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ABSTRACT 

Background:  

There are lots of use of path planning algorithm in search-related applications including 

robot exploring, game design, artificial intelligence, traffic route navigation, network 

routing and path analysis is most extensive. 
 

Objective:  
Comparison study on three path planning algorithm Dijkstra, Greedy BFS and A-Star 

algorithm to find out which algorithm gives the shortest path for a particular 2D 

environment with an obstacle. 

Methods: Dijkstra algorithm, Greedy BFS and A-Star algorithm. For distance 

calculation have used Euclidean Space calculation. 

 

Results:  
This literature carries out from simulation result that A* provide best optimal path 

rather Dijkstra algorithm, Greedy BFS. But sometimes A* and Greedy BFS show same 

performance. 

 

Conclusions:  
A star gives the best performance on more obstacle in static environment. It can avoid 

the obstacle and travel less node than Dijkstra, Greedy BFS. In less obstacle density 

Dijkstra , A* and Greedy BFS travel same number of node. 

 

Keywords: Dijkstra, Greedy BFS, A Star, Path Planning, Path Optimization; 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

 

Path planning is the process of creating a path from any starting point to goal point in 

kind of environment. Now a days it is an essential part of the aerial vehicle. Public 

Transport Route Planning also use the disjkstra (Alican Bozyiğit, 2017). An Efficient 

Hardware Architecture algorithm use for Shortest Path Search Engine (Woo-Jin Seo, 

2009). path planning algorithm is apply on find out the solution of optimal path 

(Mackworth, 2017; Pearl, 1984).for radar network optimization also use the path 

planning algorithm (Fu Xiao-wei, 2010). Wireless Sensor Networks path planning used 

the optimization algorithm (Xu Yulong, 2016). 

1.2 Motivation of the Research 

 

Path planning is the most important part of UAV (Unmanned Arial Vehicle) (KHAILI, 

2014). It has so many uses in a different area one of the controls of autonomous mobile 

robots (Shaimaa Ahmed, 2016). There are so many countries they have used UAV for 

observation and gather intelligence. For combat aircraft has great significance effect for 

automated flight paths design as without increasing workload for pilots and improve 

the mission effectiveness and also allows the possibility of updated flight paths being 

generated in response to the receipt of new intelligence concerning the mission 

(Tianyou Chen, 2018).  

1.3 Problem Statement 

 

One of the fundamental problems for path planning is navigating a terrain and finding 
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the shortest path to a Goal location (Nadira Jasika, 2012). There are many algorithms 

that can solve this problem, most common and widely known like the Dijkstra search, 

greedy BFS, and A Star search algorithm. To reach goal, robot has to traverse the 

terrain. To identify all the nodes that surround it, a brute force approach would be to 

start with a node. Move to one of the adjacent nodes and repeat this process until the 

goal node is found. There will be so many obstacles and also have a starting and target 

node algorithm have to find out the path and path should be optimal.   

1.4 Research Questions 
 

There are so many algorithms that can plan for path planning, but they are not always 

optimal. Optimal is the most sufficient for UAV control problem.so have to find out 

which algorithm is best for optimal, though optimality depends on the environment. 

Why A-Star algorithm is best for find out the shortest pat? 

1.5 Research Objectives 

 

To find out the Best Algorithm among Dijkstra search, greedy BFS, and A Star search 

algorithm. Established that A Star is best algorithm for path optimization. 

1.6 Research Scope 

 

A Star is best algorithm for optimization, but it is not always best. Sometimes it gives 

the same result of dijkstra and greedy BFS. The scope of this paper is compare three 

algorithms (dijkstra, greedy BFS and A*) and all the algorithms are applied on only 

10X10 grid environment. Where agent can move left, right, up, down and also diagonal. 

Algorithms are work on a static environment and it will not give a good or optimal 
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solution in the dynamic environment. It will not work in properly if the obstacle or goal 

is moving. 

1.7 Contribution: 
 

Establishing A* algorithm is best path planning algorithms in 2D static environment 

among dijkstar, pure heuristic and A* algorithms.  

1.8 Thesis Organization: 

 

Chapter 1 describe the Introduction of the thesis Chapter 2 will describe the related 

works or what is the latest work on algorithm, Chapter 3 represent the methodology 

which function and algorithm have used for simulation, Chapter 4 will show the 

simulation result and Chapter 5 represent recommendation and conclusion of the thesis 

area. 
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CHAPTER 2 

LITERATURE REVIEW  

Enacting literature review will describe the existing work that have been published in 

the past based on path planning algorithms which relate to my thesis area. In the past 

publication they have been discuss how they applied and compare the algorithms. 

4.1 Route Planning 

Based on the basic theory of A-star algorithm compares its advantages and 

disadvantages with genetic algorithm and ant colony algorithm. On the other hand 

(Alongside) construct a battleground environment model of unmanned aerial vehicle 

(UAV) for path planning. And also, A-star algorithm has applied on that environment 

with least fuel and least danger multiple constraints (Tianyou, 2018). 

2.2 USV Avoiding Underwater Obstacles 

The literature narrates the path re-planning techniques and also obstacle avoidance for 

an unmanned surface vehicle (USV) underwater based on multi-beam forward looking 

sonar (FLS). In underwater obstacles computing a numerical solution procedure based 

on an A* algorithm has used for near-optimal paths in static and dynamic environments. 

To regenerate the optimal path for several updated frames in the field of view of the 

sonar with a proper update frequency of the FLS has (Phanthong, 2014) (Guohao, 2018) 

(Gopikrishnan, 2011) (Chimanga, 2016) (Valenzano, 2014) been tested with real-time 

path re-planning algorithm. The proposed method was able to avoid both a single 

stationary obstacle, multiple stationary obstacles and moving obstacles with the Global 

Positioning System (GPS) of the USV (Phanthong, 2014). 

2.3 Performance comparison 

According to (B.Moses Sathyaraj, 2008) performance comparison in variant 

environment if the number of nodes is enhancement then complexity of the search 
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algorithm will increase. But A_star was giving best performance rather than Dijkstra’s, 

Bellman Ford’s, Floyd-Warshall’s. 

 

2.4 Demand control 

From the problem of a critical power deficit due to low water levels in Zambia that has 

oppressed the economy. That is the primary source of electricity. The government also 

making efforts to overcome by diversifying to renewable solar energy but it was not an 

optimal solution and also the current photovoltaic (PV) systems are not to capable to 

produce sufficient energy. In this literature has proposed a system to demand control in 

PV systems by using the Best First Search algorithm. As a result, the proposed system 

is efficient to optimize user priorities and limits the power consumed by finding the 

best combination of household appliances. It has achieved the goal by using Artificial 

Intelligence heuristic search. To determine the best combination of these household 

appliances has used the Best First Search algorithm with appropriate heuristic value 

(it’s actually an A* search). And it was also optimal rather than Breadth First Search 

algorithm to find out the best combination of household appliances (Chimanga, 2016). 

 

2.5 A* algorithm in Traffic Navigational System 

A* algorithm is used for achieving high efficiency of vehicular navigation by analyzing 

capabilities of maturity, optimality, time complexity, and space complexity in variants 

evaluation function (Jingang, 2010). 

2.6 Evaluation of multiple algorithm 

Comparison study based on computational time and solution optimality in variant 

obstacle information. Recently the researchers have attracted to (UAVs) unmanned 

aerial vehicles due to their much potential civilian applications. However, current robot 
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navigation technologies need further improvement for diligent application to several 

scenarios. One of the key issues for robot navigation is, the robot has to “Sense and 

Avoid” capability. The most challenging part of the navigation is avoiding the noise 

while accounting for sensor noise, uncertainties in operating conditions, and real-time 

applicability. The purpose of this paper is the evaluation of widely known UAVs path 

planning and obstacle avoidance algorithm based on heuristic and non-heuristic method 

on three different global and local obstacle scenarios. The literature carrying out 

computational time and solution optimality of the algorithms. And it will provide a clear 

vision to the reader for which algorithm is best for which obstacle scenarios. Cause 

environment and obstacle play a huge role in the overall performance (Radmanesh, 

2018). 

2.7 Summery 
In the above literature review there is lots of uses of dijkstar, greedy heuristic and A* 

algorithms in different environment and different area for evaluating which algorithm 

gives the best or optimal solution, but every algorithm have a significant role based on 

the environment and area. For traffic navigation system A* is more optimal rather 

than any algorithm. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

In the above paper will discuss three path planning algorithm and will apply one 

distance space calculating methodology for finding adjacent node. 

3.1 Heuristic Function  

 

Heuristic: The practice of heuristics was progressed by psychologists Amos Tversky 

and Daniel Kahneman among 1970s to 80s to help human decision making (Wikipedia, 

2018). Though it was basically proposed by Novel laureate Herbert A. Simon. The 

heuristic is a process to perform a practical method for problem-solving. It also logical, 

rational, and sufficient to arrive an immediate goal but not guaranteed to be optimized. 

It is used for making a process speedy to find out the optimal solution [2]. Basically, 

heuristic function is a method to instruct of an algorithm about the goal direction [3]. 

Usually, we use two types of heuristic value calculation formula.one is the Manhattan 

distance or taxicab geometry calculation and another is the straight-line distance (SLD) 

or Euclidean Space calculation (Amos Tversky, 1982; ZeFang He, 2017). But of course, 

heuristic value must be less than actual distance (Krause, 1975). 

 

 

 

Manhattan distance =>AC=AB+BC 

Taxicab geometry is the sum of the absolute differences two Cartesian coordinates 

(Krause, 1975). 

Euclidean Space calculation=>AC=√𝐴𝐵2 + 𝐵𝐶2 

 

A 

B C 
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Basically, its follow the Pythagorean Theorem to calculate distance to two Cartesian 

coordinates (Judith D.Sally & Paul J.Sally, 2007). Here has used the Euclidean distance 

formula for this particular path planning problem-solving. Denoted by h(n), where n is 

node pointer that describes the location. 

3.2 The Dijkstra’s algorithm 

 

The Dijkstra is an uninformed search algorithm. It was envisioned by Computer 

Scientist the Edsger Wybe Dijkstra in 1956 (Dijkstra, 1959). the algorithm stand in 

many diverse, original divers is the shortest path finding between two nodes in a graph 

(Jehn-Ruey Jiang, 2014) (Dijkstra, 1959).it has another variant that is called shortest 

path finding from single source node to all other nodes in a graph.it can also be used to 

finding a shortest path from a single source node to a single destination node from a 

graph with put an end, the algorithm when once the shortest path of the destination is 

found (Risald, 2017). We apply here single source to a single destination shortest path 

method. The whole environment is demonstrated in the grid. So that search 

environment is simply a two-dimensional array. Each point of the array is rectangle or 

node and traversable or not traversable (Fan, 2010). The most important thing in the 

algorithm is to find out all adjacent rectangle or square that are connected to each other 

with an edge (KHAILI, 2014), fixed a node as an initial node=current node and its path 

distance is 0 just because it has not traveled yet. Expand the node and mark all the 

adjacent node of the initial node (Wang, 2011). And have to find out which adjacent 

node will be determined, when once determine the traverse adjacent node, the traveler 

for sure move from the center of the rectangle (node) to the next node and have to fix 

that current node as a visited node (Mohamed, 2014). It will stop when the current node 

is the final destination node (Kang, 2008 ). At every current node of the path, searching 
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has to check the adjacent node and also have to ignore the obstacle terrain node. The 

adjacent node will store in open list and have to choose an adjacent node from the open 

list, the process will continue until the destination will found (Kang, 2008 ). But which 

adjacent node has to select from the open list that proceeding with the algorithm? That 

is appointed by the function f (n), which must be minimized to take a low-cost path. 

     f (n) =g(n). 

Here, g(n) = real path-cost or distance between two pairs node which is directly 

connected. 

Dijkstra’s Pseudo code: 

1) First have to set beginning node in the OPEN list than compute the cost 

function f (n). [Where g (n) =path cost between the goal and the start node, f 

(n) = g (n).] 

2) Find the adjacent node with the least cost f(n) on the open list 

3)  Shift to the CLOSED list from the OPEN List which node has the smallest 

cost function f (n). 

4) Incase two or more nodes have the same cost function f (n), then it will chose 

randomly resolve ties. 

5) Algorithm will terminate if n is the goal node and to obtain the solution 

optimal path use the pointers. Otherwise, will continue until find the goal. 

6) Determine all the adjacent nodes of n and calculate the cost function f (n) for 

every adjacent, not on the CLOSED list. 

7)  Associate with every adjacent, not on list OPEN list or CLOSED list the cost 

calculated and shift these on the OPEN list, placing pointers to n (n is the 

parent node). 

8) Associate with any adjacent already on OPEN the smaller of the cost values 

just calculated and the previous cost value. (min (new f(n), old f(n) ) ). 

9) Repeat from step 2. 
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3.3 Greedy Best First Search or pure heuristic search Algorithm  
 

Greedy Best First Search is the type of inform search, that operates based on estimated 

cost of real path distance that’s call heuristic value, denoted by h(n) (Marinescu, 2010). 

The greedy BFS is extending nodes based on their heuristic function, it’s a searching 

method, in hopes to find out an optimal solution in every step by selecting the best local 

choice (Lu, 2013). But does not think about seriously how the current solution is 

optimal (Chimanga, 2016). To estimate the distance from each local choice to goal point 

uses the heuristic value (Mahmud, 2012). By estimating the distance with search space 

for one step ahead from any node to goal node define the heuristic function h(n). after 

that select a minimizing heuristic function. 

  h(n)=Manhattan distance or Euclidean Space. 

But here use the Euclidean Space for estimating the heuristic cost. If the heuristic 

function h(n), for all n, is always less than or equal to the actual path(cost) then it will 

always find out a solution. 

Greedy BFS Pseudo code: 

1. First have to set beginning node in the OPEN list than compute the cost function 

f (n). [Where h (n) = 0 and f (n) = h(n).] 

2. Find the adjacent node with the least cost f(n) on the open list 

3.  Shift to the CLOSED list from the OPEN List which node has the smallest cost 

function f (n). 

4. Incase two or more nodes have the same cost function f (n), then it will chose 

randomly resolve ties. 

5. Algorithm will terminate if n is the goal node and to obtain the solution optimal 

path use the pointers. Otherwise, will continue until find the goal. 

6. Determine all the adjacent nodes of n and calculate the cost function f (n) for 

every adjacent, not on the CLOSED list. 
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7. Associate with every adjacent, not on list OPEN list or CLOSED list the cost 

calculated and shift these on the OPEN list, placing pointers to n (n is the parent 

node). 

8. Associate with any adjacent already on OPEN the smaller of the cost values just 

calculated and the previous cost value. (min (new f(n), old f(n))). 

9. Repeat from step 2. 

. 

3.4 A* Algorithm 

 

This algorithm first exposition by Peter Hart, Nils Nilsson and Bertram Raphael in 1968 

(Peter E.Hart, 1968) (wikipedia, 2018).it’s the combination of Dijkstra and Greedy best 

first search. It’s actually a inform search, just because it has knowledge about the 

solution for every particular problem that is use for those particular problem There are 

many algorithms that can find out shortest path, A Star search algorithm most common 

and. To reach goal robot has to traverse the terrain (Guohao, 2018). To identify all the 

nodes that surround it, a brute force approach would be to start with a node (Haifeng 

Wang, 2014). Move to one of the successor nodes and repeat this process until the goal 

node is found. A Star search algorithm is best for finding the shortest path. However, 

this method does not always guarantee the best path to the target and computationally 

intensive. The main key is identifying the appropriate adjacent node (Jingang, 2010). 

To make an educated guess has given some information regarding the location of the 

target (I. S. AlShawi, 2012). For example, if the robot knows the target lies to the west, 

explore nodes to the west of your current location (Iram Noreen, 2016). If the robot 

knows the direction of the target robot could always try to move to the node in that 

heading. To determine which node needs to be selected, A* uses the distance between 

the current node and the target node and moves to the node that has the smallest distance 

among adjacent nodes. It evaluates nodes by combining h (n), the estimated (cost) to 
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that node that’s call heuristic value and g (n), the distance (cost) to get from that node 

to the goal node. The total cost f (n) = g (n) +h (n) is calculated for each adjacent node 

and the node with the smallest cost f (n) is selected as an adjacent (Risma Septiana, 

2016). To determined heuristic value the distance between two nodes is simply 

determined by calculating the straight-line distance between the two nodes. It’s actually 

the Euclidean distance. 

Though this might not the true distance. It can be shown that as long as the cost is never 

overestimated, it never overestimates the actual distance. The algorithm is acceptable 

i.e. it generates the optimal path.  

1,5 2,5 3,5 4,5 5,5 

1,4 2,4 3,4 4,4 5,4 

1,3 2,3 3,3 4,3 5,3 

1,2 2,2 3,2 4,2 5,2 

1,1 2,1 3,1 4,1 5,1 

 

Let consider the case for a simple 5X5 Matrix The start position is (1, 1) and goal node 

is (4, 1). The adjacent node only one, in this case, is (1, 2). There is no doubt, because 

(2,1),( 2,2),( 2,3),( 2,4),( 1,5) those are obstacle point .until the Robot reaches node (2, 

4). Here there are two nodes (3, 4) and (3, 5). The adjacent node can be determined by 

evaluating the cost to the target node from both the nodes. 

f (n) for node (3,4) 

g (n)= 1+1+1+1=4 (assuming each square is 1X1 units) 

h (n)=sqrt( (4-3)^2 + (1-4)^2) = 4.16 

f (n) = 4.16 + 4 
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f (n) for node (3, 5) 

g (n) = 1+1+1+1+1=5 (assuming each square is 1X1 units) 

h (n) = sqrt((4 - 3) ^2 + (1-5)^2) = 4.123 

f(n)= 4.123+5 

 

 

So, f(n) for (3,4) has been found to be the smallest of the two, hence the adjacent node 

is f(n). The robot can now move to the node (3, 4) and continue expanding the 

adjacent nodes as above until the goal node is reached. 

 

 

Dead Lock: 

1,5 2,5 3,5 4,5 5,5 

1,4 2,4 3,4 4,4 5,4 

1,3 2,3 3,3 4,3 5,3 

1,2 2,2 3,2 4,2 5,2 

1,1 2,1 3,1 4,1 5,1 

 

If the robot runs into a dead end? Consider the terrain start with (1, 2) and goal is (5, 

3). 

From adjacent nodes what we have learned so far node (2, 2) will be chosen as the 

adjacent node instead of node (1, 3). The robot will traverse the route until it ends up at 

the node (5, 2). 

If the robot runs into dead end than need to add a mechanism,  

1) Explores the alternate routes once it lands on at a dead node. 

2) Avoid to traversing paths that it knows leads to a dead node. 
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To overcome this problem, we can use two store lists one is OPEN and another is 

CLOSED. The OPEN list stores all consecutive paths that are yet to be explored while 

CLOSED list stores all paths that have been explored. 

The OPEN list also stores all the parent node of each node. To trace the path from the 

Goal to the Start node it is used at the end, in this way generating the optimal path. 

Consider the figure below. The start (1, 2) node has four adjacent nodes (1, 1), (2, 1), 

(1, 3) and (2,2). From the beginning calculation (2, 2) is chosen and the robot travels 

along that node, however ones it reaches the dead end, it discards the node (1, 1), (2, 

1), (2, 2) and takes the adjacent (1, 3) and explores that path. Tracked back to the start 

node to get the complete path once the goal node is reached the parent nodes are found. 

So, the optimal path is n (5,4) -> n (4,5) -> n (3,4)->n (2,4)->n (1,3)->n (1,2) the shortest 

path. 

Algorithm. A∗ algorithm for path-planning. 

1. First have to set beginning node in the OPEN list than compute the cost 

function f (n). [Where h (n) = 0 and g (n) =path cost between the goal and 

the start node, f (n) = g (n).] 

2. Find the adjacent node with the least cost f(n) on the open list 

3. Shift to the CLOSED list from the OPEN List which node has the smallest 

cost function f (n). 

4. Incase two or more nodes have the same cost function f (n), then it will 

chose randomly resolve ties. 

5. Algorithm will terminate if n is the goal node and to obtain the solution 

optimal path use the pointers. Otherwise, will continue until find the goal. 

6. Determine all the adjacent nodes of n and calculate the cost function f (n) 

for every adjacent, not on the CLOSED list. 

7. Associate with every adjacent, not on list OPEN list or CLOSED list the 

cost calculated and shift these on the OPEN list, placing pointers to n (n is 

the parent node). 
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8. Associate with any adjacent already on OPEN the smaller of the cost 

values just calculated and the previous cost value. (min (new f(n), old 

f(n))). 

9. Repeat from step 2. 

 

3.5 Environment Setup 

 

Simulation perform in MATLAB R2018a, the whole environment is demonstrated in 

the (10x10) two-dimensional grid. 

1,10 2,10 3,10 4,10 5,10 6,10 7,10 8,10 9,10 10,10 

1,9 2,9 3,9 4,9 5,9 6,9 7,9 8,9 9,9 10,9 

1,8 2,8 3,8 4,8 5,8 6,8 7,8 8,8 9,8 10,8 

1,7 2,7 3,7 4,7 5,7 6,7 7,7 8,7 9,7 10,7 

1,6 2,6 3,6 4,6 5,6 6,6 7,6 8,6 9,6 10,6 

1,5 2,5 3,5 4,5 5,5 6,5 7,5 8,5 9,5 10,5 

1,4 2,4 3,4 4,4 5,4 6,4 7,4 8,4 9,4 10,4 

1,3 2,3 3,3 4,3 5,3 6,3 7,3 8,3 9,3 10,3 

1,2 2,2 3,2 4,2 5,2 6,2 7,2 8,2 9,2 10,2 

1,1 2,1 3,1 4,1 5,1 6,1 7,1 8,1 9,1 10,1 

 

Simulation perform on that environment with different scenario and robot can move 

diagonally. Red circle is obstacle, green circle is target point and blue point is starting. 

. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

Each and every node distance is same (1), robot move in the center of every node and 

also move diagonally on the grid. Left blue is the source node and all red circle is an 

obstacle. 

4.1 Scenario Number: 1 

 

 

Figure 4. 1: Output with 20 obstacles 

 

NB: Dijkstra=blue, Greedy BFS=radish, A*=yellow. 

Table 4. 1: Environment with 37 obstacles 

Algorithm Source Obstacle point Goal  No of 

nodes 

travels  

Dijkstra 1,10 (1,3),(1,6),(1,7),(2

,1),(2,4),(2,9),(3,3

),(3,4),(3,5),(3,7),(

4,2),(4,4),(4,6),(4,

8),(4,10),(5,3),(5,

6),(5,9),(6,4),(6,6)

,(6,8),(6,9,(7,1),(7

,3),(7,4),(7,6),(7,7

),(8,2),(8,6),(8,9),(

10,1 12 
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9,2),(9,4),(9,7),(9,

8),(9,9),(10,3),(10

,6) 

Greedy 

BFS 

1,10 Same obstacle 

point 

10,1 14 

A* 1,10 Same obstacle 

point 

10,1 11 

 

From the table no: 1 and figure: 1 let obstacle point is [(1,3),(1,6),(1,7),(2,1),(2,4), 

(2,9),(3,3),(3,4),(3,5),(3,7),(4,2),(4,4),(4,6),(4,8),(4,10),(5,3),(5,6),(5,9),(6,4),(6,6),(6,8

),(6,9,(7,1),(7,3),(7,4),(7,6),(7,7),(8,2),(8,6),(8,9),(9,2),(9,4),(9,7),(9,8),(9,9),(10,3),(10

,6)] every algorithm has same source point (1,10) and same goal point(10,1) but here 

result show that A* is more optimal than Dijkstra and Greedy BFS cause A* travel 11 

[(1,9),(1,8),(2,7),(3,6),(4,5),(5,4),(6,3),(7,2),(8,1), (9,1),(10,1)]  node to reach goal but 

Dijkstra travel [(2,10),(3,9),(3,8),(4,7),(5,7),(6,7), (7,8),(8,7),(9,6),(10,5),(10,4), 

(9,3),(10,2),(10,1)] 12 and Greedy BFS 14 node [(1,9),(1,8), (2,7),(3,6),(4,5),(5,5), 

(6,5), (,7,5),(8,4),(9,3),(10,2),(10,1)]. 

4.2 Scenario Number: 2 

 
Figure 4. 2: Output with 30 obstacles 

NB: Dijkstra= radish, Greedy BFS, A*=yellow. 
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Table 4. 2: Environment with 30 obstacles 

Algorithm Source Obstacle point Goal  No of 

nodes 

travels  

Dijkstra 1,3 (1,5),(2,3),(2,7),(2,9)

,(3,4),(3,5),(3,6),(3,8

),(4,2),(4,3),(4,6),(4,

9),(5,4),(5,8),(5,9),(6

,2),(6,4),(6,6),(6,8),(

7,4),(7,10),(8,2),(8,3)

,(8,7),(9,2),(9,4),(9,5

),(9,9),(10,5),(10,7) 

10,9 11 

Greedy BFS 1,3 Same obstacle point 10,9 11 

A* 1,3 Same obstacle point 10,9 11 

 

From the table no: 2 and figure: 2 let obstacle point is[(1,5),(2,3),(2,7),(2,9),(3,4), 

(3,5),(3,6),(3,8),(4,2),(4,3),(4,6),(4,9),(5,4),(5,8),(5,9),(6,2),(6,4),(6,6),(6,8),(7,4),(7,10

),(8,2),(8,3),(8,7),(9,2),(9,4),(9,5),(9,9),(10,5),(10,7)]every algorithm has same source 

point (1,3) and same goal point(10,9), here result show that A*, Dijkstra and Greedy 

BFS provide same result, cause Dijkstra, A* and Greedy BFS travel same number of 

(11 node) node to reach goal  but A*  travel this minimum way[(2,4),(2,5),(2,6), (3,7), 

(4,7),(5,7),(6,7),(7,7),(8,8),(9,8),(10,9)] where Dijkstra, Greedy BFS and (1,4),(2,5), 

(2,6),(3,7),(4,8),(5,7),(6,7),(7,8)(8,9),(9,10),(10,9). 
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4.3 Scenario Number: 3 

 

 

Figure 4. 3: Output with 31 obstacles 

 

NB: Dijkstra=blue, Greedy BFS=red, A*=yellow. 

 

Table 4. 3: Environment with 31 obstacles 

Algorithm Source Obstacle point Goal  No of 

nodes 

travels  

Dijkstra 1,10 (1,8),(2,2),(2,4),(2,6),(3

,5),(3,6),(3,8),(3,10),(4,

3),(4,4),(4,7),(5,2),(5,4)

,(5,6),(5,8),(5,9),(6,2),(

6,5),(6,8),(7,3),(7,4),(7,

6),(7,7),(7,9),(8,3),(8,4)

,(8,7),(9,2),(9,5),(9,6),(

9,9) 

10,1 17 

Greedy 

BFS 

1,10 Same obstacle point 10,1 11 

A* 1,10 Same obstacle point 10,1 11 
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From the table no: 3 and figure: 3 let obstacle point is  

[(1,8),(2,2),(2,4),(2,6),(3,5),(3,6),(3,8),(3,10),(4,3),(4,4),(4,7),(5,2),(5,4),(5,6),(5,8),(5,

9),(6,2),(6,5),(6,8),(7,3),(7,4),(7,6),(7,7),(7,9),(8,3),(8,4),(8,7),(9,2),(9,5),(9,6),(9,9)] 

every algorithm has same source point (1,10) and same goal point(10,1) but here result 

show that A*, Greedy BFS is more optimal than Dijkstra cause Greedy BFS 

[(2,9),(3,9),(4,8),(5,7),(6,6),(7,5),(8,5),(9,4),(10,3),(10,2),(10,1)], A* [(1,9),(2,8),(3,7), 

(4,6),(5,5),(6,4),(6,3),(7,2),(8,1),(9,1),(10,1)] travel same number of (11) node to reach 

goal but Dijkstra travel 17 node [(2,10),(3,9),(4,9),(5,10), (6,10),(7,10), (8,10), 

(9,10),(10,9),(10,8),(10,7),(10,6),(10,5),(10,4),(10,3),(10,2),(10,1)]. 

 

4.4 Scenario Number: 4 

 

Figure 4. 4: Output with 20 obstacles 

 

NB: Dijkstra=blue, Greedy BFS=red, A*=yellow. 
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Table 4. 4: Environment with 20 obstacles 

Algorithm Source Obstacle point Goal  No of 

nodes 

travels  

Dijkstra 1,10 (2,3),(2,6),(2,8),(3,3),(

3,5),(3,8),(4,4),(4,6),(4,

8),(5,1),(5,5),(5,8),(6,3

),(6,7),(7,3),(7,4),(7,6),

(8,2),(8,5),(9,2),(9,4) 

10,1 15 

Greedy 

BFS 

1,10 Same obstacle point 10,1 12 

A* 1,10 Same obstacle point 10,1 11 

 

 

From the table no: 4 and figure: 4 let obstacle point is [(2,3),(2,6),(2,8),(3,3),(3,5), 

(3,8),(4,4),(4,6),(4,8),(5,1),(5,5),(5,8),(6,3),(6,7),(7,3),(7,4),(7,6),(8,2),(8,5),(9,2),(9,4)

]every algorithm has same source point (1,10) and same goal point(10,1) but here result 

show that A* is more optimal than Dijkstra, Greedy BFS cause Dijkstra travel 15 

[(1,8),(1,7),(1,6),(1,5),(1,4),(1,3),(2,2), (3,2),(4,2),(5,1), (6,1),(7,1),(8,1), (9,1), (10,1)] 

node Greedy BFS travel 12 node [(2,9),(3,9),(4,9), (5,9),(6,8), (7,7),(8,6), (9,5),(10,4), 

(10,3), (10,2),(10,1)], but A* travel 11 [(1,8),(2,7),(3,6),(4,5), (5,4),(5,3), 

(6,2),(7,1),(8,1),(9,1),(10,1)] node to reach goal. 

4.5 Discussion: 

In the above figure and result proved that while obstacle is less every algorithm will 

travel same number of node but while obstacle density is more A-star algorithm will 

show the more optimal than dijkstra and greedy BFS. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Findings  

There are so many real-life problems that can manage by the path planning algorithm. 

For automated piloting use the map planning algorithm, but all algorithm is not optimal, 

optimization depends on environment most of the time. Sometimes dijkstra, Greedy 

BFS and A-star show the same result depend on less obstacle density and computation 

time is not same. In every critical scenario A-star gives the best performance. 

5.2 Recommendations for Future Works 

In UAV system, traffic navigation path planning problem is solved with optimization 

algorithm. Find out the work station where A-star gives the best performance. And 

also find out a new solution for dynamic environment with an algorithm. Basically 

extending of A* algorithm for dynamic environment. 
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