

DESIGN AND IMPLEMENTATION OF A T-WAY TUPLE

TREE GENERATOR FOR T-WAY TEST CASE

GENERATION STRATEGY

 By

Rafsan Ahmed Al-Rafi

ID: 151-35-1037

This Report Presented in Partial Fulfilment of the Requirements for the Degree

of Bachelor of Science in Software Engineering

DEPARTMENT OF SOFTWARE ENGINEERING

 DAFFODIL INTERNATIONAL UNIVERSITY

FALL 2018

 Copyright © 2018 by Daffodil International University

i ©Daffodil International University

APPROVAL

This thesis titled on “Design and Implementation of a T-way Tuple Tree Generator for T-way

Test Case Generation Strategy’’, submitted by Rafsan Ahmed Al-Rafi, 151-35-1037, to the

department of Software Engineering, Daffodil International University has been accepted as

satisfactory for the partial fulfillment of the requirements for the degree of Bachelor of Science in

Software Engineering and approval as to its style and contents.

BOARD OF EXAMINERS

-- Chairman

Professor Dr. Touhid Bhuiyan

Department Head

Department of Software Engineering

Faculty of Science and Information Technology

Daffodil International University

-- Internal Examiner 1

Dr. Md. Asraf Ali

Associate Professor

Department of Software Engineering

Faculty of Science and Information Technology

Daffodil International University

ii ©Daffodil International University

THESIS DECLARATION

I hereby declare that, this Thesis Report has been done by me under the supervision of Dr. Md.

Mostafijur Rahman, Assistant Professor, Department of Software Engineering (SWE), Faculty of

Science and Information Technology (FSIT), Daffodil International University (DIU). I also

declare that, neither this report nor any part of this report has been submitted elsewhere for award

of any degree.

Submitted By

………………………………………………….

Rafsan Ahmed Al-Rafi

ID: 151-35-1037

Department of Software Engineering

Faculty of Science and Information Technology

Daffodil International University

Certified By

…………………………………………………

Dr. Md. Mostafijur Rahman

Assistant Professor

Department of Software Engineering

Faculty of Science and Information Technology

Daffodil International University

iii ©Daffodil International University

ACKNOWLEDGEMENT

Alhamdulillah, all praises to the Almighty Allah who gives me the ability, benediction, motivation,

patience and wisdom to complete this research work.

 I would like to extend my gratitude to my respectful supervisor Dr. Md. Mostafijur Rahman.

Without him and his excellent guidance, motivation, care, patience, and providing me with

excellent facilities and environment for doing this research, this Research and Thesis would not

exist. I am also grateful to my parents and the people around me who always keep supporting me.

iv ©Daffodil International University

 TABLE OF CONTENTS

 PAGE

APPROVAL …………………………………………………………………………......... i

THESIS DECLARATION ……………………………………………………………….. ii

ACKNOWLEDGEMENT .……………………………………………………………….. iii

TABLE OF CONTENTS …………………………………………………………………. iv

LIST OF FIGURES ………………………………………………………………………. vi

LIST OF TABLES ………………………………………………………………………... vii

LIST OF ABBREVIATIONS ……………………………………………………………. vii

ABSTRACT ………………………………………………………………………………. ix

CHAPTER 1: INTRODUCTION ……………………………………………………… 1

1.1 Background …………………………………………………………………………… 1

1.2 Motivation of the Research ………………………………………………………….... 1

1.3 Problem Statement ……………………………………………………………………. 2

1.4 Research Question ……………………………………………………………………. 3

1.5 Research Objectives …………………………………………………………………... 3

1.6 Research Scope ………………………………………………………………………... 4

1.7 Thesis Organization …………………………………………………………………… 4

CHAPTER 2: LITERATURE REVIEW ……………………………………………… 5

2.1 Preliminaries ……………………………………………………………………….. 5

2.2 Existing t-way Strategies for Sequence-less Input Interaction …………………… 5

2.2.1 High Level Hyper Heuristic (HHH) ...……………………………………… 5

v ©Daffodil International University

 2.2.2 Harmony Search Strategy (HSS) ………...………………………………... 5

 2.2.3 Particle Swarm based Test Generator (PSTG)…………………………. 5

 2.2.4 Cuckoo Search Strategy (CSS)………………………………………….. 6

 2.2.5 Simulated Annealing (SA)………………………………………………. 6

 2.2.6 Genetic Algorithm (GA) ………………………………………………... 6

 2.2.7 Ant Colony Algorithm (ACA) …………………………………………. 6

 2.2.8 Bat-Inspired T-way Strategy (BTS) ……………………………………. 6

 2.2.9 Late Acceptance Hill Climbing (LAHC) ………………………………. 7

 2.2. 10 (GA-N) ……………………………………………………………… 7

2.3 Analysis and discussion on existing strategies ……………………………….... 7

2.4 Summary ……………………………………………………………………….. 7

CHAPTER 3: RESEARCH METHODOLOGY …………………………………... 9

3.1 Sequence-less Combinatorial Input Interaction Testing (CIIT) ……………….. 9

3.2 A test scenario……………………………………………………………... 13

3.2 The test scenario formed as a problem ……..………………………………….. 14

3.3 Exhaustive test cases for the scenario ………………………………………….. 14

3.4 Representing the scenario as a tree …………………………………………….. 15

3.5 Narrowing down the tree ………………………………………………………. 15

3.6 Turning the scenario into a matrix …………………………………………….. 16

3.7 Breaking down the matrix …………………………………………………….. 16

3.8 Tuples creation process (for T-ways, where T=2) ……………………………. 17

3.9 Enhanced T-way Tuple Tree Generator Algorithm (ETTTG Algorithm) ……. 20

3.10 Summary ……………………………………………………………………… 20

vi ©Daffodil International University

CHAPTER 4: EXPERIMENTAL RESULTS AND DISCUSSION …………….. 21

4.1 Input-output for the scenario of the research …………………………………. 21

4.2 Comparison with Generic Tuple Generator and benchmarking …………….... 22

4.3 Discussion of the result ……………………………………………………….. 23

4.3 Summary ……………………………………………………………………… 23

CHAPTER 5: CONCLUSION AND FUTURE WORKS ……………………........ 24

5.1 Findings and Contributions ……………………………………………………… 24

5.2 Limitation ………………………………………………………………………... 24

5.3 Recommendations for Future Works ……………………………………………. 25

REFERENCES ……………………………………………………………………..... 26

LIST OF FIGURES

NO. PAGE

1.1 How a system should work …………………………………………………….. 2

1.2 How a system may fail because of problems in inputs ………………………... 2

1.3 Limitations of existing solutions ……………………………………………… 3

1.4 Scope space of this research …………..……………………………………… 4

3.1 Framework for sequence-less CIIT ………….…………………………… …. 9

3.2 An example of sequence-less CIIT for uniform values ………………………. 10

3.3 An example of sequence-less CIIT for non-uniform values …………………. 12

3.4 A test scenario ……………………………………………………………….. 13

3.5 The test scenario formed as a problem …..……………………..……………. 14

vii ©Daffodil International University

3.6 Exhaustive test cases …………………………………..……………………. 14

3.7 Tree representation of the scenario ………………………………………… 15

3.8 The narrowed down tree ……………………………………………………. 15

3.9 Matrix representation of the scenario ………………………………………. 16

3.10 Break-down of the matrix from Fig 3.9 ……………………………………. 16

3.11 Assigning values from Fig 3.10 …………………………………………….. 17

3.12 Tuple creation process for Column 0 (Input A) ……………………………. 17

3.13 Summary of the entire tuple making process ………………………………… 18

3.14 ETTTG Algorithm ……………………………………………………………. 20

4.1 Output for the scenario of the research ……………………………………….. 22

LIST OF TABLES

NO. PAGE

2.1 Algorithms/tools published by year ………………………………………. 8

3.1 Generated exhaustive test cases for Fig 3.2 ………………………………. 10

3.2 3-way tuples for the uniform values ………………………………………. 11

3.3 Generated exhaustive test cases for Fig 3.3 ………………………………. 12

4.1 Comparison between GTG and ETTTG and Benchmarking ……………… 22

LIST OF ABBREVIATIONS

CIIT Combinatorial Input Interaction Testing

CA Covering Array

GTG Generic Tuple Generator

viii ©Daffodil International University

ETTTG Enhanced T-way Tuple Tree Generator

ISTQB International Software Testing Qualification Board

QA Quality Assurance

NP-hard Non-deterministic Polynomial-time Hard

ACA Ant Colony Algorithm

SA Simulated Annealing

PSO Particle Swarm Optimization

PSTG Particle Swarm Test Suite Generator

BTS Bat-inspired Test Strategy

HHH High-level Hyper Heuristic

CSA Cuckoo Search Algorithm

ix ©Daffodil International University

ABSTRACT

Combinatorial Input Interaction Testing (CIIT) can either be sequence based or sequence less for

either uniform or non-uniform values. It is an NP-hard problem, because there is no exact solution

for this problem that has the best result. Thus, there are many solutions for this problem. Some of

the solutions are based on Integrated T-way Test Suite Generator (ITTSG), Generalized T-way

Test Suite Generator (GTWay), Particle Swarm Algorithm, Harmony Search Algorithm, Hill

Climbing Algorithm, Ant Colony Algorithm, High-level Hyper Heuristic (HHH) Algorithm,

Meta-Heuristic Algorithm, Bat-inspired Algorithm etc. Few solutions are based on T-way test case

generation strategy. The methodology of this research is a T-way tuple tree generation algorithm

for T-way test case generation strategies. This algorithm is named “Enhanced T-way Tuple Tree

Generator”. This algorithm accomplishes a faster and more efficient tuple tree generation process;

faster because it takes less time to generate tuple trees and efficient because it eliminates all kind

of redundancy and allows more inputs to work with.

1 ©Daffodil International University

CHAPTER 1

INTRODUCTION

1.1 Background

Modern society is being built upon software and this is an ever-increasing scenario. The more the

world advances, the more it will depend on software. Software will control and maintain many

aspect of our lives. The current impact of software on modern society is huge. We use software

each and every day in our life.

Thus, software should be tested for security and expected work assurance. Software

Testing is an integral part of Software Development Life Cycle (SDLC).

A software can have many inputs and their combinations and this is called Combinatorial

Input Interaction. These combinations of inputs should also be tested for Quality Assurance

(QA) of a software. This is called Combinatorial Input Interaction Testing (CIIT).

CIIT can be sequence less or sequence based. Both sequence less and sequence based CIIT

can also be for uniform or non-uniform values.

This research deals with sequence less CIIT for both uniform and non-uniform values by

using an Enhanced T-way Tuple Tree Generator Algorithm (ETTTG Algorithm).

1.2 Motivation of the Research

There are so many existing solutions on CIIT that deals with combinatorial input interaction

optimization problems in different ways. But very few of them focuses on T-way tuple trees and

those that focuses on the T-way tuple generation, they do not really deal with optimizing the tuple

generation process. Thus, the main focus is on optimizing the tuple tree generation process and

making it faster and more efficient so that the entire process can be faster and more efficient.

2 ©Daffodil International University

1.3 Problem Statement

Combinatorial Input Interaction Testing (CIIT) is an area of software testing that deals with the

combinations of inputs and interactions between them. Testing is a crucial part of software

development and CIIT is a crucial part of software testing and quality assurance.

The following figure shows how a system should work:

Fig 1.1: How a system should work

And the following figure shows what happens if there is problem in inputs:

Fig 1.2: How a system may fail because of problems in inputs

Therefore, CIIT is a used to ensure interaction of inputs are done correctly.

There are many existing strategies to deal with CIIT. Some of the strategies include creation of T-

way tuple trees. But the existing solutions have some limitations.

3 ©Daffodil International University

These are the limitations of the existing solutions:

Fig 1.3: Limitations of existing solutions

Therefore, the goal of my thesis is to work on sequence-less CIIT based on T-way tuple tree

strategy to overcome these limitations. And creating an enhanced T-way tuple tree generator for

T-way test case generation strategies to deal with CIIT is the main focus point of this thesis.

1.4 Research Question

Does this t-way tuple tree generation algorithm makes the tuple tree generation process faster and

allow more inputs to work with and eliminate redundancy?

1.5 Research Objectives

The aim of this research is to design and implement a T-way tuple tree generator for T-way test

case generation strategy. To achieve this aim, the following objectives are taken under

consideration:

1. To design and implement a T-way tuple tree generator for T-way test case generation

strategy.

2. To minimize time complexity and to increase efficiency and number of inputs taken.

3. To compare with other existing tuple generator.

4 ©Daffodil International University

1.6 Research Scope

The scope of this thesis is to create an enhanced t-way tuple tree generator for t-way test case

generation strategies. The following figure shows the research scope of this thesis:

 Fig 1.4: Scope space of this research

1.7 Thesis Organization

Chapter 1 contains background, motivation, problem statement, objectives and scope of the

research.

Chapter 2 contains literature review. And literature review contains definitions and discussions

related to the research topic and also existing solutions.

Chapter 3 presents, discusses and visualizes the design, algorithm and implementation of a new

strategy for sequence-less CIIT based on T-way tuple tree generation strategy.

Chapter 4 contains the evaluation of the tuple tree generation algorithm and comparison with other

existing solutions.

Finally, Chapter 5 summarizes the achievements and limitations of the proposed design, algorithm

and implementation.

Chapter 5 concludes this research work with some recommendations for future work.

5 ©Daffodil International University

CHAPTER 2

LITERATURE REVIW

This chapter contains discussion and analysis on sequence-less CIIT for uniform and non-uniform

values, the existing solutions and the proposed solution.

2.1 Preliminaries

CIIT can be both sequence based or sequence-less for both uniform and non-uniform values. There

are so many existing solutions that deal with CIIT using different strategies and algorithms. Some

of the existing solutions use t-way tuple tree generation strategy for sequence-less combinatorial

input interaction.

2.2 Existing t-way Strategies for Sequence-less Input Interaction

In this section, a number of existing t-way strategies have been discussed that have been developed

and improved throughout the years.

2.2.1 High Level Hyper Heuristic (HHH)

The High Level Hyper Heuristic (HHH) (Zamli et al., 2017) strategy is a hybrid t-way test case

generation strategy. The selection and acceptance of the four low level meta-heuristic algorithms

is based on the improvement, diversification and intensification operator (like other hyper met

heuristic algorithms). In HHH, the adopted low level meta-heuristic algorithms are designed for

continuous problems.

2.2.2 Harmony Search Strategy (HSS)

Alsewari and Zamli (2011), adopted harmony search (HS) meta-heuristic algorithm for t-way test

strategy to generate test suite. It is population-based algorithm. The HS uses a probabilistic-

gradient in its search space and to select the current solution to adopt mathematical equations for

better solution. It is proved that the harmony search algorithm perform well in solving highly

interactive combinatorial problems (Alsewari and Zamli, 2011).

2.2.3 Particle Swarm based Test Generator (PSTG)

Ahmed et al. (2012a; 2012b) designed a t-way test suite generation strategy called particle swarm

test generator (PSTG). It is adopted by particle swarm optimization (PSO) (Ahmed et al., 2012a;

Ahmed et al., 2012b; Mahmoud & Ahmed, 2015).It is also population based optimization method

(Kennedy & Eberhart, 1995a; Kennedy & Eberhart, 1995b).PSO comprises a group of particles

with negligible mass and volume and which move through hyperspace.

6 ©Daffodil International University

2.2.4 Cuckoo Search Strategy (CSS)

Cuckoo search strategy (CSS) (Nasser et al., 2015) is a recent strategy for t-way test generation. It

generates random initial nests. Each egg in a nest represents a vector solution indicates a test case.

Firstly, a new nest is generated through levy flight path (Yang & Deb, 2009). Then it is evaluated

against the existing nests. If there is found a better result, the new nest is replaced as current nest.

Secondly, CS has probabilistic elitism in order to maintain elite solutions for the next generation.

2.2.5 Simulated Annealing (SA)

Cohen et al. (Cohen et al., 2003a) used simulated annealing (SA) to solve t-way combinatorial

problem. This is also a heuristic searching method to achieve optimal test suite. In this technique,

an initial feasible solution is set as a best solution then compare with the best solution. A

transformation function is used to select the next feasible solution. The cooling rate and

temperature are used to control the iteration (Cohen et al., 2003b).

2.2.6 Genetic Algorithm (GA)

Genetic algorithm (GA) proposed for t-way test strategy to generate test suite (Shiba et al., 2004).

It is the process of natural selection. It begins with randomly created test cases, based on

chromosomes. These crossover and mutation is happening until a termination criterion is met. The

goodness of a candidate function estimate by use fitness function. A selection function selects a

number of good candidate solution. The best chromosomes are selected and added to the final test

suite.

2.2.7 Ant Colony Algorithm (ACA)

Ant colony optimization (ACO) algorithm adopted on t-way test strategy (Shiba et al., 2004). It is

the behavior of natural ant colonies to find paths from the colony to food. The candidate solutions

are determined by each path from a starting point to an ending point that associated with the

candidate solution. The amount of pheromone deposited in each ant movement path are selected

based on the candidate solution the next candidate solution is based on the larger number of

pheromone. Finally, there may have possibility to achieve near optimum or optimum solution to

the target problem.

 2.2.8 Bat-Inspired T-way Strategy (BTS)

Alsariera & Zamli (2015), bat algorithm was adapted for t-way strategy to generate test suite,

which is called bat-inspired testing strategy (BTS). The bat algorithm (BA) (Yang, 2010) is a

natural-inspired algorithm. The interpretation of the nature may not perfect. The BA is a population

optimization algorithm. The Bats find its best moving dimension from its position and velocity. In

every iteration, the bat algorithm provides an exhaustive local search method throughout its

random walk behavior to find the best solution.

7 ©Daffodil International University

2.2.9 Late Acceptance Hill Climbing (LAHC)

Late Acceptance based Hill Climbing (LAHC) is a heuristic search algorithm (Zamli et al., 2015).

When a candidate cost function is better (or equal) which accept non improving moves. Each

current solution is employed during the later (not immediate) acceptance procedure. LAHC is

started from a randomly generated initial solution and it evaluates a new candidate in order to

accept or reject at each iteration. The last element is compared with the candidate cost of the list

and if not worse than accepted. After the acceptance procedure, the cost of the new current solution

is inserted into the beginning of the list and the last element is removed from the end of the list.

When the inserted current cost is equal to the candidate's cost in the case of accepting only, but in

the case of rejecting it is equal to the previous value (Burke & Bykov, 2017).

2.2.10 (GA-N)

The GA-N is the upgraded version of GA (Shiba et al., 2004). where N indicates N (N = 2, 3, 4, 5,

6…) number of interactions.

2.3 Analysis and discussion on existing strategies

Most of the existing solutions work on covering array (CA) and mainly focuses on minimizing the

exhaustive test cases. But none of the solutions deal with making the tuple tree generation faster

and more efficient remarkably.

For this reason, my solution is purely based on making the unique tuples generation process faster

and more efficient significantly.

2.4 Summary

There are so many existing solutions to deal with sequence-less CIIT. Some of the solutions are

based on t-way test case generation strategy. T-way test case generation strategies require tuple

tree generation.

My thesis only focuses on tuple tree generation process and doesn’t deal with minimizing

exhaustive test cases, which is the gap of my thesis and can be worked on in the future.

The following table shows a summary of existing t-way strategies:

8 ©Daffodil International University

Table 2.1 Algorithms/tools published by year (Nuraminah Ramli et al., 2017)

9 ©Daffodil International University

CHAPTER 3

RESEARCH METHODOLOGY

Combinatorial Input Interaction Testing has two parts. Sequence-based CIIT and sequence-less

CIIT. Both sequence-based and sequence-less CIIT also may deal with uniform or non-uniform

values. And these are NP-hard problem because they don’t have any actual and universal optimum

solution.

The following part discusses about sequence-less CIIT:

3.1 Sequence-less Combinatorial Input Interaction Testing (CIIT)

The following figure shows the framework for sequence-less CIIT:

 Fig 3.1: Framework for sequence-less CIIT

10 ©Daffodil International University

A. Sequence-less input interaction with uniform values:

The following figure shows an example of sequence-less CIIT for uniform values:

 Fig 3.2: An example of sequence-less CIIT for uniform values.

The number of exhaustive test cases should be 2*2*2*2 = 16.

Now, the exhaustive test cases for this example are:

Table 3.1: Generated exhaustive test cases for Fig 3.2

 No. Exhaustive test case

 1 [a1,b1,c1,d1]

 2 [a1,b1,c1,d2]

 3 [a1,b2,c1,d1]

 4 [a1,b2,c1,d2]

 5 [a1,b1,c2,d1]

 6 [a1,b1,c2,d2]

 7 [a1,b2,c2,d1]

 8 [a1,b2,c2,d2]

 9 [a2,b1,c1,d1]

11 ©Daffodil International University

 10 [a2,b1,c1,d2]

 11 [a2,b2,c1,d1]

 12 [a2,b2,c1,d2]

 13 [a2,b1,c2,d1]

 14 [a2,b1,c2,d2]

 15 [a2,b2,c2,d1]

 16 [a2,b2,c2,d2]

Table 3.2: 3-way tuples for the uniform values

 No 3-way

tuple

 No 3-way tuple No 3-way

tuple

 No 3-way tuple

 1 [a1, b1, c1] 9 [a1, b1, d1] 17 [a1, c1, d1] 25 [b1, c1, d1]

 2 [a1, b1, c2] 10 [a1, b1, d2] 18 [a1, c1, d2] 26 [b1, c1, d2]

 3 [a1, b2, c1] 11 [a1, b2, d1] 19 [a1, c2, d1] 27 [b1, c2, d1]

 4 [a1, b2, c2] 12 [a1, b2, d2] 20 [a1, c2, d2] 28 [b1, c2, d2]

 5 [a2, b1, c1] 13 [a2, b1, d1] 21 [a2, c1, d1] 29 [b2, c1, d1]

 6 [a2, b1, c2] 14 [a2, b1, d2] 22 [a2, c1, d2] 30 [b2, c1, d2]

 7 [a2, b2, c1] 15 [a2, b2, d1] 23 [a2, c2, d1] 31 [b2, c2, d1]

 8 [a2, b2, c2] 16 [a2, b2, d2] 24 [a2, c2, d2] 32 [b2, c2, d2]

12 ©Daffodil International University

𝐁. Sequence-less input interaction with non-uniform values:

The following figure shows an example of sequence-less CIIT for non-uniform values:

 Fig 3.3: An example of sequence-less CIIT for non-uniform values.

The number of exhaustive test cases should be 2*1*2*3 = 12.

Now, the exhaustive test cases for this example are:

Table 3.3: Generated exhaustive test cases for Fig 3.3

 No. Exhaustive test case

 1 [a1,b1,c1,d1]

 2 [a1,b1,c1,d2]

 3 [a1,b1,c1,d3]

 4 [a1,b1,c2,d1]

 5 [a1,b1,c2,d2]

 6 [a1,b1,c2,d3]

 7 [a2,b1,c1,d1]

 8 [a2,b1,c1,d2]

13 ©Daffodil International University

 9 [a2,b1,c1,d3]

 10 [a2,b1,c2,d1]

 11 [a2,b1,c2,d2]

 12 [a2,b1,c2,d3]

In my research, I’ve worked on sequence-less CIIT for both uniform and non-uniform values using

T-way tuple trees and this thesis focuses on making the tuple tree generation process much faster

and more efficient to make the entire exhaustive test case minimization process faster.

3.2 A test scenario

The following figure is an example that shows how the discussed problem can be faced in real lfie:

Fig 3.4: A test scenario

3.3 The test scenario formed as a problem

14 ©Daffodil International University

The test scenario from 3.2 can be described as the following figure below, where A = Type, B =

Show New Arrivals Only, C = Sleeve Type, D = Color and a1 = Formal, a2 = Casual; b1 = Yes;

c1 = Long, c2 = Short; d1 = Black, d2 = White, d3 = Others.

 Fig 3.5: The test scenario formed as a problem

3.4 Exhaustive test cases for the scenario

The following figure shows the exhaustive test cases for the problem:

 Fig 3.6: Exhaustive test cases

3.4 Representing the scenario as a tree

15 ©Daffodil International University

In the following figure, the entire scenario is represented as a tree. We have two options for initial

node, either a1 or a2. The tree shows the entire path from the initial nodes to the leaf nodes.

Fig 3.7: Tree representation of the scenario

3.5 Narrowing down the tree

The following figure is the narrowed down version of the tree in Fig 3.7:

Fig 3.8: The narrowed down tree

3.6 Turning the scenario into a matrix

16 ©Daffodil International University

The technique that I used requires the problem to be represented into a matrix form first. The

following figure shows how the problem is converted to a matrix:

Fig 3.9: Matrix representation of the scenario

3.7 Breaking down the matrix

The figures 3.10 and 3.11 below visualizes the explanation of the matrix:

Fig 3.10: Break-down of the matrix from Fig 3.9

The following figure shows how the values are assigned:

17 ©Daffodil International University

Fig 3.11: Assigning values from Fig 3.10

3.8 Tuples creation process (for T-ways, where T=2)

This section discusses how the tuples are created and the t-way tuple tree is formed.

3.8.1 Tuples creation process for Column 0 (Input A)

Fig 3.12: Tuple creation process for Column 0 (Input A)

Explanation of Fig 3.12:

18 ©Daffodil International University

- Column 0 is the column for Input A.

- Input A has 2 values (a1, a2).

- So, a1 and a2 both are in the same column (Column 0).

- But a1 is in Row 0 and a2 is in Row 1.

- So, all the nodes that can be visited from a1, can also be visited from a2.

Thus, all the nodes can be visited from x can also be visited from y, z, … (where x, y, z, … all

are in the same column).

3.8.2 Working with next columns

The next column is:

Therefore,

- We are in Column 1.

- Column 1 is the column for Input B.

- Input B has only 1 value (b1).

The following figure shows how the rest of the “to be visited” nodes are selected for rest of the

columns starting from Column 1 (also includes the summary of the entire process):

Fig 3.13: Summary of the entire tuple making process

19 ©Daffodil International University

Explanation of Fig 3.13:

1. For Column 0, the Current Node is either a1 or a2. As we have discussed earlier that, the

“to be visited” nodes for the nodes in the same column, are same.

So, if a1 or a2 is the Current Node, then the “to be visited” nodes are b1, c1, c2, d1, d2, d3.

Process for Column 0 is finished. The next column is Column 1.

2. For Column 1, the Current Node is b1. If we pay attention we can see that, all the nodes

that can be visited from the values of Column 0 (a1, a2), can be visited from the value from

Column 1 (b1) except for the node in Column 1 itself, which is b1 itself in this case.

So, if b1 is the Current Node, then the “to be visited” nodes are c1, c2, d1, d2, d3.

Process for Column 1 is finished. The next column is Column 2.

3. For Column 2, is the same process as Column 1. Here, the Current Node is either c1 or c2.

So, the “to be visited” nodes are d1, d2, d3.

Process for Column 2 is finished. The next column is Column 3.

Column 3 will not be set as “Current” because:

- Total number of columns = 3

- The value of T in T-ways = 2

- So, the number of columns, from the end to towards the beginning, to not to set as “Current”

is = (3 – 2) = 1

- The last one column is Column 3.

- Thus, Column 3 will not be set as “Current”.

In conclusion,

This is the entire process of the algorithm that I have created and my research is based on. This

algorithm makes the tuple tree generation process not only faster but also efficient. It also increases

the number of inputs that can be worked with in a huge scale.

20 ©Daffodil International University

3.9 Enhanced T-way Tuple Tree Generator Algorithm (ETTTG Algorithm)

Algorithm 3.9: Enhanced T-way Tuple Tree Generator (ETTTG Algorithm) for sequence-

less input interaction

Inputs: Position(pos), Counter(cnt)

Outputs: The “nodes to be visited” from the “current nodes”

Process:

1. IF cnt = ways THEN

2. Initialize paired values of Structure a to {0,0}

3. FOR i = 0 to cnt - 1 DO

4. Set numeric values of tuples into a

5. END FOR
6. Store values of a to Temp

7. RETURN

8. END IF
9. IF pos > V THEN

10. RETURN

11. END IF
12. FOR i = 1 to values[pos] DO

13. Mark the current position as taken

14. Increment pos by 1 and cnt by 1 and GOTO Step 1

15. END FOR
16. Increment pos by 1 and GOTO Step 1

End of Enhanced T-way Tuple Tree Generator

Fig 3.14: ETTTG Algorithm

3.10 Summary

The methodology, diagrams for visual representation and the algorithm is discussed here.

21 ©Daffodil International University

CHAPTER 4

EXPERIMENTAL RESULTS AND DISCUSSION

In Chapter 3, the methodology for this thesis is described and visualized theoretically. In this

chapter, the algorithm’s experimental results is discussed after implementing the algorithm and

testing it by comparing it with other solution as well as by testing individually.

4.1 Input-output for the scenario of this thesis

Input Format:

Number of Inputs

Value of T (in T-way tuple tree)

Number of Values for Each Inputs

Example:

--

4

2

2 1 2 3

From given example,

Number of Inputs = 4 (means A, B, C, D)

Ways (T) = 2

Values of Inputs = A (a1, a2), B (b1), C (c1, c2), D (d1, d2, d3)

22 ©Daffodil International University

Output:

Fig 4.1: Output for the scenario of the research

Discussion:

- Tuple trees with all the unique tuples are generated.

- Time taken = 0 ms (approx.)

4.2 Comparison with Generic Tuple Generator and Benchmarking

From observation, I’ve realized that none of the existing solutions focus on tuple tree creation

faster and more efficient and focus on CA (Covering Array) and minimizing exhaustive test cases.

The problems that deal with tuple creation process use generic way to create tuples and then apply

algorithm for minimizing tuples on CA.

Thus, Generic Tuple Generator is denoted as GTG (ref: Othman, R. R. Design of a T-way Test

Suite Generation Strategy Supporting Flexible Interactions. Universiti Sains Malaysia) and my

proposed Enhanced T-way Tuple Tree Generator is denoted as ETTTG for the following

comparison table.

Table 4.1: Comparison between GTG and ETTTG and Benchmarking

Input Strategy Time (approx.) Success/Failure

(i) 6 2

2 1 2 3 1 2

ETTTG

GTG

0 ms

1 ms

Success

Success

(ii) 8 2

2 1 2 3 1 2

4 1

ETTTG

GTG

0 ms

4 ms

Success

Success

(iii) 10 3

2 1 2 3 1 2

4 1 3 1

ETTTG

GTG

0 ms

4 ms

Success

Success

23 ©Daffodil International University

(iv) 10 2

2 1 2 3 1 2

4 1 3 1

ETTTG

GTG

0 ms

4 ms

Success

Success

(v) 12 2

2 4 2 3 1 2

4 1 3 1 3 4

ETTTG

GTG

0 ms

n/a

Success

Failure

(vi) 13 3

2 4 2 3 1 2

4 1 3 1 3 4

5

ETTTG

GTG

0 ms

n/a

Success

Failure

(vii) 13 2

2 4 2 3 1 2

4 1 3 1 3 4

5

ETTTG

GTG

0 ms

n/a

Success

Failure

4.3 Discussion of the result:

ETTTG obtains the following things:

- The fastest T-way strategy to generate tuple tree with unique tuples,

- The most efficient way to generate tuples, because:-

i. When value of T increases, time complexity decreases,

ii. The higher number of inputs make the better suit for this strategy compared

to others, because ETTTG can handle maximum number of inputs among

all other T-way tuple generation strategies.

iii. It eliminates all kind of redundancy.

4.4 Summary

GTG can only handle few inputs to create unique tuples but proposed Enhanced T-way Tuple Tree

Generator (ETTTG) can handle significant number of inputs and also the tuple creation process is

much faster than any other existing tuple generation strategy. The main focus point of this thesis

was to obtain a faster and more efficient T-way tuple tree generation process and to maximize the

number of inputs to work with for input interaction. And from the results I can come to this

conclusion that ETTTG achieved the goals of this thesis. In future, ETTTG can be used with other

24 ©Daffodil International University

algorithms to minimize the number of exhaustive test cases in CIIT and also can make the process

significantly faster and more efficient.

CHAPTER 5

CONCLUSION AND FUTURE WORKS

5.1 Findings and Contributions

5.1.1 Theoretical/Methodological Contribution

In this thesis, I’ve successfully created a new and enhanced algorithm for generating T-way tuple

trees for T-way test case generation strategies. The algorithm is named Enhanced T-way Tuple

Tree Generator (ETTTG) Algorithm.

ETTTG first turns the problem scenario into a matrix then solves the problem step by step and

eliminates redundancy while generating the tuple tree which makes the tuple tree generation

process faster and much more efficient.

5.1.2 Practical Implication

The significance of this algorithm and advantages over other algorithms is that, it works

independently to generate T-way tuple trees of unique tuples and it is faster, efficient and can work

with more inputs.

Thus, this algorithm can be used within a t-way test case generation strategy with an exhaustive

test case minimization algorithm to get the best results.

5.2 Limitation

ETTTG can’t minimize the exhaustive test cases because it wasn’t designed to directly work on

minimizing exhaustive test cases.

25 ©Daffodil International University

5.3 Recommendations for Future Works

This research purely focuses on the T-way tuple tree generation process and proposes an algorithm.

This algorithm can be merged with another algorithm that uses T-way tuple trees to minimize

number of exhaustive test cases in CIIT.

Therefore, the future work is to merge this algorithm with T-way test case generation strategy to

minimize exhaustive test cases.

26 ©Daffodil International University

REFERENCES

Ahmed, B. S., Zamli, K. Z., & Lim, C. P. (2012a).

Application of particle swarm optimization to uniform and variable strength covering

array construction. Applied soft computing, 12(4), 1330-1347. doi:

10.1016/j.asoc.2011.11.029.

Afzal, W., Torkar, R. & Feldt, R. (2009).

A systematic review of search-based testing for non-functional system properties.

Information and software technology, 51(6), 957-976.

Ahmed, B. S., Zamli, K. Z. and Lim, C. P. (2012b).

Constructing a t-way interaction test suite using the particle swarm optimization approach.

International journal of innovative computing, information and control (ICIC), 8(1(A)),

431-451.

Ahmed, B. S., & Zamli, K. Z. (2010).

T-way test data generation strategy based on particle swarm optimization. In proceedings

of 2nd international conference on computer research and development, 93-97. doi:

10.1109/iccrd.2010.56.

Alsewari, A. A., & Zamli, K. Z. (2011).

Interaction test data generation using harmony search algorithm. In proceedings of the

IEEE symposium on industrial electronics and applications, 559-564. doi:

10.1109/isiea.2011.6108775

Alsariera, Y. A., & Zamli, K. Z. (2015).

A bat-inspired strategy for t-way interaction testing. Journal of advanced science letters,

21(8), 2281-2284. doi: 10.1166/asl.2015.6316.

Arshem, J. (2004). Test vector generator.

Retrieved on April 5, 2017 from http://sourceforge.net/projects/tvg.

Alsewari, A. A., & Zamli, K. Z. (2014).

An orchestrated survey on t-way test case generation strategies based on optimization

algorithms. In proceedings of the 8th international conference on robotic, vision, signal

processing & power applications, 255-263. doi: 10.1007/978-981-4585-42-2_30.

http://sourceforge.net/projects/tvg

27 ©Daffodil International University

Bryce, R. C., & Colbourn, C. J. (2009).

A density-based greedy algorithm for higher strength covering arrays. Software testing,

verification and reliability, 19(1), 3753. doi:10.1002/stvr.393.

Cohen, D., Dalal, S., Fredman, M., & Patton, g. (1997).

The AETG system: an approach to testing based on combinatorial design. IEEE

transactions on software engineering, 23(7), 437-444. doi:10.1109/32.605761

Cohen, D., Dalal, S., Kajla, A., & Patton, G. (1994).

The Automatic Efficient Test Generator (AETG) system. In proceedings of the IEEE

international symposium on software reliability engineering, 303-309.

doi:10.1109/issre.1994.341392

Cohen, M. B. (2004).

 Designing test suites for software interaction testing. University of Auckland.

Cohen, M. B., Colbourn, C. J., & Ling, A. C. (2003a).

Augmenting simulated annealing to build interaction test suites. In proceedings of the 14th

international symposium on software reliability engineering (ISSRE’03), 394-405.

doi:10.1109/issre.2003.1251061

Cohen, M., Gibbons, P., Mugridge, W., & Colbourn, C. (2003b).

Constructing test suites for interaction testing. In proceedings of the 25th international

conference on software engineering, 38-48. doi:10.1109/icse.2003.1201186.

Cohen, M. B., Colbourn, C.J. & Ling, A. C. H. (2008).

Constructing strength three covering arrays with augmented annealing. Discrete Math, 308,

2709–2722.

Črepinšek, M., Liu, S., Mernik, L., & Mernik, M. (2014a).

Is a comparison of results meaningful from the inexact replications of computational

experiments? Soft computing, 20(1), 223-235. doi: 10.1007/s00500-014-1493-4.

Črepinšek, M., Liu, S-H., & Mernik, L. (2014b).

Replication and comparison of computational experiments in applied evolutionary

computing: common pitfalls and guidelines to avoid them. Applied soft computing, 19,

161-170. doi:10.1016/j.asoc.2014.02.009.

28 ©Daffodil International University

 D. Yazdani, S. Sadeghi-Ivrigh, D. Yazdani, A. Sepas-Moghaddam and M. R. Meybodi.

Fish Swarm Search Algorithm: A New Algorithm for Global Optimization, International

Journal of Artificial Intelligence, vol. 13, no. 2, pp. 17-45, 2015

Draa, A. (2015).

On the performances of the flower pollination algorithm - qualitative and quantitative

analyses. Applied soft computing, 34, 349-371. doi:10.1016/j.asoc.2015.05.015.

Hartman, A., Klinger T., Raskin L. (2005).

IBM intelligent test case handler. Retrieved on April 5, 2017 from http://ibm-intelligent-

test-case-handler.updatestar.com/en.

Harrold, M. J. (2000).

Testing: A roadmap. In proceedings of the conference on the future of software

engineering, 61-72.

Jenkins, B. (2005). Jenny test tool.

 Retrieved on April 5, 2017 from http://www.burtleburtle.net/bob/math/jenny.html.

Kennedy, J. & Eberhart, R. (1995a).

Particle swarm optimization. In proceedings of the IEEE international conference on neural

networks, 1942-1948. doi: 10.1109/ICNN.1995.488968.

Kennedy, J. and Eberhart, R. (1995b).

A new optimizer using particle swarm theory. In proceedings of the 6th international

symposium on micro machine and human science, 39-43. dio: 10.1109/MHS.1995.494215.

Kuhn, D. R., Kacker, R. N., Lei, Y. (2010).

Practical combinational testing. U.S. department of commerce, national institute of

standards and technology (NIST), Special publication 800-142.

Lei, Y., Kacker, R., & Kuhn, D. R. (2007a).

IPOG: A general strategy for t-way software testing. In proceedings of the 14th annual

IEEE international conference and workshops on the engineering of computer-based

systems (ECBS'07), 549-556. doi: 10.1109/ECBS.2007.47.

29 ©Daffodil International University

Lei, Y., Kacker, R., Kuhn, R., Okun, V., & Lawrence, J. (2007b).

IPOG/IPOGD: Efficient test generation for multi-way combinatorial testing. Journal of

software testing, verification and reliability, 18(3), 125-148.

Mernik, M., Liu, S., Karaboga, D., & Črepinšek, M. (2015).

On clarifying misconceptions when comparing variants of the artificial bee colony

algorithm by offering a new implementation. Information Sciences, 291, 115-127. doi:

10.1016/j.ins.2014.08.040.

Mahmud, T. & Ahmed, B. S. (2015).

An effective strategy for covering array construction with fuzzy logic-based adaptive

swarm optimization for software functional testing Use. Expert system with application,

42, 8753-8765.

Morgan, P., Hambling, B., Thompson, G., Samaroo, A., Williams, P. (2015).

Software testing: an istqb-bcs certified tester foundation guide. BCS learning &

development limited, USA. ISBN 1780172990, 9781780172996.

Nasser, A. B., Alsewari, A. A., & Zamli, K. Z. (2015).

Tuning of Cuckoo Search based Strategy for T-way Testing. ARPN Journal of Engineering

and Applied Sciences, 10(19), 8948-8953.

Nuraminah R., R. R. Othman*, Zahereel I.A.K., Muzammil J., (2017).

A Review on Recent T-way Combinatorial Testing Strategy, DOI:

10.1051/matecconf/201714001016

Nie, C., Xu, B., Shi, L., & Dong, G. (2005).

Automatic Test Generation for N-Way Combinatorial Testing. Lecture Notes in Computer

Science Quality of Software Architectures and Software Quality, 203-211. doi:

10.1007/11558569_15.

Othman, R. R. (2012).

Design of a T-way Test Suite Generation Strategy Supporting Flexible Interactions.

Universiti Sains Malaysia (USM).

Othman, R. R. and Zamli, K.Z., 2011.

T-way strategies and its applications for combinatorial testing. International journal on new

computer architectures and their applications (IJNCAA), 1(2), 459-473.

30 ©Daffodil International University

Shiba, T., Tsuchiya, T. and Kikuno T. (2004).

Using artificial life techniques to generate test cases for combinatorial testing. In

proceedings of the 28th annual international computer software and applications

Conference, 01, 72–77.

Tassey, G. (2002).

The economic impacts of inadequate infrastructure for software testing. National institute

of standards and technology, RTI Project Number 7007.011.

Williams, A. W. (2000).

Determination of test configurations for pair-wise interaction coverage. In proceedings of

the advances in information and communication technology testing of communicating

systems, 59-74. doi: 10.1007/978-0-38735516-0_4.

Williams, A. W. & Probert, R. L. (2001).

A measure for component interaction test coverage. In proceedings of the International

conference on computer systems and applications (AICCSA 2001), 304-311.

Younis, M. I., & Zamli, K. Z. (2011).

MIPOG-an efficient t-way minimization strategy for combinatorial testing. International

journal of computer theory and engineering, 3(3), 388-397.

Zamli, K. Z., Din, F., Kendall, G., & Ahmed, B. S. (2017).

An experimental study of hyper-heuristic selection and acceptance mechanism for

combinatorial t -way test suite generation. Information sciences, 399, 121-153. doi:

10.1016/j.ins.2017.03.007.

Zamli, K. Z., Alkazemi, B. Y., & Kendall, G. (2016).

A Tabu Search hyper-heuristic strategy for t-way test suite generation. Applied soft

computing, 44, 57-74. doi:10.1016/j.asoc.2016.03.021.

Zamli, K. Z., Klaib, M. F., Younis, M. I., Isa, N. A., & Abdullah, R. (2011).

Design and implementation of a t-way test data generation strategy with automated

execution tool support. Information Sciences, 181(9), 1741-1758.

doi:10.1016/j.ins.2011.01.002.

