
COMPARATIVE ANALYSIS OF INTRUSION PREVENTION

SYSTEM

BY

MD. NAZRUL ISLAM

ID: 151-15-5503

This Thesis Presented in Partial Fulfillment of the Requirements for the

Degree of Bachelor of Science in Computer Science and Engineering

Supervised By

Dr. Sheak Rashed Haider Noori

Associate Professor and Associate Head

Department of CSE

Daffodil International University

DAFFODIL INTERNATIONAL UNIVERSITY

DHAKA, BANGLADESH

DECEMBER 2018

i

APPROVAL

This Thesis titled “Comparative Analysis of Intrusion Prevention System”, submitted

by Md. Nazrul Islam, ID No: 151-15-5503 to the Department of Computer Science and

Engineering, Daffodil International University, has been accepted as satisfactory for the

partial fulfillment of the requirements for the degree of B.Sc. in Computer Science and

Engineering and approved as to its style and contents. The presentation has been held on

11th December 2018

BOARD OF EXAMINERS

Dr. Syed Akhter Hossain Chairman

Professor and Head

Department of Computer Science and Engineering

Faculty of Science & Information Technology

Daffodil International University

Narayan Ranjan Chakraborty Internal Examiner

Assistant Professor

Department of Computer Science and Engineering

Faculty of Science & Information Technology

Daffodil International University

Md. Tarek Habib Internal Examiner

Assistant Professor

Department of Computer Science and Engineering

Faculty of Science & Information Technology

Daffodil International University

Dr. Mohammad Shorif Uddin External Examiner

Professor

Department of Computer Science and Engineering

Jahangirnagar University

ii

DECLARATION

I hereby declare that, this thesis has been done by me under the supervision of Dr. Sheak

Rashed Haider Noori, Associate Professor and Associate Head, Department of CSE

Daffodil International University. I also declare that neither this thesis nor any part of this

thesis has been submitted elsewhere for award of any degree or diploma.

Supervised by:

Dr. Sheak Rashed Haider Noori

Associate Professor and Associate Head

Department of CSE

Daffodil International University

Submitted by:

Md. Nazrul Islam

ID: 151-15-5503

Department of CSE

Daffodil International University

iii

ACKNOWLEDGEMENT

First I express my heartiest thanks and gratefulness to almighty Allah for His divine

blessing makes me possible to complete this thesis successfully.

I fell grateful to and wish my profound my indebtedness to Dr. Sheak Rashed Haider

Noori, Associate Professor and Associate Head, Department of CSE Daffodil

International University, Dhaka. Deep Knowledge & keen interest of my supervisor in the

field of network security influenced me to carry out this. His endless patience, scholarly

guidance, continual encouragement, constant and energetic supervision, constructive

criticism, valuable advice, reading many inferior draft and correcting them at all stage have

made it possible to complete this.

I would like to express my heartiest gratitude to Dr. Sheak Rashed Haider Noori,

Associate Professor and Associate Head, for his kind help to finish my thesis and also to

other faculty member and the staff of CSE department of Daffodil International University.

I would like to thank my entire course mate in Daffodil International University, who took

part in this discuss while completing the course work.

Finally, I must acknowledge with due respect the constant support and patients of my

parents.

iv

ABSTRACT

This thesis is on “Comparative Analysis of Intrusion Prevention System.”. The main

domain of this thesis is network security. Intrusion Prevention System is a well-known and

important part of network security. Intrusion Prevention System provides critical

infrastructures security by preventing intrusions in the network and computer systems. The

aim of this thesis is to learn more about Intrusion Prevention System, know their

implementation procedures, knowledge gathering on deep level packet inspection and find

out the performance of most common open Intrusion Prevention Systems. In this study two

most common Intrusion Prevention System (Snort and Suricata) is used to learn and

experiment the performance on latest intrusion dataset named CICIDS2017. Performance

are measured based on the CPU Utilization, Packet Processing speed, and on detection and

prevention accuracy rate. Detection and prevention accuracy is measured using data mining

techniques where different Machine Learning algorithms has been used.

v

TABLE OF CONTENTS

CONTENTS

PAGE

Board of examiner i

Declaration ii

Acknowledgements iii

Abstract iv

Table of contents v-vii

List of tables viii

List of figures ix-x

CHAPTER

CHAPTER 1: INTRODUCTION

1-7

 1.1 Introduction 1

 1.1.1 Snort 3

 1.1.2 Suricata 4

 1.2 Motivation 5

 1.3 Research Questions 6

 1.4 Expected Output 6

 1.5 Thesis Layout 6

vi

CHAPTER 2: BACKGROUND 8-9

 2.1 Related Works 8

 2.2 Research Challenges 9

CHAPTER 3: RESEARCH METHODOLOGY

10-12

 3.1 Introduction 10

 3.2 Research Design 10

 3.3 Lab Architecture 10

 3.4 Dataset Collection 11

CHAPTER 4: REQUIREMENT ANALYSIS,

INSTALLATION AND CONFIGURATION

13-23

 4.1 Introduction 13

 4.2 Requirements Analysis 13

 4.3 Requirement Installation 14

 4.3.1 Snort, DAQ, Barnyard2, PulledPork and WebSnort

Installation

15

 4.3.2 Suricata Installation 19

CHAPTER 5: EXPERIMENTAL RESULTS AND

DISCUSSION

24-30

 5.1 Introduction 24

 5.2 Experimental Results on CPU Utilization 24

 5.3 Experimental Results on CICIDS2017 dataset 28

vii

 5.4 Descriptive Analysis and Results Comparison 29

 5.5 Summary 30

CHAPTER 6: CONCLUSION AND FUTURE WORKS

31

 6.1 Conclusion 31

 6.2 Future Work 31

APPENDIX 32-35

 Appendix A: List of Abbreviation 32

 Appendix B: Related Issues 33-35

REFERENCES 36-37

viii

LIST OF TABLES

TABLES PAGE NO

Table 3.1: Attack Types and flows in CICIDS2017 2

Table 4.1: Overview of hardware and software requirements 13

Table 4.2: Specific version of used software 14

Table 5.1: Experimental results of Suricata 28

Table 5.2: Experimental results of Snort 28

Table 5.3: Key difference between Suricata and Snort 30

ix

LIST OF FIGURES

FIGURES PAGE NO

Figure 1.1: Intrusion Prevention System Placement 2

Figure 1.2: Architecture of Snort 3

Figure 1.3: Architecture of Suricata 5

Figure 3.1: Research Design 10

Figure 3.2: Lab Architecture 11

Figure 4.1: nghttp2_install function 15

Figure 4.2: Running Snorter_IPS.sh script 16

Figure 4.3: Downloading DAQ and Snort with automated script 17

Figure 4.4: NFQ DAQ modules functions 17

Figure 4.5: Snort 18

Figure 4.6: PulledPork download IPS rules automatically 19

Figure 4.7: Installing Suricata dependencies 20

Figure 4.8: Suricata installation files 20

Figure 4.9: NFQueue support of Suricata 21

Figure 4.10: Suricata installation 21

Figure 4.11: Suricata detection and prevention rules 22

Figure 4.12: Suricata ICMP detection and prevention rules 22

Figure 4.13: Suricata configuration 23

Figure 5.1: Suricata I/O of packet 24

Figure 5.2: Snort I/O of packet 25

x

Figure 5.3: Interface of atop tool. 25

Figure 5.4: CPU usage of Suricata 26

Figure 5.5: CPU Usage of Snort 26

Figure 5.6: Analysis of UDP packet using Wireshark 27

Figure 5.7: Multi-thread, Multi-thread CPU affinity of Suricata 29

Figure A1: Atop output for experimenting CPU utilization 33

Figure A2: Checking Snort NFQ mode 33

Figure A3: Prove of Suricata’s multi-threading capability 34

Figure A4: Netfilter Queue (NFQ) 34

Figure A5: Packet dropping in Suricata 35

Figure A6: Packet dropping in Snort 35

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

The worldwide system named due to the fact the Internet has become a part and parcel of

our existence. Consistently peoples have interaction with the Internet and plenty of them

link their life with it. The Internet carried out numerous parts of life for example banking,

shopping, learning, installments, business, payments and transactions. In this term due to

the rapid growth of computer networks during the past two decades security has turn into

a critical issue for the Internet. This quick growth has exposed computer networks to an

increasing number of security threats. There are a variety number of security threats such

as worms, viruses, adware, malware and approach to hack something on Internet

developing every day. The threats don't seem to be solely to computers and hardware that

we tend to connect with the Internet, however to the information and knowledge that

resides among that infrastructure.

There are a lot of diverse ways and technique to increase the security of network and

computer systems. However, in this study, I focus on Intrusion Prevention Systems (IPS).

IPS are a hardware device or software system of network and computer security which

detect and prevent intrusive activity both from insider network and outsider network. They

cowl the large part of network security which allow us to manage major aspects. The aim

of the Intrusion Prevention System is to prevent different kinds of intrusions and activities

that are very dangerous for network and computer systems. Intrusions can be an attack

against privilege escalation, unauthorized access to various sensitive files, network attacks

against different critical vulnerable services, actions of harmful malware can be Trojans,

viruses and worms. In general, IPS are placed either after or before the placement of

firewall device in an organized network. In Figure 1.1, indicates general placement of

Intrusion Prevention System in a pictorial format.

2

Internet

Normal User

Web Server

Printer Server

Mail Server

Database Server

Router
Firewall

Switch

Intrusion Prevention System

Figure 1.1: Intrusion Prevention System Placement

There are many valid ways to classify the Intrusion Prevention Systems. Scarfone et. al.,

[1] have used three types of IPS classification in a research. These are i) Host-based

Intrusion Prevention Systems (HIPS), ii) Network-based Intrusion Prevention System

(NIPS), and iii) Wireless Intrusion Prevention System (WIPS). Purpose of these IPS are

given below.

 Host-based Intrusion Prevention System (HIPS): Host-based IPS detect and

prevent intrusions that are generally affect end user. These type of IPS analyze

traffics those are communicate with between the insider program and the internet

or external network of a host. Host-based IPS must be installed to a host to make it

workable.

 Network-based Intrusion Prevention System (NIPS): Network-based IPS

monitors the network traffic and prevent suspicious data stream or packet. NIPS are

work as a router also. All the traffics are passed over NIPS in network.

3

 Wireless Intrusion Prevention Systems (WIPS): Wireless IPS monitor actions in

the wireless networks. Generally, it prevent the network from man-in-the-middle

attacks, MAC address spoofing, wrong configured wireless access points and so

on.

This study is conducted based on the performance, and prevention accuracy comparison of

two most famous free and open source Network-based Intrusion Prevention called Snort

and Suricata. These NIPS are helping the network security community way better.

1.1.1 Snort

The Snort IDS and IPS system became a worldwide famous feature to protect network.

Snort is built based on five import unique module. There are i) Packet capture, ii) Packet

Decoder, iii) Preprocessor, iv) Detection Engine and v) Output module.

Packet

Capture

Packet

Decoder
Preprocessor

Detection

Engine

Output

Module

Internet Signature

Database

Alert

Server

Figure 1.2: Architecture of Snort

4

Packet capture: In this module packets are captured using sniffer in the backend part of

Snort. This module is responsible for capture the data transmitted over the network. For

subsequent transmission to decoder with the help of a library named Data Acquisition

(DAQ), it has done it job.

Packet decoder: Packet decoder deals with parsing the headers of captured packets.

Decoding human readable information from raw packet by parsing them, the analysis of

TCP flags, except for certain protocols of further analysis, finding anomalies and

deviations from the RFC, and other similar work packet decoder done its job.

Preprocessor: The preprocessors of Snort are intended to do in-depth analysis and

normalization protocols at each layer of TCP/IP model. Amongst most used preprocessor

in Snort frag3, stream5, http_inspect, RPC2, sfPortscan are very popular. To work with

fragmented traffic frag3 preprocessor is used. Similarly, for the reconstruction of TCP

flows stream5, for normalizing HTTP traffic http_inspect preprocessor are used. To detect

port scans in network sfPortscan preprocessor is used in Snort. And decoders for different

types of protocol such as SSH, IMAP, SMTP, FTP, SIP, Telnet are also used in this module.

Detection engine: Detection engine of Snort consist of two parts. Of them one part is used

to collect various signature from its database, and another is responsible for deep-level

inspection where it match the signatures with the real-time network traffic.

Output module: Output module is responsible for alert to the administrator based on the

detection of attacks, for logging the attacks, capture the network traffic for further analysis

as pcap format and writing them in binary format on the base machine using Unified2.

1.1.2 Suricata

Suricata is a referred to as a free and open source, advanced, robust and fast network

intrusion detection and prevention engine. It is capable of real-time intrusion detection and

inline prevention (IDPS), monitoring network security and offline processing of captured

pcap files. Suricata analyze network traffic with its powerful and sizable rules and signature

5

language, and has effective Lua scripting support for the detection of complicated modern

intrusion.

Packet

Capture

Packet

Decoder

Packet

Stream

Detection

Engine

Output

Module

Signatures
Event

Generation

Custom

Modules

Internet

Alert

Server

Figure 1.3: Architecture of Suricata

Architecture of Suricata is almost similar to Snort but has difference in some parts of its

module. Suricata use PF_RING a high-speed packet processing framework which a new

type of network socket that dramatically improves the packet capture speed [2] for

capturing packet from the internet or other source. Packet stream is like preprocessor which

is basically deals with network streams. Detection engine of Suricata support multi-

threading techniques and that’s why its processing speed is way better.

1.2 Motivation

Security threats are an alarming issue for the modern world. Attacks which are success in

their motive called intrusion. In recent years from various study it is said that, cyber threats

are increasing rapidly with modern techniques and tactics. Due to the increasing threat

Cyber Crime is a big issue that hampers regular activity of our society and our systems.

6

Intellectual Property Theft and Cybercrime become commonplace during the 2000s. So, to

protect our critical infrastructures, network and computer system necessary steps should

be taken. Intrusion Prevention Systems are a solution to protect network and computer

system from different threats and attack.

1.3 Research Questions

Research question of this study are as follows:

► Are Network-based IPSs are capable to protect network and computer systems,

critical infrastructures from modern intrusion?

► Does IPS are enough to secure todays networks?

► Does Snort with single-thread processing capability better than Suricata?

► Does Suricata’s CPU Utilization better than Snort?

1.4 Expected Output

From this study is expected to learn deep level packet analysis, know how to analyze real

time network traffic in a structured way with well-known solutions. It is a great way to

learn about intrusion, cyber threat, detection and prevention techniques and so on. Expected

outcome would be identify the best solution to prevent modern threat in real world. Another

would be to know about the way to secure critical infrastructures.

1.5 Thesis Layout

This study contains of six chapter in which have described the whole of the thesis. Thesis

layout consists of the preview of all the chapters.

1. Chapter one covers introduction, motivation, research questions, expected output

and thesis layout of the study.

2. Related research work have discussed in Chapter two.

3. Chapter three research methodology includes introduction, research design, lab

architecture, and dataset collection procedure.

7

4. Chapter four of this study discussed on requirement analysis, requirement

installation, and requirement configuration for the success of the experiment.

5. Experimental results on CPU Utilization, experimental results on CICIDS2017

dataset, descriptive analysis and result comparison are discussed in Chapter 5.

6. Finally, in chapter six have discussed about conclusion and future study.

8

CHAPTER 2

BACKGROUND

2.1 Related Works

Intrusion prevention has become significantly more important due to, with the increase in

difficulty and regularity of Internet threats in recent years. Various tech companies and

organizations working to develop the equipment and produces different product including

open source and proprietary. One amongst the most well-known and widespread open-

source intrusion detection and prevention system is Snort which works on signature-based

detection and prevention. Snort was maintained by SourceFire Company, now acquired by

Cisco Systems Limited. Martin Roesch developed Snort in 1998. It was mainly developed

to monitor the network packet of layer 7 which is application layer of OSI model. But

nowadays it is used in the backend part of most of the next-generation firewall and intrusion

prevention systems. In 2009, after a decade another open source community named Open

Information Security Foundation (OISF) announced another signature-based intrusion

detection and prevention system called Suricata. The signification difference between

Snort and Suricata is in their internal architecture. The advancement in Suricata is it’s able

to execute native multithreaded processes. Many research has been done in terms of testing

and comparing different type intrusion prevention system in recent years. Researcher

Sergey identified pros and cons of Snort and Security Onion in his thesis [3]. Ahmad

Iftikhar, et al. recognized intrusion detection approached in their research with comparison

[4]. Study on intrusion detection and prevention system are huge. Researcher B.Santos

Kumar et al., identified type and prevention of intrusion detection system in their research

[5]. A great thesis on analysis and comparison of Snort and Suricata was published in 2011

by Eugene [6]. Also many article has been published focused on intrusion detection and

prevention system. Due to the rapid growth of Internet, need to be ensure its security first.

And Intrusion prevention system can be a great technology in terms of its solution.

9

2.2 Research Challenges

Challenges of the study relies on the experiment part.

► Resources are limited and most of them not rich.

► A strong background on networking and OSI layer is must.

► In-depth knowledge on networking packet architecture is necessary to deploy the

experiment.

► Previous basic knowledge on Intrusion Detection and Prevention Systems is also

necessary.

► Hand-on working knowledge and experience on Linux is a must to fulfil the goal

of this study.

10

CHAPTER 3

RESEARCH METHODOLOGY

3.1 Introduction

The research methodology discussed how the research has been done to complete the

thesis. In-depth study on Intrusion Prevention System has been done prior to the

experiment. This chapter includes the research design, lab architecture and dataset

collection procedure and reason behind choosing the dataset.

3.2 Research Design

Research design shown in Figure 3.1 indicates how the whole research has been conducted.

Define research

motivation, research

question, expected

output and thesis layout

Review related

approaches and works

Research design, lab

architecture

Latest Intrusion

Prevention System

dataset collection

Analysis the

requirements,

implementation and

configuration

Analysis and

experiment of CPU

utilization of Intrusion

Prevention Systems

Analysis and

experiment of IPS on

collected dataset using

data mining

Comparative analysis

of Intrusion Prevention

Systems

Research

Design

Figure 3.1: Research design

3.3 Lab Architecture

Lab architecture includes 4 PC (Attacker, Normal User, Victim PC1 and Victim PC2), 1

network switch, 1 network router PC (Intrusion Prevention System) and 2 logical Class B

private networks which include 172.16.10.0/24 and 172.16.20.0/24 where each network

11

hosts are connected with the switch and IPS router. Figure 3.2 shows the lab architecture

of this research.

Intrusion Prevention System

Switch

IP
1

: 1
7
2

.1
6
.1

0
.1

IP
2

: 1
7
2

.1
6
.2

0
.1

Normal PC

IP: 172.16.10.10

 GW: 172.16.10.1

Victim PC2

IP: 172.16.20.10

 GW: 172.16.20.1

Attacker

IP: 172.16.10.5

GW: 172.16.10.1

Victim PC1

IP: 172.16.20.5

 GW: 172.16.20.1

Figure 3.2: Lab Architecture

3.4 Dataset Collection

The experiment of this study has been conducted on one of the latest IPS dataset named

CICIDS2017 collected from Canadian Institute for Cybersecurity (CIC) which is not

publicly available on the Internet. Many researchers has been used this dataset for inventive

research purpose. Among many researchers, Gobinath Loganath used this dataset for Real-

time Intrusion Detection purpose [7]. Darya Lavrova et. al., also used CICIDS2017 dataset

for “Wavelet-analysis of network traffic time-series for detection of attacks on digital

production infrastructures” [8] purpose. The CICIDS2017 dataset contains benign and the

most up-to-date common attacks, which resembles the true real-world data (PCAPs).

Attack diversity and count of flows can be found on Table 4.1. This dataset also includes

the results of the network traffic analysis using CICFlowMeter with labeled flows based

on the time stamp, source and destination IPs, source and destination ports, protocols and

12

attack (CSV files) [9]. That’s why CICIDS2017 dataset has been used in this study for

experiment.

Table 3.1: Attack Types and flows in CICIDS2017

Attack Type Total flow

1 Heartbleed 11

2
Web Attack: SQL

Injection
21

3 Infiltration 36

4 Web Attack: XSS 652

5 Web Attack: Brute Force 1507

6 Botnet 1966

7 DoS Slowhttptest 5499

8 DoS Slowloris 5796

9 SSH Patator 5897

10 FTP Patator 7938

11 DoS GoldenEye 10293

12 DDoS 41835

13 Port Scan 158930

14 DoS Hulk 231073

15 BENIGN 2358036

Next chapter will discuss the requirement analysis, installation and configuration.

13

CHAPTER 4

REQUIREMENT ANALYSIS, INSTALLATION AND

CONFIGURATION

4.1 Introduction

This chapter discussed on requirement analysis, installation and environment configuration

for the experiment. Requirement analysis includes hardware and software requirements

which are the most important part for the experiment of this research.

4.2 Requirement analysis

Both hardware and software requirements are necessary to study the experiment. Table 4.1

shows the overview of both hardware and software requirements. Requirements are needed

to be ready before the experiment. PCs of victim network and Attacker network both have

4GB of RAM. Intrusion Prevention System has 4 GB of RAM. After successful

implementation of hardware requirements, software requirements was implemented where

different software were installed and configured for the experiment.

Table 4.1: Overview of hardware and software requirements

Hardware Requirements

Software

Requirements
 Machine Operating System IP Address

V
ic

ti
m

N
et

w
o
rk

Victim PC1

Victim PC2

Windows 10 x64

Ubuntu 16.04.5

172.16.20.5

172.16.20.10

XAMPP,

Mysql,

Apache2,

DVWA

Intrusion

Prevention System

(IPS)

Ubuntu 16.04.5

172.16.10.1

172.16.20.1

Snort,

DAQ,

Barnyard,

Pulledpork,

Mysql,

14

Suricata,

WebSnort,

Wireshark,

Atop

A
tt

ac
k
er

N
et

w
o
rk

Attacker

Normal User

Kali Linux

Windows 10 x64

172.16.10.5

172.16.10.10

Tcpreplay,

Wireshark,

Nmap, Atop

4.3 Requirements Installation

To make the environment ready for the experiment, firstly hardware requirements were

setup properly. According to the lab architecture can be found on Chapter 3 Switch, Router

and PCs were connected with necessary network cables. And two logical private network

172.16.10.0/24 and 172.16.20.0/24 has been configured and tested on Router and PCs prior

to the installation of software requirements. It is mentioned that Internet connection was

ensured to download necessary software for the experiment. Table 4.2 shows the specific

version of software which were used in this research.

Table 4.2: Specific version of used software

Software Version Software Version

XAMPP 7.2.10 Websnort 0.8

MySQL 5.7.16 Wireshark 2.6.4

Apache2 2.4.34 Atop 2.3.0

DVWA 1.9 Tcpreplay 4.2.5

Snort 2.9.11.1 Nmap 7.70

DAQ 2.0.6

Barnyard2 2-1.14

PulledPork 0.7.4

Suricata 4.0.5

15

4.3.1 Snort, DAQ, Barnyard2, PulledPork and WebSnort installation

Here for installing Snort, DAQ, Barnyard2, PulledPork and WebSnort have used an

interactive automated script named Snorter_IPS.sh developed by Joan Bono along with

one of the contributor named Md. Nazrul Islam [10]. This script was taken from open

source platform GitHub and then modified. Function of the script includes-

function main(),

function update_upgrade(),

function nghttp2_install(),

function snort_install(),

function snort_edit(),

function snort_test(),

function barnyard2_ask(),

function pulledpork_ask() ,

function service_create(),

function websnort_ask(),

function last_steps(),

function system_reboot()

The script start from the function main() and step by step and install and configured

NGHTTP2, Snort, DAQ, Barnyard, PulledPork and WebSnort along with their

dependencies. Figure 4.1 shows nghttp2_install a function of Snorter_IPS.sh script which

install and configure NGHTTP2. NGHTTP2 is necessary for Snort to run as IPS mode.

Figure 4.1: nghttp2_install function

Dependencies for Snorter_IPS.sh script:

16

jq, curl

Dependencies for NGHTTP2:

cython libxml2-dev python3-dev binutils libevent-dev git libev-dev libssl-dev

libjansson-dev zlib1g-dev python-setuptools automake libjemalloc-dev pkg-config

libnghttp2-dev libc-ares-dev autotools-dev g++ make autoconf libtool libcunit1-

dev libsystemd-dev

Dependencies for Snort:

gcc libpcre3-dev libnghttp2-dev openssl libdnet bison zlib1g-dev libpcap-dev
libssl-dev libdumbnet-dev flex

Dependencies for Barnyard2:

mysql-server libmysqlclient-dev mysql-client autoconf libtool libdnet

checkinstall yagiuda libdnet-dev locate

Dependencies for PulledPork:

libcrypt-ssleay-perl liblwp-useragent-determined-perl

Figure 4.2 shows the running script where options –i indicates the interface of the machine

and –o indicates the oinkcode (A unique code for snort individual user).

Figure 4.2: Running Snorter_IPS.sh script

17

Figure 4.3 shows that daq-2.0.6 and snort-2.9.11.1 is downloading automatically. It is

mentioned that the script always find the latest version of required softwares. At the time

of the experiment daq-2.0.6 and snort-2.9.11.1 was the latest version.

Figure 4.3: Downloading DAQ and Snort with automated script

To run Snort software as intrusion prevention mode nfqueue is necessary. So it must be

needed to ensure that nfqueue is enable in DAQ module before compiling.

Figure 4.4: NFQ DAQ modules functions

18

Figure 4.4 shows DAQ modules where NFQ DAQ module is successfully enabled with yes

notation. After downloading and DAQ and Snort, DAQ module was compiled before Snort

installation. Because DAQ module is a must pre-requirement module of Snort software.

Figure 4.5 indicates Snort successfully installed and configured. Snort installation can also

be verified using the command-

sudo /usr/bin/snort –T –c /etc/snort/snort.conf

Figure 4.5: Snort

If the command returned successful indication without any error means that snort

installation and its configuration is ok. Snort works based on detection and prevention

rules. Everyday new intrusion are discovered and new rules are generated against them to

prevent propagation in the world. So it is necessary to have the latest detection and

prevention rules. Using pulledpork an open source software automatically download the

latest rules every day at a scheduled time. Figure 4.6 shows pulledpork is downloading

latest community, opensource, emerging-rules and snort-snapshot rules. Snort-snapshot

rules are especially for snort user. These rules are identified and download based on the

unique oinkcode.

19

Figure 4.6: PulledPork download IPS rules automatically

Snort ruled are located at /etc/snort/rules/ .When rules download was complete,

websnort was installed and configured successfully.

4.3.2 Suricata installation

Suracata also known as open-source network based IPS developed by Open Information

Security Foundation (OISF). Suricata also capable to capture real-time network packet and

able to identify network intrusion and protect them using inline prevention mode. Suricata

use NetfilterQueue a.k.a NFQ for performing inline functionality [11].

Suricata dependencies:

autoconf libjansson-dev libcap-ng-dev libjansson4 libnet1-dev libpcre3-dbg

libmagic-dev libtool libpcre3-dev automake libpcap-dev libyaml-dev zlib1g-dev

Suricata dependencies for IPS:

libnetfilter-queue-dev libnetfilter-queue1 libnfnetlink-dev

Figure 4.7 shows the installation process of Suricata dependencies. After that Suricata was

downloaded, installed and configured.

20

Figure 4.7: Installing Suricata dependencies

Suricata latest version (suricata-4.0.5) is downloaded using command-

wget https://www.openinfosecfoundation.org/download/suricata-current.tar.gz

After download tar file was extracted and Figure 4.8 show the insider installation files.

Figure 4.8: Suricata installation files

21

Before installation of Suricata software configure file is needed to be compiled first with

enabling necessary module such as nfqueue module. The command –

sudo ./configure --enable-nfqueue --prefix=/usr --sysconfdir=/etc --localstatedir=/var

Figure 4.9: NFQueue support of Suricata

Figure 4.9 shows NFQueue module is enabled and supported notation as yes. So Suricata

can be run as Intrusion Prevention mode. After that Suricata is installed and configured.

Figure 4.10 Suricata installation

22

Figure 4.10 shows the installation of Suricata where firstly installed configuration and then

Suricata rules. Surcata detection and prevention rules are located at /etc/suricata/rules

directory. Figure 4.11 shows Suricata detection and prevention rules.

Figure 4.11: Suricata detection and prevention rules

 Rules extension is .rule and can be open through any text editor software such as vi, vim,

gedit, nano and so on. Figure 4.12 shows the rules for ICMP packet.

Figure 4.12: Suricata ICMP detection and prevention rules

23

While rules and other necessary configuration was complete, Suricata main configuration

file was configured to make ready for run.

Figure 4.13: Suricata configuration

Suricata configuration file is located /etc/suricata/suricata.yaml. Configuration

has several parts like network setup, output setup, and log setup and so on. Figure 4.15

indicates the Suricata configuration file where pcap-log is enabled with filename as

thesis.pcap. In the next chapter experimental results will be performed and discussed.

24

CHAPTER 5

EXPERIMENTAL RESULTS AND DISCUSSION

5.1 Introduction

The experiment tested and compared with Snort and Suricata Intrusion Prevention system

in performance and accuracy of detection and prevention in a real setup environment.

Performance evaluated by measuring the percentage of memory usage, network usages and

CPU Utilization in this experiment. Accuracy was measured and compared based on the

generated alert of detection and prevention of each prevention system using machine

learning and data mining technique on CICIDS2017 dataset.

5.2 Experimental Results on CPU Utilization

The experiment was conducted in two stage. Where in first stage Packet Processing and

CPU Utilization of both Intrusion Prevention System (Snort and Suricata) was measured

and calculated. And in another stage detection and prevention of Suricata and Snort was

analyzed and measured. Packet processing was logged and calculated using Wireshark.

From Wireshark packets I/O value was taken as a csv file. Figure 5.1 and Figure 5.2 shows

the packets processing graphs of Suricata and Snort respectably. Suricata Intrusion

Prevention System processed 351.70 packet/s on an average with a high value 4295 packet

Figure 5.1: Suricata I/O of packet

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1
3
:0

1
.0

1
3
:1

5
.0

1
3
:2

9
.1

1
3
:4

3
.1

1
3
:5

7
.1

1
4
:1

1
.1

1
4
:2

5
.2

1
4
:3

9
.2

1
4
:5

3
.2

1
5
:0

7
.2

1
5
:2

1
.2

1
5
:3

5
.3

1
5
:4

9
.3

1
6
:0

3
.3

1
6
:1

7
.4

1
6
:3

1
.4

1
6
:4

5
.4

1
6
:5

9
.4

1
7
:1

3
.5

1
7
:2

7
.5

1
7
:4

1
.5

1
7
:5

5
.5

1
8
:0

9
.6

1
8
:2

3
.6

1
8
:3

7
.6

1
8
:5

1
.6

1
9
:0

5
.7

1
9
:1

9
.7

1
9
:3

3
.7

P
ac

k
et

/s

Timestamp

Packet processing of Suricata

25

in a second. Suricata was running for 6 minutes during the experiment. On the other hand

Snort was running for 10 minutes shows in Figure 5.2 processed 327.22 packets/s on an

average with a high value 5578 packet in a second during the experiment.

Figure 5.2: Snort I/O of packet

CPU Utilization of Suricata and Snort was measured using atop a tool that is capable of

reporting the activity of all processes like CPU utilization, memory growth, disk utilization,

priority, username, state, exit code and so on. Figure 5.3 shows the interface of atop tool.

Figure 5.3: Interface of atop tool.

0

1000

2000

3000

4000

5000

6000

5
6
:0

1
.0

5
6
:2

2
.5

5
6
:4

4
.1

5
7
:0

5
.6

5
7
:2

7
.1

5
7
:4

8
.6

5
8
:1

0
.2

5
8
:3

1
.7

5
8
:5

3
.2

5
9
:1

4
.7

5
9
:3

6
.3

5
9
:5

7
.8

0
0
:1

9
.3

0
0
:4

0
.8

0
1
:0

2
.3

0
1
:2

3
.9

0
1
:4

5
.4

0
2
:0

6
.9

0
2
:2

8
.4

0
2
:5

0
.0

0
3
:1

1
.5

0
3
:3

3
.0

0
3
:5

4
.6

0
4
:1

6
.1

0
4
:3

7
.6

0
4
:5

9
.1

0
5
:2

0
.7

0
5
:4

2
.2

0
6
:0

3
.7

P
ac

k
et

/s

Timestamp

Packets processing of Snort

26

During the experiment CPU Utilization of Suricata was 44% on overage while Suricata ran

for 6 minutes. Figure 5.4 indicates the utilization of CPU by Suricata Intrusion Prevention

System.

Figure 5.4: CPU Utilization of Suricata

On the other hand in Figure 5.5 shows the CPU Utilization of Snort where average CPU

Utilization was 59% during Snort ran for 10 minutes.

Figure 5.5: CPU Utilization of Snort

Deep level network packet analysis was conducted with most well-known and powerful

packet analyzer tool named Wireshark [12]. With this powerful tool packet pattern has

0
10
20
30
40
50
60
70
80
90

100

1
8
:1

3
:0

1
.0

0
0

1
8
:1

3
:2

0
.0

0
0

1
8
:1

3
:3

9
.0

0
0

1
8
:1

3
:5

8
.0

0
0

1
8
:1

4
:1

7
.0

0
0

1
8
:1

4
:3

6
.0

0
0

1
8
:1

4
:5

5
.0

0
0

1
8
:1

5
:1

4
.0

0
0

1
8
:1

5
:3

3
.0

0
0

1
8
:1

5
:5

2
.0

0
0

1
8
:1

6
:1

1
.0

0
0

1
8
:1

6
:3

0
.0

0
0

1
8
:1

6
:4

9
.0

0
0

1
8
:1

7
:0

8
.0

0
0

1
8
:1

7
:2

7
.0

0
0

1
8
:1

7
:4

6
.0

0
0

1
8
:1

8
:0

5
.0

0
0

1
8
:1

8
:2

4
.0

0
0

1
8
:1

8
:4

3
.0

0
0

1
8
:1

9
:0

2
.0

0
0

1
8
:1

9
:2

1
.0

0
0

1
8
:1

9
:4

0
.0

0
0

1
8
:1

9
:5

9
.0

0
0

C
P

U
 U

ti
li

za
ti

o
n

/s

Timestamp

CPU Utilization of Suricata

0
10
20
30
40
50
60
70
80
90

100

C
P

U
 U

ti
li

za
ti

o
n

/s

Timestamp

CPU Utilization of Snort

27

been identified and inspected the malicious and suspicious pattern on a packet. During the

experiment most of the network packet was under TCP protocol and less was ICMP and

UDP, DNS, HTTP and other protocols network packet. It was identified that same packet

was sent from one network to another network during the attacks in several times. And

most of them were fragmented and aimed to make denial-of-service of the victim server.

Figure 5.6 indicates the UDP packet analysis using Wireshark network packet analyzer

tool.

Figure 5.6: Analysis of UDP packet using Wireshark

At the same time during the experiment while attacks were launched from attacker network

to victim network both Intrusion Prevention System Snort and Suricata generated

prevention notification based on their rules against malicious and suspicious packet called

intrusion. Suricata generated alert against 31427 enabled rules and they were downloaded

and configured with PulledPork during Suricata installation. Then again Snort were

generated alerts against 29471 enabled rules and also downloaded via PulledPork during

the installation of Snort. After that generated logs of Suricata and Snort were collected for

calculating their accuracy and performance using machine learning algorithms and data

mining techniques.

28

5.3 Experimental Results on CICIDS2017 dataset

Data mining techniques was applied to calculate the prevention accuracy using five

machine learning algorithm J48, IBk, MLP (Multilayer Perceptron), BayesNet and Naïve

Bayes on 810 data for Suricata and 673 data for Snort of CICIDS2017 Intrusion Prevention

System dataset. Table 5.1 indicates the results for Suricata and it is seen that overall

classification accuracy of five machine learning algorithm J48, IBk, MLP, BayesNet and

Naïve Bayes, J48 is performs better with 97.65% overall classification accuracy.

Table 5.1: Experimental results of Suricata

Algorithms
TPR

(%)

FPR

(%)

FNR

(%)

Pr.

(%)

F-1

(%)

OA

(%)

J48 97.70 0.50 2.30 97.80 97.60 97.65

IBk 92.70 1.30 7.30 93.00 92.70 92.71

MLP 91.00 3.60 9.00 90.80 90.60 90.99

BayesNet 82.20 1.70 17.80 85.60 82.70 82.22

Naïve Bayes 68.10 3.60 31.90 84.50 72.10 68.15

*** TPR = True Positive Rate, FPR = False Positive Rate, FNR = False Negative Rate, Pr. = Precision, F-1 = F-measure, OA =

Overall Accuracy [13]

From the Table 5.2 show results for Snort and among five machine learning algorithm J48

classification accuracy is better with 97.33% accuracy.

Table 5.2: Experimental results of Snort

Algorithms
TPR

(%)

FPR

(%)

FNR

(%)

Pr.

(%)

F-1

(%)

OA

(%)

J48 97.30 0.40 2.30 97.30 97.20 97.33

IBk 93.20 1.10 7.30 93.30 93.10 93.16

MLP 90.30 1.30 9.00 90.70 89.90 90.34

BayesNet 85.90 1.60 17.80 86.10 85.10 85.88

Naïve Bayes 81.90 2.10 31.90 86.80 82.80 81.87

*** TPR = True Positive Rate, FPR = False Positive Rate, FNR = False Negative Rate, Pr. = Precision, F-1 = F-measure, OA =

Overall Accuracy

29

5.4 Descriptive Analysis and Results Comparison

From experimental result it is found that, Suricata processed 351.70 packet/s on an average

in 6 minutes where Snort processed 327.22 packets/s on an average in 10 minutes. So, at

this point Suricata performs better than Snort. In terms of CPU Utilization, Suricata used

44% CPU on an average where Snort CPU Utilization was 59% on an average. It is also

identified that, in intrusion prevention part Overall accuracy of Suricata is slightly better

than Snort. So, after the experiment on results it is proved that, in all cases Suricata

performs better than Snort. It is also identified that Suricata perform well due to its multi-

thread architectural design and multi-CPU affinity capability where Snort can deal with

single-thread process. Figure 5.7 shows the multi-thread architectural design and multi-

CPU affinity of Suricata in pictorial format.

Figure 5.7: Multi-thread, Multi-thread CPU affinity of Suricata [14]

Key difference of both Intrusion Prevention System (Suricata and Snort) also identified

and Table 5.3 indicates the key comparison of Suricata and Snort.

Packet

Capture

Packet

decode and

stream app

layer

Output

Module

Internet

Detection Detection Detection

Alert

Server

Core 0

 1

 2

 3

PAQ DECODE STREAM DETECT OUTPUT

DETECT

DETECT

DETECT

Core 0

 1

 2

 3

PAQ

DECODE

STREAM

DETECT

OUTPUT

DETECT X2

DETECT

set_CPU_affinity: yes

set_CPU_affinity: no

CPU/CPU Core thread

30

Table 5.3: Key difference between Snort and Suricata

Parameter Suricata Snort

Intrusion Prevention Feature Yes Yes

VRT rule support Yes Yes

Emerging threat rules support Yes Yes

SO rule support No Yes

Multi-thread support Yes No

IPv6 support Yes Yes

Capture accelerator support Yes No

Ease of installation No Yes

Configuration filename suricata.yaml snort.conf

5.5 Summary

The experimental results shows that Suricata performed well than Snort in terms of latest

threats or intrusion on CICIDS2017 dataset. Day by day zero day exploits, malware,

ransomware are made to interrupt the network and computer systems. It is necessary to

improve existing Intrusion Prevention Systems like Suricata and Snort, make them more

efficient to protect from modern intrusions.

31

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

The study conducted with two most common and well-known open-source network-based

intrusion prevention system. CPU utilization and performance accuracy was evaluated and

compared of both systems. In same structured lab environment experiment was deployed

to fulfil the goal of the study. Performance was evaluated based on the latest intrusion

prevention system dataset to test their ability for preventing modern intrusions. Both

system performed very well during the experiment. But in some cases Suricata’s

performance was really noteworthy. Due to the difference in their internal structure like

multi-thread detecting engine and multi-affinity CPU capability, performance was varied.

It was also identified that Suricata used more RAM than Snort for multi-processing

functionality. After the experiment it is stated that existing Intrusion Prevention Systems

are capable to work against modern known threats. And it is also recommended to use

Intrusion Prevention System in Internet-based companies and organization to protect

critical infrastructures and to improve data security.

6.2 Future work

Future work of the study could be develop an enhance Intrusion Prevention System that

will be capable to identify and protect unknown intrusion in both network and computer

systems. As existing IPS are very much dependent on their rules. So they are only capable

to protect known threats. Zero-day attack is on the rise. So, it is necessary to improve

existing Intrusion Prevention Systems or develop an enhance system.

32

APPENDIX

APPENDIX A: LIST OF ABBREVIATION

IDS Intrusion Detection System

IPS Intrusion Prevention System

HIPS Host-based Intrusion Prevention System

NIPS Network-based Intrusion Prevention System

WIPS Wireless Intrusion Prevention System

IP Internet Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

PC Personal Computer

CPU Central Processing Unit

RAM Random Access Memory

MAC Media Access Control

OISF Open Information Security Foundation

DAQ Data Acquisition

DVWA Damn Vulnerable Web Application

NFQ Netfilter Queue

33

APPENDIX B: RELATED ISSUES

Figure A1: Atop output for experimenting CPU utilization

Figure A2: Checking Snort NFQ mode

34

Figure A3: Prove of Suricata’s multi-threading capability

Figure A4: Netfilter Queue (NFQ)

35

Figure A5: Packet dropping in Suricata

Figure A6: Packet dropping in Snort

36

REFERENCES

[1] Specarfone Karen, and Peter Mell. “Guide to Intrusion Detection and Prevention Systems

(IDPS).” Guide to Intrusion Detection and Prevention Systems (IDPS), Feb. 2007,

csrc.nist.gov/publications/detail/sp/800-94/final.

[2] “PF_RING™ High-Speed Packet Capture, Filtering and Analysis.” Ntop,

www.ntop.org/products/packet-capture/pf_ring/.

[3] Sergey Bezborodov. “Intrusion Detection System and Intrusion Prevention System with Snort

Provided by Security Onion.” Mikkeli University of Applied Sciences, 2016.

[4] Ahmad, Iftikhar, et al. “Comparative Analysis of Intrusion Detection Approaches.”

International Conference on Computer Modelling and Simulation, 2010,

doi:10.1109/UKSIM.2010.112.

[5] Kumar, B.Santos, et al. “Intrusion Detection System- Types and Prevention.” International

Journal of Computer Science and Information Technologies, vol. 4, no. 1, 2013, pp. 77–82.

[6] Albin, Eugene. “A Comparative Analysis of the Snort and Suricata Intrusion-Detection

Systems.” Naval Postgraduate School, September, 2011.

[7] Loganathan, Gobinath. “Real-Time Intrusion Detection Using Multidimensional Sequence-to-

Sequence Machine Learning and Adaptive Stream Processing.” The University of Western

Ontario, 2018.

[8] Lavrova, Darya, et al. “Wavelet-Analysis of Network Traffic Time-Series for Detection of

Attacks on Digital Production Infrastructure.” SHS Web of Conferences, 2018,

doi:https://doi.org/10.1051/shsconf/20184400052.

[9] Intrusion Detection Evaluation Dataset (CICIDS2017). Canadian Institute for Cybersecurity

(CIC), 5 Feb. 2018, www.unb.ca/cic/datasets/ids-2017.html.

[10] bono, Joan, and Md. Nazrul Islam. “Joanbono/Snorter.” GitHub, 22 Aug. 2018,

github.com/joanbono/Snorter.

37

[11] Suricata User Guide. Open Information Security Foundation (OISF), 2018,

media.readthedocs.org/pdf/suricata/latest/suricata.pdf.

[12] Wikepedia. “Wireshark.” Wireshark-Wikipedia, https://en.wikipedia.org/wiki/Wireshark.

[13] Wikipedia. Receiver Operating Characteristic. Confusion Matrix

https://en.wikipedia.org/wiki/Receiver_operating_characteristic.

[14] “Threading.” Suricata, suricata.readthedocs.io/en/suricata-4.0.5/configuration/suricata-

yaml.html.

