An Analysis of Parkinson Disease Prediction Using Machine Learning Approaches

Supervised by
Dr. Md. Asraf Ali
Associate Professor
Department of Software Engineering
Daffodil International University

Submitted by
Ekramul Kabir Biplab
ID: 151-35-1038
Surovi Akter Trishna
ID: 151-35-857
Department of Software Engineering
Daffodil International University

This Thesis report has been submitted in fulfillment of the requirements for the Degree of Bachelor of Science in Software Engineering.

© All right Reserved by Daffodil International University
This Thesis titled “An Analysis of Parkinson Disease Prediction Using Machine Learning Approaches”, submitted by Ekramul Kabir Biplab, ID: 151-35-1038 and Surovi Akter Trishna, ID: 151-35-857 to the Department of Software Engineering, Daffodil International University, has been accepted as satisfactory for the partial fulfillment of the requirements for the degree of B.Sc. in Software Engineering and approved as to its style and contents.

BOARD OF EXAMINERS

Dr. Touhid Bhuiyan
Professor and Head
Department of Software Engineering
Faculty of Science and Information Technology
Daffodil International University

Dr. Md. Asraf Ali
Associate Professor
Department of Software Engineering
Faculty of Science and Information Technology
Daffodil International University

Mohammad Khaled Sohel
Assistant Professor
Department of Software Engineering
Faculty of Science and Information Technology
Daffodil International University

Prof Dr. Mohammad Abul Kashem
Professor
Department of Computer Science and Engineering
Faculty of Electrical and Electronic Engineering
Dhaka University of Engineering & Technology, Gazipur

Chairman

Internal Examiner 1

Internal Examiner 2

External Examiner
ACKNOWLEDGEMENT

Firstly, we express our heartiest thanks and gratefulness to almighty Allah for His divine blessing makes us possible to complete this study successfully.

We sincerely and heartily grateful to our advisor, Dr. Md. Asraf Ali, Associate Professor, Department of Software Engineering, Daffodil International University, Dhaka. For the support and guidance, he showed us throughout the study. His endless patience, scholarly guidance, continual encouragement, constant and energetic supervision, constructive criticism, valuable advice, reading many inferior drafts and correcting them at all stage have made it possible to complete this project.

We would like to express our heartiest gratitude to other faculty members of Software Engineering department of Daffodil International University.

Finally, we must acknowledgement with due respect the constant support and patients of our parents.
DECLARATION

We hereby declare that, we have taken this thesis under the supervision of Dr. Md. Asraf Ali, Associate Professor, Department of Software Engineering, Daffodil International University. We also declare that neither this thesis nor any part of this thesis has been submitted elsewhere for award of any degree or diploma.

Ekramul Kabir Biplab
ID: 151-35-1038
Program: B.Sc.
Department of Software Engineering
Daffodil International University

Surovi Akter Trishna
ID: 151-35-857
Program: B.Sc.
Department of Software Engineering
Daffodil International University

Certified By

[Signature]

Dr. Md. Asraf Ali
Associate Professor
Department of Software Engineering
Daffodil International University
ABSTRACT

Objective: The main goal of the study is to inspect the performance of three Supervised algorithms for improving the Parkinson disease diagnosis by detection.

Methods: We used three machine learning techniques for the detection of Parkinson disease datasets. SVM, KNN, and LR were used for prediction of Parkinson Disease. The performance of the classifiers was evaluated via recall, precision, f1 measure and accuracy.

Results: SVM shows the accuracy level 100% for Parkinson disease prediction. LR achieved the second highest classification accuracy of 97%. Moreover, in the terms of accuracy for analyzing Parkinson disease datasets, KNN achieved the worst performance (i.e. 60%).

Conclusion: Our finding showed that the SVM obtained the highest performance for analyzing the Parkinson datasets. This study has emphasized the current Parkinson research trends and scope in relation to clinical research fields by machine learning techniques. That will be an effective impact in the field of Parkinson disease.
TABLE OF CONTENTS

APPROVAL

i

ACKNOWLEDGEMENT

ii

DECLARATION

iii

ABSTRACT

iv

TABLE OF CONTENTS

v

LIST OF FIGURES

vii

LIST OF TABLES

viii

CHAPTER 1: INTRODUCTION

1

1.1 Background 1

1.2 Motivation of the Research 1

1.3 Problem Statement 2

1.4 Research Questions 2

1.5 Research Objectives 2

1.6 Research Scope 2

1.7 Thesis Organization 3

CHAPTER 2: LITERATURE REVIEW

4

CHAPTER 3: MATERIALS AND METHODS

7

3.1 Experimental Setup 7

3.2 Data Collection 8

3.2.1 Parkinson Patients Data 8

3.3 Data Preprocessing 9

3.4 Classification Techniques 13

3.4.1 Logistics Regression 13

3.4.2 Support Vector Machine 13

3.4.3 K Nearest Neighbors 13

3.5 Evaluation Criteria 14
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURES</th>
<th>PAGE NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1 Study selection process</td>
<td>5</td>
</tr>
<tr>
<td>Figure 3.1: The experimental setup</td>
<td>8</td>
</tr>
<tr>
<td>Figure 3.2: Features extraction from Parkinson Data</td>
<td>10</td>
</tr>
<tr>
<td>Figure 3.3: No missing values in Parkinson Data sets</td>
<td>11</td>
</tr>
<tr>
<td>Figure 3.4: Heat map for checking correlated columns in Parkinson data</td>
<td>12</td>
</tr>
<tr>
<td>sets</td>
<td></td>
</tr>
<tr>
<td>Figure 4.1. Performance of three supervised classification techniques</td>
<td>15</td>
</tr>
<tr>
<td>Figure 4.2. Classification performance of three classifiers</td>
<td>16</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLES</th>
<th>PAGE NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.1 Classification performance measurements</td>
<td>16</td>
</tr>
</tbody>
</table>
CHAPTER ONE
INTRODUCTION

1.1 Background
In the present era, disease prediction is the most important task for medical institutions and physicians in order to decide the finest possible physicians’ decisions. Possible incorrect decisions are opine of the major cause to delays in medical care or even loss of life. On the other hands, there is another viewpoint about medical services is a big commercial in every time. The business marketplace in this fields always running and rapidly growing than other fields. Most of the patients are always searching for good treatment care for better medical services. In reality, they cannot afford the treatment cost most of the time. Possibly, it’s very crucial situation for this patient. Therefore, researchers have always searching in this area how can it is less possible expense for every patient and there is need of one umbrella platform for solving these problems in medical fields. Here is our main objective for improving Parkinson disease treatment is to more importance on early detection of Parkinson disease with less expenses and live for healthier life.

1.2 Motivation of the Research
Parkinson diseases are the most critical causes of death and disability worldwide. According to the Parkinson disease foundation, The affected peoples in the worldwide of Parkinson disease is projected that the 1 million people are Living by 2020 in USA (Marras et al., 2018). The medical treatment of Parkinson disease can be endorsed on Neuropathologic and Histopathologic (Gelb, Oliver, neurology, & 1999, n.d.). Medical diagnostic detection of Parkinson Disease can be done on widespread selection basing on the sensitivity and specificity of the characteristic Parkinson disease features. Therefore, the Parkinson Disease are needed to explore the clinical, pathologic, and nosology studies grounded on frequency of occurrence, characteristics, and including risk factors of samples (Aarsland, Andersen, neurology, & 2003, n.d.). Parkinson usually affects a large part of worldwide patients over the age of 50, which has affected up to now (“Parkinson’s Disease Information Page | National Institute of Neurological Disorders and Stroke,” n.d.). Still now there is no known cause of Parkinson disease, however, it is very likely possible to assuage symptoms knowingly in the early stage of the subjective patients (Singh, Pillay, neurobiology, & 2007, n.d.). A study claimed that around 90% of the patients affected with vocal damage (“Speech impairment in a large sample of patients with Parkinson’s disease,” n.d.). The Parkinson treatment is likely very costly. This causes most of the patients cannot afford the cost of the Parkinson
disease. Because if the disease is detected in the initial stage, then the cost will decrease and it will also be possible to save the patient’s life. Nowadays, Parkinson disease prediction is most critical matter for clinical practitioners to take accurate decision of such disease. It’s a great exercise at present time, machine learning based extensive platform can detect Parkinson disease.

1.3 Problem Statement
Medical data has growing a vast scale of volume from different clinical areas including health care services. To handle this data and attaining insights from this data there is need of Big Data analysis through Machine learning that aim to solve diverse medical and clinical problem (Hossain, Mahmud, Hossin, Haider Noori, & Jahan, 2018). Already, many of the studies show that machine learning algorithms has gained meaningfully high performance in classification-based medical problems. However, supervised learning-based methods are one of the most effective method for the research community and real-life applications on clinical fields. (Dwivedi, 2017). This works main objective is to improve the detection and diagnosis techniques of Parkinson disease treatment. Parkinson's disease can't be cured, but medications can help control your symptoms, often dramatically. So if it detects in the early stage, the cost of medication will reduce. Therefore, our study can be playing an important role for the detecting Parkinson disease with machine learning algorithms.

1.4 Research Question
In the following research questions associated to the Parkinson detection is also addressed:

(1) What is the best machine learning techniques within popular supervised learning for Parkinson detection?

1.5 Research Objectives
To study different machine learning algorithm. To evaluate the performance of different machine learning algorithms for Parkinson disease prediction. As well as compare the algorithms result and find out which algorithm is giving the best results.

1.6 Research Scope
In recent, machine learning algorithms have generated a significant influence and commitment in the Parkinson research community for detection of Parkinson disease. Moreover, machine learning
techniques are specified more precise results in disease prediction as compared to others data taxonomy techniques (Dwivedi, 2017)(Mahmud & Ahmed, 2018). Motivated by this, the authors have used three prominent machine learning algorithms for detection and proper diagnosis of Parkinson patients. The main goal of this study is to examine the performance measurement of various prominent classification methods for this study we used three supervised learning techniques were used including k-Nearest Neighbors, Support Vector Machine and Logistics Regression. Moreover, the performance of the three classifiers was evaluated using different methods.

1.7 Thesis Organization
The rest of the study is ordered as follows, chapter 1 illustrates the objectives of this thesis, inspiration behind this thesis, research possibility and thesis organization. Chapter 2 portrays the literature review and related works in these Parkinson disease areas. And the materials and methodology are designated with the evaluation criteria of different classifiers in Section 3. Moreover, the performance results and discussion are illustrated in Section 4. Finally, conclusions and further study are deliberated in Section 5.
CHAPTER TWO
LITERATURE REVIEW

In this study, this work was designed by the qualitative research process and implements the strategies of Kitchenham and Charters (Kitchenham, Brereton, …, & 2009, n.d.). Our searching process of collecting paper was systematic mapping study (Petersen, Feldt, Mujtaba, Ease, & 2008, n.d.) for searching publication. Basically, cumulative use for paper selection. We have used a few keywords in our searching process. These studies are searched in Parkinson Disease, Parkinson Disease data sets, Machine Learning Techniques, Prediction, detection. We have used and/or/not. By using those keywords, we have created a search sequence which used in different online databases such as –

- IEEE Xplore
- Springer Link
- ACM Digital Library
- Science Direct
- Google Scholar
- Hindawi

Ensuing this search string, to find out journal articles we have used a condition in the searching process, and it was “English language between the years 2010 to 2019”. Then 17 articles we have finally selected that have published in the above-mentioned journals or conferences. We have
applied inclusion and exclusion standards which is proposed by the Kitchenham. Our partner researchers reviewed the search verdicts from the systematic process, which helped to moderate the validity extortions. Figure 2.1 shows that the searching process of the present study.

Through related work, 17 studies were done on applying and using different machine learning approaches to determine detection of Parkinson Disease. Previous work also introduces a set of studies-based detection of Parkinson diseases using machine learning algorithms. However, the outcomes of the 17 articles on machine learning used in disease prediction as follows:

Tarigoppula et al. (Sriram, Rao, Narayana, Kaladhar, & Vital, 2013) presented a comparative study between Naïve Bayes, Random Forest, Logistics Regression, Support Vector Machine to detect
Parkinson disease. SVM (i.e. 88.9%) has shown the good performance to compared NB (i.e. 69.23%), and RF (90.26%) shown the compared to SVM for the Parkinson detection. Moreover, LR (i.e. 83.66%) shown the quiet good performance. 86%). And the SVM and LDA have superior sensitivity in comparison to other classifiers. The contribution of this study is to analysis of voice data to understand presence of Parkinson diseases. In order to additional improve the diagnosis accuracy for detection of Parkinson Disease, the study (Chen et al., 2013) proposed a fuzzy based KNN model to predict Parkinson. Their study shown to the best accuracy (96.07%) obtained by the proposed algorithm including a 10-fold cross validation. Another study (Chen et al., 2016) also considers a hybrid model of detection Parkinson with compared to the existing methods and their proposed model has achieved the brilliant accuracy through 10-fold cross-validation analysis, the topmost accuracy of 96.47% and quite good accuracy of 95.97%. Moreover, The experimental (Hariharan, Polat, & Sindhu, 2014) results show that the maximum classification accuracy of 100% for the Parkinson’s dataset via feature pre-processing . Hanzel et al.(Hazan, Hilu, Manevitz, Ramig, & Sapir, 2012) presented a new prediction system that can detect of Parkinson from voice data seems to be possible and precise with results approaching (90%) in two different data sets. Another hybrid method (Ma, Ouyang, Chen, & Zhao, 2014) named SCFW-KELM has been presented for the diagnosis of Parkinson disease. The result of proposed method is effective for Parkinson detection by MAE for the Total-UPDRS and Motor-UPDRS were achieved respectively MAE = 0.4656 and MAE = 0.4967 (Nilashi, Ibrahim, Ahmadi, Shahmoradi, & Farahmand, 2018). Moreover, A study (Ozcift, 2012) uses kernel Support Vector Machine for their classification and Neural Network classification scheme. Thus, the prediction performances of the 2 classifiers respectively are 91.4% and 92.9%. Hence, one study (Geetha, Professor, Head, & Sivagami, 2011) found they showed into their study that the Random Forest obtained the highest performance. But, other study showed SVM reaches upright accuracy of 83.33% (Shetty & Rao, 2017). Ferdous et al. (Wahid, Begg, Hass, Halgamuge, & Ackland, 2015) presented a comparative study between different classifiers. Their analysis shown that the RF attained the accuracy of 92.6% after standardizing gait data using the multiple regression method, competed to 80.4% (Support Vector Machine) and 86.2% (Kernel Fisher Discriminant). Hence, the study (Yadav, Kumar, & Sahoo, 2012) compared to different classifiers and showed into the results LR obtained the highest performance than others.
CHAPTER THREE
MATERIALS AND METHODS

3.1 Experimental Setup
In this study, this section represents the experimental process (figure 3.1) of the experiment including machine learning techniques. Parkinson Disease data sets have been considered in this work. Firstly, we focused on preparing and combined data from the main datasets. Moreover, we extracted 30 features from the Parkinson datasets. Then, we checked the missing values and correlated values. Secondly, Data set splitting is an important task of this machine learning based fields. In this dataset, we have not found split and test datasets. Figure 3.1 shows the Parkinson data set has split into trainset and test sets. After that, 3 supervised based classifiers performed the operation. After successfully executed these algorithms SVM obtained the highest performance.
3.2 Data Collection

3.2.1 Parkinson Disease Datasets

In this study, we used the Parkinson disease data from provided by the UCI Machine Learning Repository. In addition, this dataset is consisting of 62 people with Parkinson disease and 15 peoples were healthy. The authors used three types of recording are taken such as static spiral test, dynamic spiral test and stability test score. However, we chosen the particular features for data analysis which are below presented,

I. No of strokes
II. Stroke speed
III. Velocity
IV. Acceleration
V. Jerk
VI. Horizontal velocity/acceleration/jerk
VII. Vertical velocity/acceleration/jerk
VIII. Number of changes in velocity direction
IX. Number of changes in acceleration direction
X. Relative NCV
XI. Relative NCA
XII. In air time
XIII. On surface time
XIV. Normalized in-air time
XV. Normalized on-surface time
XVI. In air/on surface ratio

3.3 Data Preprocessing

In this section, firstly we extracted features from the Parkinson disease datasets. We picked the 30 columns and 77 entries of data. Then, we conducted several experiments to checking missing values, redundant values. Figure 3.2 has shown that the 30 features from the dataset which were we collected.
Figure 3.2 Features extraction from Parkinson Data

Therefore, analyzing the attributes of the selected Parkinson’s datasets, some of them presented a very few values whereas others appeared not correlated with the specific medical event. There were no missing values exist in this dataset. Figure 3.3 shows the number of missing values is empty. Moreover, the Parkinson’s datasets were also checked to verify the correlation of parameters. The heatmap, which is a two-dimensional graphical representation of data where the individual values that are contained in a matrix are represented as colors that is shown in figure 3.4 appear to have some correlated parameters.
Figure 3.3. No missing values in Parkinson Data sets
Figure 3.4. Heat map for checking correlated columns in Parkinson data sets
3.4 Classification Techniques

3.4.1 Logistics Regression

Logistic Regression was mostly used in the biological research and applications in the early 20th century (Jr, Lemeshow, & Sturdivant, 2013). Logistic Regression (LR) is one of the most used machine learning algorithms that is used where the target variable is categorical. Recently, LR is a popular method for binary classification problems. Moreover, it presents a discrete binary product between 0 and 1. Logistic Regression computes the relationship between the feature variables by assessing probabilities (p) using underlying logistic function.

3.4.2 Support Vector Machine (SVM)

Support vector machine has been first introduced by Vladimir Vapnik and Alexey Chervonenkis (Chervonenkis, 2013)(Vapnik, Guyon, Learn, & 1995, n.d.). SVM is a method of machine learning that can solve both linear and nonlinear problems. It provides good performance to solve both regression and classification problem. The SVM classification technique inspects for the optimal separable hyperplane in order to classify the dataset between two classes (Smola & Schölkopf, 2004). Finally, the model can estimate noisy data problems for new cases.

3.4.6 k- Nearest Neighbors (KNN)

The K-Nearest Neighbors is one of the most basic instance-based classification algorithms in Machine Learning. However, the KNN works on the concept that samples are close to fit in the same samples class (Zhang & Zhou, 2007). A KNN categorizes a sample to the class that is most determined among K neighboring. K is constraint for fine-tuning the classification algorithms (Guo, Wang, Bell, Bi, & Greer, 2003).
3.5 Evaluation Criteria

In this work, we used three supervised learning techniques for the detection of Parkinson disease. Therefore, the performance measurements of the classifiers are evaluated by different statistical procedures. Such as Recall, Precision, f1- measure etc. Hence, the computation method of the measurement considerations are as follows,

\[
\text{Accuracy} = \frac{TP + TN}{TP + FP + TN + FN} \tag{1}
\]

\[
\text{Recall or sensitivity} = \frac{TP}{TP + FN} \tag{2}
\]

\[
\text{Precision} = \frac{TP}{TP + FP} \tag{3}
\]

\[
f1 = 2 \times \frac{\text{Recall} \times \text{Precision}}{\text{Recall} + \text{Precision}} \tag{4}
\]

3.6 Software and Tools

In the current study all analysis was applied in Python version 3.7.0 using Anaconda Distribution including Jupyter Notebook. The version of the Jupyter notebook server is: 5.6.0-3badce9.
CHAPTER FOUR
RESULTS & DISCUSSION

4.1 Analysis of the Results

In this section, we conducted various experiment to evaluate the three-machine learning supervised algorithms for detection of Parkinson Disease. The analysis of three classification techniques were evaluated for the detection of Parkinson disease data. Figure 4.1 shows the accuracy of three supervised techniques. Here, SVM outperformed than LR and KNN, by obtaining the highest accuracy and it is 100%.

![Figure 4.1. Performance of three supervised classification techniques](image.png)

However, the LR achieved 70% accuracy and KNN obtained 60% accuracy. Table 4.1 and shows the classification performance measurements of three classification techniques.

<table>
<thead>
<tr>
<th></th>
<th>SVM</th>
<th>LR</th>
<th>KNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>1</td>
<td>0.7</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Table 4.1 Classification performance measurements
According to the performance measurements of three classification algorithms are presented in figure 4.2. The results clearly show that the SVM reached the highest recall (100%). LR achieved the highest F1, it’s 67%. KNN obtained the worst performance in terms of F1 measure (i.e. 0.47) and LR achieved the second highest score (i.e. 0.55). And KNN also achieved the worst precision (40%). Considering precision, SVM and LR shows the same performance, it’s around 50%, respectively. Finally, SVM is the highest performer by overall performance.

<table>
<thead>
<tr>
<th></th>
<th>Recall</th>
<th>F1</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM</td>
<td>1</td>
<td>0.67</td>
<td>0.5</td>
</tr>
<tr>
<td>LR</td>
<td>0.625</td>
<td>0.55</td>
<td>0.5</td>
</tr>
<tr>
<td>KNN</td>
<td>0.57</td>
<td>0.47</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Figure 4.2. Classification performance of three classifiers
CHAPTER FIVE
CONCLUSION & RECOMMENDATION

5.1 Findings and Contribution

In this analysis, we have illustrated three supervised learning machine learning approaches. Afterwards, we evaluated the performance of the three classifiers which are used in the prediction of Parkinson disease and assessed their performance using different statistical methods. The tentative performance shows that the SVM have achieved the highest performance than the other two classifiers within the Parkinson datasets. It is 100%. This analysis has used three machine learning techniques for the detection of Parkinson disease based on several parameters. In addition, this work is part of a project that has the aim to cultivate an automated application to give more accurate action to normal occurrences and make a greater decision to multifaceted situations. The application will be able to detect in Parkinson disease in very few minutes and notify dangerous probability of having disease. This application can be outstandingly helpful in low-income peoples where is lack of medical institutes and as well as particular physicians.

5.2 Recommendation for Future Work

In our experiments, each classification algorithms were prepared and assessed on a training set that includes both positive and negative samples. Moreover, the work can be supportive for Parkinson disease detection by collecting data from different clinical and medical center and can provide more accurate results for disease prediction and diagnosis. In our research goal, there are several directions for the future work in this area of research. We will develop an application using different type of classification techniques for predicting and monitoring new and old patients. We have only investigated to three popular supervised algorithms; it can be preferring more algorithm for develop the precise model of these Parkinson disease prediction and performance can be more improved. In summary, we have painted the research objective and opportunity in relation to Parkinson disease fields by machine learning approaches, which has arising impression in health fields.
References

detection of Parkinson’s disease. *Computer Methods and Programs in Biomedicine, 113*(3),
904–913. https://doi.org/10.1016/j.cmpb.2014.01.004

Parkinson’s disease via machine learning on speech data. *2012 IEEE 27th Convention of
Electrical and Electronics Engineers in Israel, IEEEI 2012*, 29–32.
https://doi.org/10.1109/EEEI.2012.6377065

Predicting Risk Factor of Obesity among Middle-Aged People Using Data Mining
https://doi.org/10.1016/J.PROCS.2018.05.022

https://books.google.com/books?hl=en&lr=&id=64JYAwAAQBAJ&oi=fnd&pg=PR13&dq
=applied+logistics+regression+wiley&ots=qrAYpO4bqZMuaADsHhl_mjXWZFE

literature reviews in software engineering—a systematic literature review. *Elsevier.*

Parkinson’s Disease Using Kernel-Based Extreme Learning Machine with Subtractive
Clustering Features Weighting Approach. *Computational and Mathematical Methods in

Diabetes Prediction.

https://doi.org/10.1038/s41531-018-0058-0

APPENDIX

Appendix A: Parkinson Disease Dataset

Sample of Parkinson Disease Data

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age</th>
<th>Gender</th>
<th>Duration</th>
<th>Treatment</th>
<th>Medication</th>
<th>Other Factors</th>
<th>Cerebrovascular Disease</th>
<th>Diabetes</th>
<th>Hypertension</th>
<th>Liver Disease</th>
<th>History of Stroke</th>
<th>Heart Disease</th>
<th>Other Conditions</th>
<th>Smoking</th>
<th>Alcohol Use</th>
<th>Exercise Level</th>
<th>Physical Activity</th>
<th>Psychological Stress</th>
<th>Other Medical Conditions</th>
<th>Other Disease</th>
<th>Follow-up Time</th>
<th>Other Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>Male</td>
<td>5 years</td>
<td>Yes</td>
<td>Levodopa</td>
<td>None</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Fatigue</td>
<td>No</td>
<td>No</td>
<td>Moderate</td>
<td>Sedentary</td>
<td>No</td>
<td>None</td>
<td>No</td>
<td>1 year</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>Female</td>
<td>3 years</td>
<td>Yes</td>
<td>Levodopa</td>
<td>None</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Fatigue</td>
<td>Yes</td>
<td>No</td>
<td>Moderate</td>
<td>Sedentary</td>
<td>Yes</td>
<td>None</td>
<td>No</td>
<td>2 years</td>
<td>None</td>
</tr>
<tr>
<td>3</td>
<td>55</td>
<td>Male</td>
<td>2 years</td>
<td>Yes</td>
<td>Levodopa</td>
<td>None</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Fatigue</td>
<td>No</td>
<td>No</td>
<td>Low</td>
<td>Sedentary</td>
<td>No</td>
<td>None</td>
<td>No</td>
<td>1 year</td>
<td>None</td>
</tr>
</tbody>
</table>

Additional Information

- Levodopa: Levodopa dosage and type.
- Medication: Other medications being taken.
- Other Factors: Factors that may influence Parkinson's disease.
- Cerebrovascular Disease: History of cerebrovascular disease.
- Hypertension: History of hypertension.
- Liver Disease: History of liver disease.
- Heart Disease: History of heart disease.
- Fatigue: Level of fatigue.
- Fatigue: Level of fatigue.
- Smoking: Smoking history.
- Alcohol Use: Alcohol use history.
- Exercise Level: Level of physical activity.
- Physical Activity: Level of physical activity.
- Psychological Stress: Level of psychological stress.
- Other Medical Conditions: Other medical conditions.
- Other Disease: Other diseases.
- Follow-up Time: Time since diagnosis.
- Other Details: Additional information relevant to the patient's condition.