

DESIGN AND IMPLEMENTATION OF AN

INTERACTIVE TEST CASE GENERATION (ITCG)

FOR SEQUENCE-LESS STRATEGY

 By

Dalia Sultana

ID: 151-35-1096

This Report Presented in Partial Fulfilment of the Requirements for the Degree

of Bachelor of Science in Software Engineering

DEPARTMENT OF SOFTWARE ENGINEERING

 DAFFODIL INTERNATIONAL UNIVERSITY

FALL 2018

 Copyright © 2018 by Daffodil International University

i ©Daffodil International University

 APPROVAL

This Thesis titled “Design and Implementation of an Interactive Test Case Generation

(ITCG) for Sequence-less Strategy’’, submitted by Dalia Sultana, 151-35-1096 to the

department of Software Engineering, Daffodil International University has been accepted as

satisfactory for the partial fulfillment of the requirements for the degree of Bachelor of Science

in Software Engineering and approval as to its style and contents.

BOARD OF EXAMINERS

-- Chairman

Professor Dr. Touhid Bhuiyan

Department Head

Department of Software Engineering

Faculty of Science and Information Technology

Daffodil International University

-- Internal Examiner 1

Dr. Md. Asraf Ali Associate Professor

Department of Software Engineering

Faculty of Science and Information Technology

Daffodil International University

ii ©Daffodil International University

THESIS DECLARATION

I hereby declare that, this Thesis Report has been done under the supervision of Dr. Md.

Mostafijur Rahman Assistant Professor, Department of Software Engineering, Faculty of

Science and Information Technology, Daffodil International University. I also declare that this

report has been submitted elsewhere for award of any degree.

Submitted By

………………………………………

Dalia Sultana

ID: 151-35-1096

Department of Software Engineering

Faculty of Science and Information Technology

Daffodil International University

Certified By

…………………………………………….

Dr.Md.Mostafijur Rahman

Assistant Professor

Department of Software Engineering

Faculty of Science and Information Technology

Daffodil International University

iii ©Daffodil International University

 ACKNOWLEDGEMENT

Alhamdulillah, all praises to the Almighty Allah who gives me the ability, benediction,

motivation, Patience and wisdom to complete this research work.

I would like to propagate my gratefulness to my respectful supervisors Dr. Md. Mostafijur

Rahman. This Research and Thesis would not departure without him. His excellent guidance,

motivation, caring, patience, and providing me with an excellent facilities and environment for

doing this research. I am also gratefulness to my parents for their support and pray and care.

iv ©Daffodil International University

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

1.1Background

 1.1.1CIIT with Sequence-less Inputs Interaction

 1.1.2 Sequence-less input interaction with uniform values

 1

 1

 1

1.2Motivation of the Research 3

1.3Problem Statement 4

1.4Research Objectives 4

1.5Research Scope 4

1.6Research Question 5

1.7Research Organization 5

CHAPTER 2: LITERATURE REVIEW

2.1Nondeterministic and Deterministic Combination Strategies 6

2.2Existing t-way Strategies for Sequence-less Input Interaction

 2.2.1 High Level Hyper Heuristic (HHH)

 2.2.2 Harmony Search Strategy (HSS)

 2.2.3 Particle Swarm based Test Generator (PSTG)

 2.2.4 Cuckoo Search Strategy (CSS)

 2.2.5 Simulated Annealing (SA)

 2.2.6 Genetic Algorithm (GA)

 2.2.7 Ant Colony Algorithm (ACA)

 2.2.8 Bat-Inspired t-way Strategy (BTS)

 2.2.9 Late Acceptance Hill Climbing (LAHC)

 2.2.10 Nie Implementation of GA (GA-N)

 6

 7

 7

 7

 7

 7

 8

 8

 8

 8

 9

2.3 Summary 9

CHAPTER 3: RESEARCH METHODOLOGY

3.1Design of Proposed ITCG Strategy 10

3.2Design of ITCG strategy for Sequence-less Input Interaction

 3.2.1Design of TIDG for sequence-less input interaction

 3.2.2 Design of t-way Tuple Generator for Sequence-less Input Interaction

 10

 11

 11

3.3Design of Test Case Generator 12

3.4 Summary 15

 NO PAGE

APPROVAL i

THESIS DECLARATION ii

ACKNOWLEDGEMENT iii

TABLE OF CONTENTS iv

LIST OF FIGURES vi

LIST OF TABLES vii

LIST OF ABBREVIATIONS viii

ABSTRACT ix

v ©Daffodil International University

CHAPTER 4: RESULTS AND DISCUSSION

4.1Demonstration of ITCG Strategy Correctness

 4.1.1Sequence-less (parameter with uniform values) Interaction

 16

 16

4.2 Benchmarking of ITCG Strategy

 4.2.1Sequence-less (parameter with uniform values) Interaction

 17

 18

4.3Summary 19

REFERENCES 22

APPENDIX A 29

APPENDIX B 30

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS

5.1Conclusion 20

5.2Findings and Significant 20

5.3 Recommendations for Future Works 20

5.4Limitation 21

vi ©Daffodil International University

LIST OF FIGURES

NO PAGE

1.1Framework of Sequence-less input interaction 1

1.2Fundamental of test processes 4

3.1Framework of ITCG strategy 10

3.2Algorithm for test input data generator for sequence-less input interaction 11

3.3Algorithm for t-way tuple generator 12

3.4 Algorithm of test case generation 14

vii ©Daffodil International University

 LIST OF TABLES

NO PAGE

1.1Input with uniform values 2

1.2 Exhaustive test cases generated from the Table 2.1 2

1.3Test cases using t-way strategy 2 for uniform input interaction 3

1.4 3-way tuples for the uniform values 3

4.1 Generated test cases for the system configuration CA (N; 2,34) using ITCG

strategy for sequence- less (parameter with uniform values) input interaction

 16

4.2 Generated 2-way tuples for the system configuration CA (N; 2, 34) using ITCG

strategy for sequence-less (parameter with uniform values) input interaction.

 17

4.3 Benchmarking of ITCG (uniform values) with existing nondeterministic and

deterministic based t-way strategies

 18

viii ©Daffodil International University

 LIST OF ABBREVIATIONS

ASP Answer Set Programming

ACTS Advanced Combinatorial Testing Suite

AI Artificial Intelligence

ACA Ant Colony Algorithm

AETG Automatic Efficient Test Generator

BTS Bat-Inspired t-way Strategy

CS Covering Array

CIIT Combinatorial Input Interaction Testing

CE Combinatorial Explosion

CP Control Programing

CV Condition Value CSS Cuckoo Search Strategy

CSS Cuckoo Search Strategy

GUI Graphical User Interface

GTway Generalized T-way Test Suite Generator

GA Genetic Algorithm

GA-N Nie Implementation of GA

HHH High level Hyper Heuristic

HSS Harmony Search Strategy

ITCG Integrated T-way Test Suite Generator

ITCG Input Test Case Generator

IPOG In Parameter Order General

LAHC Late Acceptance Hill Climbing

mAETG Modified Automatic Efficient Test Generator

PSTG Particle Swarm Test Generator

SDLC Software Development Life Cycle

SA Simulated Annealing

TVG Test Vector Generator

Tconfig Test Configuration

TIIT T-way Input Interaction Testing

TIDG Test Input Data Generator

TTG T-way Tuple Generator

TCT Test Case Generator

TID Test Input Data

ix ©Daffodil International University

 ABSTRACT

Increasing number of input sizes are caused by the exponential growth of test input interaction

and create a large input space. The problem examine is needed to do so fast that even the fasted

computers require an insufferable amount of time. It limits the ability of computers to solve

large input space problems. Only less amount of test case can solve the problem. Since twenty

years many useful t-way strategies have been developed to reduce test case size. Deterministic

and non-deterministic search strategies are used to design T-way (sequence-less) strategy such

as, High level Hyper Heuristic (HHH), Harmony Search Strategy (HSS),Cuckoo Search

Strategy (CSS),Particle Swarm Test Generator (PSTG), Simulated Annealing (SA), Genetic

Algorithm (GA), Ant Colony Algorithm (ACA), Bat-Inspired t-way Strategy (BTS), Late

Acceptance Hill Climbing (LAHC), Nie Implementation of GA (GA-N), Automatic Efficient

Test Generator (AETG), Modified Automatic Efficient Test Generator (mAETG), In Parameter

Order General (IPOG), Test Vector Generator (TVG), Generalized T-Way Test Suite

Generator (GTWay), Density, para order etc. Sequence-less strategy indicates the inputs are

taken as parameterized. From the literature it is found that the T-way strategy for sequence-

less input interaction is an NP-hard problem. So no one can get optimum solution for every

combination of system configuration. In this research an algorithm is proposed and

implemented to enhance the T-way input interaction test strategy (sequence-less). To check the

effectiveness, the proposed algorithm is compared with the other renown deterministic and

non-deterministic search based T-way strategies. The result help to show that the strategy (for

sequence-less input interaction) able to generate feasible results and minimize the number of

test cases compared with other strategies.

Keyword: T-way testing, Combinatorial input interaction, Deterministic and non-deterministic

combinatorial strategy, Deterministic and non-deterministic searching algorithm.

1 ©Daffodil International University

CHAPTER 1

INTRODUCTION

1.1Background

At present, software systems controlled modern society. The multi-functional and complex

designed software has multiple inputs. As a result sufficient software testing is helped while

regarding the multiple numbers of input interactions software verification and validation.

Insufficient software testing may cause oversight.

1.1.1 CIIT with Sequence-less Inputs Interaction

Fig. 2.1 shows the framework of sequence-less input interaction, where the W, X, Y, Z inputs

with two values in each. The sequence-less input interaction can be interaction with uniform

values.

 1.1.2 Sequence-less input interaction with uniform values

In this interaction, each input holds same number of values. For example, {W, X, Y, Z} is a

set of four inputs with two values {w1, w2}, {x1, x2}, {y1, y2} and {z1, z2} (in Table 1.1).

Then the exhaustive input interaction is 𝑣𝑝,ie.,24or 24. The Table 2.2 shows the exhaustive

test cases (generated from the Table 1.1) are 16. When increasing number of inputs and

values effect on cost and time.

 Figure 1.1: Framework of sequence-less input interaction (Othman, 2012)

2 ©Daffodil International University

 Table 1.1: Inputs with uniform value

 Table 1.2: Exhaustive test cases generated from the Table 1.1

 No. Exhaustive test case

 1 [w1,x1,y1,z1]

 2 [w1,x1,y1,z2]

 3 [w1,x2,y1,z1]

 4 [w1,x2,y1,z2]

 5 [w1,x1,y2,z1]

 6 [w1,x1,y2,z2]

 7 [w1,x2,y2,z1]

 8 [w1,x2,y2,z2]

 9 [w2,x1,y1,z1]

 10 [w2,x1,y1,z2]

 11 [w2,x2,y1,z1]

 12 [w2,x2,y1,z2]

 13 [w2,x1,y2,z1]

 14 [w2,x1,y2,z2]

 15 [w2,x2,y2,z1]

 16 [w2,x2,y2,z2]

The t-way strategy can reduce the number of test cases. In t-way strategy is made based on the

specific input strength t, where t is less than the number of input parameter. Consider the test

cases are needed to design for a system with four parameters (P) with two values (V) in each

(as in Table 1.1). The t-way strategy is used to generate test cases for the given system

configuration where t indicates the strengths (2, 3, 4, 5, 6,…, N). This t-way strategy is designed

with Covering Array (CA).

Covering Array (CA): The CA can be defined as CA (N; t, k, v), where N is the number of

final test cases, t is strength, the number of independent input parameter is k, and v is the

discrete value. The size of the CA can be defined as N x k, where each column represents a

parameter and each row represents a test case. The t is any t columns of the array and each of

the 𝑣𝑡 possible t-way tuples appears at least once (Kuhn, et. al., 2010). For example, suppose

a system consists k parameters P1, P2,…,𝑝𝑘 Each 𝑝𝑖 consists 𝑣𝑖 values, where 1≤ i ≤k. The

number of test candidate can be found from v1× v2× v3×… ×𝑣𝑘 . We are needed to cover all

the t-way tuples but it is too expensive to test all the input combination. Therefore, method is

needed to apply and solve some testing criterion.

3 ©Daffodil International University

 Table 1.3: Test cases using t-way strategy for the uniform input interaction

 Table 1.4: 3-way tuples for the uniform values

 No 3-way

tuple

 No 3-way

tuple

 No 3-way tuple No 3-way tuple

 1 [w1, x1, y1] 9 [w1, x1, z1] 17 [w1, y1, z1] 25 [x1, y1, z1]

 2 [w1, x1, y2] 10 [w1, x1, z2] 18 [w1, y1, z2] 26 [x1, y1, z2]

 3 [w1, x2, y1] 11 [w1, x2, z1] 19 [w1, y2, z1] 27 [x1, y2, z1]

 4 [w1, x2, y2] 12 [w1, x2, z2] 20 [w1, y2, z2] 28 [x1, y2, z2]

 5 [w2, x1, y1] 13 [w2, x1, z1] 21 [w2, y1, z1] 29 [x2, y1, z1]

 6 [w2, x1, y2] 14 [w2, x1, z2] 22 [w2, y1, z2] 30 [x2, y1, z2]

 7 [w2, x2, y1] 15 [w2, x2, z1] 23 [w2, y2, z1] 31 [x2, y2, z1]

 8 [w2, x2, y2] 16 [w2, x2, z2] 24 [w2, y2, z2] 32 [x2, y2, z2]

In the above sample input in the Table 1.1, using t-way strategy, a system configuration can be

defined by CA (N; 3, 24), where the number of test cases is N, the interaction strength is 3, the

uniform values is 2 and 4 indicates number of parameters. Table 1.3 shows the generated test

cases N=8.The 32, 3-way tuples (combination of 3 Values) are shown in Table1.4. All of the

3-way tuples are be covered must be covered by the generated test cases in Table 1.3.

1.2Motivation of the Research

In combinatorial testing test case has been increased. So, we need to reduce test case by the

efficient way. So, this research applies Nondeterministic searching algorithm.

Nondeterministic means all time get same output for same input. It is an NP hard problem; no

one can challenge to generate minimum number of test cases for every test configuration

(Othman, 2012; Afzal et al., 2009). Motivated by the above problems, in this thesis, a new t-

way strategy has been proposed.

 No. Test case

 1 [w1,x1,y1,z1]

 2 [w1,x2,y2,z1]

 3 [w1,x2,y1,z2]

 4 [w1,x1,y2,z2]

 5 [w2,x2,y1,z1]

 6 [w2,x1,y1,z2]

 7 [w2,x1,y2,z1]

 8 [w2,x2,y2,z2]

4 ©Daffodil International University

1.3Problem Statement

Software test design Combinatorial Explosion (CE) is an important issue. Furthermore, the

exhaustive input interaction testing is not fully practiced by the test engineers when time and

cost constraints (Williams & Robert, 2001).

Since 1995, there are many sequence-less t-way test strategies are developed. Many Meta –

heuristic searching algorithm was use to solve this problem. Like SA(Cohen et al.,2008), FA

(Zamli et al.,2018), HHH (Zamli et al., 2016; Zamli et al., 2017) is based on a tabu search

Algorithm. Everybody compare their result with another algorithm’s result. As a result they

can understand strength and limitations of each strategy, and highlighted the possible research

for future work in this area. (Alsewari & Zamli, 2014).

1.4Research Objective

The aim and objective of this research is to design and evaluate a new strategy based on t-

way strategy. To fulfills the aim, the following objectives are taken under consideration:

 To design and implement a t-way sequence-less input interaction test strategy.

 To evaluate the performance of the proposed system with other competing

strategies on the basis of the generated test suite size.

 1.5Research Scope

This research focus is to design and develop an integrated t-way strategy supporting sequence-

less input interaction to generate test suite (Fig. 1.2). These processes are the media between

planning and test execution processes. The test implementation and execution activity involves

run the tests. The exit criteria is defined time when test planning and before test execution

started. Test closure activities concentrate on making sure that everything is well organized

(Morgan et al., 2015).

5 ©Daffodil International University

 Figure1.2: Fundamental of test processes (Morgan et al., 2015)

In this research, the design of a new t-way strategy is taken as the main target, which can be

used to generate optimum or minimum number of test cases. We also focus time and space

complexity can be ignored.

1.6Research Questions

1. How to design and implement a t-way sequence-less input interaction test strategy?

2. How to evaluate the performance of the proposed system with other competing strategies on

the basis of the generated test suite size?

 1.7Thesis Organization

The problem statement, research objective, research scopes, research motivation, as well as

research question are introduced in this chapter. The rest of the thesis is organized as follows.

Chapter 2 begins with the definitions and examples of some terminologies underlying of this

research. It can do combinatorial methods for t-way test strategies considering sequence-less

input interaction.

Chapter 2 begins with the definitions and examples of some terminologies underlying of

this research. It can do combinatorial methods for t-way test strategies considering sequence-

less input interaction.

Chapter 3 presents the design and development of a new strategy for software input interaction

testing based on t-way strategy which considers sequence-less input interaction.

Chapter 4 discusses the evaluation of FSSA for sequence-less input interaction on the basis of

finding the correctness of the generated test cases.

Finally, Chapter 5 summarizes the Acquirement and limitation of the proposed design and

implementation. Chapter 5 concludes this research work with some recommendation of future

direction.

6 ©Daffodil International University

 CHAPTER 2

LITERATURE REVIEW

The enacting terminologies related to t-way strategy describe by this chapter. The existing t-

way strategies supporting sequence-less input interaction are analyzed. A new algorithm for t-

way strategy is analyzed to get the usefulness of assumption.

2.1Nondeterministic and Deterministic Combination Strategies

The existing t-way strategies can be divided into two groups, like as, nondeterministic and

deterministic combination strategy.

The nondeterministic combination strategies, same input parameter model may lead to different

test suites. Some existing nondeterministic t-way strategies which adopt heuristic search

algorithms are as follows: High level Hyper Heuristic (HHH) (Zamli et al., 2017), Harmony

Search Strategy (HSS) (Alsewari & Zamli, 2011), Particle Swarm based Test Generator

(PSTG) (Ahmed et al., 2012a; Ahmed et al., 2012b), Cuckoo Search Strategy (CSS) (Nasser et

al., 2015), Simulated Annealing (SA) (Cohen et al., 2003), Genetic Algorithm (GA) (Shiba et

al., 2004), Ant Colony Algorithm (ACA) (Shiba et al., 2004), Bat-inspired Testing Strategy

(BTS) (Alsariera & Zamli, 2015).

The deterministic t-way strategies always generate the same test suite for every execution and

give same input parameters, values and strengths. Some deterministic t-way strategies are as

follows: In Parameter Order for N-way test (IPO-N) (Nie et al., 2005), Automatic Efficient

Test Generator (AETG) (Cohen et al., 1994; Cohen et al., 1997), Modified Automatic Efficient

Test Generator (mAETG) (Cohen, 2004), In-Parameter-Order-General (IPOG) (Lie et al.,

2007), Modified In-Parameter-Order-General (MIOPG) (Younis et al., 2011), Intelligent Test

Case Handler (ITCH) (Hartman et al. 2007), Jenny (Jenkins, 2005), Test Vector Generator

(TVG) (Arshem, 2010), Test Configuration (TConfig) (Williams, 2000), Generalized T-Way

Test Suite Generator (GTWay) (Zamli et al., 2011), Density (Bryce & Colbourn, 2009).

2.2 Existing t-way Strategies for Sequence-less Input Interaction

In the last decade number of method have been developed for enhancing t-way strategy for

sequence-less input interaction. Now I will describe.

7 ©Daffodil International University

2.2.1 High Level Hyper Heuristic (HHH)

The High Level Hyper Heuristic (HHH) (Zamli et al., 2017) strategy is a hybrid t-way test case

generation strategy. The four low level meta-heuristic algorithms is selection and acceptance

based on the improvement, diversification and intensification operator. The adopted low level

meta-heuristic algorithms are designed for continuous problems.

2.2.2 Harmony Search Strategy (HSS)

Alsewari and Zamli (2011), meta-heuristic algorithm adopted harmony search (HS) for t-way

test strategy to generate test suite. It is population-based algorithm. The HS uses a

probabilistic-gradient in its search space and to select the current solution to adopt

mathematical equations for better solution. It is proved that the harmony search algorithm

perform well in solving entirely interactive combinatorial problems (Alsewari and Zamli,

2011).

2.2.3 Particle Swarm based Test Generator (PSTG)

Ahmed et al. (2012a; 2012b) designed a t-way test suite generation strategy. It is called particle

swarm test generator (PSTG). It is obtained by particle swarm optimization (PSO) (Ahmed et

al., 2012a; Ahmed et al., 2012b; Mahmoud & Ahmed, 2015).It is also population based

optimization method (Kennedy & Eberhart, 1995a; Kennedy & Eberhart, 1995b).PSO include

a group of particles with insignificant mass and volume and which move through hyperspace.

2.2.4 Cuckoo Search Strategy (CSS)

Cuckoo search strategy (CSS) (Nasser et al., 2015) is a recent strategy for t-way test generation.

It creates random initial nests. Each egg in a nest represents a vector solution indicates a test

case. Firstly, a new nest is created through levy flight path (Yang & Deb, 2009). Then it is

appreciated against the existing nests. If there is found a better result, the new nest is replaced

as present nest. Secondly, CS has probabilistic elitism in order to maintain elite solutions for

the next generation.

2.2.5 Simulated Annealing (SA)

Cohen et al. (Cohen et al., 2003) used simulated annealing (SA) to solve t-way combinatorial

problem. This is also a heuristic searching method to acquire optimal test suite. In this

technique, first feasible solution is set as a best solution then compare with the best solution. A

transformation function is used to select the next feasible solution. Two things are used to

control the iteration like cooling rate and temperature (Cohen et al., 2003b).

8 ©Daffodil International University

2.2.6 Genetic Algorithm (GA)

Genetic algorithm (GA) proposed for t-way test strategy to generate test suite (Shiba et al.,

2004). It is the process of natural selection It begins with randomly created test cases, based on

chromosomes. These crossover and mutation is happening until a termination criterion is met.

The goodness of a candidate function estimate by use fitness function. A selection function

selects a number of good candidate solution. The best chromosomes are selected and added to

the final test suite.

2.2.7 Ant Colony Algorithm (ACA)

Ant colony optimization (ACO) algorithm adopted on t-way test strategy (Shiba et al.,2004).

It is the behavior of natural ant colonies to find paths from the colony to food. The candidate

solutions are determined by each path from a starting point to an ending point that associated

with the candidate solution. The amount of pheromone deposited in each ant movement path

are selected based on the candidate solution The next candidate solution is based on the larger

number of pheromone. Finally, there may have possibility to achieve near optimum or optimum

solution to the target problem.

 2.2.8 Bat-Inspired t-way Strategy (BTS)

Alsariera & Zamli (2015),bat algorithm adapted for t-way strategy to generate test suite, which

is called bat-inspired testing strategy (BTS). The bat algorithm (BA) (Yang, 2010) is a natural-

inspired algorithm. The interpretation of the nature may not perfect. The BA is a population

optimization algorithm. The Bats find its best moving dimension from its position and velocity.

In every iteration, the bat algorithm provides an exhaustive local search method throughout its

random walk behavior to find the best solution.

2.2.9 Late Acceptance Hill Climbing (LAHC)

Late Acceptance based Hill Climbing (LAHC) is a heuristic search algorithm (Zamli et al.,

2015). When a candidate cost function is better (or equal) which accept non improving moves.

Each current solution is employed during the later (not immediate) acceptance procedure.

LAHC is started from a randomly generated initial solution and it evaluates a new candidate in

order to accept or reject at each iteration. The last element is compared with The candidate cost

of the list and if not worse than accepted. After the acceptance procedure, the cost of the new

current solution is inserted into the beginning of the list and the last element is removed from

the end of the list. When the inserted current cost is equal to the candidate's cost in the case of

accepting only, but in the case of rejecting it is equal to the previous value (Burke & Bykov,

2017).

9 ©Daffodil International University

2.2.10 Nie Implementation of GA (GA-N)

The GA-N is the upgraded version of GA (Shiba et al.,2004). where N indicates N

(N=2,3,4,5,6…) number of interaction.

2.4 Summary

In combinatorial input interaction testing the t-way test strategy focus is to reduce number of

test cases. Number of researchers are doing research on t-way test strategy for sequence-less

input interaction and found that it is NP-hard problem (Shiba et al., 2004; Younis et al., 2010;

Othman & Zamli, 2011; Nie & Leung, 20). No researcher can claim that their strategy able to

produce the optimum number of test cases for all configuration. Therefore, there is still space

for research to design algorithm for t-way test strategy to get lower number of test cases. Next

chapter discusses about the proposed t-way strategy algorithm design and implementation.

10 ©Daffodil International University

 CHAPTER 3

RESEARCH METHODOLOGY

Sequence-less t-way strategies are NP-hard problem. Now I will discusses a new design on test

case tuple test data (ITCG) generate strategy which supports sequence-less input interaction.

ITCG strategy for sequence-less input interaction is considered input parameters with uniform

values. The overall design is discussed.

3.1 Design of Proposed ITCG Strategy

 Fig. 3.1 shows and describes an overview of the proposed ITCG strategy. The design of ITCG

strategy consists three part, such as, test input data generator (TIDG), tuple generator (TG) and

test case generator (TCG). The TCG is designed to generate final test suite. However, the ITCG

strategy is designed to support higher number of strength and higher number of input test

configuration.

 Figure 3.1: Framework of ITCG strategy

3.2 Design of ITCG strategy for Sequence-less Input Interaction

The design of ITCG strategy for sequence-less input interaction consists of test input data and

t-way tuple generate then create final test case or test suite. The coverage of t-way tuples check

by test input data generator uses TID. A condition value is also used to compare the t-way tuple

coverage.

11 ©Daffodil International University

3.2.1 Design of TIDG for sequence-less input interaction

The TIDG consists of TID for sequence-less input interaction. The generated lists of TID are

stored into an exhaustive array. The TID are used for test case generator and the t-way tuple

generator. The number of TID can be calculated from the number of variables associated with

the input parameter.

Algorithm 3.1: Test data generator for sequence-less input interaction

Input: Position(pos)

Outputs: The number of generated input data.

Process:

1. If pos>input then

2. For i=1 to input do

3. Set numeric values of exhaustive test cases into a

4. End For
5. For i=input+1 to 14

6. Initialize values of Structure a to {0,0}

7. End For

8. Store numeric values of a to Exhaustive

9. Call tupleGen () function for current Exhaustive Test Case

10. End IF

11. For j=1 to values do

12. Mark the current position as taken

13. Increment pos by 1 and Go to Step 1

14. End For

End of Test Input Data Generator

Figure 3.2: Algorithm for test input data generator.

Like a test configuration CA (N;T, 𝑉𝑃), where N the number of test cases, T strength , V values

and P parameters. The total number of TID can be calculated from the P power of V(

𝑉𝑃).Example: configure CA (N; 2, 23) where T=2, V=2 and P=4. Test input data is 24 or 16.

The input parameters are shown in Table 2.1. The expected lists of TID from Table 2.1 are

shown in Table 2.2

3.2.2 Design of t-way Tuple Generator for Sequence-less Input Interaction

Now algorithm 3.2 shows the generating t-way tuples. The lists of TID are used to generate t-

way tuples. Loop need to continue to generate the t-way tuples. The number of input parameters

and values are needed to generate t-way tuples. For the number of parameters 3, 4, 5, 6, 7, 8,

9, 10 and values are 23-1 or 7, 24-1 or 15, 25-1 or 31, 26-1 or 63, 27-1 or 127, 28-1 or 255, 29-

1 or 511, 210-1 or 1023 respectively. The specific number of input parameter generate of t-

way tuple.

12 ©Daffodil International University

Algorithm 3.2: t-way tuple generator for sequence-less input interaction

Input: Input: Position(pos), Counter(cnt),Index(idx)

Outputs: All tuples for each exhaustive test cases (TempTuple),All unique tuples (Tuple)

Process:

1. If cnt = ways then

2. Initialize paired values of Structure a to {0,0}

3. For i=0 to cnt-1 do

4. Set numeric values of tuples into a

5. Convert numeric values of a to String tmp

6. End For

7. Store String values from tmp to Tuple

8. Store String values of a to Temp Tuple

9. Return

10. End IF

11. If pos>input then

12. End IF

13. Mark the current position as taken

14. Increment pos by 1 and cnt by 1 and Go to Step 1

15. Increment pos by 1 and Go to Step 1

16. Return T-way Pairs list.

End of Tway Tuple Generator

 Figure 3.3: Algorithm for t-way tuple generator

For test configuration CA (N; 3, 24). Algorithm 3.2 (Fig. 3.3) can be generated t-way tuple.

Assume the parameters are W, X, Y and Z refer to the Table 2.1 in Chapter 2. The number of

3-way tuple depends on the sum of the 3-way combination of parameters multiplied by their

number of values. The 3-way combinations of the four parameters W, X, Y and Z are (W, X,

Y), (W, X, Z), (W, Y, Z) and (X, Y, Z). The number of 3-way tuple can be generated (2*2*2)

+ (2*2*2) + (2*2*2) + (2*2*2) or 32.

3.3 Design of Test Case Generator

Final test suite generation show by the algorithm 3.3. These process complete four phases. First

phase, the selection of strategy is made for sequence-less input interaction. Second phase, the

corresponding input data generator is called to generate input interaction data. For sequence-

less strategy, the test input data generator and tuple generator generated data are stored into

two different data set respectively. The data set are used for test case generator. Third phase, a

condition value is generated for tuple search. The condition value is depending on t-way tuple

coverage of a test candidate.

13 ©Daffodil International University

For sequence-less input interaction, the condition value define by an integer number, which is

generated from the maximum number of t-way tuple from each test candidate. The number of

input parameters (P) and strength (t) combination is calculated. If the total number of generated

t-way tuple and condition value are known when any test configuration the optimum number

of test cases can be found. The optimum number of test cases in a test suite is found by taking

fist test case and search left and right from this test case and also take a length how much test

cash is search from left and right. The optimum number of test cases always found as integer

value not found another value. Table A.1 in Appendix A shows optimum number of test cases

for some sequence-less (uniform values respectively) input test configurations.

The above requirements for the proposed ITCG strategy for sequence-less input interaction is

designed to fulfill the algorithm in Fig. 3.3

 The completion of all TID elements checking effect on the condition value to reduce by 1.

This algorithm also checks that all the nodes in the t-way tuple are covered or not. The fully

covered tuple indicates the search is complete. All nodes in t-way tuple are not covered which

indicates the generated test suite is wrong when the condition value decreased to zero. On the

other hand, all nodes in t-way tuple tree are covered, indicates the generated test cases are

correct when the condition value is greater than zero.

Algorithm 3.3: Test case generator

Input: Pivot (pivot), Jump (jump)

Output: Taken Exhaustive test cases after Searching.

Process:

1. Initialize pivot and jump size

2. While until Tuple is empty do

3. Mark pivot as taken and store pivot into vector ans

4. For i=0 to TempTuple[pivot],size()-1 do

5. IF ith Tuple Exists in Tuple then delete ith tuple from Tuple

6. End IF

7. End For

8. IF Tuple is empty then Break

9. End IF
10. Set k=pivot+1,d=0,cv=0,idx=0

11. While until k<Exhaustive AND cv<jump do

12. IF k is marked as taken Then

13. Set k=k+1

14. Go to Step 11

15. End IF
16. Set cnt=0

17. For i=0 to TempTuple[k], size()-1 do

18. IF ith tuple exists in Tuple set cnt=cnt+1

19. End IF

20. End For

21. IF cnt>d Then

22. Set d=cnt

23. Set idx=k

24. End IF

14 ©Daffodil International University

25. Set k=k+1 and cv=cv+1

26. End While

27. Set k=pivot-1 and cv=0

28. While k>=0 AND cv<Jump do

29. IF k is marketed as taken Then

30. Set k=k-1

31. Go to Step 27

32. End IF
33. Repeat Steps 15 to 19

34. IF cnt=d Then

35. IF pivot –k<idx –pivot Then

36. Set idx=k

37. End IF

38. Else If cnt>d Then

39. Set d=cnt and idx=k

40. End IF

41. Set k=k-1 and cv=cv+1

42. End While
43. Set pivot=idx

44. End While

45. Print taken Exhaustive test cases after Search.

 End of Test Case Generation

 Figure 3.4: Algorithm of test case generation (continue from previous page)

The first test case always can cover maximum number of tuple. When we search left and right

from Initial test case if we found 2 different test cases can cover same maximum number of

tuple, we will take close test case from initial test case test case. Then add the selected TID

element in final test case list, if the numbers of any TID element generated number of t-way

covered tuple are same as the condition value. The respective covered t-way tuple of the test

case and the test case itself are deleted from the original t-way tuple list and TID list

respectively for the case of sequence-less input interaction, to reduce the redundant searching.

While the condition value becomes zero or the original t-way tuple list become empty,

searching process are not work. Every iteration the original t-way tuple list is checked whether

all the t-way tuples are covered or not. The selected TID are the final test suites indicate by all

t-way covered tuple. In this algorithm, the recursive technique is applied to generate test.

15 ©Daffodil International University

3.4 Summary

Number of research paper have been read to get idea on t-way strategy development.

Researchers are embedding different searching algorithms (deterministic and non-

deterministic) such as AETG, TVG, Jenny, IPOG, Density, mAETG, IPO-N, and HHH.HSS,

PSTG, CSS, SA, GA, ACA, BTS, LAHC,GA-N etc. In this thesis a nondeterministic searching

algorithm (proposed in the Figure 3.5) is used to get feasible number of test cases.

16 ©Daffodil International University

 CHAPTER 4

 EXPERIMENTAL RESULTS

This chapter discusses about the performance of test case tuple test data (ITCG) strategy for

sequence-less input interactions. This phase discusses the generated results from ITCG strategy

and test cases in terms of cover all generated t-way tuples. Benchmarking against the existing

strategies is explored by the performance evaluation of ITCG strategy.

4.1 Demonstration of ITCG Strategy Correctness

The demonstration of ITCG strategy correctness is shown in this phase. The demonstration of

correctness is based on sequence-less (parameter with uniform values).

 4.1.1 Sequence-less (parameter with uniform values) Interaction

The generated test cases, the number of 2-way tuples covered by each test cases as well as the

corresponding 2-way tuples generated from the test cases show table 4.1. The system

configuration CA (N; 2, 34) is taken as a test sample, where 2 is the strength and 34 indicates

4 parameters with uniform values 3. Here the 4 parameters values are considered as {w1, w2,

w3}, {x1, x2, x3}, {y1, y2, y3} and {z1, z2, z3}. System configuration CA (N; 2, 34) generates

total 54 2way tuples. Each test case is able to cover compute maximum number of 2-way tuples

by using ITCG strategy for sequence-less input interaction. it is observed that tuples the 9 test

cases cover total (6*9) and each of the 9 test cases covered 6 2-way or 54 2-way tuples (shown

in Table 4.2). The Table 4.2 demonstrates the test cases 1, 2, 3, 4, 5, 6, 7, 8 and 9 cover the

tuples (shown in Table 4.2). The Table 4.2 demonstrates the test cases 1, 2, 3, 4, 5, 6, 7, 8 and

9 cover the Table 4.1: Generated test cases for the system configuration CA (N; 2, 34) using

TWIIT strategy for sequence-less (parameter with uniform values) input interaction.

Table 4.1: Generated test cases for the system configuration CA (N; 2, 34) using TWIIT

strategy for sequence-less (parameter with uniform values) input interaction.

No. Generated Test

Cases

 Cases

Covered 2-

way Tuples

2-way tuple generated by test case

 1. w1,x1,y1,z1 6 {w1,x1},{w1,y1},{w1,z1},{x1,y1},{x1,z1},{y1,z1}

 2. w1,x2,y2,z2 6 {w1,x2},{w1,y2},{w1,z2},{x2,y2},{x2,z2},{y2,z2}

 3. w1,x3,y3,z3 6 {w1,y3},{w1,y3},{w1,z3},{x3,y3},{x3,z3},{y3,z3}

 4. w2,x1,y2,z3 6 {w2,x1},{w2,y2},{w2,z3},{x1,y2},{x1,z3},{y2,z3}

 5. w2,x2,y3,z1 6 {w2,x2},{w2,y3},{w2,z1},{x2,y3},{x2,z1},{y3,z1}

 6. w2,x3,y1,z2 6 {w2,x3},{w2,y1},{w2,z2},{x3,y1},{x3,z2},{y1,z2}

 7. w3,x1,y3,z2 6 {w3,x1},{w3,y3},{w3,z2},{x1,y3},{x1,z2},{y3,z2}

 8. w3,x2,y1,z3 6 {w3,x2},{w3,y1},{w3,z3},{x2,y1},{x2,z3},{y1,z3}

17 ©Daffodil International University

 9. w3,x3,y2,z1 6 {w3,x3},{w3,y2},{w3,z1},{x3,y2},{x3,z1},{y2,z1}

Table 4.2: Generated 2-way tuples for the system configuration CA (N; 2, 34) using

TWIIT strategy for sequence-less (parameter with uniform values) input interaction.

N
o

2
-w

a
y

tu
p

le
s

C
o
v
er

ed
 b

y

te
st

 c
a
se

s

N
o

2
-w

a
y

tu
p

le
s

C
o
v
er

ed
 b

y

te
st

 c
a
se

s

N
o

2
-w

a
y

tu
p

le
s

C
o
v
er

ed
 b

y

te
st

 c
a
se

1 w1,x1, 1 19 w1,z1 1 37 x1,z1 1

2 w1,x2 2 20 w1,z2 2 38 x1,z2 7

3 w1,x3 3 21 w1,z3 3 39 x1,z3 4

4 w2,x1 4 22 w2,z1 5 40 x2,z1 5

5 w2,x2 5 23 w2,z2 6 41 x2,z2 2

6 w2,x3 6 24 w2,z3 4 42 x2,z3 8

7 w3,x1 7 25 w3,z1 9 43 x3,z1 9

8 w3,x2 8 26 w3,z2 7 44 x3,z2 6

9 w3,x3 9 27 w3,z3 8 45 x3,z3 3

10 w1,y1 1 28 x1,y1 1 46 y1,z1 1

11 w1,y2 2 29 x1,y2 4 47 y1,z2 6

12 w1,y3 3 30 x1,y3 7 48 y1,z3 8

13 w2,y1 6 31 x2,y1 8 49 y2,z1 9

14 w2,y2 4 32 x2,y2 2 50 y2,z2 2

15 w2,y3 5 33 x2,y3 5 51 y2,z3 4

16 w3,y1 8 34 x3,y1 6 52 y3,z1 5

17 w3,y2 9 35 x3,y2 9 53 y3,z2 7

18 w3,y3 7 36 x3,y3 3 54 y3,z3 3

4.2 Benchmarking of ITCG Strategy

This is a nondeterministic based strategy. The reported test suites size is produced from 20

times execution of the program. The ITCG is compared with existing strategies. Test suite sizes

define which strategy is best. Other t-way strategies (Zamli, et. al., 2017; Zamli, et. al., 2016;

Stardom, 2001; Ahmed, et. al., 2015; Ahmed, et. al., 2012; Cohen, 2005; Garvin, et. al., 2010;

Bryce & Colbourn, 2007; Ahmed, et. al., 2012; Alsewari, 2012; Ahmed, 2012) are taken for

benchmarking from Only the published test configurations. The comparison show that

nondeterministic and deterministic search based t-way strategies. Test suites size indicate by “

bold’’ the minimum size of test suite and others are feasible solution for the configuration of

interests. The results are not available in any publication for the particular method which define

“-” (dash) sign. The test suite size is optimum and best solution indicates ‘*’ (star) sign.

18 ©Daffodil International University

4.2.1 Sequence-less (parameter with uniform values) Interaction

The results are evaluated by benchmarking with existing t-way strategies for sequence-less

(parameter with uniform vaules) interaction. The nondeterministic based t-way strategies are:

HHH (Zamli, et. al., 2016;), HSS (Alsewari, & Zamli, 2012), PSTG (Ahmed, et.al., 2012), CSS

(Ahmed, et. al., 2015), SA (Cohen, et. al., 2003), GA (Shiba, et. al., 2004), ACA (Shiba, et. al.,

2004), BTS(Alsariera & Zamli, 2015), LAHC (Zamli, et. al., 2015), and GA-N (Shiba, et. al.,

2004). Besides the deterministic based t-way strategies are: IPO-N (Nie, et. al., 2005),

AETG(Cohen, et. al., 1997), mAETG (Cohen, 2004), IPOG (Lie, et. al., 2007a), MIOPG

(Younis, et. al., 2011), ITCH (Hartman, et. al. 2007), Jenny (Jenkins, 2010), TVG(Arshem,

2010), TConfig (Williams, 2000), GTWay(), Density(Wang et al., 2008), ParaOrder (Wang et

al., 2007), PICT(Czerwonka, 2006) and ITTSG(Othman, 2012). SA and GA generate better

result from most other strategies for lower interaction (t<3) refer to Table 4.7,. For the HHH,

CSS, ACA, GA-N, IPO-N, mAETG, AETG strategies, there are no published result found for

the system configurations (in Table 4.3) with interaction greater than 3 (t>3).

Table 4.3 Benchmarking of ITCG strategy (uniform values) with existing deterministic and

Nondeterministic based t-way strategies

 System

configuration

 Nondeterministic based strategies

IT
C

G

T
W

IIT

H
H

H

H
S

S

P
S

T
G

C
S

S

S
A

G
A

A
C

A

B
T

S

L
A

H
C

G
A

-N

CA (N; 2, 𝟑𝟒) 9* 9* 9* 9* 9* 9* 9* 9* 9* - - -

CA (N; 2, 𝟐𝟏𝟑) 9* 19 - - 17 - 16 17 17 - - -

CA (N; 3, 𝟑𝟒) 33 27 27 27 27 27 - - - - - -

CA (N; 3, 𝟑𝟔) 15 34 33 39 42 43 33 33 33 - - 52

CA (N; 3, 𝟒𝟔) 64* 64* 70 - 102 105 64* 64* 64* - - 85

CA (N; 4, 𝟓𝟓) 749 727 - - 783 - - - - - - -

CA (N; 4, 𝟑𝟔) 135 132 - 134 - - - - - 132 132 -

CA (N; 4,𝟐𝟏𝟎) 9* 42 - - - - - - - - -

CA (N; 5, 𝟐𝟔) 32* 32* - - - - - - - - - -

CA (N; 5, 𝟐𝟖) 64* 64* - 66 65 - - - - 64* 64* -

CA (N; 6, 𝟐𝟕) 64* 64* - 64* 67 - 64* 64* -

CA (N; 6, 𝟑𝟕) 848 848 - - - - - - - - - -

Note: Bold value, ‘*’and ‘-‘indicate the best, minimum & optimum size of test suite, and no

published result found, respectively

19 ©Daffodil International University

 System

configuration

 Deterministic based strategies

IT
C

G

T
W

IIT

IP
O

-N

m
A

E
T

G

IP
O

G

J
en

n
y

T
V

G

T
co

n
fig

G
T

W
a
y

D
en

sity

P
a
ra

 O
rd

er

P
IC

T

CA (N; 2, 𝟑𝟒) 9* 9* - 9* - - - - - - - -

CA (N; 2, 𝟐𝟏𝟑) 9* 19 - 17 - - - - - - - -

CA (N; 3, 𝟑𝟒) 33 27 - - 39 34 32 32 - - - 34

CA (N; 3, 𝟑𝟔) 15 34 47 38 - 51 48 48 - 63 53 48

CA (N; 3, 𝟒𝟔) 64* 64* 64* 77 - 112 120 64* - 64* 106 111

CA (N; 4, 𝟓𝟓) 749 727 - - 784 837 849 773 771 - 730 -

CA (N; 4, 𝟑𝟔) 135 132 - - - 140 - 141 - - - 142

CA (N; 4,𝟐𝟏𝟎) 9* 42 - - 46 39 40 45 46 - 45 -

CA (N; 5, 𝟐𝟔) 32* 32* - - - - - - - - - -

CA (N; 5, 𝟐𝟖) 64* 64* - - - 74 - 70 - - - 64*

CA (N; 6, 𝟐𝟕) 64* 64* - - - 87 - 64* - - 72

CA (N; 6, 𝟑𝟕) 848 848 - - - - - - - - - -

Note: Bold value, ‘*’and ‘-‘indicate the best, minimum & optimum size of test suite, and no

published result found, respectively

4.3 Discussion

In this research, the execution time is not main issue for the comparison because most

implementations are not to be executed on the computer as used in this research.The exact

time to generate final test cases cannot ensure nondeterministic search based strategy

(Crepinsek, et al. 2014a; Crepinsek, et al. 2014b; Mernik, et al., 2015; Draa, 2015).My

algorithm is also gives feasible solution for most of the test input configuration. Three result

is best that any kind of previous algorithm is not give minimum solution than my algorithm.

Another solution is also best like existing algorithm. This research successfully produces

better results in many scenarios that is shown in the Table 4.3.

20 ©Daffodil International University

 CHAPTER 5

 CONCLUSION AND FUTURE WORKS

In Chapter 4, the experimental results of ITCG strategy are practiced the goals and highlighted

the contributions achieved from this research in the field of software test engineering.

5.1 Conclusion

The aim and objectives of this research have been successfully achieved. The findings are

formed a guideline for designing input interaction strategy based on uniform strength. In order

to achieve the objective detail discussion on the proposed ITCG strategy design modules are

done. A new t-way strategy, has been successfully developed to generate feasible and

competitive test cases. The developed ITCG strategy supports sequence-less input interaction.

The sequence-less input interaction supports uniform input interaction. Finally, the generated

test cases are proved based on the covered t-way tuples. The performance evaluation of ITCG

is performed by comparing with the existing strategies on the basis of the number of generated

test cases.

The ITCG strategy can be an efficient for software assurance that empirical experience shows.

The ITCG strategy is designed and developed to support for higher strength and higher

numbers of input interactions. This research focuses on the traditional software interaction

testing. I think that there are many emerging applications can be tested using the ITCG as

similar to existing t-way strategies. The design of ITCG strategy can be extended beyond the

application of software testing.

5.2 Findings and Significant

The ITCG strategy, for sequence-less input interaction, the integration of uniform input

interaction can be a performance. By the development for sequence-less input interaction,

random and input jump techniques are used to cover all t-way tuple efficiently. The

significance of this research is this is a new approach to deal with sequence-less CIIT that

produces better results in some scenarios that is discussed in Table 4.3.

5.3 Recommendations for Future Works

In this research, a new ITCG strategy is designed and developed carefully to support sequence-

less input interactions. ITCG strategy can be made efficient by using many ways. By adopting

other random algorithms (such as nondeterministic algorithms) it can be made more efficient.

Implementation wise ITCG can be extended in several ways. However, the jump technique is

ease for the ITCG strategy to implementation the concurrent and can be reduced the t-way tuple

search time. ITCG strategy can be extended for input-output based relations and variable

strength interaction for generating test cases. Finally, to establish a more efficient t-way input

21 ©Daffodil International University

interaction test strategy for sequence-less input interaction still deserves for future research.

5.4 Limitation

My research work still has some limitations. In the future, first we should find potential optimal

combination of design parameter then apply our approach to more inputs to demonstrate the

effectiveness. Second, we want to apply our algorithms to support the software testing work in

real software enterprises and verify their effectiveness in software faults detection. My

algorithm can be revised and improvised to work with bigger and non-uniform values.

22 ©Daffodil International University

REFERENCES

Ahmed, B. S., Zamli, K. Z., & Lim, C. P. (2012a).

Application of particle swarm optimization to uniform and variable strength covering

array construction. Applied soft computing, 12(4), 1330-1347.

doi:10.1016/j.asoc.2011.11.029.

Afzal, W., Torkar, R. & Feldt, R. (2009).

A systematic review of search-based testing for non-functional system properties.

Information and software technology, 51(6), 957-976.

 Ahmed, B. S., Zamli, K.. Z. and Lim, C. P. (2012b).

Constructing a t-way interaction test suite using the particle swarm optimization

approach. International journal of innovative computing, information and control

(ICIC), 8(1(A)), 431-451.

 Ahmed, B. S., & Zamli, K. Z. (2010).

T-way test data generation strategy based on particle swarm optimization. In

proceedings of 2nd international conference on computer research and development,

93-97. doi:10.1109/iccrd.2010.56.

Ahmed, B. S., Abdulsamad, T. S. & Potrus, M. Y. (2015).

Achievement of minimized combinatorial test suite for configuration-aware software

functional testing using the cuckoo search algorithm. Information and software

technology, 66, 13-29. doi:10.1016/j.infsof.2015.05.005

 Alsewari, A. A., & Zamli, K. Z. (2011).

Interaction test data generation using harmony search algorithm. In proceedings of the

IEEE symposium on industrial electronics and applications, 559-564.

doi:10.1109/isiea.2011.6108775

 Alsariera, Y. A., & Zamli, K. Z. (2015).

A bat-inspired strategy for t-way interaction testing. Journal of advanced science letters,

21(8), 2281-2284. doi:10.1166/asl.2015.6316.

23 ©Daffodil International University

Arshem, J. (2004).

Test vector generator. Retrieved on April 5, 2017 from

http://sourceforge.net/projects/tvg.

Alsewari, A. A., & Zamli, K. Z. (2014).

An orchestrated survey on t-way test case generation strategies based on optimization

algorithms. In proceedings of the 8th international conference on robotic, vision, signal

processing & power applications, 255-263. doi:10.1007/978-981-4585-42-2_30.

Bryce, R. C., & Colbourn, C. J. (2009).

A density-based greedy algorithm for higher strength covering arrays. Software testing,

verification and reliability, 19(1), 3753. doi:10.1002/stvr.393.

Burke, E. K., & Bykov, Y. (2017).

The late acceptance hill-climbing heuristic. European journal of operational research,

258(1), 70-78. doi:10.1016/j.ejor.2016.07.012.

 Cohen, D., Dalal, S., Fredman, M., & Patton, g. (1997).

The AETG system: an approach to testing based on combinatorial design. IEEE

transactions on software engineering, 23(7), 437-444. doi:10.1109/32.605761.

Cohen, D., Dalal, S., Kajla, A., & Patton, G. (1994).

The Automatic Efficient Test Generator (AETG) system. In proceedings of the IEEE

international symposium on software reliability engineering, 303-309.

doi:10.1109/issre.1994.341392.

Cohen, M. B. (2004).

 Designing test suites for software interaction testing. University of Auckland.

Cohen, M. B., Colbourn, C. J., & Ling, A. C. (2003a).

Augmenting simulated annealing to build interaction test suites. In proceedings of the

14th international symposium on software reliability engineering (ISSRE’03), 394-405.

doi:10.1109/issre.2003.1251061.

http://sourceforge.net/projects/tvg

24 ©Daffodil International University

Cohen, M., Gibbons, P., Mugridge, W., & Colbourn, C. (2003b).

Constructing test suites for interaction testing. In proceedings of the 25th international

conference on software engineering, 38-48. doi:10.1109/icse.2003.1201186.

Cohen, M. B., Colbourn, C.J. & Ling, A. C. H. (2008).

Constructing strength three covering arrays with augmented annealing. Discrete Math,

308, 2709–2722.

Črepinšek, M., Liu, S., Mernik, L., & Mernik, M. (2014a).

Is a comparison of results meaningful from the inexact replications of computational

experiments? Soft computing, 20(1), 223-235. doi:10.1007/s00500-014-1493-4.

Črepinšek, M., Liu, S-H., & Mernik, L. (2014b).

Replication and comparison of computational experiments in applied evolutionary

computing: common pitfalls and guidelines to avoid them. Applied soft computing, 19,

161-170. doi:10.1016/j.asoc.2014.02.009.

D. Yazdani, S. Sadeghi-Ivrigh, D. Yazdani, A. Sepas-Moghaddam and M. R. Meybodi,

Fish Swarm Search Algorithm: A New Algorithm for Global Optimization,

International Journal of Artificial Intelligence, vol. 13, no. 2, pp. 17-45, 2015.

Draa, A. (2015).

On the performances of the flower pollination algorithm - qualitative and quantitative

analyses. Applied soft computing, 34, 349-371. doi:10.1016/j.asoc.2015.05.015.

 Hartman, A., Klinger T., Raskin L. (2005).

IBM intelligent test case handler. Retrieved on April 5, 2017 from http://ibm-

intelligent-test-case-handler.updatestar.com/en.

Harrold, M. J. (2000).

Testing: A roadmap. In proceedings of the conference on the future of software

engineering, 61-72.

http://ibm-intelligent-test-/
http://ibm-intelligent-test-/

25 ©Daffodil International University

Jenkins, B. (2005).

Jenny test tool. Retrieved on April 5, 2017 from

http://www.burtleburtle.net/bob/math/jenny.html.

Kennedy, J. & Eberhart, R.. (1995a).

Particle swarm optimization. In proceedings of the IEEE international conference on

neural networks, 1942-1948. doi: 10.1109/ICNN.1995.488968.

Kennedy, J. and Eberhart, R. (1995b).

A new optimizer using particle swarm theory. In proceedings of the 6th international

symposium on micro machine and human science, 39-43. dio:

10.1109/MHS.1995.494215.

Kuhn, D. R., Kacker, R. N., Lei, Y. (2010).

Practical combinational testing. U.S.. department of commerce, national institute of

standards and technology (NIST), Special publication 800-142.

 Lei, Y., Kacker, R., & Kuhn, D. R. (2007a).

IPOG: A general strategy for t-way software testing. In proceedings of the 14th annual

IEEE international conference and workshops on the engineering of computer-based

systems (ECBS'07), 549-556. doi:10.1109/ECBS.2007.47.

 Lei, Y., Kacker, R., Kuhn, R., Okun, V., & Lawrence, J. (2007b).

IPOG/IPOGD: Efficient test generation for multi-way combinatorial testing. Journal of

software testing, verification and reliability, 18(3), 125-148.

Mernik, M., Liu, S., Karaboga, D., & Črepinšek, M. (2015).

 On clarifying misconceptions when comparing variants of the artificial bee colony

algorithm by offering a new implementation. Information Sciences, 291, 115-127.

doi:10.1016/j.ins.2014.08.040.

Mahmud, T. & Ahmed, B. S. (2015).

An effective strategy for covering array construction with fuzzy logic-based adaptive

swarm optimization for software functional testing Use. Expert system with

application, 42, 8753-876.

http://www.burtleburtle.net/bob/math/jenny.html

26 ©Daffodil International University

Morgan, P., Hambling, B., Thompson, G., Samaroo, A., Williams, P. (2015).

Software testing: an istqb-bcs certified tester foundation guide. BCS learning &

development limited, USA. ISBN 1780172990, 9781780172996.

Nasser, A. B., Alsewari, A. A., & Zamli, K. Z. (2015).

Tuning of Cuckoo Search based Strategy for T-way Testing. ARPN Journal of

Engineering and Applied Sciences, 10(19), 8948-8953.

 Nie, C., Xu, B., Shi, L., & Dong, G. (2005).

Automatic Test Generation for N-Way Combinatorial Testing. Lecture Notes in

Computer Science Quality of Software Architectures and Software Quality, 203-211.

doi:10.1007/11558569_15.

Othman, R. R. (2012).

Design of a T-way Test Suite Generation Strategy Supporting Flexible Interactions.

Universiti Sains Malaysia (USM).

Othman, R. R. and Zamli, K.Z., (2011).

T-way strategies and its applications for combinatorial testing. International journal on

new computer architectures and their applications (IJNCAA), 1(2), 459-473.

Rahman, M. (2017).

Design of a New T-way Strategy for Test Case Generation Supporting Sequence-

less and Sequence Input Interaction. PhD thesis, Universiti Malaysia Perlis (UNIMAP).

Stardom, J. (2001).

Metaheuristic and the search for covering and packing array. Simon Fraser University.

Shiba, T., Tsuchiya, T. and Kikuno T. (2004).

Using artificial life techniques to generate test cases for combinatorial testing. In

proceedings of the 28th annual international computer software and applications

Conference, 01, 72–77.

Tassey, G. (2002).

27 ©Daffodil International University

The economic impacts of inadequate infrastructure for software testing. National

institute of standards and technology, RTI Project Number 7007.011.

Williams, A. W. (2000).

Determination of test configurations for pair-wise interaction coverage. In proceedings

of the advances in information and communication technology testing of

communicating systems, 59-74. doi:10.1007/978-0-38735516-0_4.

Williams, A. W. & Probert, R. L. (2001).

A measure for component interaction test coverage. In proceedings of the International

conference on computer systems and applications (AICCSA 2001), 304-311.

Chen, X. Gu, Q. Li, A. and Chen D (2009).

Variable Strength Interaction Testing with an Ant Colony System Approach. 1530-

1362/09 $26.00 © 2009 IEEE DOI 10.1109/APSEC.2009.18

Yang, X., & Deb, S. (2009).

Cuckoo search via lévy flights. In proceedings of the world congress on nature &

biologically inspired computing (NaBIC), 210-214. doi:10.1109/nabic.2009.5393690.

Younis, M. I., & Zamli, K. Z. (2011).

MIPOG-an efficient t-way minimization strategy for combinatorial testing.

International journal of computer theory and engineering, 3(3), 388-397.

Zamli, K. Z., Din, F., Kendall, G., & Ahmed, B. S. (2017).

An experimental study of hyper-heuristic selection and acceptance mechanism for

combinatorial t -way test suite generation. Information sciences, 399, 121-153.

doi:10.1016/j.ins.2017.03.007.

 Zamli, K. Z., Alkazemi, B. Y., & Kendall, G. (2016).

A Tabu Search hyper-heuristic strategy for t-way test suite generation. Applied soft

computing, 44, 57-74. doi:10.1016/j.asoc.2016.03.021.

28 ©Daffodil International University

 Zamli, K. Z., Klaib, M. F., Younis, M. I., Isa, N. A., & Abdullah, R. (2011).

 Design and implementation of a t-way test data generation strategy with automated

execution tool support. Information Sciences, 181(9), 1741-1758.

doi:10.1016/j.ins.2011.01.002.

Ziyuan, W., Changhai, N., & Baowen, X. (2007).

Generating combinatorial test suite for interaction relationship. In proceedings of the

4th international workshop on software quality assurance in conjunction, 55-61.

doi:10.1145/1295074.1295085.

29 ©Daffodil International University

 APPENDIX A

Table A.1: Theoretically calculated optimum test suite size for sequence-less input interaction

(uniform values)

 No. Configuration No. of Generated

T-way Pairs

Condition

Value

Optimum

number of Test

Case

1 CA (N; 2, 34) 54 6 9

2 CA (N; 2, 213) 312 52 6

3 CA (N; 3, 36) 540 15 36

4 CA (N; 3, 46) 1280 16 80

5 CA (N; 3, 57) 4375 25 175

6 CA (N; 3, 56) 2500 20 125

7 CA (N; 4,55) 3125 25 125

8 CA (N; 4, 56) 9375 15 625

9 CA (N; 4, 210) 3360 105 32

10 CA (N; 5, 26) 192 12 16

11 CA (N; 5, 28) 1792 64 28

12 CA (N; 6, 27) 448 14 32

13 CA (N; 6, 37) 5103 7 729

14 CA (N; 4, 57) 21875 25 875

15 CA (N; 3, 66) 4320 30 144

30 ©Daffodil International University

APPENDIX B

Table B.1 shows the summary of supported interaction by the existing t-way strategies support

sequence -less or sequence input interaction.

 Existing t-way strategies

 Sequence-less Input

 Interaction

 Uniform

 Values

Non-

uniform

Values

Elitist-Flower Pollination Algorithm(FPA)(Zamli et al., 2018) / /

High level Hyper Heuristic (HHH) (Zamli et al., 2017) / /

Flower Pollination Algorithm(FPA)(Zamli et al., 2015) / /

Particle Swarm based Test Generator (PSTG) (Ahmed et al., 2012a;

Ahmed et al., 2012b)

 / /

Cuckoo Search Strategy (CSS) (Nasser et al., 2015) / /

Simulated Annealing (SA) (Cohen et al., 2003) / /

Genetic Algorithm (GA) (Shiba et al., 2004 / /

Ant Colony Algorithm (ACA) (Shiba et al., 2004) / /

Bat-inspired Testing Strategy (BTS) (Alsariera & Zamli, 2015) / /

Late Acceptance based Hill Climbing (LAHC) (Zamli et al., 2015) / /

GA-N (Shiba et al., 2004) / /

In Parameter Order for N-way test (IPO-N) (Nie et al., 2005) / /

Automatic Efficient Test Generator (AETG) (Cohen et al., 1994;

Cohen et al., 1997)

 / /

Modified Automatic Efficient Test Generator (mAETG) (Cohen,

2004)

 / /

In-Parameter-Order-General (IPOG) (Lie et al., 2007) / /

Modified In-Parameter-Order-General (MIOPG) (Younis et al., 2011) / /

Intelligent Test Case Handler (ITCH) (Hartman et al. 2007) / /

Jenny (Jenkins, 2005) / /

Test Vector Generator (TVG) (Arshem, 2010) / /

Test Configuration (TConfig) (Williams, 2000) / /

Generalized T-Way Test Suite Generator (GTWay) (Zamli et al.,

2011)

 / /

Density (Bryce & Colbourn, 2009) / /
Parameter Ordered (ParaOrder) (Ziyuan et al., 2007) / /
Pairwise Independent Combinatorial Testing (PICT) (Czerwonka, 2006) / /
Integrated t-Way Test Suite Generator (ITTSG) (Othman, 2012) / /

