

Towards IoT Sensor Service, IoT Actuator Service and Web

Service modules for a middleware supporting end-user driven

collaborative service composition.

By

Md. Raihan Uddin

(142-35-705)

&

Aziha Kamal

(142-35-693)

A thesis submitted in partial fulfillment of the requirement for the degree

of Bachelor of Science in Software Engineering

Department of Software Engineering

DAFFODIL INTERNATIONAL UNIVERSITY

Fall – 2018

ii
 ©Daffodil International University

APPROVAL

This Thesis titled on “Towards IoT Sensor Service, IoT Actuator Service and

Web Service modules for a middleware supporting end-user driven collaborative

service composition.”, submitted by Md. Raihan Uddin (142-35-705) & Aziha

Kamal (142-35-693) to the Department of Software Engineering, Daffodil

International University has been accepted as satisfactory for the partial fulfillment of

the requirements for the degree of Bachelor of Science in Software Engineering and

approval as to its style and contents.

BOARD OF EXAMINERS

Prof. Dr. Touhid Bhuiyan

Professor and Head

Department of Software Engineering

Faculty of Science and Information Technology

Daffodil International University

Chairman

Dr. Md. Asraf Ali

Associate Professor
Department of Software Engineering

Faculty of Science and Information Technology

Daffodil International University

Internal Examiner 1

Manan Binth Taj Noor

Lecturer
Department of Software Engineering

Faculty of Science and Information Technology

Daffodil International University

Internal Examiner 2

Dr. Md. Nasim Akhtar

Professor
Department of Computer Science and Engineering

Faculty of Electrical and Electronic Engineering

Dhaka University of Engineering & Technology, Gazipur

External Examiner

iii
 ©Daffodil International University

DECLARATION

It hereby declere that this thesis has been done by us under the supervission of K. M.

Imtiaz-Ud-Din, Assistant Professor, Department of Software Engineering, Daffodil

International University. It also declere that nithor this thesis nor any part of this has

been submitted elesewhere for award of any degree.

____________________________ ____________________________

Md. Raihan Uddin Aziha Kamal

ID: 142-35-705 ID: 142-35-693

Batch: 14
th

 Batch: 14
th

Department of Software Engineering Department of Software Engineering

Faculty of Science & Information

Technology

Faculty of Science & Information

Technology

Daffodil International University Daffodil International University

Certified by:

K. M. Imtiaz-Ud-Din

Assistant Professor

Department of Software Engineering

Faculty of Science & Information Technology

Daffodil International University

iv
 ©Daffodil International University

ACKNOWLEDGEMENT

This document presents our Bachelor of Science Thesis “Towards actuator and sensor

service modules for a middleware supporting end-user driven collaboration service

composition”. Appreciatively, we received advice from various people to whom we

want to explicit our acknowledgment towards in this section.

Our sincerest thanks to our supervisor and mentor K.M. Imtiaz-Ud-din, Assistant

Professor, Department of Software Engineering, Daffodil International University for

providing us to a chance to do this. Without his encouragement, guidance and

motivation we would not be able to realize the structure and got an output.

We also thankful to our mentors Khandker M. Qaiduzzaman, Kaushik Sarker, Md.

Anwar Hossen, and Shohel Arman for all the support to execute this milestone.

Grateful to the Ambient Intelligence Lab group members especially Shuvo Proshad

Sarnokar, Md. Sayeed Bin Muzahid, Antara Saha who always work and help with us

in this research project.

We also thankful to Professor Dr. Touhid Bhuiyan, Professor & Head, Department of

Software Engineering, Daffodil International University, and all the teacher in our

department.

We also thank to researchers for their works which help us to learn design and

implement our research project.

Last but not least, we want to thank almighty Allah for giving us patience. We are

also thankful to teachers, family-members, friends, seniors, juniors for providing their

effective support and prayers.

v
 ©Daffodil International University

TABLE OF CONTANTS

Contents
APPROVAL. ... ii

DECLARATION..iii

ACKNOWLEDGEMENT ... iv

TABLE OF CONTANTS ... v

LIST OF FIGURES .. vii

ABBREVIATION & ACRONYMS ...viii

ABSTRACT .. ix

CHAPTER 1: INTRODUCTION .. 1

1.1 Motivating Scenario .. 2

1.2. Objective .. 2

1.3. Outline of the Thesis .. 3

CHAPTER 2: LLITERATURE REVIEW ... 4

2.1 Related Work... 4

2.2. Related Technology and Framework ... 5

2.2.1. Service Oriented Architecture ... 5

2.2.2. Distributed Agent Architecture ... 6

2.2.3. Cloud MQTT Protocol Server ... 6

2.2.4. Internet protocol .. 6

2.2.5. Wireless Fidelity (Wi-Fi) ... 6

CHAPTER 3: DESCRIPTION OF PROPOSED SYSTEM ... 8

3.1. Proposed System Architecture ... 8

3.1.1. End-User Development Interface and Code Generation Engine 8

3.1.2. Code Execution Engine .. 8

3.1.3. IoT Sensor Service... 9

3.1.4. IoT Actuator service .. 9

3.1.5. Web Service ... 10

CHAPTER 4: IMPLEMENTATION ... 12

4.1 IoT Sensor Service, IoT Actuator Service and Web Service Working Module ……12

4.1.1. Pluggable Module .. 13

4.1.2. IoT Sensor Service... 14

4.1.3. IoT Sensor Service to CloudMQTT Server ... 15

4.1.4. CloudMQTT Server ... 16

4.1.5. CloudMQTT Server to Database ... 16

vi
 ©Daffodil International University

4.1.6. Database to Web Service ... 17

4.1.7. Web Service to Database ... 17

4.1.8. Database to CloudMQTT Server ... 18

4.1.9. CloudMQTT to IoT Actuator Service ... 19

4.1.10. IoT Actuator Service ... 19

CHAPTER 5: PROOF OF CONCEPT... 20

5.1. Experimental Setup .. 20

5.1.1. Arduino IDE .. 20

5.1.2. Apache HTTP Server... 21

5.1.3. MySQL .. 22

5.1.4. Brackets (Text Editor) ... 22

5.1.5. Postman ... 23

5.2. Practical Experiment .. 24

5.3. Result summery .. 30

CHAPTER 6: CONCLUSIONS .. 31

5.1. Contribution ... 31

5.2. Future work .. 31

Reference .. 32

Appendix A ... 34

vii
 ©Daffodil International University

LIST OF FIGURES

Figure 2.1: Service oriented architecture .. 5

Figure 3.1: Proposed System Architecture ... 8

Figure 3.2: Web Service working process .. 11

Figure 4.1: Sensor Service, IoT Actuator Service and Web Service Working Module 12

Figure 4.2: Sensor connecting program .. 13

Figure 4.3: Basic setup part identified code .. 13

Figure 4.4: Connection Related Code ... 14

Figure 4.5: Python Script subscribe data through MQTT ... 15

Figure 4.6: IoT sensor service to CloudMQTT server .. 15

Figure 4.7: CloudMQTT Server Connection Code... 16

Figure 4.8: CloudMQTT Server to Database .. 16

Figure 4.9: Code of Database to Web Service .. 17

Figure 4.10: Code of Web Service to Database .. 18

Figure 4.11: Action Retrieval Code from Database.. 18

Figure 4.12: Code of CloudMQTT to IoT Actuator Service .. 19

Figure 4.13: Connection Code of IoT actuator Service .. 19

Figure 5.1: Arduino IDE interface .. 21

Figure 5.2: Brackets (Text Editor) Interface ... 23

Figure 5.3: Postman Interface ... 23

Figure 5.4: Sensor and NodeMCU module for receiving data ... 24

Figure 5.5: Sensor data in the local terminal .. 25

Figure 5.6: Publishing sensor data to the database through MQTT Protocol 26

Figure 5.7: Sending sensor data from the database to middleware..................................... 26

Figure 5.8: Drug and drop user interface ... 27

Figure 5.9: Auto-generated code in the background ... 27

Figure 5.10: Action value carried by HTTP protocol from Middleware to Database 28

Figure 5.11: Actuator Module (Off Condition) ... 28

Figure 5.12: Actuator Module (On Condition) .. 29

Figure 5.13: Actuator Data in the local terminal .. 29

file:///E:\Asif_Varsity\4th%20Year\11th%20Semester\Project-Thesis\Final%20Document\final\dropout%20final%20document%20-%20v2.docx%23_Toc495997761
file:///E:\Asif_Varsity\4th%20Year\11th%20Semester\Project-Thesis\Final%20Document\final\dropout%20final%20document%20-%20v2.docx%23_Toc495997761
file:///E:\Asif_Varsity\4th%20Year\11th%20Semester\Project-Thesis\Final%20Document\final\dropout%20final%20document%20-%20v2.docx%23_Toc495997761
file:///E:\Asif_Varsity\4th%20Year\11th%20Semester\Project-Thesis\Final%20Document\final\dropout%20final%20document%20-%20v2.docx%23_Toc495997761
file:///E:\Asif_Varsity\4th%20Year\11th%20Semester\Project-Thesis\Final%20Document\final\dropout%20final%20document%20-%20v2.docx%23_Toc495997761
file:///E:\Asif_Varsity\4th%20Year\11th%20Semester\Project-Thesis\Final%20Document\final\dropout%20final%20document%20-%20v2.docx%23_Toc495997761
file:///E:\Asif_Varsity\4th%20Year\11th%20Semester\Project-Thesis\Final%20Document\final\dropout%20final%20document%20-%20v2.docx%23_Toc495997761
file:///E:\Asif_Varsity\4th%20Year\11th%20Semester\Project-Thesis\Final%20Document\final\dropout%20final%20document%20-%20v2.docx%23_Toc495997762

viii
 ©Daffodil International University

ABBREVIATION & ACRONYMS

 IoT- Internet of Things

 IDE- integrated development environment

 MQTT- MQ Telemetry Transport

 HTTP- Hypertext Transfer Protocol

 API- Application Programming Interface

 UI- User Interface

 MCU- Micro Controller Unit

 HTML- Hyper Text Markup Language

 CSS- Cascading Style Sheets

 JS- JavaScript

 SQL- Structured Query Language

 ACID- Atomicity, Consistency, Isolation, Durability

ix
 ©Daffodil International University

ABSTRACT

Modern software systems are increasingly characterized by uncertainties in the

running context and user needs. These uncertainties and needs are difficult and

challenging to predict at design time. While existing end-user driven service

composition tools provide support for building composite IOT based services in

order to meet user needs at run time, an environment that will enable end-users to

create a collaboration of both web services and IOT based services in order to meet

users requirement at while is yet to exist to the best of our knowledge. We

therefore propose a novel architecture to address this gap. More specifically our

contribution lies in designing and implementing a pluggable IOT based sensor and

actuator environment that can be used to support composition of end-user driven

collaboration of both IOT based services and other web services. We have also

provided the validation of our designed architecture using a proof of concept

scenario.

1
©Daffodil International University

CHAPTER 1

INTRODUCTION

Currently people are surrounded by technology and this technology tries to develop

our quality of life and also tries to facilitate our daily activities more and more.

However, there are situations where technology is impossible to handle or people

have lack of knowledge how to use it. Recent years IOT based services are increased

and the integration of IOT services through web are gradually started according to

Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., & Tamburrelli, G.

(2011). Also many types of web services are rapidly developed to make our life easy.

After collaborating both IOT based and web services, creating a complex ecosystem

and for this ecosystem, creating uncertainties in the running context and user needs at

run time. For this reason, we are trying to adapt the technology to the people‟s need

by proposing a self-adaptive system where end-users have no need to programming

knowledge for creating a service. An intelligence user interface where end-users give

their requirements and dynamically a service can be discovered by adding service

based adaptation. Users are able to create a composite service by using multiple

actions.

Our proposed system architecture follows the distributed service and agent

architecture and also service oriented architecture. Our proposed system has three

modules Sensors, Actuators and Middleware where every module is independent.

That‟s why user uses a module for multiple purposes. For example, collecting data

from a temperature sensor in a certain area, we can automatically on and off air

conditioner, measuring temperature, humidity and also collecting few months

temperature and analysis that data set, we can assume a fixed day temperature.

Another interesting part of our research is, our system is pluggable that means we will

add any sensor and service easily just consider some installation process.

2
 ©Daffodil International University

1.1 Motivating Scenario

With the advance of technology, it has become an essential and harmonizes part of

human‟s life. Modern technology consists of many hardware and software

components together to make our life easier. But still End-users who have no

knowledge about programming language, they are not able to customize a software or

service as their requirements and needs. For changing any action, service or any other

parts of the application, need to hire related expert person. Let‟s see some real

scenarios.

Scene 1: Mr. Rahim bought an automated water pump for his house building to climb

up water in his house tank. For controlling this water pump, Mr. Rahim gets an

application that has a user interface. A sensor service is integrated with the water

pump and using this sensor, Mr. Rahim can know the water layer in the tank using the

user interface and also on and off water pump through user interface. Mr. Rahim can

customize the service according to his needs.

1.2. Objective

Our aspiration is to build a system where creating a collaboration of both IoT based

service and web service to meet the user needs at run time and also sensor and

actuator modules are pluggable, just follow some instruction such as a new software

installation process type. This application is planned specially for the end-user who

has no programming knowledge. They can easily customize the system as for the

requirements they needs. End-users can make a composite service using multiple

services without any programming knowledge. They can easily add a sensor or

actuator easily to follow some process.

Our main goal is:

 -Creating composite service using Iot based service and web service.

 -Pluggable service.

3
 ©Daffodil International University

1.3. Outline of the Thesis

In chapter 2 deigned with literature review and related technology. Here briefly

describes the related research work in this area and which technologies we use are

also described.

In chapter 3 describes the proposed system architecture and how it works.

In chapter 4 cover the implementation of the research project following the proposed

architecture.

In chapter 5 describes proof of concept with a scenario and show an implementation

with practical works with picture.

In chapter 6 concludes the thesis work by specifying contribution, limitation and

future work.

4
 ©Daffodil International University

CHAPTER 2

LITERATURE REVIEW

We survey the state of the art in the research areas addressed in this paper. To the best

of our observation, a few works have been done in this area. These are adaptable user

interface, multi agents system, peer to peer applications, distributed agent

architecture, service oriented architecture, run time adaptation, sensor networks,

ubiquitous computing, run time self-adaptation.

2.1 Related Works

A few works has done in composite service collaboration. One of the most noted

works in this era is personal application in the IoT through visual end-user

programming by Valsamakis, Y., & Savidis, A. (2017), permit end-users with an

interface to easily and instantly modify IoT based services as their needs.

Kovatsch, M., Mayer, S., &Ostermaier, B. (2012), developed a system where logic

and user interface are loosely coupled. Here logic means IoT based services are stored

in server and if any functionality changes in the service, interface auto updated.

Noura, M., Heil, S., &Gaedke, M (2018), presents an architecture where some

functionality is designed for end-user. The architecture works with existing IoT

services which are managed by end-user. Here end-user first set their goal and it

makes a service via translating that stored in a server, communicate through HTTP.

A group has worked at the area of integrated framework for adaptation of context-

aware applications that empowers end-users to meet their own collections of services

at run time and to fulfill specific goals according to Poladian, V., Sousa, J., Garlan,

D., & Shaw, M. (2004). Another paper presents distributed agent architecture for end

user and only one user can use it at a time according to Hassan, A., & Reza, F. (2018).

5
 ©Daffodil International University

From above, what are missing, an architecture that enables end-user state the purpose

and corresponding actions by creating composite service using both IoT based

services and web services at their needs without any programming knowledge. Our

next chapter converge our planning architecture.

2.2. Related Technology and framework

Here we cover which framework and technology we use to build our research project.

2.2.1. Service Oriented Architecture

An approach for distributed system architecture that implies loosely coupled services.

It includes a collection of services in a network which communicate with each other.

Each service is well defined, self-contained that provide separate functionality. It

replaces new business requirement with plugging new services or upgrading existing

services. This is a platform that is language independent. Figure 2.1 shows the service

oriented architecture.

Figure 2.1: Service oriented architecture

6
 ©Daffodil International University

2.2.2. Distributed Agent Architecture

All modules in distributed architecture such as sensors, actuators, middleware are

independent and isolated. In our proposed system, we follow this architecture. Here

one module can be used in various purposes. If one module can damage anyhow,

other modules have no problem.

2.2.3. CloudMQTT Protocol Server

CloudMQTT protocol server is a MQTT broker. MQTT protocol connects with

gadgets, sensors and subscribes and publishes packets. CloudMQTT server is a

medium where, we store our packets or data through MQTT protocol. We are using

this service to implement our research project.

2.2.4. Internet Protocol

Internet protocol is the principal communication protocol which data is sent from one

device to another device over the internet according to Valsamakis, Y., & Savidis, A.

(2017). Each packet that travels through internet is treated as an independent unit of

records besides any relation to any other unit of records. Two types of internet

protocol are available. The most uses internet protocol is IPV4 another is IPV6. IPV4

protocol provides 4.3 billion addresses and another one IPV6 provides 85,000 trillion

addresses. IPV6 is the 21
st
 century protocol.

2.2.5. Wireless Fidelity (Wi-Fi)

Wi-Fi is a local area networking (LAN) technology blueprinted to supply in-building

broadband coverage. This is based on IEEE 802.11 specification. There are several

specifications in 802.11 family such as 802.11a, 802.11b, 802.11g. It allows

7
 ©Daffodil International University

computers and other smart gadgets to communicate over a wireless signal. It provides

high speed connection without any cables. Now a day, office, home, hotels, cafes,

airports and also a city is covered by Wi-Fi.

8
 ©Daffodil International University

CHAPTER 3

DESCRIPTION OF PROPOSED SYSTEM

3.1. Proposed System Architecture

Figure 3.1: Proposed System Architecture

3.1.1 End-User Development Interface and Code Generation Engine

End-user development interface refers a graphical interface for general user so that

they can easily use complex service without knowing programming. They can

customize their service through their own way when needs without helping of a tech

person. Some approaches are developed in this domain of end-user development.

Most popular approaches are blockly, spreadsheet, scratch etc.

3.1.2. Code Execution Engine

This is a product layer arranged among applications and working frameworks. It is

normally utilized in distributed frameworks where it disentangles programming

improvement by doing the following:

 Hides the complexities of distributed applications

 Hides the heterogeneity of equipment, working frameworks and conventions

9
 ©Daffodil International University

 Gives uniform and abnormal state interfaces used to make interoperable,

reusable, and convenient applications

 Gives an arrangement of regular administrations that limit duplication of

efforts and upgrades coordinated effort between applications.

3.1.3. IOT Sensor Service

Sensors are advanced gadgets that are every now and again used to distinguish and

react to electrical or optical signs. A Sensor changes over the physical parameter into

a signal which can be estimated electrically.

There are many types of sensors which are commonly used in IOT, like-

 Temperature

 Blood pressure

 Humidity

 Speed

 Soil moisture

In our proposed system architecture, IoT sensor service and code engine execution

modules are communicated with each other through request and percept.

3.1.4. IoT Actuator Service

An actuator is a gadget that moves or controls some component. An actuator

transforms a control motion into mechanical action, for example, an electric engine.

An actuator binds a control framework to its condition. Different types of actuators,

like-

 Comb drive

 Hydraulic piston

 Electric motor

 Relay

10
 ©Daffodil International University

In our proposed system architecture, IoT actuator service and code engine

execution modules are communicated with each other through status and action.

3.1.5. Web Service

Web service implies a product framework or architecture that backings applications to

speak with one another viably through the web. It very well may be utilized in any

equipment or programming stages and furthermore can be utilized in any

programming dialects independently. That is the things that make web benefit based

applications loosely coupled.

It is used in service-based model architecture and it tends to be considered a first

favorable position or purpose behind utilizing web services. Service-based model

means web services happen at the web server and any applications can ask for

information from it and can expend those for the different users. It enables us to

convey among different applications.

Diverse applications are composed of various programming languages and that is the

reason they can‟t speak with one another yet utilizing web services we can speak with

various applications by utilizing open conventions. Figure 3.2 shows the working

process of web service.

It is a stage and programming language free and it doesn‟t depend on conventions.

We can actualize the web services utilizing minimal effort correspondence

frameworks.

Most often-used types of web service:

 SOAP

 XML-RPC

 JSON-RPC

 REST

Simply we can say that a system consumes service from another software system.

There is an entity called request data such as weather conditions from server or

service provider respond with the requested data.

11
 ©Daffodil International University

Figure 3.2: Web Service working process

12
 ©Daffodil International University

CHAPTER 4

IMPLEMENTATION

4.1. IoT sensor service, IoT actuator Service and Web Service Working

Module

Figure 4.1: IoT Sensor Service, IoT Actuator Service and Web Service Working

Module

4.1.1. Pluggable Module

Every sensor and actuator follows some basic rules to collect data and execute an

action. In our pluggable platform, any sensor or actuator program can be modified for

connecting our existing system. In figure 4.2 shows that how a sensor program is

13
 ©Daffodil International University

looks like. It follows the basic structure for retrieve sensor data. It has three part and

they are variable and pin declaration part, setup part and loop part.

Figure 4.2: Sensor connecting program

In our pluggable platform we identified this basic structure and based on this we inject

the connection programming code to the file and create a new file which contains

every necessary connection related code for connecting our existing system. In figure

4.3 shows that how we identified the basic structure of a sensor code.

Figure 4.3: Basic setup part identified code

Identifying the basic structure the pluggable codes inject the necessary connection

related code to the existing file and create a new file. In the new file all the necessary

code are written and then the file is ready to communicate with the system. Figure 4.4

show that the connection related code of the pluggable system.

14
 ©Daffodil International University

Figure 4.4: Connection Related Code

4.1.2. IoT Sensor Service

In IoT sensor service we represent a sensor module which contains any type sensor

and NodeMCU. In this we use a python script which continuously writing to the

database through CloudMQTT. Figure 4.5 shows the python script that continuously

writing to the database.

Figure 4.5: Python Script subscribe data through MQTT

15
 ©Daffodil International University

4.1.3. IoT Sensor Service to CloudMQTT Server

IoT sensor service connects with CloudMQTT through MQTT protocol. Figure 4.6

shows that, how data send from sensor module to CloudMQTT server for using the

sensor data for further working process.

Figure 4.6: IoT Sensor Service to CloudMQTT Server

4.1.4. CloudMQTT Server

We use a CloudMQTT server for receive data from sensor and send data to actuator,

also for communicated with the database. Figure 4.7 shows the MQTT connection

code. For connecting to CloudMQTT server, user needs server name, port number,

username and password.

16
 ©Daffodil International University

Figure 4.7: CloudMQTT Server Connection Code

4.1.5. CloudMQTT Server to Database

CloudMQTTserver passes the collected sensor data to database. The database sensor

tablecontains four columns and they are sensor, data, sensor value and time. There is

also an ID column which is auto generated. Figure 4.8 shows that how sensor data

pass to the database.

Figure 4.8: CloudMQTT Server to Database

4.1.6. Database to Web Service

Sensor data sent from database to web service through HTTP protocol. Figure 4.9

shows that how sensor data sent from database to web service.

17
 ©Daffodil International University

Figure 4.9: Code of Database to Web Service

4.1.7. Web Service to Database

Using the sensor value user take an action, this action again carries by HTTP protocol

from web service to database. Figure 4.10 shows that how action sent from web

service to database.

18
 ©Daffodil International University

Figure 4.10: Code of Web Service to Database

4.1.8. Database to CloudMQTT Server

The action then carried from database to CloudMQTT through MQTT protocol.

Figure 4.11 shows the retrieval process of action value from database.

Figure 4.11: Action Retrieval Code from Database

19
 ©Daffodil International University

4.1.9. CloudMQTT to IoT Actuator Service

Action value passes from database to IoT actuator service through MQTT protocol.

Figure 4.12 shows that how the action value passes from database to IoT actuator

through MQTT protocol.

Figure 4.12: Code of CloudMQTT to IoTActuator Service

4.1.10. IoT Actuator Service

In IoT actuator service, the entire time actuator module checks the action value for

specific actuator through tag. If the IoT actuator service get a value for a specific

actuator then it retrieve data from database and give an action. Figure 4.13 shows that

how IoT actuator service connected with the database.

Figure 4.13: Connection Code of IoT Actuator Service

20
 ©Daffodil International University

CHAPTER 5

PROOF OF CONCEPT

Our main target is to make a pluggable platform where we can plug any sensor or

actuator to receive or send data. To achieve our target we make a pluggable platform

where any sensor or actuator device programming code can be modified for

connecting our existing system.

For connecting in our existing system every sensor or actuator need some specific

connection and output related information which is provided by our pluggable

platform. So every sensor and actuator needs to be modified before to connect in our

existing system.

In our existing system sensor data is readable and according to sensor data action can

be performable by the actuator.

For proof of our concept, we use a scenario that is described in chapter 1 and section

1.1 in scene 1.

5.1. Experimental setup

5.1.1. Arduino IDE

The Arduino IDE is a cross-platform application which is written using Java

programming language. It runs on Windows, MacOS and Linux. It is used to write

and upload code to Arduino board. The Arduino IDE supports C and C++

programming languages using special rules of code structuring. Figure 5.1 shows the

Arduino IDE interface. It supplies a software library from wiring project, which

provides many common input and output procedures.

21
 ©Daffodil International University

Figure 5.1: Arduino IDE interface

Client composed code just requires two fundamental capacities, for beginning the

draw and the primary program loop. The Arduino IDE utilizes the program avrdude to

change over the executable code into the content record in the hexadecimal encoding

that is stacked into the Arduino board by a loader program in the board‟s firmware.

5.1.2. Apache HTTP Server

The Apache HTTP Server, conversationally called Apache is a free and open-source

cross-stage web server which discharged under the terms of Apache License 2.0.

Apache is created and kept up by an open network of engineers under the sponsorship

of the Apache Software Foundation.

Apache bolsters an assortment of highlights many actualized as arranged modules

which expand the center usefulness. These can extend from validation plans to

supporting server-side programming dialects, for example, Perl, Python, Tcl, and

PHP.

22
 ©Daffodil International University

5.1.3. MySQL

MySQL is the popular open source relational database management system. It is a

cost-effective delivery of dependable, superior and versatile Web-based and installed

database applications. It is an incorporated exchange sheltered, an ACID-agreeable

database with full confer, rollback, crash recuperation, and column level locking

capacities.

The MySQL database provides the following features:

 Elite and Scalability to meet the requests of exponentially information burdens

and clients.

 Self-recuperating Replication Clusters to enhance versatility, execution, and

accessibility.

 Online Schema Change to meet changing business prerequisites.

 Execution Schema for observing client and application-level execution and

asset utilization.

 SQL and NoSQL Access for performing complex questions and

straightforward, quick Key-Value activities.

 Enormous Data Interoperability utilizing MySQL as the operational

information store for Hadoop and Cassandra.

5.1.4. Brackets (Text Editor)

„Brackets‟ is a source code editorial manager with an essential spotlight on web

development. Created by Adobe Systems, it is free and open-source programming

authorized under the MIT License and is presently kept up on GitHub by Adobe and

other publicly released designers. Figure 5.2 shows the Brackets interface. It is

composed of JavaScript, HTML, and CSS. Brackets are cross-stage, accessible for

MacOS, Windows, and most Linux distros. The principle motivation behind sections

is its live HTML, CSS, and JS altering usefulness.

23
 ©Daffodil International University

Figure 5.2: Brackets (Text Editor) Interface

5.1.5. Postman

Postman is a great HTTP customer for testing web services. Postman makes it easy to

test, make and document APIs by empowering customers to quickly amass both

essential and complex HTTP requests. Postman is available as both Google Chrome

Packaged App and a Google Chrome in-program application. Figure 5.3 shows the

Postman Interface.

Figure 19: Postman Interface

24
 ©Daffodil International University

Postman has a perfect and natural UI, with most key highlights available inside a

single tick. The expectation to absorb information for utilizing the program is low,

most clients ought to have the capacity to begin building and testing API calls rapidly.

One central explanation behind Postman's convenience is its robotization capacities. It

mechanizes the way toward making API request for and testing API reactions,

enabling engineers to set up an extremely proficient work process.

5.2. Practical Experiment

We make a sensor module which is actually any kind of sensor and a NodeMCU

module. For collecting sensor data we need this sensor module because we sending

data through WiFi to our database. In the figure 5.4, we use a soil moisture sensor and

NodeMCU module for our experiment. We are using two soil moisture sensors to read

upper water level and lower water level in formation. After collecting this information

we are sending the sensor data through Wifi using NodeMCU to our database.

Figure 5.4: Sensor and NodeMCU module for receiving data

25
 ©Daffodil International University

In the figure 5.5, showing that the sensor module can read data and it can usable for

further experiment.

Figure 5.5: Sensor data in the local terminal

After that our next challenge is sending this data to anywhere through API. For this,

we use the MQTT protocol for publishing our sensor data to the database.

In figure 5.6, the database is containing four fields (id, sensor, data, and time). The id

is the auto-generate field which is created automatically if any sensor data send to the

database. The sensor field contains the tag of the sensor. From this tag value, the

sensor data can be identified which sensor data is it. The data field shows the value of

the sensor which is collected by the sensor module and the time field is automatically

changed with each sensor data updated.

26
 ©Daffodil International University

Figure 5.6: Publishing sensor data to the database through MQTT Protocol.

Our next challenge was sending the data from the database to middleware through

API. We used the HTTP protocol for sending sensor data from database to

middleware. Middleware is the place where a user can use the sensor data for further

action. In figure 5.7, Through HTTP protocol we send our sensor data from the

database to middleware.

Figure 5.7: Sending sensor data from the database to middleware

In the middleware, the user can perform an action based on sensor data. The user

needs to drag and drop sensor value and the action which is performed by the

actuator. In figure 5.8, shows how the user interface looks like.

27
 ©Daffodil International University

Figure 5.8: Drag and drop user interface

The user need not to know what is happening in the background. Based on the user

need the code is auto-generated and a PHP script runs automatically in the

background. The action is carried by an API to the database. For carrying this action

we used HTTP protocol. In figure 5.9, the auto generated code is showed.

Figure 5.9: Auto-generated code in the background

The whole system is distributed and loosely coupled. The sensor module, middleware,

and actuator module are independent because every part of our system is separate

from each other. The database contains action value which will be performed by the

actuator module. If the action value is False or Zero (0) the motor will be „OFF‟ and

28
 ©Daffodil International University

if the action value is True or One (1) then the motor will be „ON‟. Figure 5.10 shows

the actuator action value database table.

Figure 5.10: Action value carried by HTTP protocol from Middleware to

Database

This value is carried from middleware to database through HTTP protocol. When

database value updated for actuator module, the action is performed by the relay

which can control the motor for switching it „ON‟ or „OFF‟. Figure 5.11 shows the

„OFF‟ situation of the actuator. When the database value of the action field will be

False or Zero condition the actuator module will look like this. In the „OFF‟ condition

the relay will be „OFF‟ the motor.

Figure 5.11: Actuator Module (Off Condition)

29
 ©Daffodil International University

If the motor is in the „ON‟ condition, the motor is used to show our experimental

output of the actuator module. When database action field value will be True or One

(1), the actuator module will be looked like this. In the „ON‟ condition the relay will

be „ON‟ the motor which is used in our experiment for showing out actuator module

output. Figure 5.12 shows the „ON‟ condition of the actuator module.

Figure 5.12: Actuator Module (On Condition)

The action values of the actuator module which is performed by the relay for „ON‟ or

„OFF‟ the motor in our experiment to show the possible outcome. Figure 5.13 shows

the local terminal which contains actuator action values.

Figure 5.13: Actuator Data in the Local Terminal

30
 ©Daffodil International University

5.3. Result Summery

Our main goal is to establish a system architecture which follows the distributed

service and agent architecture and also service-oriented architecture. For this, first of

all, we make a pluggable platform for all sensor and actuator module. This pluggable

platform holds all information about connecting and output information with our

system.

Secondly, after collecting sensor data, we send the sensor data to our database through

MQTT protocol and the database is situated to another device. After that, we send

sensor data from the database to the middleware through HTTP protocol. Middleware

is the place where the user can drag and drop a condition and make a decision. After

making a decision the code generated automatically in the background. The auto-

generated code takes the action to the database through the HTTP protocol.

Finally, the actuator module gives an output based on the action value. As we use a

relay to control our motor switch, so if we get an action value 'False' or '0', we turn off

the motor and if we get an action value 'True' or '1', the motor switch on condition.

31
 ©Daffodil International University

CHAPTER 6

CONCLUSIONS

5.1. Contribution

The main goal of our research project is helped the end-user who has no programming

knowledge and all modules are independent. Programming language is independent

and if damaged one module, other modules have no problem. In sensor module, if we

want to add a new sensor, it‟s an easy process cause sensor module is pluggable and

as it is independent, we use it in multiple application, multiple purposes. For the

actuator module, it is also same to sensor module. Also end-user create composite

service using IoT based services and web services according to their needs.

5.2. Future work

Our research project has some limitation as like we use Wi-Fi for data transfer from

sensor to server that sometimes can interrupt. Sometimes garbage data is also stored

and same data stored also from sensor. We are used a third party cloud MQTT

protocol server as middleman to send and receive data for creating service, action and

it is a worst work for us. As all modules are independent but we are worked in a local

area network for checking purpose in deferent device. For data receiving from cloud

MQTT server to sensor, we use a recursion function that only run 999 times and then

stop. Last one is our data transferring and decision for action is quiet slow.

Present time our proposed architecture is working properly. In future, we will work

for efficiency, data filtering. Remove the third party cloud MQTT protocol server and

makes our own web socket for data transferring. We will also add machine learning

for making more effect full decision. We will work for making a full automated

distributed intelligence system for end-user for better performance and service.

32
 ©Daffodil International University

Reference

Poladian, V., Sousa, J., Garlan, D., & Shaw, M. (n.d.) (2004). Dynamic configuration

of resource-aware services. Proceedings. 26th International Conference on Software

Engineering.

Salber, D., Dey, A. K., &Abowd, G. D. (1999). The context toolkit. Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems the CHI Is the

Limit - CHI 99.

Kovatsch, M., Mayer, S., &Ostermaier, B. (2012). Moving Application Logic from

the Firmware to the Cloud: Towards the Thin Server Architecture for the Internet of

Things. 2012 Sixth International Conference on Innovative Mobile and Internet

Services in Ubiquitous Computing.

Filieri, A., Ghezzi, C., &Tamburrelli, G. (2011). Run-time efficient probabilistic

model checking. Proceeding of the 33rd International Conference on Software

Engineering - ICSE 11.

Epifani, I., Ghezzi, C., Mirandola, R., &Tamburrelli, G. (2009). Model evolution by

run-time parameter adaptation. 2009 IEEE 31st International Conference on Software

Engineering.

Valsamakis, Y., & Savidis, A. (2017). Personal Applications in the Internet of Things

Through Visual End-User Programming. Digital Marketplaces Unleashed, 809-821.

What is Internet Protocol? - Definition from WhatIs.com. (n.d.). Retrieved from

https://searchunifiedcommunications.techtarget.com/definition/Internet-Protocol

What is Internet Protocol? - Definition from WhatIs.com. (n.d.). Retrieved September

28, 2018.

Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., &Tamburrelli, G.

(2011). Dynamic QoS Management and Optimization in Service-Based Systems.

IEEE Transactions on Software Engineering,37(3), 387-409.

33
 ©Daffodil International University

Zhang, J., & Cheng, B. H. (2006). Model-based development of dynamically adaptive

software. Proceeding of the 28th International Conference on Software Engineering -

ICSE 06.

Hassan, A., & Reza, F. (2018). Designing simple reflex agent using distributed agent

architecture over IOT, Unpublished Undergraduate Thesis, Daffodil International

University, Bangladesh.

F., Junaid, M., & S. (2016). Distributed Agent Architecture Using Internet of Things.

Youngblood, G., & Cook, D. (2007). Data Mining for Hierarchical Model Creation.

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews),37(4), 561-572.

Doctor, F., Hagras, H., & Callaghan, V. (2005). A Fuzzy Embedded Agent-Based

Approach for Realizing Ambient Intelligence in Intelligent Inhabited Environments.

IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and

Humans,35(1), 55-65.

Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., & Jansen, E. (2005).

The Gator Tech Smart House: A programmable pervasive space. Computer,38(3), 50-

60.

Surie, D., Laguionie, O., & Pederson, T. (2008). Wireless sensor networking of

everyday objects in a smart home environment. 2008 International Conference on

Intelligent Sensors, Sensor Networks and Information Processing.

Noura, M., Heil, S., &Gaedke, M. (2018). GrOWTH: Goal-Oriented End User

Development for Web of Things Devices. Lecture Notes in Computer Science Web

Engineering.

34
 ©Daffodil International University

Appendix-A

For Sensor Module:

importpaho.mqtt.client as mqtt

import sys

importpymysql as pymysql

from time import sleep

classDBoperation():

def __init__(self, user='root',

password='12345678',

host='127.0.0.1',port=3307,

dbName='restapps'):

self.user=user

self.password=password

self.host=host

self.port=port

self.dbName=dbName

defdbConnection(self):

try:

self.db=pymysql.connect(user=self.use

r,

password=self.password,host=self.host

, port=self.port, db=self.dbName)s

exceptpymysql.Error as e:

print(e)

print("Could Not connect to the

database")

print("Close")

sys.exit()

self.cursor=self.db.cursor()

defexecuteData(self, sql, args):

try:

self.cursor.execute(sql, args)

self.db.commit()

exceptpymymql.Error as e:

self.db.rollback()

print(e)

print("Execute Data into

Database.......Failed")

defgetCursor(self):

cursorList = []

 # print(str(self.cursor.fetchall()))

for cur in self.cursor.fetchall():

cursorList.append(cur)

returncursorList

defreturnCursor(self):

cursorList = []

for cur in self.cursor.fetchall():

cursorList.append(cur)

returncursorList

2
 ©Daffodil International University

def display(self):

for element in self.cursor:

print(element[0])

class Sensor():

db = DBoperation()

definsertSensorTable(self, value,topic):

sql = "INSERT INTO

`Sensor`.`SensorValue`\

(`sensor`,`data`,`SensorValue`.`time`) \

VALUES(%s,%s,CURRENT_TIMES

TAMP)"

args = (topic,value)

self.db.dbConnection()

self.db.executeData(sql, args)

Agent Function

defrSensor(self): # retrieve Sensor

table data

sql = "SELECT `actuator`.`atag` ,\

 `actuator`.`action` \

 FROM `restapps`.`actuator` \

 ORDER BY `actuator`.`time`

DESC LIMIT 1;"

args = ()

self.db.dbConnection()

self.db.executeData(sql, args)

return (self.db.getCursor())

classMqttBroker():

 s = Sensor()

db = DBoperation()

def __init__(self,

server="m10.cloudmqtt.com",

port=17635,

username="ewpjantq",

password="Rfnyu4oiB8WO"):

self.server = server

self.port = port

self.username = username

self.password = password

self.client = mqtt.Client()

defmqttConnection(self):

try:

self.client.username_pw_set(self.usern

ame, self.password)

self.client.connect(self.server,

self.port)

 # print("Connection with

MQTT")

exceptself.client.Error as e:

print(e)

print("Could not connect to the MQTT

broker....")

print("Closing....")

sys.exit()

3
 ©Daffodil International University

defon_connect(self, client, userdata,

flags, rc):

print("Connedted -Result code: " +

str(rc))

defon_message(self, client, userdata,

msg):

print(msg.topic + " " +

str(msg.payload))

defmqttLoopForever(self):

self.client.on_connect =

self.on_connect

data = self.s.rSensor()

 # print(data)

for d in data:

 # print("Data: "+d)

 # decision =

self.s.rSensor(str(d))

print("Actuator Tag: " + str(d[0]) + "

Action:" + str(d[1]))

self.client.publish(str(d[0]), str(d[1]))

 # if (decision[0] == 1):

 # print("Ami Aci" +

str(decision))

 # self.client.publish(str(d),

str(decision[0]))

sleep(1.0)

self.mqttLoopForever()

try:

self.client.loop_forever()

print("Okay Man")

exceptKeyboardInterrupt:

print("Closing...")

broker = MqttBroker()

database.dbConnection()

broker.mqttConnection()

broker.mqttLoopForever()

For Web service

<?php

use

\Psr\Http\Message\ServerRequestInterf

ace as Request;

use

\Psr\Http\Message\ResponseInterface

as Response;

$app = new \Slim\App(['settings' =>

['displayErrorDetails' => true]]);

//Get all sensor data from database

$app->get('/api/sensorvalue', function

(Request $request, Response

$response, array $args) {

 $query="SELECT * FROM

sensorvalue";

try{

 //get dbobjec

 $db=new db();

 //connect

 $db=$db->connect();

4
 ©Daffodil International University

 $stmt=$db->query($query);

 $sensorvalue=$stmt-

>fetchALL(PDO::FETCH_OBJ);

 $db=null;

echojson_encode($sensorvalue);

 }

catch(PDOException $e){

echo '{"error": {"text": '.$e-

>getMessage().'}';

 }

});

//get last data from database for Lower

sensor

$app->get('/api/lowerlastvalue',

function (Request $request, Response

$response, array $args) {

 $query="SELECT * FROM

sensorvalue WHERE

sensor='/S07LSWTC23' ORDER BY

time DESC limit 1";

try{

 //get db object

 $db=new db();

 //connect

 $db=$db->connect();

 $stmt=$db->query($query);

 $sensorvalue=$stmt-

>fetchALL(PDO::FETCH_OBJ);

 $db=null;

echojson_encode($sensorvalue);

 }

catch(PDOException $e){

echo '{"error": {"text": '.$e-

>getMessage().'}';

 }

});

//get last data from database for Upper

sensor

$app->get('/api/upperlastvalue',

function (Request $request, Response

$response, array $args) {

 $query="SELECT * FROM

sensorvalue WHERE

sensor='/S07USWTC23' ORDER BY

time DESC limit 1";

try{

 //get db object

 $db=new db();

 //connect

 $db=$db->connect();

 $stmt=$db->query($query);

 $sensorvalue=$stmt-

>fetchALL(PDO::FETCH_OBJ);

 $db=null;

echojson_encode($sensorvalue);

 }

catch(PDOException $e){

echo '{"error": {"text": '.$e-

>getMessage().'}';

5
 ©Daffodil International University

 }

});

//For Actuator service get data

$app->get('/api/action/{id}',

function(Request $request, Response

$response){

 $id = $request->getAttribute('id');

 $query = "SELECT * FROM

actuator WHERE id = $id";

try{

 // Get DB Object

 $db = new db();

 // Connect

 $db = $db->connect();

 $stmt = $db->query($query);

 $action = $stmt-

>fetch(PDO::FETCH_OBJ);

 $db = null;

echojson_encode($action);

 } catch(PDOException $e){

echo '{"error": {"text": '.$e-

>getMessage().'}';

 }

});

//for actuator service update the field

$app->put('/api/action/update/{id}',

function(Request $request, Response

$response){

 $id = $request->getAttribute('id');

 $action = $request-

>getParam('action');

 $query = "UPDATE actuator SET

 action =

:action

 WHERE

id = $id";

try{

 // Get DB Object

 $db = new db();

 // Connect

 $db = $db->connect();

 $stmt = $db->prepare($query);

 $stmt-

>bindParam(':action',$action);

 $stmt->execute();

echo '{"notice": {"text": "Temperature

Updated"}';

 }

catch(PDOException $e){

echo '{"error": {"text": '.$e-

>getMessage().'}';

 }

});

