMPORTANT: Would you like to download new rules using PULLEDPORK? [Y/n] y
option H requires an argument

https://github.com/shirkdog/pulledpork

PulledPork ve.7.4 - Helping you protect your bitcoin wallet!

_ Copyright (C) 2009-2017 JJ Cummings, Michael Shirk
66_ and the PulledPork Team!

("
' Rules give me wings!

Checking latest MD5 for snortrules-snapshot-29111.tar.gz....
Rules tarball download of snortrules-snapshot-29111.tar.gz....
They Match
e Done!
&l checking latest MD5 for community-rules.tar.gz....
Rules tarball download of community-rules.tar.gz....
They Match
Done!
IP Blacklist download of https://talosintelligence.com/documents/ip-blacklist....
Reading IP List...
Checking latest MD5 for opensource.gz....
Rules tarball download of opensource.gz....
They Match
Done!
Checking latest MD5 for emerging.rules.tar.gz....
Rules tarball download of emerging.rules.tar.gz....
They Match
4 Done!
Prepping rules from community-rules.tar.gz for work....
Done!

(2]
]
&)
=
£
3]
.

Prepping rules from opensource.gz for work....
Done!

Prepping rules from emerging.rules.tar.gz for work....
Done!

Prepping rules from snortrules-snapshot-29111.tar.gz for work....
Done!

Reading rules...

Reading rules...

Figure 4.6: PulledPork download IPS rules automatically

Snort ruled are located at /etc/snort/rules/ .When rules download was complete,
websnort was installed and configured successfully.
4.3.2 Suricata installation

Suracata also known as open-source network based IPS developed by Open Information
Security Foundation (OISF). Suricata also capable to capture real-time network packet and
able to identify network intrusion and protect them using inline prevention mode. Suricata

use NetfilterQueue a.k.a NFQ for performing inline functionality [11].

Suricata dependencies:

autoconf libjansson-dev 1libcap-ng-dev 1libjansson4 libnetl-dev libpcre3-dbg

libmagic-dev libtool libpcre3-dev automake libpcap-dev libyaml-dev zliblg-dev
Suricata dependencies for IPS:
libnetfilter-queue-dev libnetfilter-queuel libnfnetlink-dev

Figure 4.7 shows the installation process of Suricata dependencies. After that Suricata was

downloaded, installed and configured.

19

ridoy@anips: ~

g-dev libmagic-dev libjansson-dev libjansso!
[sudoe] password for ridoy:

Reading package lists... Done

Building dependency tree

Reading state information... Done

autoconf is already the newest version (2.69-9).
automake is already the newest version (.

libpcre3-dev is already the newest version (2:8.38-3.1).
libtool is already the newest version (2.4. .1).
libjansson-dev is already the newest version (2.7-3ubuntue.1).
libjanssond is already the newest version (2.7-3ubuntu@.1).
1ibja on4 set to manually installed.
libmagic-dev is already the newest version (1:5.25-2ubuntul.1).
zliblg-dev is already the newest version (1:1.2.8.dfsg-2ubuntu4.
The following additional packages will be installed:

libnet1
Suggested packages:

libyaml-doc
The following NEW packages will be installe

1libcap-ng-dev 1ibnet1 libneti-dev libpcre3-dbg libyaml-dev
0 upgraded, 5 newly installed, ® to remove and © not upgraded.
Need to get 908 kB of archives.
After this operation, 4,528 kB of additional disk space will be
Do you want to continue? [Y/n] y
Ge' http://mirror .com/ubuntu-archive
Ge http://mirror .com/ubuntu-archive
Ge http://mirror .confubuntu-archive
(1 http://mirror .com/ubuntu-archive

http://mirror .com/ubuntu-archive

Fet(hed 908 kB in 4s (207 kB/s)
Selecting previously unselected package Llibnetl:amd64.
(Reading database ... 223221 files and directories currently installed.)
Preparing to unpack .../libnetl 1.1.6+dfsg-3_amd64.deb ...
Unpacking libnet1:amd64 (1.1.6+dfsg-3) .
selecting previously unselected package
Preparing to unpack .../libcap-ng-dev_0.
unpacking libcap-ng-dev (0.7.7-1) ...
Selecting previously unselected package
Preparing to unpack ./libnetl-dev 1.1.
uUnpacking libneti-dev (1.1.6+dfsg-
Selecting previously unselected package

used.

libnet1 amd64 1.1.
libcap-ng-dev amd
libnet1-dev amdé:

amd64
ELILES
amd64
amd64
amd64

xenial/main
xenial/main
xenial/main
xenial/main
xenial/main

(2]
]
&)
=
B
£
3]
-

libcap-ng-dev.
7.7-1_amd64.deb ...

libnet1-dev.
6+dfsg-3_amd64.deb .

libpcre3-dbg:amd64.

6+dfs
4 0‘7
Aails

s B o

5:02PM {l}

ridoy@anips:~$ sudo apt-get install libpcre3-dbg libpcre3-dev autoconf automake libtool libpcap-dev libnetl-dev libyaml-dev zliblg-dev libcap-n

g-3 [42.1 kB]
7-1 [21.6 kB]
+dfsg-3 [97.6 kB]

1libpcre3-dbg amd64 2:8.38-3.1 [692 kB]
libyaml-dev amd64 ©.1.6-3 [55.2 kB]

Figure 4.7: Installing Suricata dependencies

Suricata latest version (suricata-4.0.5) is downloaded using command-

wget https://www.openinfosecfoundation.org/download/suricata-current.tar.gz

After download tar file was extracted and Figure 4.8 show the insider installation files.

ridoy@anips: ~,Il:hesls/sur[cata-4.0.5

$ cd suricata-4.0.5/
i -4.0.5% ls
config.guess
config.h.in
classification.config config.rpath contrib
compile config.sub COPYING
ridoy@anips:~/thesis/suricata-4.0. 1s
total 1700
drwxr-xr-x 12
drwxrwxr

ridoy@anips
aclocal.m4
Changelog

Makefile.am
doc LICENSE Makefile.in
(344 1tmain.sh missing
install-sh m4 qa

configure
configure.ac

depcomp 1libhtp

Jul 17
Oct 24
Jul 17
Jul 17
Jul 17
Jul 17
Jul 17
Jul 17
Jul 17
Jul 17
Jul 17
Jul 17
Jul 17
Jul 17
Jul 17
Jul 17
Jul 17
Jul 17
Jul 17
Jul 17
Jul 17
Jul 17
Jul 17
Jul 17
Jul 17
Jul 17
Jul 17
Jul 17
Jul 17
Jul 17
Jul 17

4096
4096
61472
61866
EFEE]
7333

ridoy
ridoy
ridoy
ridoy
ridoy
ridoy
ridoy 43499
ridoy 16029
ridoy (3]
ridoy 36144
ridoy 788362
ridoy 90644
ridoy 4096
ridoy 18092
ridoy 23566
ridoy 4096
ridoy 4096
ridoy 15155
ridoy 4096
ridoy 18092
ridoy 324404
ridoy 4096
ridoy 3941
ridoy 32631
ridoy 6872
ridoy 4096
ridoy 1375
ridoy 4096
ridoy 4096
ridoy 4096
ridoy 36864
ridoy 68023 Jul 17
ridoy 1643 Jul 17
Jsuricata-4.0.55 I

aclocal.m4
Changelog
classification.config
compile
config.guess
config.h.in
config.rpath
config.sub
configure
configure.ac
contrib
COPYING
depcomp

doc

etc
install-sh
libhtp
LICENSE
ltmain.sh

na
Makefile.am
Makefile.in
missing

drwxr-xr-x
drwxr-Xr-x

®
=
@)
B
B
A
a/
i

a
reference.config
rul

rust

scripts

src
suricata.yaml.in
threshold.config

drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

I N N O O N O N N O N O O N N

3
1
il
1
2l
1
1
il
1
2l
1
4
i
1
B
2
1
6
1
2l
2
1
i
1
B
1
2
6
3
B
1
2l

5:18PM 1}

iy B o

reference.config
rules

rust

scripts

src
suricata.yaml.in
threshold.config

Figure 4.8: Suricata installation files

20

Before installation of Suricata software configure file is needed to be compiled first with

enabling necessary module such as nfqueue module. The command —

sudo ./configure --enable-nfqueue --prefix=/usr --sysconfdir=/etc --localstatedir=/var

ridoy@anips: ~/thesis/suricata-4.0.5 1ty B) s20pm 1%
checking that generated files are newer than configure...
checking that generated files are newer than configure...
configure: creating ./config.status

config.status: creating htp/htp_version.h

config.status: creating Makefile

config.status: creating htp.pc

config creating htp/Makefile

config creating test/Makefile

config.s s: creating docs/Makefile

config.s s: creating htp_config_auto_gen.h

config.s s: executing depfiles commands
config.status: executing libtool commands

Suricata Configuration:
AF_PACKET po

PF_RIN rt no

NFLOG support:

IPFW support:

Netmap suppor

DAG enabled:

Napatech enabled:

Unix socket enabled:
Detection enabled:

Libmagic suppor

)
=
B
=]
B
s
a]
.

libjansson support:

hiredis async with libevent:
Prelude support:

PCRE jit:

LUA support:
1libluajit:

1libgeoip:

Non-bundled htp:

0ld barnyard2 support:
CUDA enabled:
Hyperscan support:
Libnet support:

Figure 4.9: NFQueue support of Suricata

Figure 4.9 shows NFQueue module is enabled and supported notation as yes. So Suricata

can be run as Intrusion Prevention mode. After that Suricata is installed and configured.

ridoy@anips: ~/thesis/suricata-4.0.5 Ryl 4)) 5:26PM
make[3]: Nothing to be done for 'install-data-am'.
5 make[3]: Leaving directory '/home/ridoy/thesis/suricata-4.0.5/scripts’
1 make[2]: Leaving directory '/home/ridoy/thesis/suricata-4.8.5/scripts
make[1]: Leaving directory '/home/ridoy/thesis/suricata-4.0.5/scripts
Making install in etc
: Entering directory '/home/ridoy/thesis/suricata-4.0.5/etc’
Entering directory '/home/ridoy/thesis/suricata-4.8.5/etc"’
Nothing to be done for 'install-exec-am'.
3 : Nothing to be done for 'install-data-am'.
: Leaving directory '/home/ridoy/thes
: Leaving directory '/home/ridoy/thes
: Entering directory '/home/ridoy/the:
: Entering directory '/home/ridoy/thesis/suricata-4.0.5"
: Nothing to be done for 'install-exec-am'.
Run 'make install-conf' if you want to install initial configuration files. Or 'make install-full' to install configuration and rules
make[2]: Leaving directory '/home/ridoy/thesis/suricata-4.0.5"
make[1]: Leaving directory '/home/ridoy/thesis/suricata-4.0.5"
ridoy@anips:~/the uric -4.0.55 sudo make install-
install-am install-dvi-am install-html install-man install-ps-recursive
install-conf install-dvi-recursive install-html-am install-pdf install-recursive
install-data install-exec install-html-recursive 1install-pdf-am install-rules
ﬁ install-data-am install-exec-am install-info install-pdf-recursive 1install-strip
| |

install-data-recursive install-exec-recursive install-info-am install-ps
install-dvi install-full install-info-recursive install-ps-am
ridoy@anips:~/ -4.0.55 sudo make install-conf

install -d "/var/log/suricata/files"”

install -d "/var/log/suricatajcerts”

install -d "/var/run/"

install -m 770 -d "

ridoy@anips:~/thesis/suricata-4.0.55 sudo make install-rules

install -d "/etc/suricata/rules"”

/usr/bin/wget -q0 - https://rules.emergingthreats.net/open/suricata-4.0/emerging.rules.tar.gz | tar -x -z -C "fetc/suricata/" -f -

ou can now start suricata by running as root something like '/usr/bin/suricata -c [etc/suricata//suricata.yaml -i etho'.

1f a library like libhtp.se is not found, you can run suricata with:
'LD_LIBRARY_PATH=/usr/1ib /usr/bin/suricata -c fetc/suricata//suricata.yaml -i ethe'.

While rules are installed now, it's highly recommended to use a rule manager for maintaining rules.
The two most common are Oinkmaster and Pulledpork. For a guide see:
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Rule Management with Oinkmaster
ridoy@anips:~/the uricata-4.0.55

Figure 4.10 Suricata installation

21

Figure 4.10 shows the installation of Suricata where firstly installed configuration and then

Suricata rules. Surcata detection and prevention rules are located at /etc/suricata/rules

directory. Figure 4.11 shows Suricata detection and prevention rules.

ridoy@anips: fetc/suricata/rules 1y m <)) 5:29PM 1%

ridoy@anips: fetc/suricata/rules$ Ls
total 18216
root root 4096 Oct 24 25 .
root root 4096 Oct .
root root 1858 Oct app-layer-events.rules
root root 12913 Oct 24 41 botcc.portgrouped.rules
root root 168444 Oct botcc.rules
root root 1673 Oct BSD-License. txt
root root 109665 Oct cilarmy.rules
root reot 12537 Oct compromised-ips.txt
root root 27455 Oct 24 41 compromised.rules
root root 19774 Oct decoder-events.rules
root root oct dnp3-events.rules
root root Oct 24 dns-events.rules
root reot oct drop.rules
root root (o] 2 41 dshield.rules
root root 364717 Oct emerging-activex.rules
root root 86069 Oct emerging-attack_response.rules
root root 34514 Oct 24 41 emerging-chat.rules
root root 1608058 emerging-current_events.rules
root root 1270871 4 41 emerging-deleted.rules
root root 29384 emerging-dns.rules
root root 68737 emerging-dos.rules
emerging-exploit.rules
emerging-ftp.rules
emerging-games.rules
emerging-icmp_info.rules
emerging-icmp.rules
emerging-imap.rules
emerging-inappropriate.rules
emerging-info.rules
malware.rules
root 22 emerging-misc.rules
root 4 41 emerging-mobile_malware.rules
root emerging-netbios.rules
root emerging-p2p.rules
root 41 emerging-policy.rules
root emerging-pop3.rules
root emerging-rpc.rules
root 4 41 emerging-scada.rules
root emerging-scan.rules
root 4 41 emerging-shellcode.rules
root ©3:41 emerging-smtp.rules

Figure 4.11: Suricata detection and prevention rules

Rules extension is .rule and can be open through any text editor software such as vi, vim,

gedit, nano and so on. Figure 4.12 shows the rules for ICMP packet.

ridoy@anips: Jetc/suricata/rules 13 m) 531PM {3}

This Ruleset is EmergingThreats Open optimized for suricata-4.@-enhanced.

#alert icmp SEXTERNAL_NET any -> SHOME_NET any (msg:"GPL ICMP Address Mask Reply undefined code”; icode itype:18; classtype:misc-activity;
s1d:2100387; rev:8; metadata:created_at 2016_09_23, updated_at 2010_089_23;)

#alert icmp SEXTERNAL_NET any -> SHOME_NET any (msg:"GPL ICMP Address Mask Request undefined code"; icode:>8; itype:17; classtype:misc-activity
; sid:2100389; rev:8; metadata:created_at 2010_09 23, updated_at 2018_09_23;)

#alert icmp SEXTERNAL_NET any -> SHOME_NET any (msg:"GPL ICMP Alternate Host Address undefined code"; icode:>0; itype:6; classtype:misc-activit
y; sid:2100391; rev:9; metadata:created_at 2016_069 23, updated_at 2016_69_23;)

icmp SEXTERNAL_NET any -> SHOME_NET any (msg:"GPL ICMP Datagram Conversion Error undefined code"; icode:>8; itype:31; classtype:misc-act
sid:210039 metadata:created_at 2010_09_23, updated_at 2010_09_23;)

#alert icmp SEXTERNAL_NET any -> SHOME_NET any (msg:"GPL ICMP Datagram Conversion Error"; icode:®; itype:31; classtype:misc-activity; sid:21063
92; rev:6; metadata:created_at 2010_09_23, updated_at 2016_09_23;)

#alert icmp SEXTERNAL_NET any -> SHOME_NET any (msg:"GPL ICMP Destination Unreachable undefined code"; icode:>15; itype:3; classtype:misc-activ

ity; sid:2100407; rev:9; metadata:created_at 2016_69_23, updated_at 2016_09_

#alert icmp SEXTERNAL_NET any -> SHOME_NET any (msg:"GPL ICMP Echo Reply undefined code itype:@; classtype:misc-activity; sid:21e004
09; rev:8; metadata:created_at 2010_69_23, updated_at 2616_09_23;)

#alert icmp SEXTERNAL_NET any -> SHOME_NET any (msg:"GPL ICMP IPV6 I-Am-Here undefined code"; icode:>8; itype:34; classtype:misc-activity; sid:
2100412; rev:8; metadata:created at 2010_09_23, updated_at 2010_69_23;)

#alert icmp SEXTERNAL_NET any -> SHOME_NET any (msg:"GPL ICMP IPV6 Where-Are-You undefined code"; icode:= itype:33; classtype:misc-activity;
s1d:2100414; rev:8; metadata:created_at 2010_09_23, updated_at 2010_089_23;)

#alert icmp SEXTERNAL_NET any -> SHOME_NET any (msg:"GPL ICMP Information Request undefined code icod 0; itype:15; classtype:misc-activity;
s1d:2100418; rev:8; metadata:created_at 2010_09 23, updated_at 2010_09_23;)

#alert icmp SEXTERNAL_NET any -> SHOME_NET any (msg:"GPL ICMP L3retriever Ping"; icode:®; itype:8; content:"ABCDEFGHIJKLMNOPQRSTUVWABCDEFGHI";
depth:32; reference:arachnids,311; classtype:attempted-recon; sid:2180466; rev:5; metadata:created_at 2016_69_23, updated_at 2016_89_23;)

#alert icmp SEXTERNAL_NET any -> SHOME_NET any (msg:"GPL ICMP Large ICMP Packet"; dsize:>800; reference:arachnids,246; classtype:bad-unknown;
1d:2100499; rev:5; metadata:created_at 2016_09_23, updated_at 2016_09_23;)

#alert icmp SEXTERNAL_NET any -> SHOME_NET any (msg:"GPL ICMP Mobile Host Redirect undefined code"; icode:»8; itype:32; classtype:misc-activity
; s1d:2100420; rev:8; metadata:created_at 2010_09_23, updated_at 2010_09_23;)

Figure 4.12: Suricata ICMP detection and prevention rules

22

While rules and other necessary configuration was complete, Suricata main configuration

file was configured to make ready for run.

ridoy@anips: ~
3 GNU nano 2.5.3 File: /etc/suricata/suricata.ya
5 - - timestamp (secs or secs.usecs based on 'ts-format'

E.g. filename: pcap.¥n.%t

Note that it's possible to use directories, but the directories are not
created by Suricata. E.g. filename: pcaps/%n/log.%s will log into the
3 per thread directory.

Also note that the limit and max-files settings are enforced per thread.
So the size limit when using 8 threads with 1086mb files and 2000 files
is: 8*1000%*2000 ~ 16TiB.

In Sguil mode "dir" indicates the base directory. In this base dir the
pcaps are created in th directory structure Sguil expects:

$sguil-base-dir/YYYY-MM-DD/$filename. <timestamp>
By default all packets are logged except:

- TCP streams beyond stream.reassembly.depth
- encrypted streams after the key exchange

st T T T W P W W R N B W W RN R W

pcap-log:
enabled: yesfl
filename: thesis.pcap

A

File size limit. can be specified in kb, mb, gb. Just a number
is parsed as bytes.
limit: 1000mb

]
B
B
B
i

If set to a value will enable ring buffer mode. Will keep Maximum of "max-files" of size "limit"
max-files: 2000

mode: normal # normal, multi or sguil.

Directory to place pcap files. If not provided the default log
directory will be used. Required for "sguil" mode.

#dir: /nsm_data/

#ts-format: usec # sec or usec second format (default) is filename.sec usec is filename.sec.usec
H¥ Get Help B8 write out @ where Is By cut Text BB Justify B8 cur Pos Bj Prev Page First Line M WhereIs Next
Wl Exit il Read File Ml Replace MY Uncut Text (@] To Spell Wl Go To Line [QY Next Page Bl Last Line Bl To Bracket

Figure 4.13: Suricata configuration

Suricata configuration file is located /etc/suricata/suricata.yaml. Configuration
has several parts like network setup, output setup, and log setup and so on. Figure 4.15
indicates the Suricata configuration file where pcap-log is enabled with filename as

thesis.pcap. In the next chapter experimental results will be performed and discussed.

23

CHAPTER 5
EXPERIMENTAL RESULTS AND DISCUSSION

5.1 Introduction

The experiment tested and compared with Snort and Suricata Intrusion Prevention system
in performance and accuracy of detection and prevention in a real setup environment.
Performance evaluated by measuring the percentage of memory usage, network usages and
CPU Utilization in this experiment. Accuracy was measured and compared based on the
generated alert of detection and prevention of each prevention system using machine

learning and data mining technique on CICIDS2017 dataset.
5.2 Experimental Results on CPU Utilization

The experiment was conducted in two stage. Where in first stage Packet Processing and
CPU Utilization of both Intrusion Prevention System (Snort and Suricata) was measured
and calculated. And in another stage detection and prevention of Suricata and Snort was
analyzed and measured. Packet processing was logged and calculated using Wireshark.
From Wireshark packets 1/0 value was taken as a csv file. Figure 5.1 and Figure 5.2 shows
the packets processing graphs of Suricata and Snort respectably. Suricata Intrusion

Prevention System processed 351.70 packet/s on an average with a high value 4295 packet

Packet processing of Suricata

5000
4500
4000
3500
3000
2500
2000
1500
1000

500

Packet/s

Timestamp

Figure 5.1: Suricata I/O of packet

24

in a second. Suricata was running for 6 minutes during the experiment. On the other hand
Snort was running for 10 minutes shows in Figure 5.2 processed 327.22 packets/s on an

average with a high value 5578 packet in a second during the experiment.

Packets processing of Snort
6000
5000
4000
(2]
3
<< 3000
[
o
2000
1000
. NTRTRS S TP
ONTOTOANNRANMNMOMOMAT NI OO YOS ANMN
HAANTON~NOOOdTMTJTOMNNOOODOANMUODOOOTAMTJTONS~OOOANM
O NS OANSSAMUOAMUOUASONSONLAMWOAMWOLANST O
COORNNNOOBOTDIPIHIOS S AT ANNANDBDO IS SO0 O
LHOOLOLOOOLOOOOLOOOODODODODODODODODODOOOOOO
Timestamp

Figure 5.2: Snort 1/0 of packet

CPU Utilization of Suricata and Snort was measured using atop a tool that is capable of
reporting the activity of all processes like CPU utilization, memory growth, disk utilization,

priority, username, state, exit code and so on. Figure 5.3 shows the interface of atop tool.

1y @) 614PM {1t
2018/10/24 18:13:59 2h37m13s elapsed
user 34m1Ss #proc 281 #trun #tslpi 4 #tslpu #zombie clones 64734 #exit
user 3! irg idle wailt steal % | guest % curf 3.29GHz curscal
user 1 irg idle cpugez steal guest curf 3.29GHz curscal
user % irg % | idle cpufee steal guest % curf 3.29GHz curscal
user % irg idle % cpuoe3 3 steal % guest % curf 3.29GHz curscal
user % irg idle cpudel steal % guest % curf 3.29GHz curscal
avgs . avgls . csw 19464 intr 5546438 numcpu
free cache 5 dirty ©.4M | buff a slab

DSK sd busy read 6 write 35362 | KiB/r 30 | KiBj/w 6 MBr/s 0. MBw/s o avio 4.37 ms
MET | transport tepi tcpo udpi 6100 | udpo 43 | tcpao 6 | tcppo tcprs 2 udpip 0
NET | network ipi 6 ipo 4 ipfrw @ | deliv 216721 | icmpi icmpo 30
NET | enp2s@ pcki 4 pcko si 192 kbps | so 7 Kbps | erri erro drpi drpo 5]
NET | lo -- pcki 44 pcko 44 si 0 Kbps | so 0 kbps | erri erro drpi drpo 5]

PID RUID EUID SYSCPU USRCPU VGROW RGROW RDDSK WRDSK ST EXC CPUNR AMEM CMD
5320 ridoy ridoy 6.19s 64.14s -9G ™ 20960K oK 7% Web Content
5115 ridoy ridoy 41.17s 4m@3s 4G 2M 46732K 386.3M firefox
5274 ridoy ridoy .69s 57.31s .8G 14572K 0K Web Content
5205 ridoy ridoy 6.165 35.76s .8G 13464K 0K Web Content
16701 snort snort .56s 6m53s 4. o 1396K oK barnyard2
BN 4507 ridoy ridoy .22s 2m55s .4 8968K 8K compiz
5504 ridoy ridoy .17s 35.908s . 2184K aK Web Content
900 mysql mysql .55s 4.70s c 25124K 14792K mysqld
4431 ridoy ridoy .89s 1.79s a 276K 92K gnome-software
3749 root root 2mo4s 413. 1816K 228K Xorg
1796 nadir nadir 1.85s a 90664K 23676K oK gnome-software
1734 nadir nadir 16.34s .4 80088K 18488K 13 compiz
5088 nadir nadir 4 . 6l 73016K 12K aK update-manager
857 root root 4968K 288K Xorg
4520 ridoy ridoy 0K 0K evolution-cale
1779 nadir nadir 4096K aK evolution-cale
4429 ridoy ridoy 7248K T7420K nautilus
1872 nadir nadir 32K eK evolution-cale
4539 ridoy ridoy 48K 8K evolution-cale
4527 ridoy ridoy 0K 0K evolution-cale
1856 nadir nadir 144K aK evolution-cale
32085 ridoy ridoy 540K gnome- terminal
1785 nadir nadir 8048K nautilus
4270 ridoy ridoy
1849 root root

"

260K unity-panel-se
fwupd

NMABBNNVNURUUINLEYANSEDW®EWWW
HWUOCORORHONWOWRONGONRWREENG

30012K 6732K

Figure 5.3: Interface of atop tool.

25

During the experiment CPU Utilization of Suricata was 44% on overage while Suricata ran

for 6 minutes. Figure 5.4 indicates the utilization of CPU by Suricata Intrusion Prevention

System.
CPU Utilization of Suricata

100
o 90
g80
= 70
N 60
= 50
S5 40
5 30
a 20
10
0

O O O O O OO OO OO0 O0O0ODO0O0OO0ODO0OO0OO0O OO o oo o

O O O O O OO OO OO0 O0ODO0O0ODO0ODO0OO0OO0O oo o o

S5 S5959055555586865686868686608609S

OO O~ O TMNTO DO~ ©LWS ON A

OCNMOAMOH IO AIOITONTONT O

N OO MO MO T I FTOWOLW O© O© OMMNDMDMNMODWOLOOWMO O

0O 0O 0O 0O OO OO OO OO OO OO OO OO OO OO 0O 0O 0O 0O 0O 0O ©O

™ A A A A A A A A A A A A A

Timestamp

18:19:40.000
18:19:59.000

Figure 5.4: CPU Utilization of Suricata

On the other hand in Figure 5.5 shows the CPU Utilization of Snort where average CPU

Utilization was 59% during Snort ran for 10 minutes.

CPU Utilization of Snort

CPU Utilization/s

S S
9> AY 5° oy 9° AY &Y S A 90 A 60 50 AP
6‘0% 6'\\ 6 5° 6‘*’% ‘9 °>°’ i @W & Q\b‘ 9 6\'6 S Qb‘(’) G Qb
A RIS
NEEN RN Q AR NCNCENCEEN

Timestamp

N
N

S N IO N IO SN NI SN IOIN S OIN IS SI S DD
QQQQQQQQQQ QQQQQQQQQQQQQQQQQQQQQQQ

Figure 5.5: CPU Utilization of Snort

Deep level network packet analysis was conducted with most well-known and powerful

packet analyzer tool named Wireshark [12]. With this powerful tool packet pattern has

26

been identified and inspected the malicious and suspicious pattern on a packet. During the
experiment most of the network packet was under TCP protocol and less was ICMP and
UDP, DNS, HTTP and other protocols network packet. It was identified that same packet
was sent from one network to another network during the attacks in several times. And
most of them were fragmented and aimed to make denial-of-service of the victim server.
Figure 5.6 indicates the UDP packet analysis using Wireshark network packet analyzer

tool.

Wireshark (GTK+) 1y <)
\ E o Y 5 F =)] .
He e - xCc Q< T & EE o0l @EEX @
- Filter: | udp.stream eq0 ~ | Expression... Clear Apply Save
No. Time Source Destinatidie Follow UDP Stream (udp.stream eq 0)
5 0.254597 192.168.50.50 192.168.58 stream Content ype: Data
6 0.272720 192.168.560.50 192.168.50 pe: Acknowled:

7 8.272749 192.168.50.50 192.168.58 pe: Acknowled¢

8 8.272754 192.168.58.50 192.168.5¢ --- Sdewtme pe: Acknowled
9 8.272855 192.168.50.50 192.168.58 +- B.[...2...&.),].Y.e pe: Acknowled
10 ©.272967 192.168.50.50 192.168.580 LA g.... gYe pe: Acknowled¢
11 6.273994 192.168.50.56 192.168.5¢ {--Al.. pe: Acknowled

pe: Acknowleds
pe: Acknowleds
pe: Acknowled¢
pe: Acknowlede
. P Foall ot clEl oz coo0a00052 L7 pe: Acknowledt
v/ T)G 4j16. . Fd}5.u. ... e=' pe: Acknowled
pe: Acknowledt
Ewt..&./....X..JT.H..1...tB...7.. pe: Data
pe: Acknowled
pe: Acknowleds
pe: Data
pe: Data

12 8.273217 192.168.50.50 192.168.58
13 ©.273330 102.168.50.50 192.168.58 +-

14 ©.273431 192.168.50.50 192.168.58 +-

15 8.273592 192.168.50.50 192.168.58 +- - -
16 8.274661 192.168.50.50 192.168.58 --th.

17 8.301655 192.168.50.50 192.168.58 *+-
1s 0.301820 192.168.50.50 192.168.58 -
19 0.578416 192.168.58.50 192.168.50 --Z--=-U.t. 7. LT
20 0.580136 192.168.50.50 192.168.58 :

26 1.864785 192.168.50.50 192.168.58
27 1.094604 192.168.50.50 192.168.58 ----
28 1.129593 192.168.58.50 192.168.58 *-

~Frame 5: 136 bytes on wire (1088 bits), 136 bytes ci
Encapsulation type: Ethernet (1)
Arrival Time: Oct 24, 2018 17:55:41.769679000 +06
[Time shift for this packet: ©8.000080080 seconds]
Epoch Time: 1540382141.7696790860 seconds .
[Time delta from previous captured frame: ©.167496l | .
[Time delta from previous displayed frame: 0.167491
[Time since reference or first frame: 8.254537000 { .
Frame Number: 5
Frame Length: 136 bytes (1888 bits) Entire conversation (85402 bytes) -
Capture Length: 136 bytes (1088 bits)
[Frame is marked: Falsel | Find
eeee ff ff ff ff ff ff 90 fb a6 3b cc 04 88 00 45 €
0010 00 7a 3e 96 00 00 80 11 15 5b cO a8 32 32 cO &
0020 32 ff f7 09 50 51 00 66 11 96 61 01 90 fb a6 3 . i
0030 cc 04 4c S5e 6c 2b fa 55 35 29 of 96 00 02 c6 d el fillegOutinissizeam Close
0040 46 85 00 3a 74 66 8a 1b bc 1d 38 3a 67 8d 02 Eopmmm—m"
7= 0050 17 86 67 59 65 b2 @8 18 8f 12 92 9b fa 5a dc 35 cgresLuLL L Z.5
Booce 48 71 d8 69 8a 16 7b c2 «cf 41 31 al b2 a8 le b7 Hgq.i..{. .Al.....
00676 92 06 16 23 a8 15 12 f9 68 eb 72 de 88 cl 88 dé o eooo [olioc oo

SaveAs print | @ Ascll EBCDIC Hex Dump CArrays Raw

ROSDED DD Jm

1)

O # File: "thesis.pcap.1540382141 Packets: 3164 - Displayed: 2595 (82.0%) - Load time: 0:00.028 Profile: Default

Figure 5.6: Analysis of UDP packet using Wireshark

At the same time during the experiment while attacks were launched from attacker network
to victim network both Intrusion Prevention System Snort and Suricata generated
prevention notification based on their rules against malicious and suspicious packet called
intrusion. Suricata generated alert against 31427 enabled rules and they were downloaded
and configured with PulledPork during Suricata installation. Then again Snort were
generated alerts against 29471 enabled rules and also downloaded via PulledPork during
the installation of Snort. After that generated logs of Suricata and Snort were collected for
calculating their accuracy and performance using machine learning algorithms and data

mining techniques.

27

5.3 Experimental Results on CICIDS2017 dataset

Data mining techniques was applied to calculate the prevention accuracy using five
machine learning algorithm J48, IBk, MLP (Multilayer Perceptron), BayesNet and Naive
Bayes on 810 data for Suricata and 673 data for Snort of CICIDS2017 Intrusion Prevention
System dataset. Table 5.1 indicates the results for Suricata and it is seen that overall
classification accuracy of five machine learning algorithm J48, 1Bk, MLP, BayesNet and

Naive Bayes, J48 is performs better with 97.65% overall classification accuracy.

Table 5.1: Experimental results of Suricata

Algorithms | TPR FPR FNR Pr. F-1 OA
(%) (%) (%) (%) (%) (%)
J48 97.70 0.50 2.30 97.80 97.60 97.65
1Bk 92.70 1.30 7.30 93.00 92.70 92.71
MLP 91.00 3.60 9.00 90.80 90.60 90.99
BayesNet | 82.20 1.70 17.80 85.60 82.70 82.22
Naive Bayes | 68.10 3.60 31.90 84.50 72.10 68.15

*** TPR = True Positive Rate, FPR = False Positive Rate, FNR = False Negative Rate, Pr. = Precision, F-1 = F-measure, OA =
Overall Accuracy [13]

From the Table 5.2 show results for Snort and among five machine learning algorithm J48

classification accuracy is better with 97.33% accuracy.

Table 5.2: Experimental results of Snort

Algorithms | PR FPR FNR Pr. F-1 OA
(%) (%) (%) (%) (%) (%)

148 97.30 0.40 2.30 97.30 97.20 97.33

1Bk 93.20 1.10 7.30 93.30 93.10 93.16

MLP 90.30 1.30 9.00 90.70 89.90 90.34

BayesNet | 85.90 1.60 17.80 86.10 85.10 85.88

Naive Bayes | 81.90 2.10 31.90 86.80 82.80 81.87

*** TPR = True Positive Rate, FPR = False Positive Rate, FNR = False Negative Rate, Pr. = Precision, F-1 = F-measure, OA =

Overall Accuracy

28

5.4 Descriptive Analysis and Results Comparison

From experimental result it is found that, Suricata processed 351.70 packet/s on an average
in 6 minutes where Snort processed 327.22 packets/s on an average in 10 minutes. So, at
this point Suricata performs better than Snort. In terms of CPU Utilization, Suricata used
44% CPU on an average where Snort CPU Utilization was 59% on an average. It is also
identified that, in intrusion prevention part Overall accuracy of Suricata is slightly better
than Snort. So, after the experiment on results it is proved that, in all cases Suricata
performs better than Snort. It is also identified that Suricata perform well due to its multi-
thread architectural design and multi-CPU affinity capability where Snort can deal with
single-thread process. Figure 5.7 shows the multi-thread architectural design and multi-

CPU affinity of Suricata in pictorial format.

pPacket CPUICPU Core thread set_CPU_affinity: yes
Capture
Core 0 PAQ DECODE STREAM DETECT OUTPUT
Packet
decode and 1 DETECT
stream app 7 DETECT
layer
3 DETECT
A,
Detection Detection Detection
\ / set_CPU_affinity: no
A,
e Coe 0 | PAQ DETECT
1 DECODE
l 2 STREAM DETECT X2
3 DETECT OUTPUT
@ Alert @%
Server .

Figure 5.7: Multi-thread, Multi-thread CPU affinity of Suricata [14]

Key difference of both Intrusion Prevention System (Suricata and Snort) also identified
and Table 5.3 indicates the key comparison of Suricata and Snort.

29

Table 5.3: Key difference between Snort and Suricata

Parameter Suricata Snort
Intrusion Prevention Feature Yes Yes
VRT rule support Yes Yes
Emerging threat rules support Yes Yes
SO rule support No Yes
Multi-thread support Yes No
IPVv6 support Yes Yes
Capture accelerator support Yes No
Ease of installation No Yes
Configuration filename suricata.yami snort.conf

5.5 Summary

The experimental results shows that Suricata performed well than Snort in terms of latest

threats or intrusion on CICIDS2017 dataset. Day by day zero day exploits, malware,

ransomware are made to interrupt the network and computer systems. It is necessary to

improve existing Intrusion Prevention Systems like Suricata and Snort, make them more

efficient to protect from modern intrusions.

30

CHAPTER 6
CONCLUSION AND FUTURE WORK

6.1 Conclusion

The study conducted with two most common and well-known open-source network-based
intrusion prevention system. CPU utilization and performance accuracy was evaluated and
compared of both systems. In same structured lab environment experiment was deployed
to fulfil the goal of the study. Performance was evaluated based on the latest intrusion
prevention system dataset to test their ability for preventing modern intrusions. Both
system performed very well during the experiment. But in some cases Suricata’s
performance was really noteworthy. Due to the difference in their internal structure like
multi-thread detecting engine and multi-affinity CPU capability, performance was varied.
It was also identified that Suricata used more RAM than Snort for multi-processing
functionality. After the experiment it is stated that existing Intrusion Prevention Systems
are capable to work against modern known threats. And it is also recommended to use
Intrusion Prevention System in Internet-based companies and organization to protect

critical infrastructures and to improve data security.

6.2 Future work

Future work of the study could be develop an enhance Intrusion Prevention System that
will be capable to identify and protect unknown intrusion in both network and computer
systems. As existing IPS are very much dependent on their rules. So they are only capable
to protect known threats. Zero-day attack is on the rise. So, it is necessary to improve

existing Intrusion Prevention Systems or develop an enhance system.

31

IDS

IPS

HIPS

NIPS

WIPS

TCP

UDP

PC

CPU

RAM

MAC

OISF

DAQ

DVWA

NFQ

APPENDIX

APPENDIX A: LIST OF ABBREVIATION

Intrusion Detection System

Intrusion Prevention System

Host-based Intrusion Prevention System

Network-based Intrusion Prevention System

Wireless Intrusion Prevention System

Internet Protocol

Transmission Control Protocol

User Datagram Protocol

Personal Computer

Central Processing Unit

Random Access Memory

Media Access Control

Open Information Security Foundation

Data Acquisition

Damn Vulnerable Web Application

Netfilter Queue

32

APPENDIX B: RELATED ISSUES

root@anips: ~/PycharmProjects ty B) si3pm i
root@anips:~/PycharmProjects# atopsar -c 2 30
anips 4.15.0-36-generic #39~16.04.1-Ubuntu SMP Tue Sep 25 08:59:23 UTC 2018 x86_64 2018/10/24

analysis date: 2018/10/24

1 0 | %usr %nice %sys %irq %softirg %steal est %wait %idle
18:11:32 all 94] 7]]]]] 299

100
100

250
18:11:34 295

18:11:36
18:11:38

18:11:40

)
]
&)
=
B
£
3]
.

18:11:44

18:11:46

Figure Al: Atop output for experimenting CPU utilization

ty B) ciopm 1
ridoy@anips:~$ snort -V

-*> Sport! <

version 2.9.11.1 GRE (Build 268)

By Martin Roesch & The Snort Team: http://www.snort.org/contact#team
Copyright (C) 2014-2017 Cisco andfor its affiliates. All rights reserved.
Copyright (c) 1998-2013 sourcefire, Inc., et al.

Using libpcap version 1.7.4

Using PCRE version: 8.38 2015-11-23

Using ZLIB version: 1.2.8

ridoy@anips:~$ snort --dag-list
Available DAQ modules:

): live inline multi unpriv
dump(v3): readback live inline multi unpriv
afpacket(v5): live inline multi unpriwv
ridoy@anips:~$

Figure A2: Checking Snort NFQ mode

33

ridoy@anips: ~

ridoy@anips:~$ sudo fusr/bin/suricata --list-runmodes
-- -- -- ---- Runmodes -
RunMode Type | Custom Mode | Description

ty B o s31Pm %

| autofp | Multi threaded pcap live mode. Packets from each flow are assigned to a single detect thread, unlike
"pcap_live_auto" where packets from the same flow can be processed by any detect thread

to logging

| autofp | Multi threaded pcap file mode. Packets from each flow are assigned to a single detect thread, unlike
"pcap-file-auto" where packets from the same flow can be processed by any detect thread

PFRING(DISABLED) | autofp | Multi threaded pfring mode. Packets from each flow are assigned to a single detect thread, unlike "p
ing_auto" where packets from the same flow can be processed by any detect thread

| autofp

| workers

single

Multi threaded ERF file mode. Packets from each flow are assigned to a single detect thread

ERF_DAG | autofp Multi threaded DAG mode. Packets from each flow are assigned to a single detect thread, unlike "dag_
auto" where packets from the same flow can be processed by any detect thread

Figure A3: Prove of Suricata’s multi-threading capability

ridoy@anips: ~

ridoy@anips:~$ sudo iptables -L

Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination
i iptables -I FORWARD -j NFQUEUE --queue-num 3
iptables -L
ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination
NFQUEUE all -- anywhere anywhere NFQUEUE num 3

Chain OUTPUT (policy ACCEPT)
target prot _opt source destination
ridoy@anips:~$

4

1 N ERp DD J e

Figure A4: Netfilter Queue (NFQ)

34

ridoy@anips: fetc/suricata/rules 1 o)

3 [10/2?/%013—17:55:45‘407523 [wDrop] [1:10000001:1] [Classification: (null)] [Priority: {ICMP} 172.217.26.78:0

@ i;?éj?égls—17:55:46‘362713 [wDrop] [1:10000001:1] [Classification: (null)] [Priority: {ICMP} 192.168.50.40:8

E ‘iS?éZfégls-17:55:45.410109 [worop] [1:10000001:1] [Classification: (null)] [Priority: {1CMP}
‘i;?éj?égls-17:55:47.354200 [wDrop] [1:10000001:1] [Classification: (null)] [Priority: {ICcmP}

3‘iS;éZ?égm—17:55:47.4129@5 [wDrop] [1:10000001:1] [Classification: (null)] [Priority: {ICMP}
‘i;?é3?§g1s—17:55:45‘3 018 [wDrop] [1:10000001:1] s [Classification: (null)] [Priority: {1CcMP}

é ‘ig;ézfégls—17:55:43‘412410 [wDrop] [1:10000001:1] s [Classification: (null)] [Priority: {ICMP}
‘i;?i:?égls-17:55:49.357509 [worop] [1:10000001:1] T [Classification: (null)] [Priority: {1CMP}

‘i;;éziégls—17:55:49.413570 [wDrop] [1:10000001:1] s [Classification: (null)] [Priority: {ICcMP}

i ‘i;?éj%gm—17:55:50.365627 [wDrop] [1:10000001:1] [Classification: (null)] [Priority: {ICMP}
‘ig?éziégls—17:55:50‘417922 [wDrop] [1:10000001:1] s [Classification: (null)] [Priority: {IcMP}

ﬁ i;?é:?égls—17:55:51‘379936 [wDrop] [1:10000001:1] s [Classification: (null)] [Priority: {ICMP} 192.168.50.40:8

_— ‘iS?éZfégls-17:55:51.417435 [worop] [1:10000001:1] 5 [Classification: (null)] [Priority: {ICMP} 172.217.26.78:0

E i;?é;%gls—17:55:52.371545 [wDrop] [1:10000001:1] [Classification: (null)] [Priority: {ICMP} 192.168.50.40:8

G igié:?égli‘r17:55:52.416&‘-92 [wDrop] [1:10000001:1] [Classification: (null)] [Priority: {ICMP} 172.217.26.78:0
‘i;?éj?égls—17:55:53‘372992 [wDrop] [1:10000001:1] [Classification: (null)] [Priority: {ICMP} 192.168.50.40:8
"S;ézfégls—1?:55:53.41535? [wDrop] [1:10000001:1] [Classification: (null)] [Priority: {ICcMP}
i;?é:?égls-17:55:54.374479 [worop] [1:10000001:1] [Classification: (null)] [Priority: {1CMP}

%éz%z%gls—17:55:54.421202 [wDrop] [1:10000001:1] [Classification: (null)] [Priority: {ICcMP}
1?{24/%013—17:55:55.376316 [wDrop] [1:160000001:1] [Classification: (null)] [Priority: {ICMP}

E— ig7é1?égls—17:55:55‘425356 [wDrop] [1:10000001:1] s [Classification: (null)] [Priority: {IcMP}
.50.40:0

—

Figure A5: Packet dropping in Suricata

ridoy@anips: ~ 4 B e
©3.48.119.119,80,94:DE:8 ©:1F,D4:CA:6D:81:6D:56,0XE2, ***A**** 0x439F2ABE,0x4CD7B749,,0x8180,55,0,48763,212,217088, , ,,
10/15-21:12:22.011516 ,1,2013504,3,"ET POLICY GNU/Linux APT User-Agent Outbound likely related to package management”,TCP,192.168.50.40,54642,1
©3.48.119.119,80,94:DE:80:03:A0:1F,D4:CA:6D:81:6D:56,0xES, ***A**** @Ax430F2B5E,0x4CD7B749,,0x8186,55,0,48763,218,223232, ,,,
10/15-21:12:22.011516 ,1,2013504,3,"ET POLICY GNU/Linux APT User-Agent Outbound likely related to package management",TCP,192.168.50.40,54642,1
03.48.119.119,80,94:DE:80:03:A0:1F,D4:CA:6D:81:6D:56,0XF9, ***A%*** @x430F2C04,0x4CD7B749,,0x81806,55,0,48763,235,240640, ,,,
10/15-21:12:22.011516 ,1,2013504,3,"ET POLICY GNU/Linux APT User-Agent Outbound likely related to package management”,TCP,192.168.50.40,54642,1
03.48.119.119,80,94:D ©:1F,D4:CA:6D:81:6D:56,0XF4,***A**** Ox439F2CBB,0x4CD7B749,,0x8180,55,0,48763,230,235520, ,,,
10/15-21:12:22.611516 ,1,2013504,3,"ET POLICY GNU/Linux APT User-Agent Outbound likely related to package management",TCP,192.168.50.40,54642,1
03.48.119.119,80,94:DE:80:03:A0:1F,D4:CA:6D:81:6D:56,0XF5,***A**** @x439F2D6D,0x4CD7B749,,0x8180,55,0,48763,231,236544, ,,,
10/15-21:12:22.011516 ,1,2013504,3,"ET POLICY GNU/Linux APT User-Agent Outbound likely related to package management”,TCP,192.168.50.40,54642,1
©3.48.119.119,80,94:DE:80:03:A0:1F,D4:CA:6D:81:6D:56,0xF6, ***A**** ax439F2E20,0x4CD7B749 , ,0x8180,55,0,48763,232,237568, ,,,
10/15-21:12:22.011516 ,1,2013504,3,"ET POLICY GNU/Linux APT User-Agent Outbound likely related to package management”,TCP,192.168.50.40,54642,1
©3.48.119.119,80,94:DE: :AB:1F,D4:CA: 6D:81:6D:56,0XF7,***A**** @x439F2ED4,0x4CD7B749,,0x8180,55,0,48763,233,238592, ,,,
10/15-21:12:22.013778 ,1,2013504,3,"ET POLICY GNU/Linux APT User-Agent Outbound likely related to package management",TCP,192.168.50.40,54
03.48.119.119,80,94:DE:80:03:A0:1F,D4:CA:6D:81:6D:56,0XFA, ***A**** @x430F2F89,0x4CD7B749,,0x8D00,55,0,48764,236,241664, ,,,
10/15-21:12:22.150445 ,1,2013504,3,"ET POLICY GNU/Linux APT User-Agent Outbound likely related to package management”,TCP,192.168.50.40,54642,1
03.48.119.119,80,94:DE:80:03:A0:1F,D4:CA:6D:81:6D:56,0XF7,***A%*** @x430F3041,0x4CD81D19,,0x9880,55,0,48783,233,238592, ,,,
10/15-21:12:22.551332 ,1,2013504,3,"ET POLICY GNU/Linux APT User-Agent Outbound likely related to package management",TCP,192.168.50.40,54642,1
03.48.119.119,80,94:DE:80:03:A0:1F,D4:CA:6D:81:6D:56,0XF3,***A**+* Ox439F30F6,0x4CDA4D11,,0xA380,55,0,48883,229,234496, ,,,
10/15-21:16:45.062415 ,1,10000001,1,"PING ATTACK" ,ICMP,172.217.194.101,,192.168.56.46, ,D4:CA:6D:81:6D:56,94:DE:86:03:A8:1F ,0x62,,,,,,43,0,0,84,
86016,0,0,5994,1

10/15-21:16:46.596599 ,1,10000001,1,"PING ATTACK",ICMP,172.217.194.101,,192.168.50.40,,D4:CA:6D:81:6D:56,94:DE:86:03:A0:1F ,0x62,,,,,,43,0,0,84,
86016,0,0,5994,2

10/15-21:16:47.604560 ,1,10000001,1,"PING ATTACK",ICMP,172.217.194.101,,192.168.50.40,,D4:CA:6D:81:6D:56,94:DE:80:03:A0:1F 0x62,,,,,,43,0,0,84,
86616,0,0,5994,3

10/16-12:02:53.469676 ,1,2013504,3,"ET POLICY GNU/Linux APT User-Agent Outbound likely related to package management”,TCP,192.168.50.40,46478,1
©3.48.119.119,80,94:DE:80:03:A0:1F,D4:CA:6D:81:6D:56,0x145 , ***A**** ax7BBD69BD,0x98328E90, ,0x15F,55,0,43953,311,56324, ,,,

10/16-12:02:56.613059 ,1,2013504,3,"ET POLICY GNU/Linux APT User-Agent Outbound likely related to package management",TCP,192.168.50.40,46478,1
03.48.119.119,80,94:DE:80:03:A0:1F,D4:CA:6D:81:6D:56,0X145,***A*+** ax7BBD6ACE,0x983E2DCO, ,0x175,55,0,44481,311,56324, ,,,

10/16-12:02:58.062901 ,1,2013504,3,"ET POLICY GNU/Linux APT User-Agent Outbound likely related to package management",TCP,192.168.50.40,46478,1
03.48.119.119,80,94:DE:80:03:A0:1F,D4:CA:6D:81:6D:56,0X141,***A**** Bx7BBD6BC3,0x984457D8, ,0x18C,55,0,44760,307,52228, ,,,

10/16-12:02:59.400688 ,1,2013504,3,"ET POLICY GNU/Linux APT User-Agent Outbound likely related to package management”,TCP,192.168.50.40,46478,1
03.48.119.119,80,94:DE:80:03:A0:1F,D4:CA:6D:81:6D:56,0x145,***AP*** @x7BBD6CC2,0x98485D48, ,0x1A3,55,0,44943,311,56324,,,,

10/16-12:03:00.342953 ,1,2013504,3,"ET POLICY GNU/Linux APT User-Agent Outbound likely related to package management",TCP,192.168.50.40,46478,1
03.48.119.119,80,94:DE:80:03:A0:1F ,D4:CA:6D:81:6D:56,0x147 , ***A**** @x7BBD6DCS,0x984BFCES, ,0x1B9,55,0,45107,313,58372, ,,,

10/16-12:03:03.334035 ,1,2013504,3,"ET POLICY GNU/Linux APT User-Agent Outbound likely related to package management",TCP,192.168.50.40,46478,1
03.48.119.119,80,94:DE:80:03:A0:1F,D4:CA:6D:81:6D:56,0x146 , ***A**** Bx7BBDGECA,0x98569D96, ,6x1D6,55,0,45591,312,57348, ,,,

10/16-12:03:05.960850 ,1,2013504,3,"ET POLICY GNU/Linux APT User-Agent Outbound likely related to package management”,TCP,192.168.50.40,46478,1
03.48.119.119,80,94:DE:80:03:A0:1F,D4:CA:6D:81:6D:56,0X13F , ***A**** ax7BBD6FCE,0x985FF086, ,0x1E6,55,0,46016,305,50180, ,,,

10/16-12:03:07.140689 ,1,2013504,3,"ET POLICY GNU/Linux APT User-Agent Outbound likely related to package management",TCP,192.168.50.40,46478,1
03.48.119.119,80,94:DE:B0:03:A0:1F,D4:CA:6D:81:6D:56,0X140 ,***A**** x7BBD7OCE,0X98644AC8, ,0x1FD,55,0,46213,306,51204, ,,,

10/16-12:03:08.175970 ,1,2013504,3,"ET POLICY GNU/Linux APT User-Agent Outbound likely related to package management”,TCP,192.168.50.40,46478,1
©3.48.119.119,80,94:DE:80:03:A0:1F,D4:CA:6D:81:6D:56,0x148, ***A**** Bx7BBD71C9,0x986817A8,,0x214,55,0,46386,306,51204, ,,,

Figure A6: Packet dropping in Snort

1 NSRBI 0@

35

REFERENCES

[1] Specarfone Karen, and Peter Mell. “Guide to Intrusion Detection and Prevention Systems
(IDPS).” Guide to Intrusion Detection and Prevention Systems (IDPS), Feb. 2007,
csrc.nist.gov/publications/detail/sp/800-94/final.

[2] “PF_RING™ High-Speed Packet Capture, Filtering and Analysis.” Ntop,

www.ntop.org/products/packet-capture/pf_ring/.

[3] Sergey Bezborodov. “Intrusion Detection System and Intrusion Prevention System with Snort

Provided by Security Onion.” Mikkeli University of Applied Sciences, 2016.

[4] Ahmad, Iftikhar, et al. “Comparative Analysis of Intrusion Detection Approaches.”
International Conference on Computer Modelling and Simulation, 2010,
doi:10.1109/UKSIM.2010.112.

[5] Kumar, B.Santos, et al. “Intrusion Detection System- Types and Prevention.” International

Journal of Computer Science and Information Technologies, vol. 4, no. 1, 2013, pp. 77-82.

[6] Albin, Eugene. “A Comparative Analysis of the Snort and Suricata Intrusion-Detection
Systems.” Naval Postgraduate School, September, 2011.

[7] Loganathan, Gobinath. “Real-Time Intrusion Detection Using Multidimensional Sequence-to-
Sequence Machine Learning and Adaptive Stream Processing.” The University of Western
Ontario, 2018.

[8] Lavrova, Darya, et al. “Wavelet-Analysis of Network Traffic Time-Series for Detection of
Attacks on Digital Production Infrastructure.” SHS Web of Conferences, 2018,
doi:https://doi.org/10.1051/shsconf/20184400052.

[9] Intrusion Detection Evaluation Dataset (CICIDS2017). Canadian Institute for Cybersecurity
(CIC), 5 Feb. 2018, www.unb.ca/cic/datasets/ids-2017.html.

[10] bono, Joan, and Md. Nazrul Islam. “Joanbono/Snorter.” GitHub, 22 Aug. 2018,
github.com/joanbono/Snorter.

36

[11]

[12]

[13]

[14]

Suricata User Guide. Open Information Security Foundation (OISF), 2018,

media.readthedocs.org/pdf/suricata/latest/suricata.pdf.

Wikepedia. “Wireshark.” Wireshark-Wikipedia, https://en.wikipedia.org/wiki/Wireshark.

Wikipedia. Receiver Operating Characteristic. Confusion Matrix

https://en.wikipedia.org/wiki/Receiver_operating_characteristic.

“Threading.” Suricata, suricata.readthedocs.io/en/suricata-4.0.5/configuration/suricata-

yaml.html.

37

