

Daffodil International University Institutional Repository

Textile Engineering Project Report of M.Sc.

2019-07-07

STUDY ON MAINTENANCE PRACTICES CARRIED OUT IN THE SPINNING INDUSTRIES OF BANGLADESH.

Mohammad Ali Jinnah

ID 161-32 -314

Daffodil International University

@ daffod il international university

i

Study on Maintenance Practices Carried out in the Spinning Industries of Bangladesh

Submitted by:

Mohammad Ali Jinnah

ID: 161- 32-314

Supervised by: PROFESSOR DR. MD. MAHBUBUL HAQUE

Head, Department of Textile Engineering

CO-Supervisor: Md. Mashud Raihan

Senior Lecturer

Dept. of Textile Engineering, DIU

The Thesis submitted in partial fulfillment of the requirement for the degree

Of

Master of Science in Textile Engineering

Date: July, 2019

DIU, Dhanmondi, Dhaka-1207

©daffodil international university

ii

Thesis Approval Form

Student ID: 161- 32-314 Student Name: Mohammad Ali Jinnah Degree Sought: M.Sc. in T.E Thesis Title: **Study on Maintenance Practices Carried out in the Spinning Industries of Bangladesh**

We, the undersigned, recommended that the thesis completed by the student listed above, in partial fulfill of degree requirements and be accepted by the department of textile for deposit.

Supervisor approval

Date:

Co-Supervisor Md. Mashud Raihan

Department approval

Date:

Head of Department **Prof. Dr. Md.Mahbubul Haque**

©daffodil international university

iii

APPROVAL

I hereby declare that the work which is being presented in this thesis entitled,

"Study on Maintenance Practices Carried out in the Spinning Industries of Bangladesh" is

Original work of my own has not been presented for a degree of any other university and all the resource of materials uses for this thesis has been acknowledged.

Mohammad Ali Jinnah Date:

This is to certify that the above declaration made by the candidate is correct to the best of my knowledge.

Prof. Dr. Md.MahbubulHaque Supervisor Date:

Md. Mashud Raihan Co-Supervisor Date:

©daffodil international university

iv

DECLARATION

I hereby declare that the work which is being presented in this thesis entitled,

"Study on Maintenance Practices Carried out in the Spinning Industries of Bangladesh" is

Original work of my own has not been presented for a degree of any other university and all the resource of materials uses for this thesis has been acknowledged.

And.

Mohammad Ali Jinnah Date:

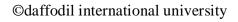
This is to certify that the above declaration made by the candidate is correct to the best of my knowledge.

Md. Mashud Raihan Co-Supervisor Date: Prof. Dr. Md. Mahbubul Haque Supervisor Date:

ACKOWLEDGDEMENT

At the beginning, I praise the almighty Allah and his blessing who gave me enabling grace to opportunity to complete my Thesis work "Study on Maintenance Practices Carried out in the Spinning Industries of Bangladesh"

With sincerity I would like to Express deepest gratitude to my course teacher Prof.Dr.Md.Mahbubul Hague Head, Department of Textile Engineering, for his guidance, encouragement, and help during my thesis work at DIU.


Giving practical exposure to theoretical knowledge is important as it enhances ones concepts and that's the reason, why engineering student are advised to visit industries and relate their theoretical knowledge with industrial practices. As per Instruction I worked a good numbers of Textile spinning mills i.e. Akota composite mills Ltd, Joba Textile mills Ltd and Delta spinners Ltd. Mozaffar spinning mills Ltd etc.

This report covers following major topics:

- a) Introduction to spinning operation.
- b) Detailed maintenance strategy of spinning mill machinery.
- c) Quality report on maintenance work of spinning machinery.

With sincerity, I extend my warm and deep appreciation also gratitude to my Supervisor Prof.Dr. Mahbubul Haque and co- Supervisor Md. Mashud Raihan Senior lecturer Department of Textile engineering Diu for their unreserved guidance and support to come up with this research work. The author deeply thanks to my family members Misses Shamim Ara & Sadir they will help me composing and supply desirable tea. Without their help it would not possible to complete the work. This report helped me a lot to boost my knowledge about plant maintenance. I cordially give thanks to Engr. Md. Aminul Islam (GM, Akota composite mills Ltd) and SK. Reza Mahmud Manager (Tech.) Joba textile mills Ltd. help me a lot by arranging an informative visit and sharing their valuable knowledge with me. And last, but not least, I thank to Md. Sadiur Rahman student of B.sc in FDT for typing various portion of this work, editorial input, proofreading & tolerance.

-The Author.

vi

Abstract

Now-a- days the world is striving for achieving higher productivity with optimum quality assurance. Low material cost, Low manpower involvement, less time duration in the process, optimum utilization of resources increase productivity.

This study presents and over view for the implementing approach of different maintenance in spinning industries of Bangladesh. I have studied valuable Journals, books, booklets, and uploading relevant data in the websites for enrich my research work. The implementation of different maintenance program is suggested for improvement in the availability, performance efficiency and the quality rate, results improvement of the overall equipment effectiveness of the equipment's. The aim of this study is to suggest and implementation of different maintenance program in the Spinning industry.

In this project work, shown the case study on Carding engine, Simplex & Ring frame by changing setting & speed finding results. After implementation of Total Productive Maintenance (TPM) on model machine, both direct and indirect benefits such as less inventory, fewer break down and increase productivity. It can be obtained for equipment and employees respectively. This project work will be useful to senior level undergraduate and graduate students in Textile, mechanical and industrial engineering; maintenance and operations engineers.

©daffodil international university

vii

TABLE OF CONTENT

Page No.

✤ Approval	iv
 Declaration 	v
✤ Acknowledgement	vi
✤ Abstract	vii
Chapter-1: Introduction	01
Chapter-2:LITERATURE REVIEW	02
2.1. Maintenance of Spinning Machineries	02
2.2 Description of Spinning Process	02
2.2.1 Process Flow chart in Spinning Operation	02
2.2.2 Mixing Section	03
2.2.3 Blow room	03
 Working function of Blow room 	04
 Basic Parameters for Blow room line 	04
 Machine used in different Blow room line 	05
 Working diagram of Blow room line 	05
2.2.4 Carding	06
 Function of Carding Machine 	06
 Different Machine parts of Carding Machine 	06
 Action of carding Machine 	07
 Working principle of Carding Machine 	07
2.2.5 Draw frame	08
 Function of Drawing 	09
 Objectives of Draw frame 	09
2.2.6 Simplex	09
 Function of Simplex Machine 	09
 Main parts of Simplex and their functions 	09 - 12
2.2.7 Ring frame	12
 Basic Principle of Ring Machine 	13
 Objectives of Ring Machine 	13

©daffodil international university

viii

2.2.8 Winding	14
 Function of Winding Machine 	14
2.2.9 Packaging	15
Chapter-3: METHODOLOGY	16
3.1. Aims of maintenance program	16
3.2 Proper maintenance improves the quality and production	16
3.3. System of Maintenance	17
3.3.1Unplanned Maintenance	17
3.3.2. Disadvantage of unplanned maintenance	17
3.3.3. Planned Maintenance	17
3.4. Different type of planned Maintenance	18
3.4.1 Routine Maintenance	18
3.4.2. Preventive Maintenance	18
3.4.3. Predictive Maintenance	18
3.4.4. Remedial Maintenance	19
3.4.5. Restorative Maintenance	19
3.4.6. Emergency Maintenance	19
3.5 Operations	20
3.5.1 Operation flow chart of maintenance program in spinning mill	21
3.5.2. Minimization the time and loss of production	22

©daffodil international university

ix

3.6 Records and Forms of Maintenance Control	23
3.7. Maintenance ledger	23
3.7.1. Model Sheet of Maintenance ledger	24
3.7.2. Model Sheet of Machine Card	24
3.7.3. Machine Card for Speed Frame	24
3.7.4. Job Incomplete Report	25
3.7.5. Break down Record	25
3.7.6. Overtime Engagement records	25
3.7.7. Spares and lubricants consumption report	25
3.8. Maintenance Chart	25
3.8.1 Model Sheet Maintenance Chart Ring Frame	26
3.8.2 Mechanical Downtime	26
3.8.2.1 Mechanical Downtime Report	27
3.9. Basic practice of routine maintenance of spinning machineries	28
3. 9.1. Routine Maintenance program- Blow room	29
3.9.2. Routine Maintenance program- Carding	29
3.9.3. Routine Maintenance program-Comber	30
3.9.4. Routine Maintenance program- Draw frame	30
3.9.5. Routine Maintenance program- Simplex	30
3.9.6. Routine Maintenance program- Ring frame	31
3.9.7. Routine Maintenance program- Auto cone	31
3.9.8. Routine Maintenance program- Electric department	32
3.9.9. Routine Maintenance program- Humidification plant	32

3.10. Concept of Productive maintenance and modern development of spinning	
machinery	33
3.11. Selective Maintenance program (SMP)	33
3.12. Application of Total Productive Maintenance (TPM) in spinning mill	34 -36
3.13. Lubrication on spinning Machinery parts	36
3.13.1. Basic Lubricants of different section in spinning mill	37
3.14. Maintenance organization	38
3.14. Capital Machinery of ABC Composite Mills Ltd	38
3. 14.1 Maintenance manpower of ABC Composite Mills Ltd	39-40
3.14.2. Roles of Maintenance department of ABC Composite mills Ltd	40
3.14.3. Spinning Machinery Audit Maintenance Personnel	41
3.14.4. Advantage of machinery auditing System	41
3.14.5. Tools for machinery Audit	41
3.14.6. Required tools for maintenance work	42
3.14.7. Tools & Instrument for Testing	43-45
3.15 Synchronization of quality Control activities with Maintenance activities	
3.16 Use of Computer for Maintenance of spinning machineries	47
3.17 Cotton Quality Based Maintenance follows in ABC Composite Mills Limited	47
3.17.1 Preventive/Routine Maintenance activity of ABC Composite Mills limited	d 48
3.17.2. Routine Maintenance activity for Blow Room of ABC Composite mills L	td48
3.17.3. Routine Maintenance activity for Carding of ABC Composite Mills Ltd	
3.17. 4 Routine Maintenance Activity of "ABC" Composite Mills Ltd	50
3.17.5. Routine Maintenance activity for Simplex	51
3.17.6. Routine Maintenance Activity for Ring frame of ABC Composite	52-53

©daffodil international university

xi

3.17.7 Routine Maintenance for Auto cone Machine of ABC Composite Mills Ltd	54
3.17.8. Target and achieved production report of ABC Composite Mills Ltd	55
3.17.9 Views on Maintenance Plan of ABC Composite Mills Ltd	56
3.17.10 Recommendation for Maintenance development of ABC Composite Mills Ltd	l56
3.18. The following Testing equipment's are used in the project work for testing Slive Roving & Yarn	er, 56-60
3.19 Effect of changing top arm pressure of drafting zone of speed frame on yarn	
Quality	61-64
Chapter-4: DISCUSSION OF RESULTS	
4. Case Study for improving quality by maintenance	65
4.1 Case study (i): Improvement of Sliver and yarn quality by setting card parameters	65-68
4.2 Lab Report Carding, Drawing, Simplex & Ring Frame	69-78
20. Chapter-5: Conclusions:	79
21. References	80-81
APPENDIX (1)	82-92
APPENDIX (2)	93-95

©daffodil international university

xii

List of Tables

Page No.

Table1: Model Sheet for maintenance Ledger	24
Table2: Model Sheet: Machine Card for Speed Frame	24
Table3: Maintenance Chart of Ring Section	26
Table4: Mechanical down time report	27
Table 5: Basic Practice of Routine Maintenance of Spinning machinery	28
Table6: Routine Maintenance program – Blow Room Machine	29
Table 7: Routine Maintenance Program – Carding Engine	29
Table 8: Routine Maintenance Program – Comber machine	30
Table 9: Routine Maintenance Program – Draw Frame Image: Comparison of the second sec	30
Table 10: Routine Maintenance Program – Simplex M/C	30
Table 11: Routine Maintenance Program- Ring Frame	31
Table 12: Routine Maintenance Program – Auto Cone M/C	31
Table 13: Routine Maintenance Program – Electric department	32
Table 14: Traditional Practice Maintenance function	34
Table 15: Basic usable Lubricants of different Section in Spinning mills	37
Table 16: Required Tools & Gauges in spinning machines maintenance work	42
Table 17: Synchronization of quality control activities with Maintenance activities	46
Table 18: Routine Maintenance activity for Blow Room	48
Table-19: Routine maintenance activity for Carding	49
Table-20: Routine maintenance activity for Drawing	50
Table-21: Routine maintenance activity for Simplex	51

©daffodil international university

xiii

Table- 22: Routine Maintenance activity for Ring frame	52
Table- 23: Routinue Maintenance work for Auto Cone	54
Table 24: Quality parameters of yarn obtained from front and back raw roving's by applying	63
Table 25: Quality parameters of yarn obtained from front and back raw roving's by applying.	63
Table26: Card setting by increasing delivery speed	65
Table 27: Card setting by changing cylinder to flat gauge	66
Table28: Effect of card setting on sliver quality and improvement	66
Table29: Effect of card setting on yarn quality and improvement	67
Table30: The yarn quality before and after corrective measures	68
Table 31: Carding	69
Table32: Breaker Drawing	70
Table33: Finisher Drawing	71
Table34: Simplex	72
Table35: Ring Frame	73
Table36: Ring Frame Yarn Testing Inject	74
Table: 37 Ring Frame Yarn Testing Cotton	75
Table: 38 Ring Frame Neps Yarn Testing	76
Table: 39 Ring Frame Slub Yarn	77
Table: 40 Ring Frame (Yarn CSP)	78

©daffodil international university

xiv

Table of Figures.....

Page No.

Fig.2.1. Process Flow chart of Spinning	02
Fig.2.2. Mixing section	03
Fig.2.3. Blow room line for Reiter	03
Fig.2.4. Blow room line for Trutzschler	04
Fig.2.5-9. Working diagram of Blow room line	05
Fig.2.10-11. Machine parts of Lap & Chute feed card	06
Fig.2.12-13. Crosrol MK6 Card & Reiter C60 Card	08
Fig.2.14-15. Draw frame, Reiter SB D22 & Toyota DX8	08
Fig.2.16. Simplex Machine TJFA458A	12
Fig.2.17-18. Ring Frame Ritter & Chinese	12
Fig.2.19. Working feature of Ring machine	13
Fig.2.20-21. Manual and Auto winding machine	14
Fig.2.22. Yarn packaging section	15
Fig.3.2 . Traditional practice of maintenance function (Related to table14)	35
Fig.3.3 Maintenance Organization	38
Fig.3.4 Maintenance Manpower	40
Fig.3.5-18. Tools & Instrument are used in Maintenance & Quality Testing	43-45
Fig.3.19. Routine Maintenance activity for Carding	49
Fig.3.20. Routine Maintenance activity for D/F	50
Fig.3.21. General Cleaning of Simplex machine	51
Fig.3.22-23. General Cleaning & Erection of Ring Machine	52

©daffodil international university

xv

Fig.3.24. Top Roller Cot Buffing	53
Fig.3.25. Top Roller Cot Mounting	53
Fig.3.26. Fluted Roller Trueing	53
Fig.3.27.Top Roller Arbor greasing	53
Fig.3.28. General Cleaning of Auto cone Machine	54
Fig: 3.29 Target and Achieved Production report	55
Fig.3.30-36. Testing Equipment's	56-60
Fig: 4.1 Effect of card setting on sliver quality and improvement (Related toTable28).	66
Fig: 4.2. Effect of card setting on yarn quality and improvement. (Related toTable29)	67
Fig: 4.3. Improvement of yarn quality by maintenance work. (Related to Table 30)	68
Fig: 4.4 Carding Sliver Test	69
Fig: 4.5 -4.6 Draw Sliver Test (i) (ii) ,	70-71
Fig: 4.7 Roving Testing	72
Fig: 4.8-4.12 Ring Frame Yarn Testing	73-77
Fig: 4.13 CSP of yarn After Maintenance of Ring frame	78

Chapter-1: INTRODUCTION

1.1 Research background

In the contemporary dynamic globalization world economy, manufacturing organizations are faced with stiff cut-throat competition. The global competition characterized by the rapid technological innovations and ever-changing market demands is putting enormous pressure on manufacturing organizations across the globe. The contemporary manufacturing organizations endeavor to achieve world-class performance through continuous improvement in the production system and development of world-class products and services, to satisfy the particular and rapidly changing customer requirements. The manufacturing sector globally has witnessed drastic changes in the later part of the twentieth century.

So Maintenance of machinery is a vital part of quality and production. Now what is maintenance and why is it performed? Past and current maintenance practices in both private and government sectors would imply that maintenance is the actions associated with equipment repair after it is broken. The dictionary defines maintenance as follows "the work of keeping something in proper condition; up keep" this would imply that maintenance should be actions taken to prevent a device or component from failing or to repair normal equipment degradation experienced with the operation of the device to keep it in proper working order. The effective integration of maintenance function with engineering and other manufacturing functions in the organization can help to save huge amounts of time, money and other useful resources.

1.2 Aims

The objective of this thesis is to study the effectiveness and implementation of the routine maintenance and Total productive Maintenance (TPM) program on cotton spinning mills and high light the contribution made by the strategies TPM initiatives in a typical Bangladesh Textile cotton spinning industry. [ref: Journal of quality in Maintenance Engineering-14]

Chapter- 2. LITERATURE REVIEW

2.1 Evolution of maintenance

Maintenance of spinning machineries:

In a spinning mill, the performance of the plant depends on the rehabilitee availability and maintainability of the plant, all of which are of primary importance for ensuring an excellent and affordable product. The concept of maintenance has changed substantially over the years; its main function is to prevent mechanical and quality breakdowns, does not mean that the quality of whole lot is low; but it means the lot is rejected due to poor quality of yarn on few bobbins or cones. Therefore to maintain excellent quality, plant engineers are capable of judging spindle to Spindle variations in ring frames, speed frames and winding and machine to machine variations in preparatory .But in order to discuss maintenance strategy of a spinning mills machineries it is important to define the processes and equipment's involved in execution of spinning first.[ref: maintenance management in spipping-1]

2.2. Descriptions Spinning Process

In textile product processing, fibers from bales of cotton or manmade fiber are converted into finished cloths. First step of textile product processing is spinning. Spinning is a process in which fibers from bales are drawn out and are twisted to form yarn. However this process commercially is defined in 3 steps:

- Drawing out Fibers.
- Twisting fibers to form yarns.
- Winding yarns onto bobbins.

2.2.1 Process Flow chart in spinning Operation:

A Typical spinning process involves a number of operations in different sections. Therefore

Basic process flow diagram of spinning mill with respect to sections is given below:

MIXING SECTION
BLOW ROOM
CARDING
DRAWING
SIMPLEX/SPEED FRAME
RING FRAME
WINDING
PACKAGING

FIG.2.1. Process Flow Chart of Spinning

2.2.2 Mixing Section:

Mixing section is basically designed for the purpose of mixing different lots, because these lots are purchased from different regions and areas and contain different colors, shades and brightness ranges due to moisture, weather, packing condition and treatment during transportation. Mixing section serves as a cotton opener, cotton mixer and remover of any foreign particles like jute and pieces of cloth from cotton.

Fig: 2.2. Mixing Section

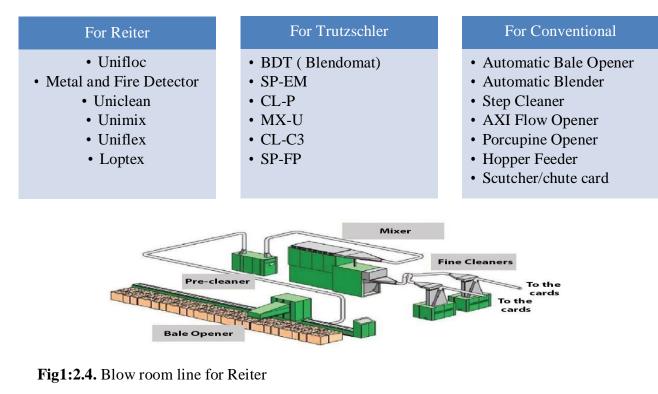
In case of bale lay down system it is not require to open the bales and make stack. In that case bales are to be arranged according to bale management system as per instructed by QC department. Following figure shows the bale lay down as per arrangement by quality of individual bales fiber:

Fig: 2.3. Bale lay down Mixing.

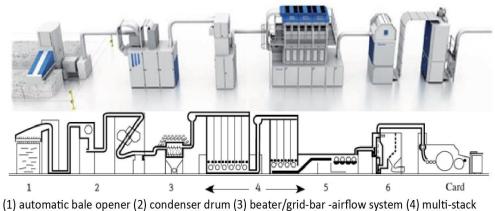
2.2.3. <u>BLOW ROOM:</u>

Blow room is the first step of yarn production process in spinning mills. In this step compressed bales are opened, cleaned and blending or mixing. The cleaning efficiency of blow room line is 40 to 70%.

©daffodil international university


Working Function of Blow room:

- Opening the compressed bales of fiber and making the cotton tuft a small size as far as possible.
- > Detecting the metal objects and fire in fiber.
- > Mixing and blending of different classes or grades of fibers.
- Cleaning the fiber by removing the dust, dirt, broken seeds etc. and other foreign materials from the fiber.
- > Removing foreign fibers and plastic contaminations.
- Uniform feeding to the next step.


Basic Parameters for Blow room Line:

- Fiber type and micron are value.
- No of Opening Machine.
- Types of Beater.
- Beater Speed.
- Production Rate of Individual Machine.
- Size of the flocks in the feed.
- Type of grid and grid setting.
- Position of the machine in the sequence.
- Amount of Trash in the material.
- Relative Humidity and Temperature in the room.[ref: Manual of Cotton Spinning-17]

Machine used in a Blow room Line:

continious blender (5) multi-beater cleaner for intensive opening & cleaning (6) final dedusting step

Fig2:5. Blow room Line for Trutzschler

Working diagram of Blow room Machineries:

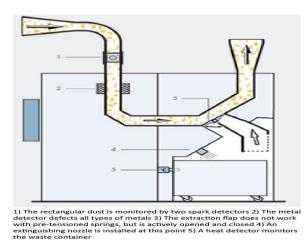
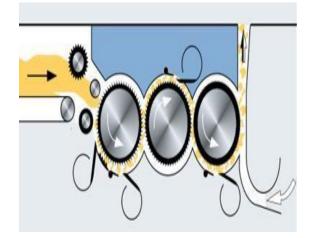
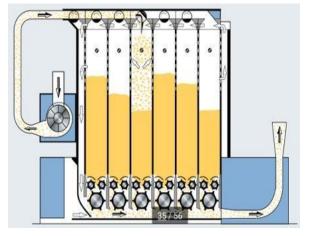




Fig: Pre-cleaner CL-P (Courtesy of Trützschler)

Fig: 2.5. Electronic Metal Separator (SP-EM) Fig: 2.6

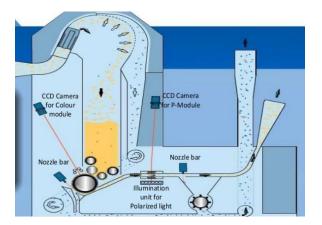


Fig: 2.9. Basic Variant SP-FP

2.2.4. CARDING:

Carding is a process of spun yarns where the staple fiber is opened, aligned and formed into a continuous, untwisted strand.

Function of Carding Machine:

- Opening to individual fibers.
- Elimination of impurities.
- Elimination of dust and short fiber.
- Fiber blending, orientation and make parallel.
- Sliver formation.

Different Machine parts of Carding Machine:

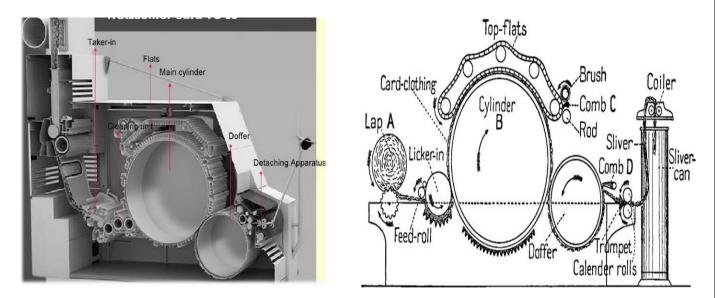


Fig: 2.10 Carding Machine parts of Lap feed.Fig: 2.11 Carding Machine parts of Chute Feed.

@ daffod il international university

Action in Carding Machine:

- Combing action: Combing action occurred between feed roller and taker in. Here the pin directions of two surfaces are the same. Combing is the straitening & paralleling of fibers & removal the short fiber, impurities by using a comb or combs which is assisted by roller & brushed.
- Carding action: Carding action takes place between flat and cylinder. Here direction of wire in two surfaces is opposite and moving direction are also opposite but flat moves slower and cylinder moves faster.
- Stripping action: Stripping action occurred between i) Taker in Cylinder and ii) Doffer-Stripper. Here wire direction will be the same and roller moving direction also will be the same. One roller will be faster than another.
- Doffing action: This action happened between Cylinder & Doffer. In this place fiber is transferred from cylinder to doffer. Doffer speed is lower than cylinder and the lower speed doffer collect the fiber from cylinder & makes condensed web for formation of sliver.

Working principle of Carding Machine:

- ✤ Raw material supply through ducting pipe.
- ✤ Chute feed evenly compressed the fiber.
- Transport roller forwards the fiber to feed plate.
- Feed arrangement consists of feed roller & feed plate.
- ✤ Taker in opens the material to small flocks and passes to main cylinder.
- Mote knives, grid bars and carding segments eliminate a great portion of waste during material passes through the cylinder.
- ✤ Suction ducts carry away the waste.
- The main carding operation occurs between main cylinder and flats. Total 80 to 116 flats are moving attached with carding bars and 30 to 40 flats are always in action with cylinder.
- The Doffer combines the fiber into a web.
- The calendar roller calendars the web and forward to coiler of sliver form and finally the sliver accumulates in a can from coiler by moving of coiler as coiled form.

Fig: 2.12 Carding Machine Model: Crosrol MK6, England

Fig: 2.13 Carding Machine Model: Reiter C60, Switzerland

2.2.5 Drawing:

Drawing is a process in which different slivers from carding machines are combined together to produce single sliver by giving a particular draft. Normally 5 to 8 slivers are fed behind one drawing machine and get an end product in form of single sliver in cans or boxes. It is the process of increasing length per unit weight of sliver. It is mainly due to peripheral speed of the rollers. The draw frame's influence on quality, especially evenness, is highly important in yarn formation. If the draw frame is not properly adjusted, there are effects on yarn strength and elongation. Secondly a defect arising at the draw frame itself can exert an effect of significant proportions on the overall yarn formation process.

Fig:2.14 Draw frame Machine. (Breaker) SB D22, Switzerland

Fig:2.15 Draw frame (Finisher) Model: Reiter Model: Toyota DX 8, Japan

Function of Draw frame:

- Drafting.
- Equalizing.
- Parallelizing.
- Blending.
- Dust removal.

Objectives of Draw frame:

- Straightening of crimped and hooked fibers.
- Paralleling of fibers.
- To produce more uniform of sliver of definite wt. /yd.
- To reduce wt. /yd. of materials fed.
- To make perfect blending/mixing of the component fibers.

2.2.6 Simplex/Speed frame:

Simplex Machine for spinning process is individual machinery used for spinning process of Textile technology to transform the drawn sliver into roving. The main function of simplex machine is the attenuation of drawn sliver and insert small amount of twist to give required strength of roving. Finally, the twisted roving is wound on to bobbin. Simplex machine is used to the carded and combed yarn process but for the rotor spinning system this process can be eliminated.

Function of Simplex Machine:

- Drafting: The main task of the spinning machines to attenuation of the sliver to required count of the roving.
- Twisting: To hold it together, small amount of twist is inserted. The numbers of twist is very low.
- Winding: To easily transport the twisted roving, it winds onto the bobbin developed by textile machine manufacturers.

Main Parts of Simplex Machine and their function:

Following are the various parts and their functions of the Simplex Frame

©daffodil international university

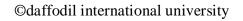
Bottom steel fluted rollers:

The bottom rollers are made of steel and are mounted on a roller stand. These are positively driven by the main gear transmission. For better carrying of the material in a forward direction, these rollers are fluted into

- 1. Axial fluted
- 2. Spiral/inclined fluted
- 3. knurled fluted

Nowadays axial flutes are replaced by inclined flutes which result in better gripping of fibers as well as fewer wears of top rollers. Knurled flutings are on those rollers on which apron revolves.

Top rollers:


There are two parts of top rollers

- 1. Arber (top rollers without rubber cot)
- 2. Rubber cot

These are actually twin rollers having rubber cots for better gripping of fibers during drafting. Hardness of top rollers depends upon the type of material. Normally for cotton, less hardness is recommended as compared to polyester fiber. For polyester more hardness is better to avoid wear of the top rollers. Rollers are replaced after 15-20 years but rubber cots are replaced within 2 years. For better gripping, these rollers are ground after a certain period. So with the passage of time, the diameter of these rollers will be reduced and behind the limits, these can't be used. Hence old cots are replaced by new cots with the result of the reduction of top roller diameter, arm pressure will be reduced which will result in less/undrafted material. With the result of grinding, a surface of top rollers becomes rough. Hence on the processing of sensory fibers, rough roller surface result in wrapping effect. To overcome this problem a chemical treatment is required which will smooth the surface.

Aprons:

The upper aprons are short and made of synthetic rubber. The thickness of apron is about 1mm.Lower aprons are larger and made of same material as that of uppers. Aprons are used to support the material which is being drafted and ultimately to reduce the variation in the material i.e. material will be uneven. When a drafting force is applied, there is a chance of variation. So to reduce this variation, aprons are provided. In the main drafting, zone aprons are used for further control of the drawing sliver. In the zone, the number of fibers is less and they are given draft so that any floating fiber content would occur fabric defects and it has to be avoided.

Pressure Arm:

Pressure is implemented on main drafting roller to improve the nip contact and higher nip. Since a high drafting is taken place, the possibility to make slippages is somewhat high. This is avoided and prevented to avoid long-term variations in subsequent processes. The top rollers are well pressed on bottom rollers by applying pressure through pressure arm.

Cradle assembly:

Consists of

- Cradle
- Top apron
- Steal roller
- Spacer
- Cradle spring

It supports the material during drafting and reduces the variation due to drafting force. Spacer size changes the distance between the aprons (bottom &top). For coarse material, bigger size spacer is used. Change of spacer size affects the U%.

Flyer:

A flyer is used to wind up the roving on a bobbin and to impart twist into the roving revolving around the bobbin at a speed 700-1600 rpm. Flyer inserts twist. Each flyer rotation creates one turn in the roving. Twist per unit length of roving depends upon the delivery rate:

Dynamic flyers ensure excellent yarn quality and free of fluff accumulation and fiber chocking.

- Flyers are made from quality aluminum alloy, polished stainless steel tubes, and steel parts.
- Computer generated aerodynamic profile ensures minimum air turbulence and noise.
- To facilitate well twisted roving false twisters are specially designed and manufactured.
- Minimum vibrations in the flyer are kept by high precision balancing at all rated speeds.
- To maintain constant pressure, Pressers are made of heat treated special grade steel.
- Higher return on investment on flyers.

Condenser:

In Simplex machine two condensers are used in the drafting arrangement. The purpose of these condensers is to bring the fiber strands together. It is difficult to control, Spread fiber masses in the drafting zone and they cause unevenness. In Addition, a widely spread strands leaving the drafting arrangement leads to high fly levels and to high hairiness in the roving. The size of condensers should be selected according to the volume of the fiber sliver.

©daffodil international university

Top & bottom clearer:

Cleaning is one another important aspect of drafting zone. Since the high draft is given to the sliver, short fibers can immune from the main flow of fibers and then may wind on rollers it self If this process keeps happening the drafting capability of the rollers are effected through contact area and lose grip. Hence tow aprons are used to clean each and every roller during drafting. In this machine, two top and bottom clearers are also used for the cleaning purpose.

Bobbin Rail: The bobbin rail is moving up and down continuously so that the coils must be wound closely and parallel to one another to ensure that as much as a material is wound on the bobbin. Since the diameter of the packages increases with each layer, the length of the roving per coil also will increase. Therefore the speed of movement of bobbin rail must be reduced by a small amount after each completed layer

Fig:2.16. Simplex Machine. Model: TJFA458A, China

2.2.7 Ring Machine:

The Ring Spinning is the most widely used form of the spinning machine due to significant advantages in comparison with the new spinning processes. The ring spinning machine is used in the textile industry to simultaneously twist staple fibers into yarn and then wind it onto bobbins for storage. The yarn loop rotating rapidly about a fixed axis generates a surface referred to as "balloon". Ring frame settings are chosen to reduce yarn hairiness and the risk of glazing or melting the fiber.

Fig: 2.17. Ring frame, Reiter

Fig: 2.18 Ring Frame, China

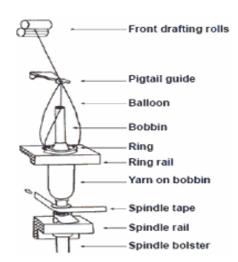


Fig: 2.19. Working feature of Ring Frame.

Basic Principles of Ring Machine:

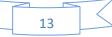
Some basic principles of Ring Machine are as follows:-

Drafting Mechanism

To attenuate roving until the desired fineness is reached.

Consolidation (strength) Mechanism

To impart strength to the fiber by twisting it.


Winding and Package forming Mechanism

To wind up the resulting yarn in a package suitable for storage, transportation, and further processing.

Objectives of Ring Machine:

Following are the core objectives of Ring Machine:

- To draft the roving fed to the Ring spinning frame i.e. to convert roving into very fine strand called yarn.
- ✤ To impart strength to the yarn by inserting the necessary amount of twist.
- To collect twisted strand called yarn onto handy and transportable package by winding the twisted thread on a cylindrical bobbin or tube.

2.2.8 Winding Machine:

In Spinning process winding is the last step. After winding yarn packages are used for making woven or knitted fabrics. Winding process can be defined as the transfer of spinning yarn from one package to another large package (Cone, Cheese, Spool etc.)

On the other hand it can be defined as the transfer of yarn from Ring bobbin, hanks etc. into a convenient form of package containing considerable long length of yarn. A process of accumulating yarn on a package to facilitate the next process is called as winding.

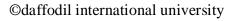

Fig: 2.20. Manual winding machine

Fig: 2.21 Auto winding Machine Murata, Japan

Function of Winding Machine:

Winding process has some objectives which are given as below:

- > To transfer yarn from spinning bobbin package to a convenient yarn package.
- > To improve the quality of yarn
- ➢ To get suitable yarn package.
- ➢ To get better warp yarn.
- > To empty the spinner's bobbin so that it can be used again.
- > To remove dust and clean the yarn.
- ➢ To store the yarn
- > To improve the efficiency of yarn for next process

2.2.9 Packaging:

Yarn packaging is a process, where the cone or cheese form yarn are packed by PP oven bag, Cartoon or any other suitable form for yarn marketing requirement. Packaging area has a conditioning system; this conditioning system is especially designed. Specially designed duct are used for conditioning of yarn. The yarn is conditioned up to 24 hours before packing. Enhanced conditioning of yarn increases the strength of yarn. The result is a product which is not only conditioned exceptionally but additionally it helps to decrease the wastage as well. [ref: Maintenance strategy of spinning mill-3]

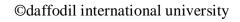
Fig: 2.22. Yarn packaging of Cone form.

Chapter-3: METHODOLOGY

3.1 Aims of Maintenance program

An effective maintenance program has the following aims:

- \checkmark To maintain equipment at the maximum operating speed and production efficiency.
- \checkmark To ensure the best possible level of quality of the product.
- \checkmark To minimize the idle time resulting from machinery breakdowns.
- \checkmark To reduce to a minimum the cost of maintenance consistent with the above objectives.
- \checkmark To introduce higher productivity of machines.
- ✓ To reduce and control wastages of several machines.
- ✓ To Economization of the process.[ref; maintenance engineering -12]


3.2 Proper Maintenance improves the quality and production:

Whether it is old or modern machine, maintenance has to be planned and directed in a systematic manner for its efficient functioning. There are also ever increasing economic pressures which compel a mill to use its high capital equipment to the fullest extent so that it can survive in the intensely competitive conditions of today. For this a proper maintenance is essential.

Not only good maintenance contributes to high productivity but it can also be considered to be at the heart of quality product. Neglect of maintenance and of timely replacement of components will prove several times expensive compared with the costs which a proper maintenance program entails, particularly, since, in some cases a very small amount of wear can cause a disproportionate effect .For example, to replace a worn top roller cot on a Ring frame will need about 15 taka .As against this, allowing it to run would cost the mill anywhere between Tk. 100 to Tk. 200 a month because of the deterioration in yarn quality.

The examples mentioned above are not merely hypothetical. They indeed, represent the extent of the scope indicated in some units. SITRA'S inter firm comparison studies on productivity and quality place the potential improvement attainable through proper maintenance as follows: [ref: maintenance management -1]

Productivity per spindle	: 10%
Yarn strength	: 5%
Machine utilization	: 2%

3.3 System of Maintenance:

There are two basic systems are involved in machinery maintenance:

1) Unplanned Maintenance.

2) Planned Maintenance.

3.3.1. Unplanned Maintenance: It means that people wait until equipment or machinery fails and repair it. In other way we can say "run it till breaks". It is sub divided into two types:

- Emergency maintenance: It is carried out as fast as possible in order to bring a failed machine or facility to a safe and operation efficient condition.
- Break down Maintenance: In this system, attention is given to a machine only when it breaks down.

Advantages of Unplanned maintenance:

- Low cost for the process.
- Less staff required.

3.3.2 Disadvantages of Unplanned maintenance:

- Increased cost due to unplanned downtime of equipment.
- Increased labor cost, especially if overtime is needed.
- Cost involved with repair or replacement of equipment.
- Possible secondary equipment or process damage from equipment failure.
- Inefficient use of staff resources.
- Equipment durability reduces.
- Quality of output degraded.

3.3.3 Planned Maintenance: The salient features of planned maintenance system may be stated below:

- ➢ Various maintenance operations are carried out according to a previously fixed plan.
- Attention is focused, not on major repairs, but on minor as well as periodical and conservation repairs aimed at controlling the condition of machine to prescribed standards.
- Primary emphasis is given to the prevention and retardation of wear and tear.

Planned maintenance confers many benefits such as longer machine life, fewer breakdowns, improved quality and higher productivity.

©daffodil international university

3.4. Different type of planned maintenance:

- Routine maintenance.
- Preventive maintenance.
- Predictive maintenance.
- Remedial maintenance.
- Restorative maintenance.
- Emergency maintenance.

3.4.1 Routine maintenance

Routine maintenance usually denotes those activities of maintenance which are bare minimum to ensure efficient working of machines. These activities have to be performed according to predetermined frequencies which are based on technical and quality consideration

Operations:-

Through cleaning of all points of a machine, minor adjustments and settings, wherever applicable; card grinding and setting; spindle and lappet gauging in spinning; buffing and re-covering of top roller cots and Maintenance of pneumatic and electrical equipment.

3.4.2. Preventive maintenance:

The preventive maintenance demands regular and systematic inspection of machines by skilled technicians and these inspections are made in accordance with planned schedules. The causes of wear to machine parts and assemblies are determined. In addition, all the key machine settings are checked for conformity to prescribed standards. Preventive maintenance is the area in which maintenance can affect the greatest savings in the overall manufacturing or operating costs.

Operations:- Machinery inspections and diagnostic checks at predetermined intervals of those parts which have a greater bearing on quality and production. e.g. Sensitivity of feed regulation unit in blow room ; licker-in and cylinder under casing contours; bite of comber nippers; rollers eccentricity; differential gearbox alignment; checking the tensions; alignments and profiles of top-arm drafting assembles, Apron-cots, ring and spindle-bolster replacement, card clothing replacement etc.

3.4.3. Predictive maintenance:

Routine maintenance and preventive maintenance need fact – finding activities to help in their planning. It is necessary and also useful to know what is happening to different parts of equipment under actual working conditions. Predictive maintenance helps in assessing the effectiveness of the routine and preventive maintenance program as reflected in actual machine performance.

©daffodil international university

Operations:-

Tests made while the machine is in operation; bearing failure tests with the aid of stethoscope or by feel or by noise levels; eccentricity measurements by dial gauge; roller slip by R.S.Meter and machine vibration by vibration Meter.

3.4.4 Remedial maintenance:

Remedial maintenance is not the rectification of minor defects considered under routine and preventive maintenance. It is mainly covers the study of failures and changing designs, materials or working conditions to avoid the repetition of these failures, increasing the capability of machines by changing or improving the designs so that they become fit to withstand increased loads and speeds.

Operations:-

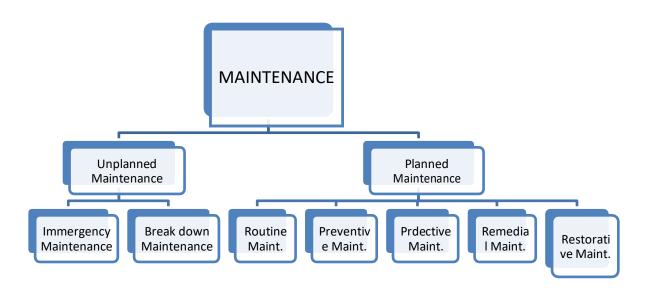
Alterations (not of a major nature) to machinery design either to simplify maintenance or to improve working conditions .Provision of self-oil circulating systems; change of bush bearings to ball bearings; change of cast iron spur gears to steel helical gears; provision of positively driven top clearers to speed frames, draw frames etc.

3.4.5. Restorative Maintenance:

This type of maintenance calls for drastic changes in a machine such as replacement of major parts involving considerable amount of expense and time. The machine is completely dismantled and re- erected after replacing all worn parts and assemblies. As a result the efficiency and precision of the machine goes to almost to their original levels. Taking advantages of this general overhaul, the machines may also be modernized.

Operations: Overhauling and modernization.

3.4.6. Emergency Maintenance:


In a running machine breakdown may always occur unexpectedly and handling of such breakdowns is called emergency maintenance. The reporting of breakdowns, the rapid diagnosis of the failure, the speedy allocation of the task to specialized maintenance stuff, more particularly ensuring immediate availability of spare parts and quick attendance to the failure, all should be organized and planned to the greatest possible extent.

©daffodil international university

3.5 Operations: Attending to unforeseen breakdowns.

It will be noted that the majority of activities in a spinning mill belong to the first two categories, i.e. Routine and preventive maintenance. Restorative maintenance can be divided in two parts, i.e. overhauling and modernization. Overhauling of machinery is being done in a routine manner by almost of the mills, provided the routine and preventive maintenance, operations are performed systematically, the need for emergency maintenance will rarely arise.

[Different Type of Maintenance in Spinning Machineries. [Ref: Engineering Maintenance-12]

©daffodil international university

3.5.1. Operation Flow chart of Maintenance Program in Spinning Mill:

Feed back from prodn		Maintenance analys		Cost estimates for			
costing & quality		preparing annual pla	an		maintenance		
control dept.							
Maintenance		Equipment history		Spares		Machine sp	
ledger		& maint record		list		tion & para	meter
		Current maint pro	actice				
		Framing of maint progra	ams for				
		the year		_			
Remedial & Emergency						•	
request from prodn)	Work planning & sched	uling		Up da	te	
& QC depts)						
		Weekly work order			Incom	nplete work r	enort ir
				_		order & prev	
					1	check lists.	entire
		Daily work allocation	า				
		Maintenance persor	nel		Feed	Dack	
					reeu	DACK	
		Machine Card					

[Ref: maintenance management of spinning -1]

©daffodil international university

3.5.2. Minimization the Maintenance time and loss of production:

To minimize the maintenance period and loss of production by proper maintenance it is

Essential to follow the following system:

- **1.** Planning
- 2. Scheduling
- **3.** Controlling

1) **Planning :**

This exercise consists of the following steps:

- ✓ To make a list of all the points to which attention should be directed to keep them in order.
- ✓ To establish frequencies of various maintenance functions involved and review their adequacy periodically.
- ✓ To Lay-out the frequencies of the various operations over the plan period in such a manner as can be implemented with the available men and facilities.

2) Scheduling:

Whilst planning has defined the various maintenance tasks to be carried out oneach machine during the course of a year, scheduling is to get the right men and facilities at the right place and at the right time.

A well-devised and well operating planning and scheduling system will:

- ✓ Minimize delays arising from lack of co- ordination between production and maintenance schedules.
- Reduce loss of useful man-hours because of unnecessary walking time for procuring materials and tools.
- ✓ Co-ordinate multi-skilled jobs to optimize skill utilization consistent with minimum machine down-time.
- \checkmark Reduce waiting time between jobs, so that operative idle time is minimized.
- ✓ Co-ordinate with SQC to ascertain the effectiveness of the maintenance operation and their adequacy.

3) Controlling:

All planning and scheduling, without effective controls and the means of enforcing them, would be useless and waste of time and effort. Whereas planning and scheduling are connected, respectively, with how a job is to be done.[ref: maintenance management-1]

©daffodil international university

The aim of maintenance control:

- To provide management with a tool that will disclose deviations from plans and schedules so that backlogs can be dealt with.
- To provide feedback information from preventive maintenance checklists and diagnostic reports signaling the need not only for remedial action, but also for reviewing the various schedules established in the annual plan.
- Information from quality control and costing departments will also form the supplementary sources of feedback.

3.6. Records and Forms of Maintenance Control:

- Maintenance ledger.
- Machine card.
- Job incomplete report.
- Breakdown record.
- Overtime engagement record.
- Monthly consumption of spares and lubricants record.
- Lubrication control chart.
- Overtime requisition form.
- Weekly work order form.
- Maintenance chart.

3.7 Maintenance Ledger:

Maintenance department is suggested that a maintenance ledger has to be kept, with a separate leaf opened for each machine. Upon finalization of the annual plan and work distribution tables for different weeks or months, details must be recorded in the ledger to show for each machine.

©daffodil international university

3.7.1. <u>Model sheet for maintenance ledger:</u>

Table 1: Model sheet for maintenance ledger.

Department	operation	Page no
------------	-----------	---------

•	Ring Frame 05	i. General Cleaning	
	10	ii. Top Arm Pressure Checking	
	15	iii. Spindle & Lappet Gauge	
	25	iv. Cot Buffing	
	Simplex		

3.7.2. Machine cards:

Machine card is a card where displayed the details of maintenance work to be carried out on it each week of the year. This procedure will bring any maintenance lapses to the direct attention of the maintenance in charge when he makes his routine rounds inside the department.

3.7.3. Model sheet: Machine Card for Speed Frame:

Machine No: 5

Next overhauling Due on.....

Make and year.....

Operation	Frequency	Done on	Due on
• Top roller cots buffing/greasing	6 month	5.12.2016	5.5.2017
 Top arm pressure checking 	6 month	5.12.2016	5.5.2017
 Cots replacements 	2 years	11.11.2016	11.11.2018
 Apron replacements 	1 ½ year		
 Building motion setting 			

Table 2: Model sheet: Machine card for Speed Frame.[ref:source,tex.mill-6]

©daffodil international university

3.7.4 Job Incomplete Report from work order forms:

A report on job incomplete may be prepared from the entries in the work order forms.

3.7.5. Break Down Record:

The Mills should maintain a machinery breakdown record to note down the break down in each department. This helps "the maintenance –in charge" to have close follow up on the performance of machines and to forecast the needs of spares in each department. This record should be submitted to the Manager on a periodical basis.

3.7.6. Overtime Engagement Record:

The management should be informed periodically by maintenance-in charge the man-hours engaged in each department as overtime with reasons thereof. This is possible only when a separate register is maintained by maintenance-in charge for recording the overtime engagement.

3.7.7. Spares and Lubricants Consumption record:

To maintain a control over the consumption of spares and lubricants, a record of the same should be maintained.

3.8. Maintenance Chart:

For each department, a chart may be prepared for a period ranging from 1-12 month to cover the various maintenance operations based on planned schedule. By displaying the chart in the room of maintenance-in charge, it will be easy to follow up and execute the program as per schedule. [ref: maintenance management of spinning-1]

©daffodil international university

3.8.1 Model sheet: Maintenance Chart of Ring Section:

(Table3: Maintenance Chart of Ring Frame)

	x		0		*		#		х		0		*		#		х		0		
#		x		0		*		#		х		0		*		#		х		0	
	#		х		0		*		#		х		0		*		#		х		0
*		#		х		0		*		#		х		0		*		#		х	
	*		#		х		0		*		#		х		0		*		#		х
0		*		#		х		0		*		#		х		0		*		#	
	0		*		#		х		0		*		#		х		0		*		#
х		0		*		#		х		0		*		#		х		0		*	
	х		0		*		#		х		0		*		#		х		0		*
@		x		0		*		#		х		0		*		#		х		0	
	@		х		0		*		#		х		0		*		#		х		0
#		@		х		0		*		#		х		0		*		#		х	
	#		@		х		0		*		#		х		0		*		#		x
*		#		@		х		0		*		#		х		0		*		#	
4	8	12	2	16	5 2	20	1	24	1	2	28	<u> </u>	32	1	36	<u> </u>	40	4	44		48

* Top Arm Pressure Checking.[maintenance management-1]

Spindle and lappet gauging.

- @ Spindle Oil Topping.
- X Spindle Oil Replacement.
- 0 Cot Buffing

3.8.2 Mechanical down Time Report:

Mechanical Down time report is to be prepared and forwarded to manager after completion of the job on any breakdown. The report should contain all necessary particulars such as causes for breakdown, action taken, machine hours lost, spare parts used and cost etc.

©daffodil international university

3.8.2.1 Model sheet: - Mechanical down time report:

Department: Ring

Shift fitter: Rahim

Machine No: 32 Supervisor: Jobber

Operator Card No: 1208

Man hour lost: 2 hrs.

Date	Time		Nature & Cause of repair	Spare Used	Qty	Cost
	Stopped	started	-			
03.02.2017	8:30 AM	10:30AM	Front Roller Needle Bearing LZ 2822 fault	Needle Bearing LZ2822	01 pc	Tk. 150

Table 4: Mechanical down time report.

Remarks: Should take more care of front roller needle bearing during routine maintenance checking period.

Date: 04.02.2017

Attended: Fitter

Checked: Mr. Robin

Manager: Mr. Asad

[ref: Source of textile mill-6]

©daffodil international university

Department	Nature of Operations	Frequenc	cy (Days)	Remarks
		Min	Max	_
Blow room	 General Cleaning with Oiling, Greasing 	07	10	
Carding	 General Cleaning. Half setting. Full setting. Grinding-cylinder doffer Flat tops 	07 10 30 - - -	10 15 45 180 180 180	
Draw frame	 General Cleaning, greasing with oiling. Top roller cot buffing. Top Roller Pressure checking. 	07 30 60	10 60 90	
Speed Frame	 General Cleaning, greasing, oiling. Top roller cot buffing. 	10 90	15 180	
	 Top Arm Pressure checking. 	60	90	
Ring Frame	 General Cleaning, greasing, oiling. Top roller cot 	10 60	15 120	
	buffing.Top Arm Pressure checking.	60 60	90 90 120	
	 Spindle lappet gauge. 	90	120	

3.9. Basic Practice of Routine Maintenance of Spinning Machinery:

Table.5: Basic of Routine Maintenance of Spinning Machinery.[maintenance management in spinning-1]

©daffodil international university

3.9.1 <u>Routine Maintenance program – Blow Room Machine:</u>

Sl. No	Name of Operation	Frequency in weeks	Category of Operatives
01	General Cleaning with greasing & Oiling.	01	Assistant. Fitter & Cleaner
02	Condition of beaters, inspection of gears, belts, bearing, shaft of machines involved.	15	Fitter, Assistant. Fitter, helper
03	Cleaning & Checking of dust filter fan, Motor, net etc.	01	Assistant .fitter, Cleaner

Table 6: Routine Maintenance program – Blow Room Machine.

3.9.2 <u>Routine Maintenance program – Carding Machine (Semi High speed card):</u>

Sl. No	Name o	f Operation	Frequency in	Category of
			weeks	Operatives
01	General	Cleaning with greasing &	1-2	Assistant. Fitter &
	Oiling (Half setting)		Cleaner
02	Full Set	ting	4-6	Fitter, Assistant fitter,
				helper
03	Cleanin	g & Checking of dust filter	01	Assistant. Fitter,
	fan, Mo	tor, net etc.		Cleaner
04	Grindin	g-		
	•	Cylinder & Doffer wire	24 (as required)	Fitter & Assistant.
	•	Flat Tops "Off" Machine	24 (as required	Fitter
)	Do
05	Wire Re	eplacement-	2 ½ year	
	•	Cylinder & Doffer	(400-500 ton	Fitter & Assistant.
	•	Flat tops	mtl processed)	Fitter
			Do	Do
	•	Taker in		
			1 ½ year	Do
			(150-200 ton	
			mtl processed)	

Table 7: Routine Maintenance program – Carding Engine.

©daffodil international university

3.9.3 <u>Routine Maintenance program – Comber Machine:</u>

Sl. No	Name of Operation	Frequency in	Category of Operatives
		weeks	
01	 General Cleaning with 	02	Assistant. Fitter &
	greasing & Oiling.		Cleaner
02	 Detaching Roller & Top 	12	Roller coverer
	roller Cot Buffing.		
03	 Re needling of Top Combs. 	24	Assistant. Fitter
04	 Over hauling. 	5 years	Fitter, Assistant. Fitter,
		-	helpers

Table-8: Routine Maintenance program- Comber Machine

3.9.4 <u>Routine Maintenance program – Drawing Machine:</u>

Sl. No	Name of Operation	Frequency in weeks	Category of Operatives
01	 General Cleaning with greasing & Oiling. 	1-2	Assistant. Fitter & Cleaner
02	 Scanning Roller, T&G gauge checking 	3-4	Fitter.
03	 Top roller Cot Buffing. 	4-6	Roller coverer
04	 Top Roller cot replacement. 	50 (as reqd.)	Do
05	 Top roller end bush replacement. 	50 (as reqd.)	Fitter/Assistant. Fitter
06	 Over hauling. 	2-3 years	Fitter, Assistant. Fitter, helpers

Table- 9: Routine Maintenance program- Drafting

3.9.5 <u>Routine Maintenance program – Speed frame/Simplex Machine:</u>

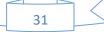
Sl. No		Name of Operation	Frequency in weeks	Category of Operatives
01		General Cleaning with greasing & Oiling.	2	Assistant. Fitter & Cleaner
02		Top roller Cot Buffing & greasing.	12-15	Roller coverer
03		Top Roller cot replacement.	2 years (as reqd.)	Do
04	•	Top Arm pressure checking.	12	Fitter/Assistant. Fitter
05	•	Top Apron replacement	1-1.5 year	Do
06	•	Bottom Apron replacement.	1.5-2 years	Do
07		Over hauling.	4-5 years	Fitter, Assistant. Fitter, helpers

 Table- 10: Routine Maintenance program- Simplex machine

©daffodil international university

Sl. No	Name of Operation	Frequency in weeks	Category of Operatives
01	 General Cleaning with greasing & Oiling, Ring traveler change. 	2	Assistant. Fitter & Cleaner
02	 Spindle & Lappet gauge. 	12	Assistant. Fitter, Helpers
03	 Top roller Cot Buffing & greasing. 	12-15	Roller coverer
04	• Top Roller cot replacement.	2 years (as reqd.)	Do
05	 Top Arm pressure checking. 	12	Fitter/Assistant. Fitter
06	 Top Apron replacement 	1-1.5 year	Do
07	 Bottom Apron replacement. 	1.5-2 years	Do
08	 Jockey pulley greasing. 	24	Assistant. Fitter/Helper
09	 Spindle oil topping. 	12	Do
10	 Spindle Oil replacement 	24	Do
11	• Over hauling.	4-5 years	Fitter, Assistant Fitter, helpers

3.9.6 <u>Routine Maintenance program – Ring Machine:</u>


 Table- 11: Routine maintenance program – Ring Frame.

3.9.7 <u>Routine Maintenance program – Auto cone Machine:</u>

Sl. No	Name of Operation	Frequency in weeks	Category of Operatives
01	 General Cleaning & greasing, opening of all m/c covers, cleaning with compressed air and washing with corium or Jet powder water as required. 	1-2	Assistant. Fitter & Cleaner
02	 Checking of- ✓ Condition of driving end of drum. ✓ Drum shaft bearing. ✓ Package adaptor alignment. ✓ Bobbin change mechanism etc. 	15-24	Fitter, Assistant. Fitter
03	• Over hauling.	4-5 years	Fitter, Assistant Fitter, helpers

Table-12: Routine Maintenance program – Auto cone machine.

©daffodil international university

3.9.8 <u>Routine Maintenance program – Electrical department:</u>

Mills should take particular care for the proper maintenance of electrical parts of spinning machineries in order to ensure continuous working of electrical parts without breakdown at the rated speed and lower power consumption. A specimen system is as follows:

Sl. No	Name of Operation	Frequency in weeks	Category of Operatives
01	 Cleaning exterior parts of Motor, Terminal contacts and houses. 	2-3 days	Electricians and helpers
02	 Cleaning of exterior parts of switches and switch gears. 	1 weeks	Assistant. electrician, Helper
03	 Checking earth connection and Motor terminal. 	1 week	Electrician, winder, helper
04	 Checking over heating of Bearings 	1 week	Do
05	 Renewal of Oil or Grease. 	12-18 weeks	Electrician, Helpers
06	 Greasing of Motor Bearings. 	6 month-1 year	Motor winder.

Table- 13: Routine maintenance program - Electrical department.

3.9.9 Maintenance program of Humidification Plant in Spinning Mill:

Humidification plants have become a very essential part of a spinning unit. In order to obtain the ambient conditions in the department to get better operations of different machineries and better-quality yarn, it is essential to operate a humidification plant in a very efficient manner. Some of the necessary checks of Humidification plants which are done by Maintenance personnel are listed below: [ref;NASF,2000-13]

- Ensure whether rated air changes are achieved.
- Adjust the discharge air depending on the departmental requirement.
- Check air filter for its condition in order to avoid pressure loss.
- Keep air washers working at maximum efficiency by periodical cleaning of spray nozzles and eliminators plates.
- Avoid accumulation of dirt, lint, fluff and trash at air filters.
- Clean periodically dampers and ventilators.

©daffodil international university

3.10 <u>Concept of Productive Maintenance and modern development of</u> <u>Spinning Machineries.</u>

Now a day's market is very much competitive and for that reason – to maintain more better quality with increasing production and to reduce man-power cost, Hi-tech machines are using in most of the spinning mill and these Hi-tech machinery- parts in Blow room, Cards, Comber, Draw frame, Speed frame, Ring frame, Auto cone etc. are generally designed in a way different from the point of view of sophistication. Design features of these machineries are such that they are capable of producing yarns meeting international quality requirements with imported or indigenous raw material at higher level of productivity. Maintenance of these machineries is to be carried out based on "Selective Maintenance Program (SMP)."

3.11. "Selective Maintenance Program (SMP)":

The selective maintenance program (SMP) is to be formulated based on the specific needs of the machinery under consideration and also on the recommendation of the machinery manufacturers. Some of the design feature of modern spinning machines, which necessities the use of "SMP" are listed below:

- i) Bearings are preheated and assembled with very close tolerances to have vibration free revolutions.
- ii) Inverters and AC servomotors are used to control the speeds of machines with a finite number of steps.
- iii) Microprocessors are used to-
- ✓ Set the machinery parts.
- \checkmark Change the speeds.
- ✓ Clear the yarn to meet customers' requirements.
- ✓ Maintain humidity levels in department automatically &
- \checkmark Monitor the quality of products.
- iv) Lubrication of machinery is entrusted with automatic and centralized systems.
- v) Droppings, micro dust and noel from the machines are collected with the help of automatic waste evacuation systems with preset timings for each function.

In case of modern or Hi-tech machinery the manufacturer normally supply instruction/technical manuals along with the machinery. These manuals contain all the relevant information pertaining to erection, operation and maintenance of machinery. This information could be used for guidance for framing "SMP". Most of the modern spinning machines have microprocessor controls, precisely designed/ set machinery parts and special drives like vireo speed, inverters etc. Maintenance of these machines calls for technical expertise of the persons involved. Almost all machinery manufacturers provide technical training to the mill personnel. These programs could be well utilized by the mills. On acquiring the necessary skills, the trained personnel would be able to chalk out a suitable maintenance program for the machine. [ref: application of TPM spinning mills-8]

©daffodil international university

3.12. <u>Application of Total Productive Maintenance (TPM) in the Spinning</u> <u>Mill:</u>

The concept of Total Productive Maintenance (TPM) has been introduced and developed by Japanese in 1971. This came in response to the maintenance and support problems in commercial factory. Textile industry is the second largest industry in the world next to agriculture. The effective utilization of manpower and resources in the manufacturing sector leads to low manufacturing cost, which is necessary for survival in present scenario. Total Productive Maintenance (TPM) is also a cost reduction tool used in industry particularly in spinning mills, where maintenance activities are key to the smooth running of the textile mill.

Practice of Maintenance function:

The industrial statistics shows the maintenance activities are carried out by conventional maintenance system. Six major loss areas in any plant are:

- Planned downtime loss.
- Unplanned downtime loss.
- Idling and minor stoppage.
- Slow down.
- Process non conformities.
- Scrap. .[ref: application of TPM spinning mills -8]

Maintenance Activity	Operator	Maintenance Dept.	Project	Sub Contractor
Routine Inspection	38%	62%		
Periodic inspection	5%	93%		2%
Minor Repair	1%	85%	4%	10%
Shutdown	2%	83%	4%	11%

Table 14: Traditional practice of maintenance functions:

©daffodil international university

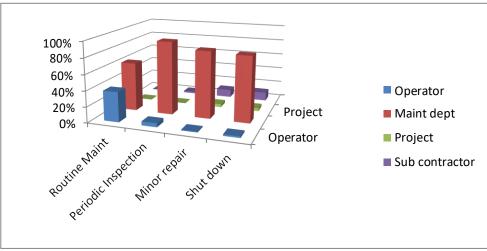


Fig: 3.2: Traditional practice of maintenance functions (related to table 14)

In traditional maintenance system, the loss will be more in the above aspects due to non-involvement of production people in basic maintenance activities, leading to frequent machine breakdown, efficiency and utilization loss. This ultimately results production loss and increases the manufacturing cost of the product. TPM – Total Productive Maintenance is a tool used to overcome all the above said difficulties in a cost-effective manner in any manufacturing process.

3.12.1 TPM – Definition:

TPM is a low-cost people intensive system for maximizing equipment effectiveness by involving entire company in a preventive maintenance program.

- **Total** –All-encompassing by maintenance, production individuals working together.
- **Productive** Production of goods, services that meet or exceed customer's expectations.
- **Maintenance** Keeping equipment, plant in a as good as or better than the original conditions at all times.

3.12.2 Objectives of TPM:

- Avoid wastage in a quickly changing economic environment.
- Producing goods without compromising product quality.
- Reduce cost.
- Produce a low batch quantity at the earliest possible time.
- Goods sent to the customers should be without defects.

©daffodil international university

3.12.3 Steps of TPM implementation:

Step 1 - Announcement by Management to all about TPM introduction in the organization.

Step 2 – Initial education and propaganda for TPM.

Step 3 – Setting up TPM and department committees.

Step 4 – Establishing the TPM working system and target.

Step 5 – A master plan for institutionalizing.

3.12.4. Barriers to implementing TPM in spinning industry:

Though Total Productive Maintenance is successfully implemented in more professionally managed engineering industries, the benefit of this concept is yet to be exploited in most of the spinning industry. There are some obvious barriers in this regard:

- Unskilled labor.
- Inadequate training facility.
- Lack of commitment.
- Heterogeneous stock of inventory.
- Lack of co -ordination between production and maintenance department.

3.13: LUBRICATION ON SPINNING MACHINERY PARTS:

Lubrication is a major item of expenditure in the maintenance of machinery, and it also represents the most important factor in protection of machinery from wear, corrosion and possible failure.

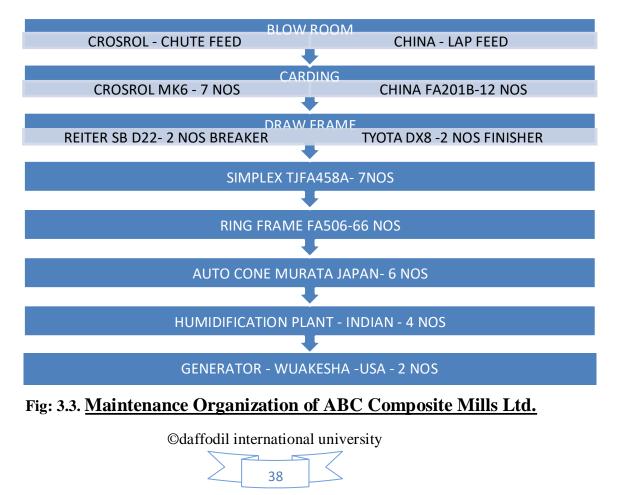
Proper lubrication of machinery is of immense importance as majority of the problems stem out due to under lubrication of parts or wrong selection of lubricants. Though the lubrication is considered as one of the regular activities in the department, many times it is observed that there is no control on the details of this operation. In many instances, the oilers who are not instructed in detail regarding the parts which are to be lubricated, the frequency to be adopted and type of lubricants to be applied. Every machine manufacturer furnishes these instructions which should be displayed in proper form in local languages for day to day reference of oilers.

©daffodil international university

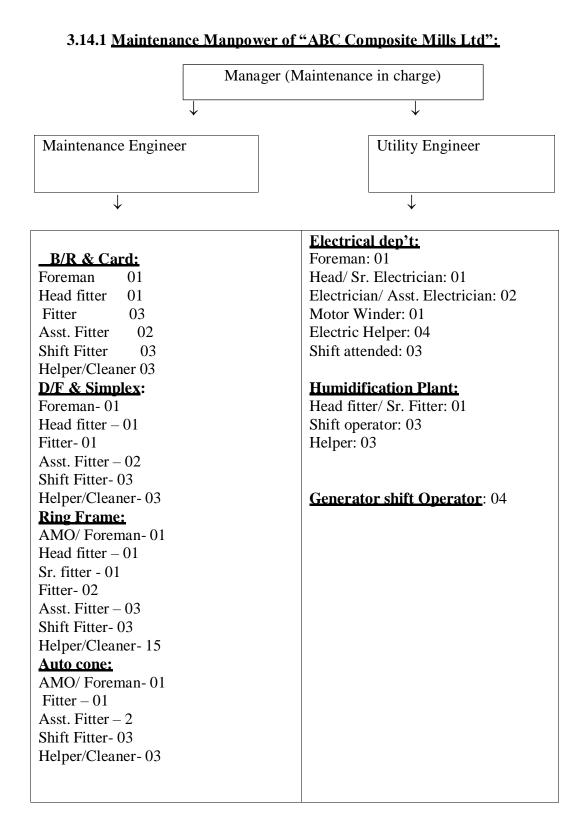
Sl No	Machines	Parts to be Lubricated	Nomenclature	Particulars of Lubricants	
				Viscosity in centistokes at 40 ⁰ c	Viscosity Index (VI)
01	Blow room & Combers	Gear box & PIV Units.	Heavy E.P.Oil	220±22	VI>90
02	Carding & Draw frame	Gear boxes	Light E.P.Oil	150±15	VI>90
03	Carding	Flat drive unit gear box	E.P. grease	(of the Oil base) 75 – 190	-
04	Draw frame & Combers	Top Roller end Bushes	Grease	(of the Oil base) 65 – 160	-
05	Speed Frame	Differential Gear box	Heavy Gear oil	100±10	VI>90
06	Blow room to Ring frames	Gear & Chains	Adhesive Oil	Minimum 110	VI>80
Sl No	Machines	Parts to be Lubricated	Nomenclature	Particular of Lubricants	1
07	Draw frame to Ring Frame	Bottom roller Bearings	Grease	(of the Oil base) 65 – 160	-
08	Ring frame	Spindle bolster	Light spindle oil	10±1.0	VI>85
09	Cone winder	Drum shaft bearing	E.P. grease	(of the Oil base) 75 – 190	-
10	Auto cone	Tension assembly, Splicing, tail end Cutter.	Dry Lubricant E.P. grease	(of the Oil base)	-
		All greasing point		75 – 190	

Table-15: Basic useable Lubricants of different Section in Spinning Mills. [Ref: source of Textile mills -6]

©daffodil international university



3.14. Maintenance Organization:


The systems and procedures of machine maintenance are described above, but a maintenance organization is essential for an effective maintenance program in a spinning mill. The organization chart shows the number of maintenance personnel required under various categories for mills of different sizes.

The maintenance in charge is fully responsible for all routine and preventive maintenance programs. The various maintenance staff in different departments such as M.O (Maintenance Officer), Engineer, Asst. engineer, Foreman, Head Fitter, Fitters, Asst. Fitters, and Cleaners etc. would be under his control. Visit of a Maintenance organization of 34,000 spindle modern spinning mill named "ABC Composite Mills Ltd. (Producing all carded cotton warp yarns.) Machineries of "ABC composite mills ltd." are as follows:

- Blow room & Card: Two line one is Crosrol chute feed with 07 no's Crosrol card and another one is Lap feed with 12 no's Chinese card.
- Draw frame: Breaker Reiter (02 sets of double delivery) and Finisher-Toyota Hara Dx8 (02 sets of double delivery.)
- Simplex: 07 no's (120 spindle each) of Jingwei, Chinese Make.
- Ring frame: 66 no's (516 spindle each) of Jingwei, Chinese make.
- Auto cone: 06 no's (60 drum each) of QPRO-Murata, Japan make.
- Humidification Plant: one is Chinese and another 04 no's Indian make Generator: 02 no's (900 KW each) of Waukesha, USA make.

©daffodil international university

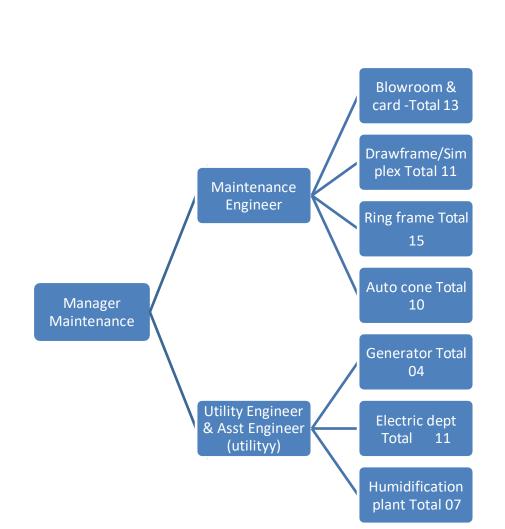


Fig: 3.4: Maintenance Manpower of ABC Composite Mills Limited:[ref.-6]

14.1.1 The ABC Composite mills ltd is following routine and preventive maintenance as per maintaining their monthly and yearly schedule.

To follow the proper maintenance schedule and done accordingly, the mentioned spinning mill is operating above ten years old machineries along with new machineries and obtaining satisfactory target production:

Following roles are served by maintenance department of ABC Composite Mills Limited in spinning machineries:

3.14.2 : <u>Roles of Maintenance Department of ABC Composite Mills</u> <u>Limited:</u>

- Objectives, based on the organizational objectives and preparation of standard maintenance procedures, maintenance schedules, lubrication charts etc.
- Preparation of maintenance charts for individual equipment and to train the maintenance personnel for their implementation.
- Coordination with the production department staff to ensure that a regular maintenance will be implemented without affecting important production schedules.

©daffodil international university

- Maintenance department carry out the scheduled preventive maintenance programs and ensure that plant is available for production for the maximum duration.
- Carry out the overhauling of the machinery at the scheduled time without fail.
- Calibration of various instruments installed at various points in the plants.
- Record keeping of maintenance activities.
- Keeping a watch on critical parts in inventory that could be required for any breakdown.
- ✤ To prepare maintenance budget in the start of each fiscal year.
- ◆ To adjust the different machines in the process according to the fiber processed.
- Preparation of policy statement for the maintenance department, which explains basic

3.14.3 Spinning Machinery Audit by Maintenance Personnel:

The job of "Machinery Audit" in different departments could be assigned to a group of a well experienced senior person in maintenance department. They are expected to give a searching look to the mechanical condition of the machinery. After machinery inspection, the Audit personnel are expected to submit a report to the Management on the various corrective actions to be taken in different departments with a view to improve the overall mechanical condition of the process machinery.

3.14.4 Advantages of the Machinery auditing system:

Introduction of "Machinery Auditing system" as a routine program with a frequency of once in a year results in the following advantages:

- ✓ Determination of the adequacy and the quality of regular maintenance carried out in the mills.
- ✓ Detection and correction of mechanical faults at the earliest opportunity.
- ✓ Identification of "rogue" machines both in terms of quality and production.
- ✓ Formulation of guidelines to determination the budgets on capital expenditure and programmed replacements.

3.14. <u>Tools for Machinery Audit:</u> In order to conduct the machinery audit in a systematic manner in a mill, the following tools are necessary:

- Maintenance records.
- Reports from QC departments.
- Production records.
- Preventive maintenance checklists.

©daffodil international university

3.14.6. <u>Required Tools and Gauges in Spinning Machinery Maintenance</u> work:

Department	Nature of Operation	Tools & Gauge required
Carding	 ✓ Cylinder & Doffer wire grinding. ✓ Setting between various points of card. 	 ✓ Travers wheel grinder. ✓ Leaf gauge.
	 ✓ Wire point sharpness inspection. ✓ Licker in setting. 	 ✓ Microscope of card wire inspection. ✓ Pendulum gauge.
Draw frame	 ✓ Setting of draft Roller. ✓ Top roller pressure setting. ✓ Top roller eccentricity. ✓ Shore hardness of top roller cot. 	 ✓ Flat solid gauge. ✓ Nanometer. ✓ Dial gauge. ✓ Shore hardness meter.
Department	Nature of Operation	Tools & Gauge required
Ring Frame Auto Cones	 Spindle centering. Cots shore hardness test. Top arm Pressure checking gauge. Lappet eye centering. Main draft zone setting. Lifting the spindle. Speed checking. Traveler clearer setting. Frame level checking. Frame level checking. Setting the package weight compensation, yarn guide drum, package cradle, bobbing peg alignment, mechanical Slub 	 ✓ Fiber disc gauge. ✓ Hardness tester. ✓ Dial Indicator for top arm pressure check. ✓ Plum bob. ✓ Slide gauge, Calipers. ✓ Spindle wrench. ✓ Tachometer. ✓ Traveler clearer setting gauge ✓ Spirit level. ✓ Special gauge and tools supplied by machine manufacturer.
Electrical Department	 catcher etc. ✓ Servicing of Motor. • PLC and others circuit repairing. 	 ✓ Micrometer (In and outside) ✓ Dial indicator. ✓ Volt-amp-ohm meter. ✓ Thermometer and level ammeter. • Heat gun.

 Table-16: Required Tools& gauges in Spinning Machines maintenance work. [ref:

source of textile mill-6]

©daffodil international university

3.14.7. <u>Following Tools & Instrument are used in Maintenance & Quality</u> <u>Testing</u>

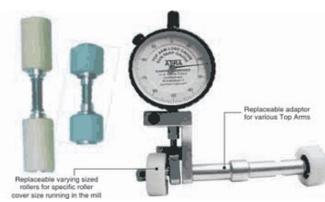


Fig: 3.5. Dial indicator for Top Arm pressure

Fig: 3.6. Top Roller cots shore hardness

tester. Measurement.

Fig: 3.7. Tachometer for speed/RPM measurement. Fig: 3.8. Spirit level for leveling check.

Fig: 3.9. Leaf gauge for Card setting.

Fig: 3.10. Volt-amp-ohm meter.

©daffodil international university

Besides of above it is necessary in each department the following common tools:

Fig: 3.11. Common useable tools of spinning

Machinery maintenance work.

Fig: 3.12.(Combination Tools (Spanners):

Tightening and loosening of nuts & bolts.

Adjustable spanner/wrench: Tightening and loosening of Nuts and bolts. Pliers: Tightening and Loosening of Nuts and bolts

Fig: 3.13. Adjustable Spanner/wrench.

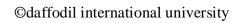
Fig: 3.14. Pliers.

File: For smoothing the surface of metal item.

Pipe wrench: Tightening and loosening of pipe joint.

Fig: 3.16. Pipe wrench.

Socket Ratchet: Tightening of Nuts and bolts.


Fig: 3.17. Socket Ratchet.

Bearing puller: To assist the opening of bearing from shaft.

Fig:3.18. Bearing Puller.

[ref: source of textile mill-6]

3.15 <u>Synchronization of quality Control activities with Maintenance</u> <u>activities:</u>

It is necessary to synchronies the activities of quality department with maintenance activities, so that the results of QC studies carried out on a particular machine are made available to the maintenance staff at the time when it is attended by them for various maintenance operations. This will enable the maintenance staff to take necessary corrective action on the machine in the light of the QC results available with them. The following general scheme is suggested to the mills which will enable them to get the necessary Co-ordination between QC and maintenance activities. It is noted that the following scheme does not cover all the activities of Quality control department but includes only those which need to be tied –up with maintenance activities:

Department	QC activities	Maintenance activities
 Blow room 	1. Waste extraction and	1. Before checking the basic
	cleaning efficiency.	settings.
	2. CV of one meter wrapping	2. Before periodic cleaning
	in case of lap feed line.	& alignment of condensers,
		cage, distribution etc.
 Carding 	1. Full lap waste study in lap	1. Before full setting of card.
	feed card.	
	2. Nep level in card sliver.	2. Before and after grinding.
 Draw frame 	1.Uster u% on all finisher deliveries	1. Before periodic cleaning.
	2. Sliver breakage rate.	2. Before cot buffing.
	3. CV of one meter	3. Before checking the
	wrapping.	suction pressure.
 Speed frame 	1. Roving evenness.	1. Before periodic cleaning
		and before checking the
		drafting system.
	2. End breaks.	2. Before setting.
	3. Eccentricity of fluted	3. Before Over hauling.
	rollers	
 Ring frame 	1. Yarn evenness with	1. Before drafting zone
	spectrogram.	checking and before & after
	2. End breaks.	over hauling.
	2. Ellu dieaks.	2. Before periodic cleaning with traveler change and
		before spindle gauge.
		berore spinare gauge.
	3. Hairiness.	3. Before and after spindle
		gauging and Ring change.
	4. Classmate faults & Count	4. Before Overhauling &
	variation.	resetting the machine.
	1	

Table-17: Synchronization of quality control activities with Maintenance activities:

©daffodil international university

3.16 Use of Computer for Maintenance of spinning machineries:

Now computers are being essentially used all over the world to control the various activities in business/industrial enterprises with the main activities of:

Cost Control and

Efficient time management.

Most of the modern spinning mills in Bangladesh are using computers for the activities connected with maintenance of machinery.

The major areas where computers can effectively use for machinery maintenance are as follows:

- To maintain record and schedule of:-
- ✓ Routine Maintenance and Lubrication of Machinery.
- ✓ Preventive Maintenance of machinery.
- ✓ Equipment History record.
- ✓ Machinery Audit.
- \checkmark Inventory control.
- ✓ Calibration of instruments and devices And
- ✓ Work instructions.
- ✓ Budgetary control etc.

3.17. <u>Cotton Quality Based Maintenance follows in ABC Composite Mills</u> <u>Limited</u>:

Maintenance plan of ABC Composite Mills Limited also includes setting and adjustment of the machine depending upon the fiber to be processed. A cotton fiber is a peculiar object and has not truly fixed length, width, thickness, shape and cross-section. Such variations exist because of the large number of varieties in cultivation which not only differ widely in several key properties but also grown under divergent agro-climatic conditions. Besides inter-seasonal variations, the same variety displays variation at different locations and even in the same season. This is due to the fact that, apart from the genetic constitution of variety, the quality of cotton is influenced by various factors such as soil, climate, moisture levels of soil and atmosphere during crop growth, nutrient supply, pests, disease infestation, picking time and method, post-harvest handling. Hence, it is a known fact that cotton fiber characteristics vary from bale to bale. In order to process the cotton fiber in a spinning mill, the machines need adjustments like roller settings, gauge and speed settings in draw frames, speed frames and cards from time to time in order to optimize the process with respect to fiber.

©daffodil international university

317.1 <u>Preventive/Routine Maintenance activity of ABC Composite Mills</u> <u>limited:</u>

Preventive maintenance plan of ABC Composite Mills Limited defines type of maintenance, maintenance interval and expected down time for maintenance in form of charts for each department and machine. Following are department wise activity of preventive/Routine maintenance of ABC Composite Mills Limited spinning mill extracted from an internship report.

3.17.2. <u>Routine Maintenance activity for Blow Room of ABC Composite</u> <u>mills Ltd:</u>

Blow Room maintenance is stopped after 8 hours a day shift for maintenance, Maintenance is done by opening the covers and doors; a high velocity compressed air is blown into the machines. Air is blown in the waste zones and delivery zones like

- In bale opener/ pluckier take up zone, fan zone, and ducts
- In mild opener inlet zone, outlet zone and grid bar sections.
- In mixing machine all cages for compartments, photocell regions, inlet zone, beater and grid bar zone, outlet zone.
- In fine cleaner feed zone, beating zone, spikes of beater, photocell regions.

For good preventive maintenance, proper planning is developed, optimized plan for Blow room of ABC Composite Mills Ltd is:

Maintenance activity	Maintenance frequency	Require Time
 Cleaning by Compressed Air 	Daily	Half hour.
 Schedule checking, repair and cleaning, lubricating 	15 days	5-6 hour

Table-18: Routine Maintenance activity for Blow Room.

©daffodil international university

3.17.3. <u>Routine Maintenance activity for Carding of ABC Composite</u> <u>Mills Ltd.</u>

After the blow room in sequence is carding operation, following maintenance plan is followed for maintenance of equipment in carding department.

Maintenance Activity	Maintenance Frequency	Remarks
General Cleaning by compressed air	Daily	1 hrs.
• Cleaning of Card (¹ / ₂ setting)	15 days	4-5 hrs.
• Doffer hand stripping	Daily	30 min
• Full cleaning with resetting	2 month	8 hrs.
• Flat hand stripping	As required	1 hrs.
• Taker in wire replacement	150 – 200 ton mtl processed	Done full cleaning
Back stationary flat replaces.	Do	During Taker in wire replace
• Doffer, Cylinder & Flat wire replacement	400 ton mtl processed	
• Doffer, Cylinder and Flat wire grinding	As per requirement.	Condition based
Front stationary Flat replace	400 ton	During cylinder wire replacement.
Coiler Overhauling	3 month	During full setting
Cleaning and bearing checking	3 month	Do

Table-19: Routine maintenance activity for Carding.

Fig:3.19. Cleaning work of Card

3.17.4 Routine Maintenance Activity of "ABC" Composite Mills Ltd.

The major areas of maintenance that are considered in draw frame machines are time to time oil change of the gear box, greasing activity of bearings at various drives in machine, setting points and calibrations. Following is maintenance plan for drawing in ABC Composite Mills Ltd:

Maintenance Activities	Frequency	Remarks
Cleaning by Compressed Air	8 hours	End of every shift
General cleaning & greasing	10 days	
Bottom Roller gauge checking	1 month	
Cot buffing & end bush greasing	1 month	
Top roller cot varnishing by thinner	Daily	As require
Maintenance Activities	Frequency	Remarks
All belt cleaning and tension checking	During cleaning	
All Stop motion checking	During cleaning	
Scanning Roller gauge checking	During general clg	
Bottom Roller bearing checking, greasing	2 month	
Gear box Oil change & Coiler cleaning	3 month	

Table-20: Routine maintenance activity for Drawing

Fig:3.20. Draw frame cleaning work

3.17.5. <u>Routine Maintenance activity for Simplex.</u>

Maintenance activity	Frequency	Remarks
General Cleaning, oiling & greasing: Bottom roller needle brg. grease, Top roller cleaning, Top bottom cone drum and belt setting, Greasing of Jack shaft, bobbin and spindle shaft, Flyer clg etc.	15 days	
Differential Gear box Oil Change	3 month	
.Top roller cot buffing & greasing	6 month	
Top & bottom apron change	1.5 year	
Top roller cot change	2 years	
Top bottom Apron washing	3 month	
Bottom roller setting & saddle gauge	6 month	
Over hauling	5 – 6 years	As require

Table- 21: Routine maintenance activity for Simplex

Fig: 3.21. General Cleaning of Simplex.

3.17.6. <u>Routine Maintenance Activity for Ring frame of ABC Composite</u> <u>Mills Ltd:</u>

Maintenance Activity	Frequency	Remarks
General cleaning, head stock greasing	15 days	
with Traveler change		
1st bottom roller needle bearing greasing	15 days	
2 nd & 3 rd bottom roller needle brg	1 month	
greasing		
Spindle & lappet, ring rail & height	1 month	
gauge checking		
Bottom apron centering	15 days	
Top & bottom apron washing	3 month	
Top roller cots buffing	3 month	
Top roller arbors greasing	6 month	
Main drive shaft bearing & jockey pulley	6 month	
greasing.		
Top bottom apron change	1.5 year	
Spindle oil topping	6 month	
Spindle oil replacement	6 month	
Head stock over hauling	6 month	
Ring change	2 years	
Spindle/bolster change	5-6 years	As require
Traveler clearer setting	3 month	
Over hauling	5-6 years	As require

Table- 22: Routine Maintenance activity for Ring frame.

Fig: 3.22. General Cleaning of Ring frame. Fig: 3.23. Ring frame over hauling & erection.

©daffodil international university

Fig: 3.24: Cot Buffing

Fig3.25: Cot mounting

Fig: 3.26. Fluted Roller Truing.

Fig: 3.27. Top Roller arbor greasing.

[Ref: Source of Different Textile Mills-6]

©daffodil international university

3.17.7 <u>Routine Maintenance for Auto cone Machine of ABC Composite</u> <u>Mills Ltd:</u>

Major Activity	Frequency	Remarks	
 Unit Cleaning by compressed Air 	Every 8 hrs	Each shift	
 General Cleaning, checking & greasing- oiling of Cradle spring, Tension unit, splice unit, suction arm, BobbinMagazine, Bobbin peg of each unit. 	1 month		
 Cradle bearing center, Air Damper greasing 	6 month		
 Cradle spring – Silicon Oiling 	1 month		
 Drum bearing greasing 	2 years	As require	
 Head stock blower box, Package conveyor, bobbin conveyor & over head cleaning, checking 	1 month		

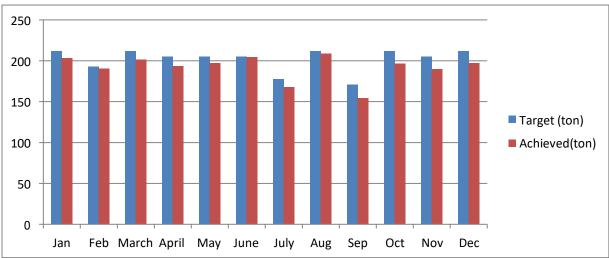
Table- 23: Routinue Maintenance work for Auto Cone.

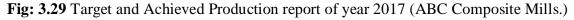
Fig: 3.28 Cleaning and maintenance work of Auto cone. [ref: source of textile mill-6]

While above charts show the type of maintenance and their frequency in general, below is the Schedule maintenance plan of ABC Composite Mills Limited developed for its spinning department for the month of November 2018. With strictly following the preventive & routine maintenance plan, Spinning Machineries efficiency of ABC Composite Mills limited are in satisfactory condition and to justify the matter shown below the yearly target and achieved production of mentioned spinning mill.

©daffodil international university

3.17.8. <u>Target and achieved production report of "ABC Composite Mills</u> <u>Ltd" – year 2017</u>:


Total No of Ring frame: 66 (each 516 spindles)


Total No of Spindle was in production: **34056 spindles.**

Count operated for the year 2017: 40s Ne & 50s Ne carded Cotton warp yarn

Month	Actual Count	Spindle allotted	Spindle RPM	TPI	Target production	Achieved production	Achievement Percent %
			(Avg)		(Ton)	(Ton)	
Jan 17	41.5	10320	15200	27.24	212.056	203.211	95.80%
	51.5	23736	Do	32.00			
Feb 17	Do	Do	Do	Do	192.778	190.510	98.82%
March17	Do	Do	Do	Do	212.056	201.787	95.15%
April17	Do	Do	Do	Do	205.252	193.368	94.20%
May 17	Do	Do	Do	Do	205.252	197.459	96.20%
June17	Do	Do	Do	Do	205.252	204.436	99.60%
July17	Do	Do	Do	Do	177.810	167.785	94.36%
•					'Eid holy 5		
Aug17	Do	Do	Do	Do	212.056	208.836	98.48%
Sep17	Do	Do	Do	Do	171.006	154.193	90.16%
•					'Eid Holy 5		
Oct17	Do	Do	Do	Do	212.056	196.754	92.78%
Nov17	Do	Do	Do	Do	205.252	189.809	92.48%
Dec17	Do	Do	Do	Do	212.056	196.991	92.90%
Avg	_	_	_	_	-	-	95.07%

[ref: source of textile mill-6]

©daffodil international university

3.17.9 Views on Maintenance Plan of ABC Composite Mills Ltd:

ABC Composite Mills have a well-defined maintenance plan and maintenance activities associated with each component of each machinery and it helped me a lot to boost my practical knowledge of maintenance programs that are adapted by industries rather than just keeping our knowledge to books.

3.17.10 Recommendation for Maintenance development of ABC Composite Mills Ltd:

After observation the attached maintenance plan of ABC Composite Mills Ltd, which was developed for month of November 2018, it can be presumed that they have manual way of planning and executing maintenance activities, by using Microsoft Excel, despite of availability of advanced maintenance dedicated software knows as Computer-Managed Maintenance System (CMMS). Without CMMS, maintenance manager faces lots of problems regarding the analysis of feedback received from the maintenance department, and too much computer work burdens the maintenance manager and he gets little time to provide attention to the equipment and to the ongoing maintenance work. Likewise without an adequate information base, the manager is likely to take a wrong or a non-optimum decision, which may cost more to the company.

The primary objective of the maintenance management is to achieve the optimum balance between the plant availability and maintenance resource utilization. The effective matching of labor and material resources for maintenance planning and control is essential for industry to increase labor productivity, machine availability and overall equipment efficiency.

3.18. The following Testing equipment's are used in the project work for testing Sliver, Roving & Yarn:

1. Uster HVI 1000:

- Machine name-USTER HVI SPECTRUM
- Company-Zellweger USTER
- Country Switzerland
- Software USTER HVI 1000

Figure: 3.30. USTER HVI SPECTRUM

Functions of HVI:

The **USTER® HVI 1000** measures the most important cotton fiber properties for cotton classing purposes (and high-throughput requirements for spinning mills.) These are length, uniformity, short fiber index, micron ire, maturity index, strength, elongation, color and trash, and moisture content.

Main Equipment: Length/Strength, Moisture Content, micron ire and Color/Trash Instruments.

3.18.1 USTER AFIS PRO:

Machine no	02
Machine Name	USTER ^(R) AFIS PRO
Brand Name	Zellweger
Origin	USA
Model	Pro

Figure 3.31: USTER(R) AFIS PRO

Function:

The function of this machine is to measure different information about cotton and sliver

Description:

The USTER(R) AFIS PRO comes with different modules e.g. NC module, L & M module and T module.

The NC module measures the following:

- Naps count per gram nep Count/gram
- Nap size [micron] nep size[µm]
- Seed coat nep count per gram nep Count/gram
- Seed coat nep Size [micron] SCN [µm]

The L & M module measures the following:

©daffodil international university

- Mean length by weight -L(w)
- Length variation by weight -L(w) CV%
- Upper Quartile length by weight UQL(w)
- Short fiber content by weight SFC(w)
- Mean length by number L(n)
- Length variation by number L(n) CV%
- 5%-Length by number L(n) 5%
- Short fiber content by number SFC(n)
- Fineness [militex] FINE [mtex]
- Maturity ratio MAT
- Immature fiber content [%] IFC [%]

The T module measures the following:

- Dust count per gram Dust Cnt/g
- Dust size [micron] Dust size[µm]
- $\bullet \quad Trash \ count \ per \ gram-Trash \ Cnt/g$
- Trash size [micron] Trash [µm]
- Visible Foreign matter [%] VFM [%]

3.18.2 USTER TESTER 5:

Machine no	03
Machine Name	USTER [®] TESTER 5
Company Name	USTER TECHNOLOGY AG
Origin	Switzerland
Model	S-400

Figure: 3.32.USTER® TESTER 5

©daffodil international university

Functions:

- Capacitive measurement of mass variations and imperfections in yarn, roving and
- Capacitive measurement of mass variations and imperfections in yarn, roving and sliver of staple fibers.
- Automatic check of all measured values, diagrams and spectrograms.
- Yarn classification based on the USTER
- 4. Lea strength tester:

Machine no	04
Machine Name	Yarn Strength Tester(Lea)
Brand Name	Zweigle
Origin	Germany
Model	L-427

Figure: 3.33 Yarn Strength Tester (Lea)

Function: This machine is mainly used for measuring yarn strength.

3183 Wrap reel:

Machine no			05	
Machine Name			Wrap reel	
Brand Name			Zweigle	
Origin			Germany	
Model	L-232			

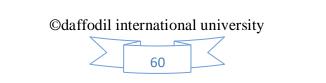
Function: The main function of this machine is to prepare a lee for yarn count test

Figure: 3.34.Wrap reel

3184 Wrap block:

Machine no	06
Machine Name	Wrap block
Brand Name	Zweigle
Origin	Germany
Model	L-202

Figure: 3.35. Wrap block


Function:

Use to measure the hank or count of preparatory process such as sliver, roving.

Ele. Wrap reel, Model MAG-Y0155, India

Figure: 3.36 ELe. Wrap reel XT

3.19: <u>Effect of changing top arm pressure of drafting zone of speed</u> <u>frame on yarn quality</u>

Keywords:

Roving, drafting zone, pressure arm, pressure disc, Speed Frame Toyota FL-200

INTRODUCTION:

The action of reducing the thickness or linear density of the feed material by drawing is known as drafting. 4 over 4 drafting zone is very much popular in drafting arrangement of Speed Frame, where the draft ranges from 5 to 20, But, generally draft is around 8. Drafting zone is usually comprised of bottom fluted rollers and rubber coated pressure rollers. The top rollers must be pressed with relatively high force against the lower rollers to ensure guidance of fibers. (Klein, 1987) Practically, all manufacturers weigh the top rollers by spring pressure, 'Reiter' is an exception who prefer pneumatic weighting, and Platt Saco Lowell, who offer magnetic weighting in addition to spring weighting. In every weighting system, particular amount of load is applied on each top roller of drafting zone. There are some pressure disc which are colored with different color, Such as green, red, and Black. Each color represents particular amount of load.

MATERIALS AND METHODS

Fiber used

The property of the raw cotton determines the processing parameters of the spinning machinery and the quality of final yarn. However for the current experiment, we used the Shankar - 6 Indian fibers.

The HVI results for the fiber are given below:

Experimental Method:

Name of Fiber	Origin of Fiber	Test result On HVI	Remarks
Cotton (Shankar-6)	India	SCI-161	
		Mst(%) = 7.0	
		Mat = 0.87	
		UHML = 31.85 mm	
		UI = 83.3%	
		SF = 8.1%	
		Strength = 35.7 g/tex	
		Elongation $= 4.5\%$	
		Rd = 79.2	
		+b = 8.6	
		Tr. Area = 0.57%	
		Tr. Cont. = 31	

©daffodil international university

Experimental Method:

During our experiment, we changed arm pressure and observed how the changes affect the quality of fibrous material.

Experimental setting of Pressure arm load:

Main specifications of Toyota FL – 200:

Number of spindles: maximum 144

Staff: 440 mm or 520 mm

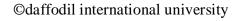
Lift: 406 mm, Full-bobbin diameter: 152 mm

Draft system: 4-line, D-type, double apron (www.toyota-industries.com)

The top arm pressure and roller setting influence the yarn properties at all three drafting stages almost in similar way. With the increase of top arm pressure and roller setting the yarn tenacity increases initially up to a point and then decreases. Yarn unevenness, imperfections and hairiness shows an initial decrease up to a point with the increase of the above two parameters. In general, the moderate level of top arm pressure and roller setting gives better results. The roller weightings generally applied to the top rollers by weight hung below the roller beam are about 20 lbs. for a double boss front roller, 14 lbs. for middle roller and 10 lbs. for back roller, the middle and back rollers may be saddle weighted (spring weighted) and in this case the applied weight is about 20 lbs. Heavier weightings are helpful to deal with the occasional thick ends and piecing in the creeled material to make even material. (textileapex.blogspot.com).

Three types of pressures arm are available in Toyota FL - 200; they are Black, Green and Red. By changing pressure disc the pressures can be increased or decreased. Each color of pressure disc represents particular pressures which are shown below:

Pressure on the Rollers:


Roller	Black	Green	Red
Front r/r	9 Kg	12 Kg	15 Kg
$2^{nd} r/r$	15 Kg	20 Kg	25 Kg
$3^{rd} r/r$	10 Kg	15 Kg	20 kg
Back r/r	10 Kg	15 Kg	20 Kg

We did the experiment with three types of process setting:

Combination 1: Pressure Setting \rightarrow B –B –B –B

Combination 2: Pressure Setting \rightarrow G – G – G – G

Combination 3: Pressure Setting $\rightarrow R - R - R - R$

Where

B = Black Pressure (Low Pressure)

G = Green Pressure (medium pressure)

R = Red Pressure (High Pressure)

Result of different setting:

B - B - B - B (low) pressure arm loads on drafting rollers (Combination 1).

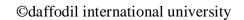

Title	Cvm (%)	Thick (+50% km)	Thin (-40% km)	Sh	Н	CSP
Front Row	16.02	345	370	1.64	6.65	1804.2
Back Row	16.38	397.5	467.5	1.73	6.75	1740.9

Table 24: Quality parameters of yarn obtained from front and back raw roving's by applying.

G - G - G - G (medium) pressure arm loads on drafting rollers (Combination 2).

Title	Cvm (%)	Thick (+50% km)	Thin (-40% km)	Sh	Н	CSP
Front Row	15.64	337.50	260.00	1.68	6.75	2314.6
Back Row	15.64	327.5	212.5	1.78	7.19	2116.8

Table 25: Quality parameters of yarn obtained from front and back raw roving's by applying

Title	Cvm (%)	Thick	Thin	Sh	Н	CSP
		(+50%	(-40%			
		km)	km)			
Front	15.69	322.5	205	1.66	6.77	1894.2
Row						
Back	16.69	365.5	315	1.67	6.88	1764.2
Row						

R - R - R - R (High) pressure arm loads on draft	ting rollers (Combination 3)
--	------------------------------

Effect of pressure arm loads on yarn quality:

Graphical representation of results for different loads:

Cited by:

See discussions, status, and author profiles for this publication at: https://www.researchgate.net/publication/277250099 Corbman P. Bernard, 1983. Textiles Fiber to Fabric: 18-19Klein W, 1987. Manual of textile technology, the technology of short-staple spinning 6 (3): 43-44Ayub Nabi Khan., Mohammad Rubaiyat Chowdhury, Principles of Short Staple spinning (2nd Edition): 183Abu Sayed. Importance and amount of Roller weighting advantages of spring Weighting, (textileapex.blogspot.com) Ishtiaque S.M., Optimization of Fiber Friction, Top Arm Pressure and Roller Setting at Various Drafting Stages. Textile Research Journal, 76(12): 913-921 www.toyota-industries.com, 14.01.15 www.rieter.com, 14.01.15

©daffodil international university

Chapter-4: DISCUSSION OF RESULTS.

<u>Co- Ordination of 'Quality Control' with Maintenance department in</u> <u>Spinning Machineries.</u>

The main objectives of a Systematic program of routine and preventive maintenance are to ensure a high quality of the products, free of defects and faults to achieve good working conditions

4. Case Study for improving quality by maintenance:

4.1 <u>Case Study (i): Improvement of Sliver and yarn quality by setting card</u> <u>parameters</u>.

The specification of the cotton which was used in the study is as follows:

Effective length (EL): 31 mm (MCU 5 – Indian cotton)

Bundle Strength (gm/tex): 29

Micron are: 4.2

Trash Content: 2.5%

Produced Sliver count (Finisher D/F): 0.13 (Ne)

Produced yarn Count: 30^sKW (Ne)

In this experiment, trial taken at carding by changing setting of Card delivery speed, and cylinder to flat gauge, respectively on Crosrol MK6.

Machine Parameters	Setting 1 (Existing)	Setting 2 (Trial setting)
Feed Roll Speed	9 rpm	9 rpm
Taker in speed	1000 rpm	1000 rpm
Cylinder speed	460 rpm	460 rpm
Flat Speed	254 mm/min	254 mm/min
Doffer speed	46 rpm	46 rpm
Draft	95	95
Delivery Speed	130 m/min	120 m/min

Table26: Card setting by increasing delivery speed.

©daffodil international university

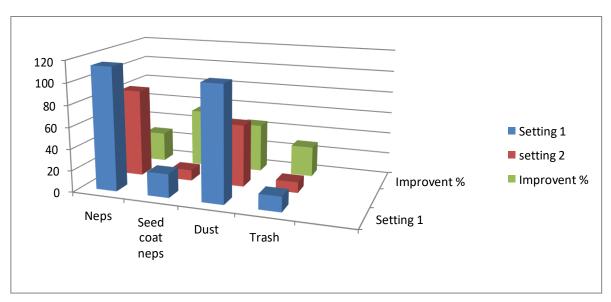
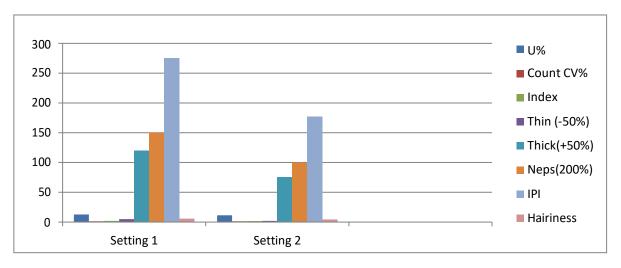

Machine Parameters	Setting 1 (Existing)	Setting 2 (Trial setting)
Feed plate to feed Roller	0.15 mm	0.15 mm
Feed roller to Taker in	0.75 mm	0.75 mm
Taker in to mote knife	0.35 mm	0.35 mm
Taker in to under casing	1.00 mm	1.00 mm
Cylinder to taker in	0.2 mm	0.2 mm
Cylinder to bottom back plate	1.00 mm	1.00 mm
Cylinder to Flats	0.35/0.25/0.25 mm	0.25/0.2/0.2 mm
Cylinder to under casing	1.00 mm	1.00 mm
Cylinder to front top plate	1.00 mm	1.00 mm
Cylinder to doffer	0.15 mm	0.15 mm

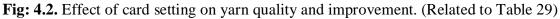
Table 27: Card setting by changing cylinder to flat gauge.

Sliver Quality Improvement by card setting change:

Effect	of sliver quality \rightarrow	Naps (ct/gm)	Seed coat	Dust (ct/gm)	Trash (ct/gm)
			Naps (ct/gm)		
3	Setting 1	114	22	106	14
4	Setting 2	82	10	58	10
5	% Improvement	28	54.5	45.2	28.42

Table28: Effect of card setting on sliver quality and improvement.


©daffodil international university



Yarn quality improvement by card setting change:

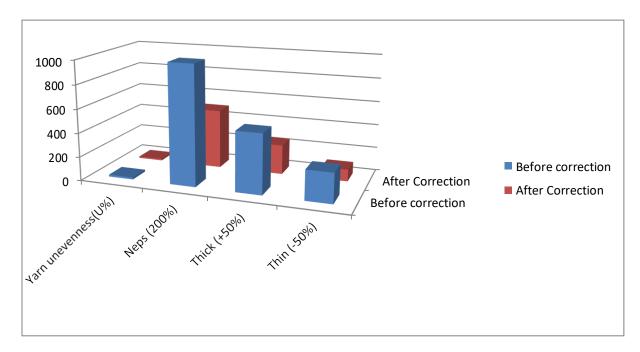
Yarn	properties→	U%	Count CV%	Index	Thin (- 50%)	Thick (+50%)	Neps (200%)	Total IPI	Hairiness
3	Setting 1	12.6	1.4	1.86	5	120	150	275	5.8
4	Setting 2	11.26	1.3	1.59	2	75	100	177	4.5
5	%Improvement	10.8	5.7	27.5				35.6	22.4

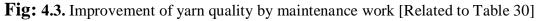
Table29: Effect of card setting on yarn quality and improvement.

4.1.2 A Chinese (Jingwei) Ring frame fitted with a top arm drafting system was found to produce 40^{s} count (Ne) carded cotton yarn with a following high level of unevenness and imperfections. Inspection the condition of the Ring frame revealed that –

- i) The top arm pressure is insufficient than requirement.
- ii) There is a gap more than required between spacer and nose bar.
- iii) The distance between roller nip and the apron nip varies between in different arms.
- iv) Incorrect positioning of the nose bar in different roller stands of the Ring frame.

After rectification of these defects by doing proper maintenance, the yarn samples were again tested and the yarn quality was found to improve significantly.


©daffodil international university



Particulars	Before correction	After correction
Yarn evenness (U%)	16	13.80
Imperfections:		
✓ Neps (200%)	1000	500
✓ Thick (+50%)	500	250
✓ Thin (-50%)	250	100

The yarn quality before and after corrective measures is given in below

Table 30: Improvement of yarn quality by maintenance work.

©daffodil international university

4.2 LAB REPORT:

Testing Report of Carding, Drawing, Simplex & Ring Frame taken from

JABA TEXTILE MILLS LIMITED. Brahmondi- Narsingdi.

The Specification of Raw Cotton which was used in the study is as follows:

S-6 (Sankar-6) Indian Cotton.

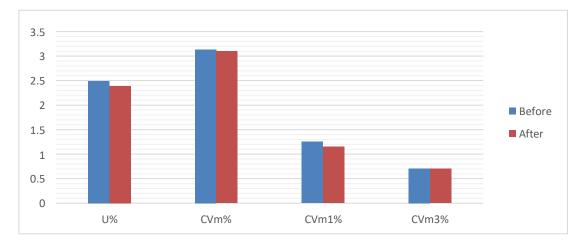
Micron are=4.2(AVG)

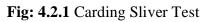
Effective Length (EL) =29.58(M.M)

Bundle Strength (BS) = 31.5 (g/Tex)

Carding

Carding is the heart of spinning. There is Proverb' good carding good yarn'.


In This experiment, trial taken at carding before and after maintenance. Ritter-C-60


M/C Model=C-60, Made in Switzerland

```
C/D=1
```

Effect of Sliver quality	Before	After	Remarks
U%	2.49	2.39	
CVm%	3.13	3.10	
CV 1m%	1.25	1.15	HK=0.925
CV 3m%	0.71	0.70	

 Table: 31. Carding Sliver Test

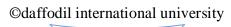


Figure shown the improvement of card setting

Setting:

Feed Roller to Li-in=40 Thou

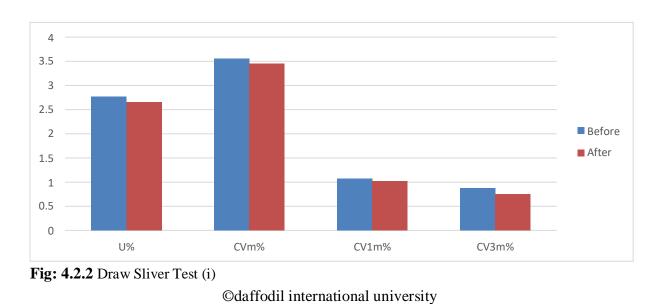
Li-in to Cylinder=10Thou Flat to cylinder

Front=10 [8] improve, Middle=11[8] improve, Back=12[9] improve

Cylinder to Doffer =10 Thou

Breaker Drawing

In This experiment, trial taken at Breaker Drawing before and after maintenance.


Ritter-B/D-20

M/C Model=B/D-20, Made in Switzerland

B/D=1

Effect of Sliver quality	Before	After	Remarks
U%	2.77	2.65	
CVm%	3.55	3.45	
CV 1m%	1.07	1.02	HK=0.104
CVm 3m%	0. 87	0.75	

Table: 32 Draw Sliver Test (i)

Finisher Drawing

In This experiment, trial taken at Finisher Drawing before and after maintenance Ritter -20

M/C Model=F/D-22, Made in Switzerland

F/D=1

Effect of Sliver quality	Before	After	Remarks
U%	2.64	2.60	
CVm%	3.30	3.24	
CV 1m%	0.54	0.50	HK=0.104
CV 3m%	0.36	0.32	

 Table: 33 Draw Sliver Test (ii)

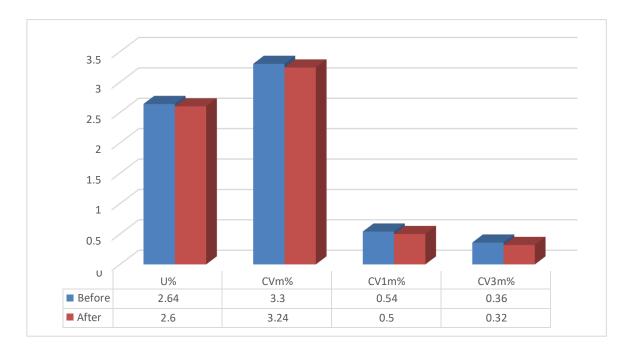
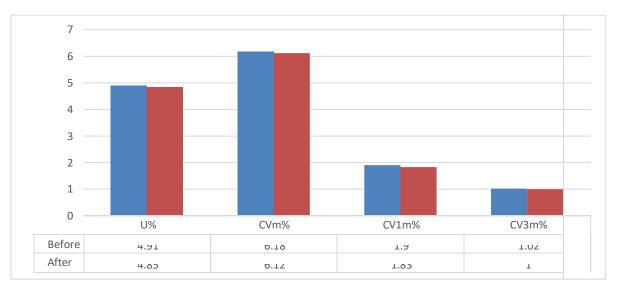


Fig: 4.2.3 Draw Sliver Test (ii)

Drafting System ³/₄ Setting Front zone -38m.m Back zone- 42m.m

©daffodil international university


<u>Simplex</u>

(i) Check gauging points & pressure (ii)Clean cot rollers by Corium-Z-97Multipurpose cleaner or Speedol-s-97 Cleaning solution industrial chemical Multipurpose Cleaner .

In This experiment, trial taken at Simplex before and after maintenance, MARZOLI -FT-6

M/C Model= FT-6, Made in Italia.		S/F-01	Process: 05% Mélange
Effect of Sliver quality	Before	After	Remarks
U%	4.91	4.85	
CVm%	6.18	6.12	
CV 1m%	1.90	1.83	HK=0.74
CV 3m%	1.02	1.00	

Table: 34 Roving Testing

Fig: 4.2.4 Roving Testing

Drafting System 4/4, SKF PK 5035-125947(4Cylinder)

Setting

Front zone- 40m .m

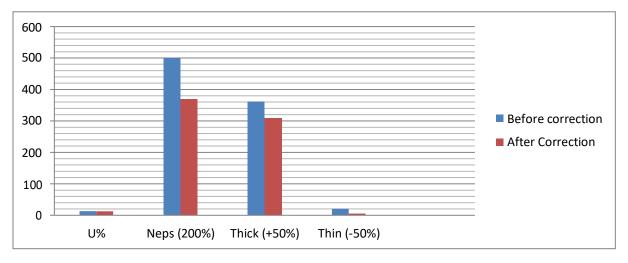
Middle zone-48m.m

Back zone-70m.m

©daffodil international university

4.2.1 : Trial Experiment of Ring Frame before and after Correction/Maintenance.

Ring Frame


Grey mélange or mélange yarn is a blend of different colored fibers to develop various shades in the yarn.

M/C Model= Laxmi, LR 60/A. Made in India

Count -26/1 GM.

Particulars	Before	After	Remarks
U%	12.89	12.38	
Neps (200%)	499.5	368.8	
Thick (+50%)	361.3	309.5	
Thin (-50%)	20.8	5.5	

Table: 35 Ring Frame Yarn Testing

Fig: 4.2.5 Ring Frame Yarn Testing

Improve Setting for Mélange & Fancy yarn

Drafting system 3/3, P 3/1

Setting

Front zone - 42.5m.m

Back zone- 65m.m

Spindle to Spindle Gauge -70m.m

Spindle head to lapped hook (Olon gauge)-45-50m.m

Ring Traveler clearer gauge -2m.m

©daffodil international university

Inject: Inject yarn is a specialized fancy yarn and it is made up of two different materials & used two Roving separately in the drafting zone. The effect done by back roller speed variations in the certain length.

M/C Model= Laxmi, LR 60/A. Made in India

Count -28/1 Inject

Particulars	Before	After	Remarks
U%	15.74	14.18	
Neps (200%)	807.3	472.5	
Thick (+50%)	1078	703	
Thin (-50%)	224.8	36	

Table: 36 Ring Frame Yarn Testing(inject)

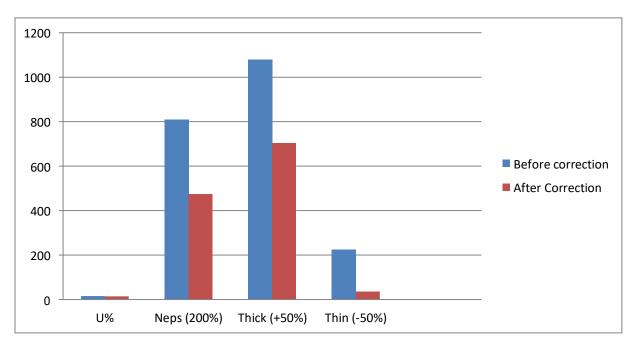
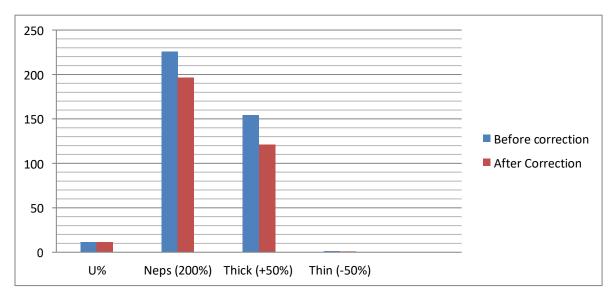


Fig: 4.2.6 Ring Frame Yarn Testing [Figure Related Appendix no 07]

©daffodil international university



Cotton: The most common plant fiber is cotton, which is typically spun into fine yarn for mechanical weaving or knitting into cloth.

M/C Model= Laxmi, LR 60/A. Made in India Count -30/1 100% Cotton

Particulars	Before	After	Remarks
U%	11.26	11.16	
Neps (200%)	225.8	196.3	
Thick (+50%)	154.3	121	
Thin (-50%)	1.3	1.0	

 Table: 37
 Ring Frame Yarn Testing(Cotton)

Fig: 4.2.7 Ring Frame Yarn Testing

For cotton spinning lace gauge used then fancy yarn

Setting

Backzone-57m.m

Frontzone-42m.m

Spindle to Spindle Gauge -70m.m

Spindle head to lapped hook (Olon gauge)-45-50m.m

Ring Traveler clearer gauge -2m.m

©daffodil international university

Neps yarn: Neps commonly produce by faulty carding up-to spinning yarn. The yarn is a long lengthen interlock fiber. The fabric surface has pique or floating –white particles.

M/C Model= Laxmi, LR 60/A. Made in India

```
Count -26/1 Neps
```

Particulars	Before	After	Remarks
U%	18.61	21.15	
Neps (200%)	5238	6328	
Thick (+50%)	2968	3440	
Thin (-50%)	200	947.5	

Table: 38Ring Frame Neps Yarn Testing

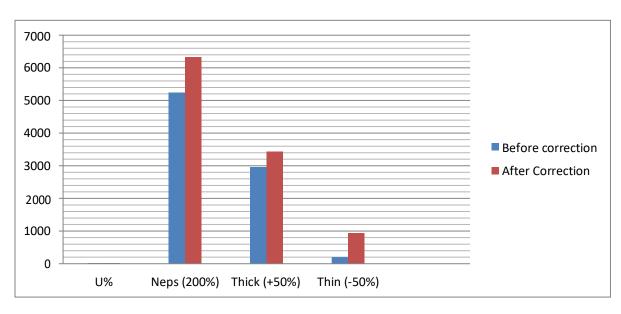


Fig: 4.2.8 Ring Frame Yarn Testing [Figure Related Appendix no 17]

©daffodil international university

Slub: Slub yarn define is a yarn with thick and thin sections alternating regularly of irregularly, this effect done by back roller speed variation.

M/C Model= Laxmi, 1	LR 60/A. Made in In	dia	Count 24/1 Slub Yar			
Particulars	Before	After	Remarks			
U%	19.71	18.83				
Neps (200%)	720	1020				
Thick (+50%)	1460	1440				
Thin (-50%)	120	240				

M/C Model-Lavmi LR 60/A Made in India

 Table: 39 Ring Frame Slub Yarn

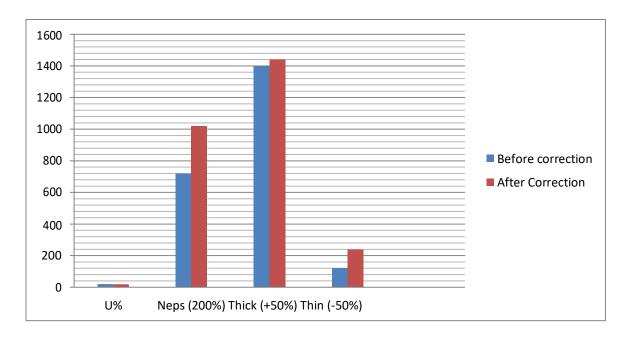


Fig: 4.2.9 Ring Frame Slub Yarn [Figure Related Appendix no 21-22]

©daffodil international university

CSP	GM Mélange	Inject	Cotton	Neps	Slub Yarn
CSP Before	2206	2220	2481	2780	2248
CSP After	2283	2686	2523	3503	2290

Ring Frame (Yarn CSP)

 Table: 40 Ring Frame (Yarn CSP)

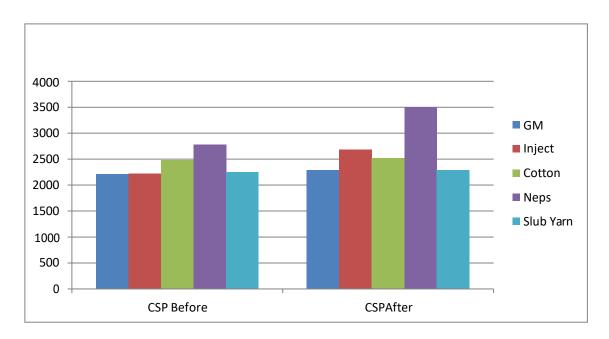


Fig: 4.2.10 CSP of yarn After Maintenance of Ring frame.

Figure shown the increase of CSP due to the following maintenance work:

- 1) Checked Eccentricity of fluted roller.
- 2) Checked Spindle centering
- 3) Lappet eye centering.
- 4) Traveler clearer setting.

©daffodil international university

Chapter-5: CONCLUSIONS.

The works reported in this thesis is a detail study on spinning machineries and it's implementing procedure on spinning machineries. In our country most effective use of maintenance system are Preventive and routine maintenance applied on spinning machinery but if we start to introduce present modern maintenance technique like TPM (Total productive Maintenance) then maintenance of spinning machinery will be improved more.

Total productive maintenance (TPM) successfully gives the improvement in the availability, performance efficiency and the quality rate, results in improvement of the overall equipment effectiveness of the equipment. TPM is the effective tool to increase the productivity of spinning industries. We can compete with the other countries in this increased globalization. Beside this I have also tried to mention in my thesis some other modern system of maintenance like SMP. So now-a -days for better output with competitive market we need to follow modern technique of maintenance on spinning machineries.

Recommendation for Future Work

- improved maintenance planning
- Clear maintenance reports and ease of access to historical information for maintenance audit
- Reduced management overhead
- Fewer breakdowns
- Less stock-outs

Adapting the following recommendation can increase machine availability and over all equipment effectiveness.

©daffodil international university

References:

- [1] Maintenance Management in Spinning.....By T.V. Ratnam, K.P.Chellamani.
- [2] https:/textilelearner.blogspot.com, /www.ijettjournal.
- [3] Maintenance strategy of spinning mill.pdf.indian textile journal.com
- [4] https:/www.textileschool.com
- [5] https:/textilelearner.blogspot.com

[6] Source of Textile mills

[7] http:/textiletoday.com.bd

[8] Application of Total Productive Maintenance in the spinning mill by R.Senthil Kumar, Senior Lecturer, dept, of .Tex.tech, Kumaraguru College of Technology, India.

[9] International journal of Engineering Trends and Technology (IJETT)-volume4

[10] International Journal of Engineering Trends and Technology (IJETT) volume5,htt://www.ijettjournal.

[11] International journal of Application or innovation in Engineering & Management
 Web Site: <u>www.ijaiem.org</u> Email: <u>editor@ijaiem.org</u>, editorijaiem@gmail.comVolume 2,
 Issue 10, October 2013

[12] Engineering Maintenance A Modern Approach, by B.S Dhillon, Ph.D.

[13] NASA.2000, Reliability Centered Maintenance Guide for Facilities and Collateral Equipment.

[14] Journal of Quality in Maintenance. Engineering Vol. 13 No 4, 2007 pp. 338-352www.emeraldinsight.com/1355-2511.htm

[15] Essential Facts of Practical Cotton Spinning by T.K. Pattabhiram T.P Aruna.

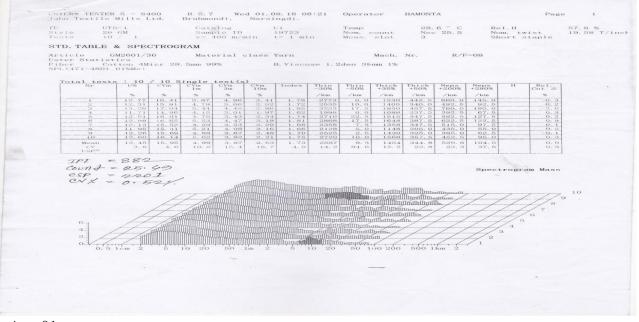
[16] Essential Calculation of Practical Cotton Spinning by T.K. Pattabhiram T.P Aruna.

©daffodil international university

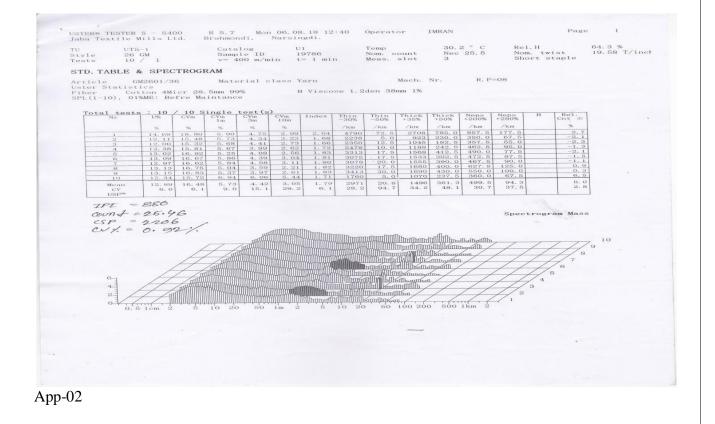
[17] Manual of Cotton Spinning Volume II Part II Author G. Shrigley, F.T.I

[18] Michael Knowles, David Baglee, Pakaj Sharma Application Open Source Hardware to the Development of Autonomous Maintenance Support System 333-347. [Cross Ref]

[19] See discussions, status, and author profiles for this publication at: https://www.researchgate.net/publication/277250099

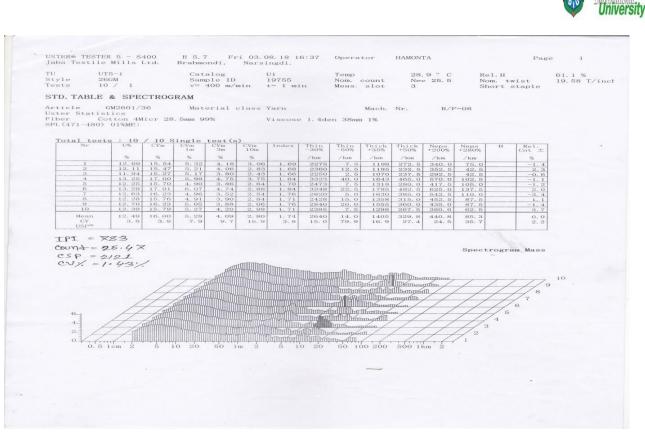

Corbman P. Bernard, 1983. Textiles Fiber to Fabric: 18-19Klein W, 1987. Manual of textile technology, the technology of short-staple spinning, 6(3): 43-44Ayub Nabi Khan., Mohammad Rubaiyat Chowdhury, Principles of Short Staple Spinning (2nd Edition): 183Abu Sayed. Importance and amount of Roller weighting advantages of spring Weighting, (textileapex.blogspot.com) Ishtiaque S.M., Optimization of Fiber Friction, Top Arm Pressure and Roller Setting at Various Drafting Stages. Textile Research Journal, 76(12): 913-921 www.toyota-industries.com, 14.01.15 www.rieter.com, 14.01.15

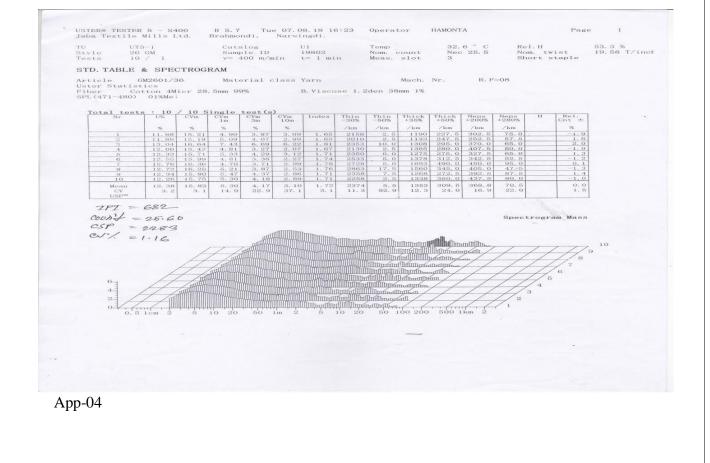
©daffodil international university



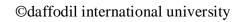

Appendix-I

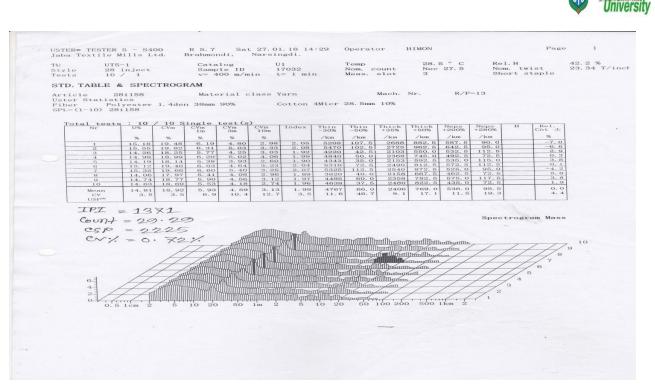
Uster test & Spectrogram different kinds of yarn from Joba textile Mills Ltd.



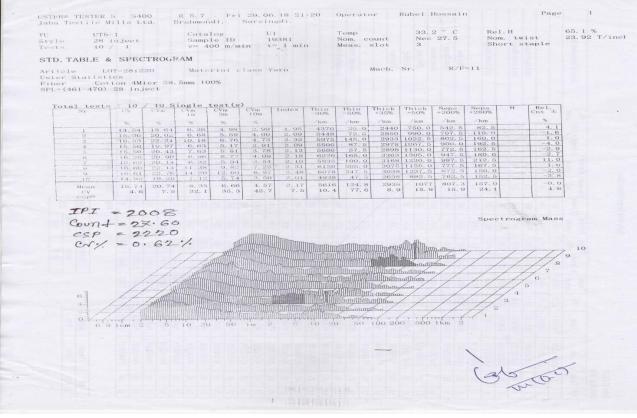


App-03

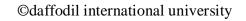

©daffodil international university

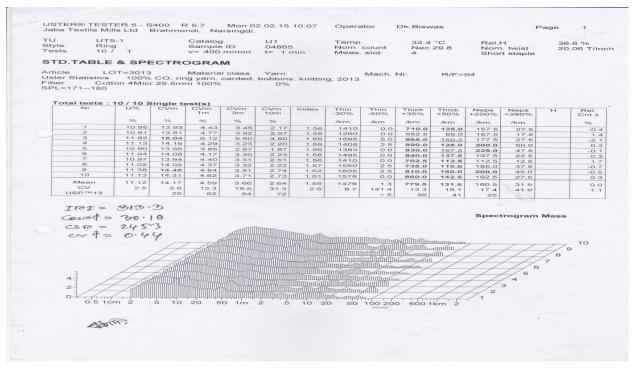

	U UI tyle 28 ests 10	Inject 1			log le ID 00 m∕r	nin	$U1 \\ 18105 \\ t = 1 m$	En					R N S	el.H om.t hort	wist staple	55.6 % 23.92 T
A U F	TD. TABLE rticle stor Statis iber Co PL= (301-310	28il97 Lics tton 4Mic	T 28.	Mate		lass	Yarn			Mach.			P ² =11			
	Total test	s : 10 /	10 Si	CVm	CVm	CVm	Index	Thin	Thin	Thick	Thick	Neps	Neps +280%	н	Rel.	
			95	1 m 26	3m %	1 Om		-30%	-50%	+35%	+50%	+200%	+280%		Cnt ±	
	1	13.54 1	7. 312		4, 11	2.86	1.81	3555	10.0	1885	482.5	320.0	42.5		0.7	
	3	1 10 10 1	9 :05	5,40	4. 03		1,83	3813	20 0 65.0	2130	602.5	457.8	72.5 77.5 87.5		-0, 9	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.16	B. B1	4.22			4900	60.0		907.5		87.5		-0, 3	
	6	13, 72 1	7.56	5.70	4. 51	3,00	2,01	3643		2715	567.5	850.0 380.0	85.0		-1.6	
	7	14.09 1 14.06 1	8.03	5.85	4.38	2, 59	1.88	4290	32.5	2138	587.5	457.5	57.5		-1.5	
	9	13.92 1	7.82	5.07	3.68	3. 29	1,86	4155		2143	605,0	390.0	67.5 55.0		0, 1	
	Merro	13.74 1		5. 34	4, 16	2, 90	1.85	3958	37.5	2118	610.0		80.0		0.7	
	CV USP ^m		4. 2	4.8	4.12 6.5	2.70	1.90	4312 18.1	36. 0 49. 5	2300 14. 9	703.0	472.5 21.4			0.0	
	TPT .	- 121	1													
	Count	= カヌ.	5-2	2									Spect	rogri	am Mass	
	TPI Count Count Cory.	= 0.9	1	and the second					lilliiiiiiiiii filliiiiiiiiiiiiiii hmintii liii		Illuthillung huthangen Itilingen	storm /		1/1/10	//8 7 6	10
	8 4 2 /								Illiannana Illiannana Inaana		/	//	123			

App-05

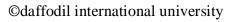

USTER® TESTER	. 12	100													
Jaba Textile	Mills	Ltd.	Brahme	ndi.	Nars	03.18 1 ingdi.	5:04	Opera	tor	SAHA	AL.AM			Page	Θ 1
TU UT Style 28	Inject			alog ple TD		U1 18104		Temp Nom.	count		8° C			vist	55.5 % 23.92 T/inct
Tests 10	/ 1		v=	400 m/r	nin	t = 1 m	in	Meas.		з				staple	23. 02 1/ Inci
STD. TABLE	& SPE	CTROG	RAM												
Article 2	8i196			erial d						-					
Uster Statist	ics				lass	Yarn			Mach.	Nr.	R. 1	7=11			
Fiber Con SPL=(391-400)	tton 4M	ticr 28	5mm 10	00%											
	20 III	TOCL													
Total tests	: 10	2 10 S	ingla	1001 (0	,										
Total tests	U%	GVm	CVm	CVm	CVm 1 Om	Index	Thin -30%	Thin -50%	Thick +35%	Thick +50%	Neps +200%	Neps +280%	H	Rel. Cnt ±	
	%	96	95	%	96		/km	/km	/km	-+150%	+200%	+280%		Crit ±	
1	15.26	19.56	5.42	3.86	2.36	2.04	5760	135.0	2873	1020	660, 0	95. 0		-3.3	
8	14.94	19.14 19.62	5.03	3,68	2,46	2.00	6385 5388	82.5	2790 2878	965	557, 5 630, 0	70.0		-0.8	
 4	14, 99	19.23	5.27	3.94	2, 31	2.01	5438	90.0	2870	978	602.5	105.0		-2, 2 -1, 4	
5 6		18.85	5.74	4.43	3.13	1.97	5033 4075	65.0	2625	878 625	455.0	90.0		1.8	
7 8		17.19 19.37	5.21	3.97	2.59	1.80	3493 4993	25.0	1890 2625	453	342.5	30.0		5.0	
9	14.18	18.19	5.98	4.27	2.37	1.90	4190	22.5	2235	715	662.5 475.0	117.5 85.0		-3, 4	
10 Mean	14.26	18.37	6.05	4.62	2.47	1.92	4418	47.5	2215	670 817	502, 5 532, 0	65. 0 83. 0	-	-0.4	
CV USP ^{IN}	4.2	4.3	9.6	12.3	15.8	4.3	15, 3	56, 1	14.3	23.5	20, 3	30, 0		0.0	
			4											L]	
TPT-	12	61	5												
10 2 -												Spect	roars	m Mass	
count	=27	. 44										opeer	- Chern	manaa	
CSP -	000	205		In	aillinnih	IIII									
C.1.1				attill	ann an star		mmmm	internal line	homond	1111111111111					
IPI = count csp = c.i	0.5	9%	/ /.	æilluu (TTT AT		liiiiiiiiiiiiiiina liiiiiiiiiiiiiiiiina	dittillion_	/	1-1	11.	10
		17	- ANT	mmuli	îr Hannada da Baranda d		ππ.III	Minma	hill mhn	hudlhuan	in	/ /	/	1/8 9	
	/	1/		m	****			humanu	millim	month	/ /	/ /	/ /	17	
	-	1		mu mu				hand	Illyman	mm /	/	/_/_		6	
6.3	11	1 and the					TITTE TO T	IN TRACE	manifilitikar	m//	- /	/ /	5		
4 /	//	at the second		Trans.	muni		reformed HIM	Thurnan	TITLE T	/	/ /	1/3	4		
2 //	-/m				103411111	millim	CHIMININ IN THE	frant Burley	m / /	/ /	/ /	1/2			
o Vilin	< . Juili	արդարդորդ	mmmunut	undulutut	minimu	ihitumilit	1111)HILprin,	- and the second	4.1.	1 /	4.6	1			
0, 5 1	cm 2	15 1.6	20	50 10	n 52	\$ 10	5 30	50 10	0 200	500 1k	.m 2				
														-	

App-06

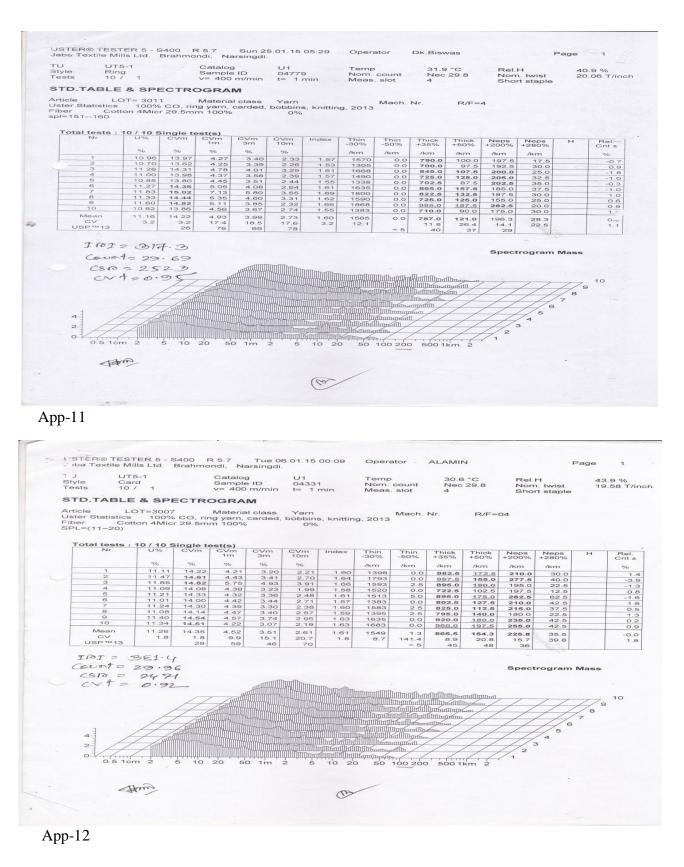


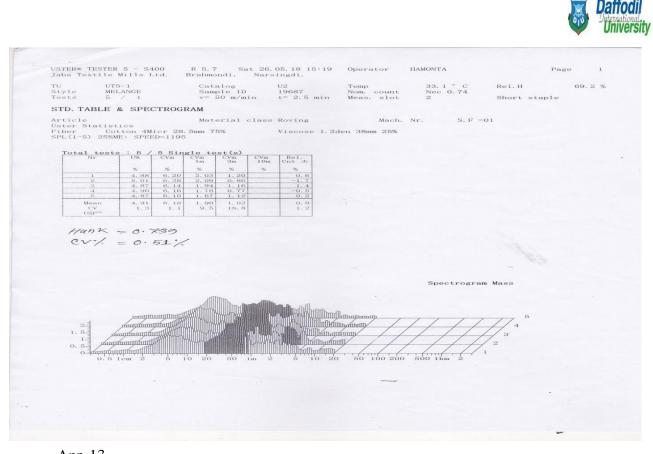

App-07

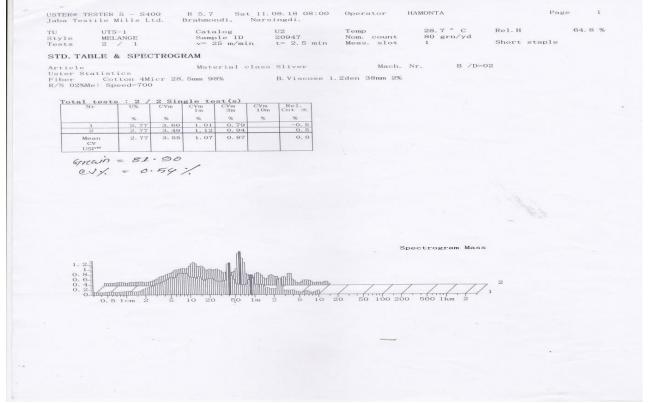
App-08



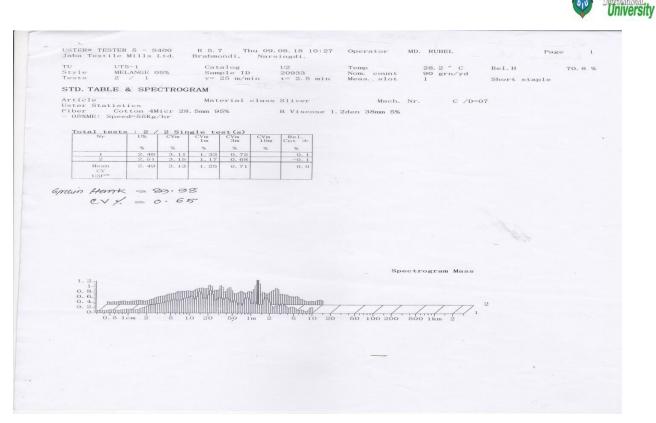
App-09

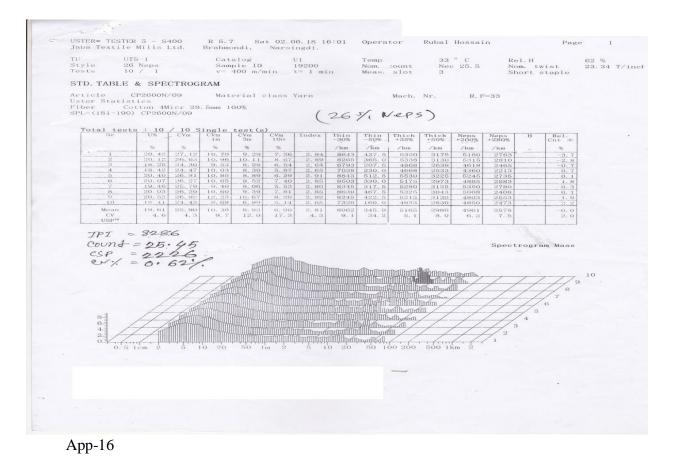

	aba Textile Mil	Is Ltd. E	Brahmor	ndi, Na	rsingdi.		0:32		ator	Dk.Bisv	as.		F	age	1
S	U UT5 tyle Card ests 10 /	i-1 = 1		Sample	ID	04839		Nom	count slot	Diac	20.0	Rel. Nom Shor	H twist tstaple		5 % 06 T/ir
A	TD.TABLE	DT=3013		Material	class	Yarn			Mach.	Nr.	R/F-0	04		•	
F	Ister Statistics Iber Cott PL=161-170	on 4Micr	28.5m	g yarn, 6 n 100%	carded,	bobbins	s, knitting	9, 2013							
	Total tests :	10/10 5	ingle te	mt(m)											
	Nr	U%	CVm	CVm 1m	CVm 3m	CVm 10m	Index	Thin -30%	Thin -50%	Thick +35%	Thick +50%	Neps +200%	Neps +280%	н	Rel. Cnt ±
	A Statistics of the state	%	%	%	%	9%		/km	/km	/km	/km	/km	7km		9%
	1	12.03	16.29	4.38	3.30	2.63	1.71	2395	5.0	1073	Gord	225.0	25.0		-0.6
	2	11.46	14.64	4.73	3.64	2.32	1.64	1678	0.0	865	140.0	130.0	5.0		1.1
	4	11.30	14.31	4.25	3.32	2.38	1.57	1540	2.5	688	110.0	162.5	35.0	-	-0.5
	5	11.00	13.99	4.62	3.72	2.85	1.57	1493		720	110.0	147.5	25.0	the last street	0.6
	6	11.11	14.26	4.3.4	3.15	2.29	1,60	1598	7.5	785	130.0	162.5	20.0		-0.3
	7 8	11.06	14.11	4.55	3.79	2.74	1.58	1353	0.0	703	160.0	150.0	30.0		5.2
	9	10.90	13.86	4.24	3.10	1.88	1.55	1465	2.5	678	100.0	125.0	20.0		-0.3
	10	11.69	14.84	4.79	3.54	2.44	1.66	2013	0.0	548 873	132.5	195.0	32.5		-0.7
	Mean	11.28	14.36	4.47	3.42	2.38	1.61	1684			135.8	161.0			
	CV	3.2	3.1	4.3	7.4	11.9	3.1	18.1	129.1	14.9	135.8	161.0			0.0
	USPTM13		30		42	52					42				
	TRTO	2000	~							41		20			
	IRT= Count= CSR = CNT=	29.259	80,4									Spec		Mass	10
	Count = CSR = CNT =	298 - 29. 255 0.4	80,4	20 6	o Im							Spec		Mass	. 10

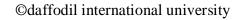


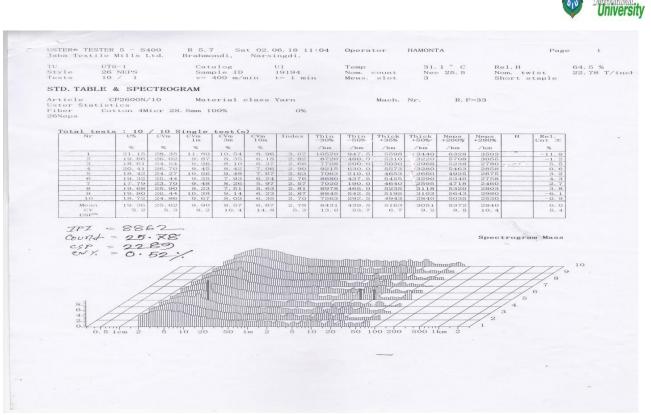


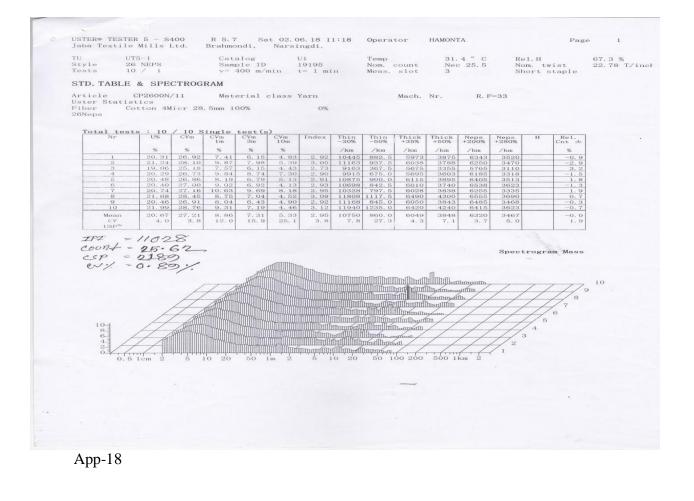
©daffodil international university

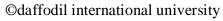

App-13

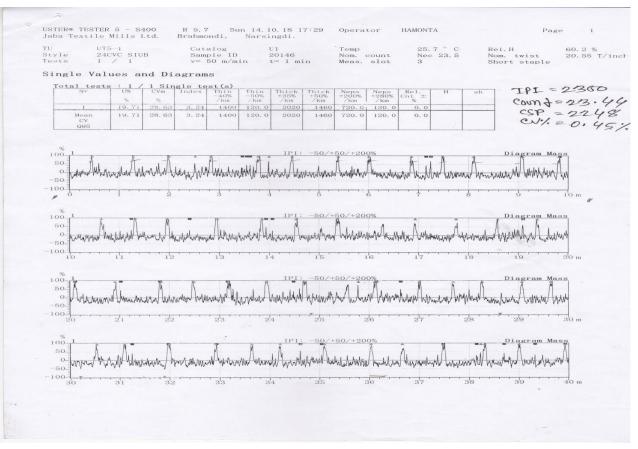


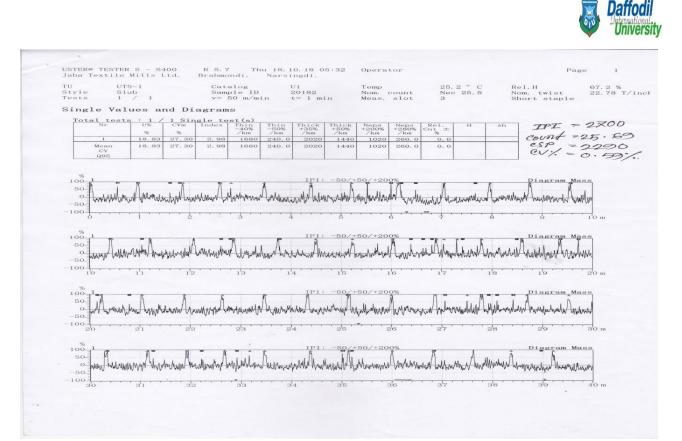

©daffodil international university



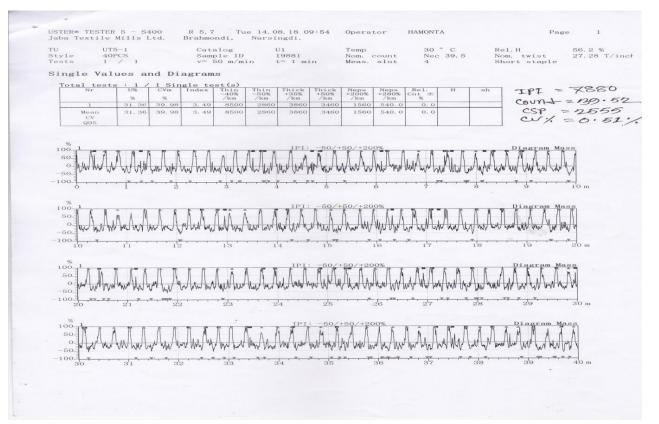

App-15






~															
USTER® TESTER Jaba Textile				Mo ndi,			6:03	Opera	tor	HAMON'	ГА			Page	1
TU UTI Style 26 Tests 10	5-1 Neps / 1		Sam	alog ble ID 100 m/n		U1 19226 t= 1 mi	n	Temp Nom. Meas.	count	28. Nec 3	9° C 25.5	No	ol.H om.t		79.6 22.78
STD. TABLE	& SPEC	TROGE	RAM												
Uster Statist	P2600N/1 ies tton 4Mi			erial c	lass	Yarn			Mach.	Nr.	R. F	=33			
Total tests	s : 10 /	10 Si CVm	CVm	CVm	CVm	Index	Thin	Thin	Thick	Thick	Neps	Neps +280%	н	Rel. Cnt ±	
	96	96	1 m %	3m %	1 Om %		-30% /km	-50%	+35%	+50% /km	+200%	+280%		Cnt ±	
1 2	18, 11 18, 19	24.42	7.02 7.57	5,62	3,59 4.67	2.65	7793 7183	262.5 217.5	5055 4950	2868 2938	4790 4998	2528 2685		2.4	
3	17.67	23, 95	$\frac{6,71}{17,31}$	5.34	$\frac{3.71}{14.84}$	2.60	7080	167.5	4993	2875	4853	2680		-0.8	
5	18,05	24.39	8,15	6.88	4.81	2.65	7018	145.0	5060 5478	2895	4803	2608	_	3.0	
7 8	20,40	27.73	10, 41 8, 65	7,84	5.04	3.01	9408 7583	552.5	5663 5080	3570	5355	2985 2598		-5.8	
9 10	18.77 18.57 19.90	25.02	8.52	7.17 7.16 6.70	5.60	2.71	7358	142.5 137.5 452.5	4938	2973 2913 3500	4853 4810 5878	2565		3.9	
Mean	19.15	25.84	9.21	7.70	5.83	2.80	7836	284.3	5178	3075	5026	2728		-4.8	
CV USP™	7.0	6.4	33. 1	41.0	55.9	6.4	11.9	57.6	5.7	8.9	6.8	8. 9		3. 3	
TPT	000														
IPT -	- 838	85										Spect	rogr	am Mass	
ZPI - Cound	= 838	49										Spect	rogr	am Mass	
ZPI Cound CSP	= 25.	49				Minima	IIIIIiiii	rittes (These				Spect	rogr	am Mass	
ZPI Cound Cound Cop Cy. =	= 838 = 25. = 227 = 1.0	49	/ /								numpuum reffi	Spect	rogr	am Mass	10
cound cound csp ert. =	= 838 = 25. = 227 = 1.07	49									umouno utilium tili	Spect	rogr	am Mass	10
Cound Cound CSP CY. =	= 838 = 25. = 227 = 1.0	49									unione utilitien ttil	Spect		// 9 // 8	10
	= 838 = 25. = 227 = 1.0	85 9 97.										Spect		am Mass	10
10-1 8-1	= 838 = 25. = 227 = 1.0	85 49 497.											1/1/5	// 9 // 8	10
10-1 8-11-1 6-11-1	= 832 = 25: = 227 = 1.0	25 49 497.										Spect	1/1/5	// 9 // 8	10
													1/1/5	// 9 // 8	10
	= 25. = 227 = 1.07		0 20										1/1/5	// 9 // 8	10
													1/1/5	// 9 // 8	10
10 8 8 9 10 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10													1/1/5	// 9 // 8	10
10 8 8 9 10 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10													1/1/5	// 9 // 8	10
10 8 8 9 10 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10													1/1/5	// 9 // 8	10
10 8 8 9 10 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10													1/1/5	// 9 // 8	10
10- 8- 8- 8- 1- 2- 2- 1													1/1/5	// 9 // 8	10

App-19



©daffodil international university

App-21

©daffodil international university

Appendix-II

Maintenance Schedule & Maintenance Manpower

Auto Cone	Ring	D.S.C	Carding	Blow Room	Date
M/c-4. D-46 -60	M/C: 26 / 37	G. Clean	G. Clean	G. Clean	01.11.18
Friday	Friday	Friday	Friday	Friday	02.11.18
M/c-5. D-01 -15	M/C: 09, 10/11, 12	S / F-03	CR-05 & CH-02	Hopper Fidder-01 C.B.O	03.11.18
M/c-5. D-16 -30	M/C: 07, 08/13, 14	D / F-2	CR-06 & CH-01	Hopper Fidder-02 C.B.O	04.11.18
M/c-5. D-31 -45	M/C: 05, 06/15, 16	S / F-04	CR-07 & CH-12	Piono Motion -01 C.P.C	05.11.18
1/c-5. D-46 -60	M/C: 03, 04/ 53, 54	D / F-4	CR-01 & CH-11	Piono Motion -02 C.F.C	06.11.18
1/c-6. D-01 -15	M/C: 01, 02/ 55, 56	S / F-05	CR-02 & CH-10	Scutcher - 01 H.B.B	07.11.18
G. Clean	M/C: 51 / 52	G. Clean	G. Clean	G. Clean	08.11.18
Friday	Friday	Friday	Friday	Friday	09.11.18
4/c-6. D-16 -30	M/C: 27, 49/ 50, 57	D / F-5	CR-03 & CH-09	Scutcher- 02 C.D.R	10.11.18
M/c-6. D-31 -45	M/C: 28, 47/ 48, 58	S / F-06	CR-04 & CH-08	Bale Plaker H.B.B	11.11.18
M/c-6. D-46 -60	M/C: 17, 29/46, 59	D/F-1	CR-05 & CH-07	Hopper Fidder-01 C.B.O	12.11.18
M/c-1. D-01 -15	M/C: 18, 30/ 45, 60	S/F-07	CR-06 & CH-06	Auto Blander (Case) C.P.C	13.11.18
M/c-1. D-16 -30	M/C: 19, 36 / 44, 61	D/F-2	CR-07 & CH-05	Hopper Fidder-02 C.B.O	14.11.18
G. Clean	M/C: 35 / 62	G. Clean	G. Clean	G. Clean	15.11.18
Friday	Friday	Friday	Friday	Friday	16.11.18
M/c-1. D-31 -45	M/C: 20, 34/43, 63	S / F-01	CR-01 & CH-04	Auto Blander (Front)	17.11.18
M/c-1. D-46 -60	M/C: 21, 33/42, 64	D / F-4	CR-02 & CH-03	Piono Motion -01 C.P.C	18.11.18
M/c-2. D-01 -15	M/C: 22, 32/41, 65	S / F-02	CR-03 & CH-02	Piono Motion -02 C.F.C	19.11.18
M/c-2. D-16 -30	M/C: 23, 31/40, 66	D / F-5	CR-04 & CH-01	Scutcher - 01 H.B.B	20.11.18
M/c-2. D-31 -45	M/C: 24, 25/38, 39	S / F-03	CR-05 & CH-12	Scutcher- 02 C.D.R	21.11.18
M/c-2. D-46 -60	M/C: 26 / 37	G. Clean ³	G. Clean	G. Clean	22.11.18
Friday	Friday	Friday	Friday	Friday	23.11.18
M/e-3. D-01 -15	M/C: 09, 10/11, 12	D / F-1	CR-06 & CH-11	Bale Plaker H.B.B	24.11.18
M/c-3. D-16 -30	M/C: 07, 08/13, 14	S / F-04	CR-07 & CH-10	Hopper Fidder-01 C.B.O	25.11.18
M/c-3. D-31 -45	M/C: 05, 06/ 15, 16	D / F-2	CR-01 & CH-09	Hopper Fidder-02 C.B.O	26.11.18
M/c-3. D-46 -60	M/C: 03, 04/ 53, 54	S / F-05	CR-02 & CH-08	Double Roller C.F.C	27.11.18
M/c-4. D-01 -15	M/C: 01, 02/ 55, 56	D / F-4	CR-03 & CH-07	Hopper Fidder-02 C.B.O	28.11.18
					29.11.18

App-23

>	w/b			Ē			D	SR			B/R Carding	Section		
AMO	Drum	N/C	Maint	Clean	Maint	Rotor	Smplex	FID	B/D	Carding	Waint	1000	Ň	
		9		2	3	2	6	4	4	19	2 Line	3	MC	
	1-24			13	5			R.		15	Uniflok	-	iue -	
	25-48	5		И	5			2	~	16	A-11	2	Wed	
	49-72			15	7			Hawa	33	<	5. Cleaning	w.	1	
												4	32	
	1-24			26	~			Coiling	8	17	мво	- 5	52	
	25-48	5		IJ	9					18	B-12	6	San	
	49-72			28	10					19	A-21	1	Mon	
	1-24			29	=		07			2	B-76	~	Tue .	Mair
	25-48	1		8	11	1				14	Filter-1	6	Wed	Iten
	49-72			31	13		w				5. Cleaning	15	2	JADA LEATILE WILLS LTD. Brahmandi, Narsingdi. Maintenance Schedule For The Month Of January, 2019. Date: 01.01.19
	Station of Street											=	31	Sche Br
	1-24			32	14	1 million and		~	~	5 8	Filter-2	E	Sat	
	25-48	~~~		**	53			Hawa	53	16 94	AFC-1	tt	Sin	Brahmandi, Narsingdi. Brahmandi, Narsingdi. chedule For The Month Of Date: 01.01.19
F	49-72			¥	16					13	AFC-2	14	Mon Tue Wed	The The
4	1-24			33	17	1	44			18	A-79(1)	15	Tue	arsi Moi
9m	25-48	9		37	18			Colling	w	11 9	A-79(2)	16	Wed	# @ C
* Watazar Lindo	49-72				to					1	G. Cleaning	11	2	JABA IEA IIEA MILLO EI IV. Brahmandi, Narsingdi. ne Schedule For The Month Of Jan. Date: 01.01.19
												100	37	nuar
	1-24			2	20					12 8	Unimix	19		y, 20
	25-48	-		ω	11		~			13 8	Filter-1	20		119.
	49-72			4	12					4 5	A-21(1)	2		
	1-24			5	53		5			5 =	A-79	22		
	25-48	N		5	14		1	2	2	16	Filter-2	13		
	49-72			-	12			Hawa	35	1	G. Cleaning	14		
the second s	1				1 01			-		-		D		
	1-24				26	1	1	Collin	8	17	ERM	10		
	25-48	w		-0	27					100 14		11		
n G W Project	49-72			10	88		on					1 18		
Prinip	1-24	Ma la		=	100			2		1 12		25	1000	
	25-48	-		N	8		w			13		30		
	49-72			53	33				1		G. Cleaning	1 31		

App-24

©daffodil international university

Man power set up of Raising spinning mils, Nayadingi,Manikgonj

Department : maintenance & utility

AGM / Manager

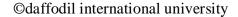
1. BR-C section M.O/ Foreman - 01 Head fitter - 01 sr.fitter/ fitter - 02 Asst.fitter - 04 Helper/ learner - 04 2. DSC section

M.O/ Foreman	- 01
Head fitter.	- 01
sr.fitter/fitter.	- 01
Asst.fitter.	- 04
Healoer/ learner	- 03

3. Ring section Department : maintenance & utility

	AGM / Mana	ger
	1. BR-C secti	
r	VI.O/ Foreman	- 01
T	lead fitter	- 01
1	r.fitter/ fitter	- 02
1	Asst.fitter	- 04
Ŧ	Iclper/ learner	- 04

2. DSC section


M.O/ Foreman - 01 Head fitter. - 01 sr.fitter/fitter. - 01 Asst.fitter. - 04 Healoer/ learner - 03

. 3. Ring section

App-25

M.O/ Foreman.	- 01	
Head fitter.	- 01	
sr.fitter/ fitter.	- 04	
	- 06	
Helper/ learner.	- 06	
4. Auto conner se	ection	
· M.O/ Foreman.	- 01	
Head fitter.	- 01	
sr.fitter/ fitter.	- 01	
Asst.fitter.	- 04	-
Helper/ learner.		
ricipei/ learner.	- 03	
Department : Ut	tility	
1. Generator sec	ction	
Manager/ Dy. Manag	ger 01	
Engineer/ Asst. Engin	neer 01	
SAE.	- 04	
Sr.fitter/ fitter.	- 02	
Helper/learner.	- 04	
· 2. A/C plan	t	
Manager.		
Manager. M.O/ Foreman	- 01	
	- 01	
sr. Fitter/Fitter	- 01	
Asst. Fitter.	- 05	
Helper/ learner.	- 06	-
this set up for 30000 sp	pindle floor	

App-26

Jaba Textile Mills Limited.

Please mention every floor level people's experiece and educational qualification separation them by giving comma.

An example has been given in the following table.

Factory Capacity : 15000 Kgs/day, Section : Spining, No of SPL : 39450

	No of	staff		Year of Ex	perience	in relevai	nt field.	Qualification					
General Shift	A Shift	B Shift	C Shift	General Shift	A Shift	B Shift	C Shift	General Shift	A Shift	B Shift	C Shift		
23	6	6	6	2,4,5,6	2,4	2,4	2,4	S.S.C, VII, BTEB trade certificate, Vocational	VIII, S.S.C	Vocational, Viii	Vocatio nal, Vii		

Factory Name : Jaba Textile Mills Limited.

Factory Capacity : 2 ton / day

Section : Knitting

Table 1 : Floor Level people (Fitter / Technician)

No of staff Year of Experience in relevant field.						Qualification			
General Shift	A Shift	B Shift	General Shift	A Shift	B Shift	General Shift	A Shift	B Shift	
1	4	4	18	4,5	4,5	VIII	S.S.C H.S.C	S.S.C/H.S.C	

Table 2 : Floor Level people (Electrician)

	No of	staff		Year of Ex	perience	in releva	nt field.				
General Shift	A Shift	B Shift	C Shift	General Shift	A Shift	B Shift	C Shift	General Shift	A	B Shift	C Shift
6	2	2	2	8,6,4	2,3	2,3	-2,3	S.S.C	S.S.C H.S.C	S.S.C H.S.C	S.S.C H.S.C

Factory Name : Jaba Textile Mills Limited. Factory Capacity : 15000 Kgs / day (SPG) Section : 2 Ton / day (Knitting)

App-27

Jaba Textile Mills Limited.

Please mention every floor level people's experiece and educational qualification separation them by giving comma.

An example has been given in the following table.

Factory Capacity: 15000 Kgs/day, Section : Spining, No of SPL : 39450

No of staff Year of Experience in relevant field.						Qualification					
General Shift	A Shift	B Shift	C Shift	General Shift	A Shift	B Shift	C Shift	General Shift	A Shift	B Shift	C Shift
23	6	6	6	2,4,5,6	2,4	2,4	2,4	S.S.C, VII, BTEB trade certificate, Vocational	VIII, S.S.C	Vocational, Viii	Vocatio nal, Viii

Factory Name : Jaba Textile Mills Limited.

Factory Capacity : 2 ton / day

Section : Knitting

Table 1 : Floor Level people (Fitter / Technician)

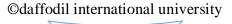

	No of st	aff	Year of Ex	perience in	relevant field.	Qualification			
General	A	В	General	A	B General Shift		A	В	
Shift	Shift	Shift	Shift	Shift	Shift	General Shift	Shift	Shift	
1	4	4	18	4,5	4,5	VIII	S.S.C H.S.C	S.S.C/H.S.C	

Table 2 : Floor Level people (Electrician)

No of staff Year of Exp						in releva	nt field.	Qualification			
General Shift	A Shift	B Shift	C Shift	General Shift	A Shift	B Shift	C Shift	General Shift	A Shift	B Shift	C Shift
6	2	2	2	8,6,4	2,3	2,3	2,3	5.5.C	S.S.C H.S.C	S.S.C H.S.C	S.S.C H.S.C

Factory Name : Jaba Textile Mills Limited. Factory Capacity : 15000 Kgs / day (SPG) Section : 2 Ton / day (Knitting)

App-28

