

 i ©Daffodil International University

Improved A* Search Algorithm for Path Planning of Mobile

Robots

By

Md. Ishrak Tawsif Nirob

ID: 151-35-882

A thesis submitted in partial fulfillment of the requirement for the degree of

Bachelor of Science in Software Engineering

Department of Software Engineering

DAFFODIL INTERNATIONAL UNIVERSITY

Spring 2018

Copyright © 2019 by Daffodil International University

 ii ©Daffodil International University

APPROVAL

This Thesis titled “Improved A* Search Algorithm for Path Planning of Mobile Robots”,

submitted by Md. Ishrak Tawsif Nirob, 151-35-882 to the Department of Software Engineering,

Daffodil International University has been accepted as satisfactory for the partial fulfillment of the

requirements for the degree of B.Sc. in Software Engineering and approved as to its style and

contents.

BOARD OF EXAMINERS

Dr. Touhid Bhuiyan

Professor and Head

Department of Software Engineering

Faculty of Science and Information Technology

Daffodil International University

Chairman

Dr. Md. Asraf Ali

Associate Professor

Department of Software Engineering

Faculty of Science and Information Technology

Daffodil International University

Internal Examiner 1

Mohammad Khaled Sohel

Assistant Professor

Department of Software Engineering

Faculty of Science and Information Technology

Daffodil International University

Internal Examiner 2

Prof Dr. Mohammad Abul Kashem

Professor

Department of Computer Science and Engineering

Faculty of Electrical and Electronic Engineering

Dhaka University of Engineering & Technology, Gazipur

External Examiner

 iii ©Daffodil International University

Thesis Declaration

I hereby declare that, this Thesis Report has been done under the supervision of Md. Anwar

Hossain, Senior Lecturer, Department of Software Engineering, Faculty of Science and

Information Technology, Daffodil International University. I also declare that this hasn’t been

submitted elsewhere for award of any degree.

Submitted By

………………………………...

Md. Ishrak Tawsif Nirob

ID: 151-35-882

Department of Software Engineering

Faculty of Science and Information Technology

Daffodil International University

Certified By

…………………………………

Md. Anwar Hossain

Senior Lecturer

Department of software Engineering

Faculty of Science and Information Technology

Daffodil International University

 iv ©Daffodil International University

Acknowledgement

Alhamdulillah, all praises to the Almighty Allah who gives me the ability, motivation, patience

and wisdom to complete this research work.

I would like to propagate my gratefulness and gratitude to my respectful supervisor Md. Anwar

Hossain. This research would not be possible without him. His excellent guidance, motivation,

caring, patience and providing me with an excellent facilities and environment for doing this

research. I am also grateful to my parents for their support and care throughout the entire period.

 v ©Daffodil International University

ABSTRACT

Path planning has a wide range of application in video games, GPS based applications,

mobilerobotic etc. Autonomous mobile robot is used for doing hazardous task which is dangerous

andhard to handle for people. Efficient path planning is basic requirement for mobile robot.

Aimingat problem of path finding an improved version of A* algorithm is proposed. In A*

algorithm thecost of cells is only calculated by the sum of actual cheapest cost of a cell from

starting cell and aheuristic value which is estimated cheapest cost from the cell to goal cell. But

adding theheuristic value of parent node to cost function can improve the performance of

algorithm.Adding heuristic value of parent node with the cost of a cell help the algorithm to find

it pathmore purposefully. A robot can move to any cell adjacent to it. So there are eight possible

movefrom a particular cell. And all of them is not optimal. So by selecting the optimal cell

alwayshelps to reach the goal soon. In an improved version of A* algorithm heuristic value of

parentnode of a particular node is used to evaluate the cost of a function which perform better than

A*algorithm. In this research an new improved version of A* algorithm is proposed where

priorityof optimal cell is reduced to get more priority and heuristic value of parent node of current

nodeis added with the cost of cells. To increase the priority of optimal cell a value is added with

therest of cell. This value is calculated with the help of heuristic value. If a cell is closer to the

goalthan this value will be lower for it. This method is efficient than A* algorithm and

previousversion of improved A* algorithm. It can find path sooner than the typical A* algorithm

andprevious version of improved A* algorithm.

 vi ©Daffodil International University

` Table of Contents

Approval
Declaration
Acknowledgement
Abstract i
Table of Contents ii
List of Figures iii

Chapter 1: Introduction 1 – 3

 1.1 Overview 1

 1.2 Research Motivation 1

 1.3 Problem Statement 1

 1.4 Research Question 1

 1.5 Research Objectives 2

 1.6 Research Scope 2

 1.7 Thesis Organization 2

Chapter 2: Background Study 4 – 8

 2.1 A* algorithm 4

 2.2 Dijkstra Algorithm 5

 2.3 Mobile robot 5

 2.4 Environment model built by grid method 6

 2.5 Path planning of mobile robot 7

Chapter 3: Literature Review 9 - 10

Chapter 4: Methodology 11 – 24

 4.1 A* algorithm introducing parent node 11

 4.2 Procedure of improved A* algorithm 12

 4.3 Demonstration of improved A* algorithm 13

 4.4 Modification of improved A* algorithm 19

 4.5 Procedure of newly modified improved A* algorithm 23

Chapter 5: Result and Discussion 25 – 31

Chapter 5: Conclusions and Recommendations

32

 vii ©Daffodil International University

 List of Figures

Figure No Figure Name Page

2.1 Environment Model built by Grid Model 8 - 9

4.1 Eight different cell from where a cell can be visited 15

4.2 Procedure of improved A* algorithm (step 4) 18

4.3 Procedure of improved A* algorithm (step 2) 19

4.4 Procedure of improved A* algorithm (step 3) 20

4.5 Procedure of improved A* algorithm (planned path) 21

4.6 Demonstration of traversed cell for improved A* algorithm 23

4.7 Demonstration of traversed cell for modified version improved A*

algorithm

 24

 1 ©Daffodil International University

 CHAPTER 1

 INTRODUCTION

1.1 Overview

Path planning for mobile robot can be done by various algorithm like dijkstra algorithm, breadth

first search (bfs), depth first search (dfs), A* search. Two technique covers all approaches in robot

path planning: (i) global path planning or off-line path planning and (ii) local path planning

or on-line path planning[9]. A* algorithm is a heuristic value based offline path planning

algorithm. A* algorithm doesn’t expand cells randomly like bfs algorithm rather it order the

available cell based on their cost. Cost of a cell is sum of its actual cost from starting cell and

heuristic value which is estimated cheapest cost from this cell to goal cell. A* algorithm is a

popular algorithm for path planning. For path planning of a mobile robot A* is most popular.A

mobile robot can be autonomous or non autonomous. Autonomous robot can move in any given

environment by its own. So to select path it need algorithm like A* algorithm. Mobile robots are

mostly used in many hazardous industrial fields which is hard or dangerous for people to handle

or control.

1.2 Motivation of the Research

Demand of mobile robots are increasing day by day. Autonomous mobile robots are performing

an important role in today’s world. In the field of automation path planning is crucial. Moreover

path planning is fundamental component of many softwares and hardware devices. An effective

and efficient path planning improves the performance of a robot. There are numbers of technique

for path planning but still there are chances to improve the performance of those technique. Some

of those technique may work efficiently for most of the cases but in some critical condition

performance of these techniques can be improved. An improved version of an algorithm handle

this kind of cases and improve the performance of the algorithm. In this thesis an improved version

of A* algorithm has been proposed.

1.3 Problem Statement

The process of finding an accurate and shortest path between two end point is path finding. And

path planning for a mobile robot is the process of finding a shortest and accurate path for the robot

from the starting point of the robot to the destination. There are several methods for path planning.

Grids and artificial potential field are the traditional method and new methods includes fuzzy logic

or neural network. The challenge of path planning is to find the shortest path as fast as possible by

avoiding obstacles cleverly and choose the path more purposefully.

1.4 Research Questions

Path planning is one of the fundamental requirement for autonomous mobile robot. Different path

planning algorithm can solve this problem. But,

1. Can these algorithm avoid obstacle more cleverly?

 2 ©Daffodil International University

2. Can these algorithm find the shortest path more efficiently?

1.5 Research Objectives

• Give more priority to the cells which are more likely to find a shortest path.

• To add a certain value with less likely cells in order to decrease their priority in the queue.

1.6 Research Scope

This study mainly focuses on efficient path planning. Path planning is mostly important for automated

robot. Path planning is also important for autonomous vehicle. Efficient path planning can increase

performance of an autonomous robot or an autonomous vehicle.

There are two kind of technique for path planning that actually cover all other approaches in path planning

–

i) Global path planning or Offline path planning.

ii) Local path planning or Online path planning.

1.7 Thesis Organization

Chapter 1 gives the synopsis of this thesis. Background study contains topics that was needed to

learn before start working on this paper. Moreover my motivation of doing this research, my

research question, research objective is cleared well in this part.

Chapter 2 contains all the topic that is needed to study before starting my research. What is A*

algorithm, how it works, what is dijkstra algorithm, how it works is written in this part. What is

path planning and mobile robot and why these needed is also discussed in this chapter.

Chapter 3 consist the relatable work on path planning of robots. Different paper has different

approach to solve path planning problem and some of them is denoted here.

Chapter 4 is the discussion of improved A* algorithm. How this improved algorithm work and

why it performs better than A* algorithm is discussed here.

 3 ©Daffodil International University

Chapter 5 the result of the research. Comparison among proposed algorithm of this paper, a

previously proposed improved A* algorithm and A* algorithm is shown in this chapter.

 4 ©Daffodil International University

 CHAPTER 2

Background Study

2.1 A* algorithm

A* algorithm potentially searches a large area of the map. A* algorithm is based on Dijkstra

algorithm and BFS algorithm and widely used in pathfinding. It is the most known form of BFS.

A* algorithm can avoid unnecessary expensive path and find the optimal path more purposefully.

This algorithm uses heuristic function to lead itself in process of pathfinding. A* algorithm uses a

function that calculate the cost of a node and according to this cost it evaluate the quality of nodes.

The algorithm always choose the minimum costly node first. Following function calculate the cost

for A* algorithm –

 f(n) = g(n) + h(n) …………………. (1)

In this formula if n is node on the path then –

► g(n) refers to the cost of the path from start node to node n.

► h(n) refers to the estimated cheapest cost of the path from node n to goal node.

► f(n) refers to estimated cheapest cost of path from start node to goal node through node n.

A* algorithm always choose the node with lowest f(n). The heuristic value of a node h(n) always

changes according to the path choice.

There is no fixed method to calculate heuristic value of a node. The heuristic value of a node can

be calculated by several formula. For example –

a) Manhattan Distance:

The formula for Manhattan distance is:

 dis (x1,x2 and y1,y2) = ((abs(x1 – x2) + (abs(y1-y2)) ……….. (2)

b) Euclidean Distance:

The formula for Euclidean distance is:

 dis (x1,x2 and y1,y2) = √((x1-x2)² + (y1-y2)²) ………………… (3)

Both of these formula reflects the estimated cheapest cost of the path from node n to goal node.

In searching process A* algorithm usually uses two lists- open list and closed list. open list contains

those nodes which has not been accessed yet and closed list tracks which nodes has been

discovered. A* traverse by expanding all adjacent nodes (in 4 directions or in 8 directions).

 5 ©Daffodil International University

The searching process of A* algorithm:

1) Add start node to open list.

2) Take the optimal node from open list. Let it be current node. If this node is goal node go to

step 5.

Else remove current node from open list and add it to closed list.

3) Expand all adjacent nodes of current node. If this node contains an obstacle then ignore it

else calculate their cost by using formula (1).Add them to open list.

4) Go to step 2.

5) Stop searching.

2.2 Dijkstra Algorithm:

Dijkstra algorithm is another algorithm that hugely used to find shortest path between nodes in a

given graph or map. This algorithm actually can solve single path shortest path problem means it

can only find path from a particular source or node to any other nodes. This algorithm regularly

maintain a set of nodes with their cost, whose final shortest path weights from source have been

determined. And then this algorithm repeatedly select node minimum cost and expand all it’s

adjacent nodes.

The searching process of dijkstra algorithm:

1) Initialize the source

2) Set initial cost of source node.

3) Initialize a list and add source node along with it cost in the list.

4) If list is not empty then take the node with minimum cost from the list.

5) Expand all child of taken node and update their value and add to the list.

6) If list is not empty go to step 4.

2.3 Mobile robot:

A mobile robot can be described as a machine that can move automatically and has the capability

to move around any given environment. So a mobile robot is not fixed to one physical environment.

Mobile robot require both artificial intelligence and physical robotics. Mobile robots can be

autonomous or non-autonomous –

a) Autonomous mobile robot: An autonomous mobile robot can move in an unknown

environment without any external guidance (physical or electro mechanical).

b) Non autonomous mobile robot: A non-autonomous mobile robot external guidance. It

need any kind of guidance to move in an environment.

 6 ©Daffodil International University

2.4 Environment model built by grid method:

In 1968, W. E. Howden first proposed the grid method. This is the most well developed

environment modeling. This model is widely used because it is brief and effective. This method is

applied to many algorithm. Main idea of this method is to divide the a finite area into small square

sized grid. If the horizontal direction is divided into N interval and vertical direction divided into

M interval then the whole area can be described as environment map by the N*M grids. This model

assumed robot will move in this finite area of N*M grids with finite numbers of obstacle.

Following figures demonstrate the grid method environment model-

 S

 C

 G

 Feasible Grid.

 Obstacle Grid.

 7 ©Daffodil International University

 Start Grid.

 Goal Grid.

 Current Grid.

 Adjacent Grid.

Fig 2.1 Environment model built by grid method.

2.5 Path planning of mobile robot:

Path planning is one of the basic requirement for mobile robot. A robot’s path planning is a

sequence of rotation and translation from the source position to destination position by avoiding

cells with obstacle.

There are two kind of technique for path planning that actually cover all other approaches in path planning

–

i) Global path planning or Offline path planning.

ii) Local path planning or Online path planning.

Global path planning work on known environment and do not work well in unknown or dynamic

environment. But this approach is very efficient to find optimal path.

Local path planning does not require any information about environment beforehand and finds a possible

optimal path based on available information that it can gather on its way to goal.

There different type of path planning algorithm for mobile robot-

1) Classical Algorithm

i) Cell decomposition.

ii) Potential field.

iii) Sampling based method.

iv) Sub goal network.

S

G

C

 8 ©Daffodil International University

2) Heuristic based algorithm

i) Neural Network (NN).

ii) Fuzzy Logic. (FL)

iii) Nature Inspired Algorithm.

iv) Hybrid Algorithm.

 9 ©Daffodil International University

 Chapter 3

 LITERATURE REVIEW

Path planning is basic requirement for different game, different GPS application, robotics etc.

Though there are a lot of algorithm or technique that can solve this problem but still there are a lot

of scope to work on it.

In a research paper František Duchon et al. (2014) compared four different algorithm that can solve

path planning problem on a particular environment [2]. Those four algorithms are A* algorithm,

Basic Theta*, Focused D* and jump point search (jps) algorithm. And they found jps as the

superior of other three algorithm.

Thi Thoa Mac et al. (2016) discussed different algorithm of different technique that can solve path

planning problem [3]. Their study covered Neural network (NN), Fuzzy Logic (FZ) and some most

common nature inspired algorithm which are GA,PSO,ACO in robot path planning applications.

They also showed the pros and cons of those algorithm.

M.S.Ganeshmurthy et al. (2015) proposed a simulated annealing based solution for dynamic

environment [4]. Their proposed method is their algorithm will first generates a path to goal from

starting cell off line. Then the algorithm will try to update the path until a certain period. But if an

obstacle appear in the planned path then the algorithm will generate a new path excluding that cell.

Mingxiu Lin et al. (2017) proposed an improved A* algorithm [1]. They updated the formula of

calculating cost of A* algorithm. The added the heuristic value of parent node of current node.

And they also introduced weight to heuristic function.

Akshay Kumar Guruji et al. (2016) introduces a A* algorithm which is Time-Efficient [5]. At first

a photo of robots environ is taken then they process this image to find the start point, goal point

and cells with obstacle. Depending on the distance between starting and goal cell the algorithm

can either use A* algorithm or a process called switching phase.

 10 ©Daffodil International University

Ke Da1 et al. (2017) introduces variable step length in A* algorithm [6]. From any cell unlike

typical A* algorithm this algorithm doesn’t always use length 1 to step forward. Rather they take

a length and let this length be radius of a circle then try to jump to any cell that seems efficient.

Daniel Drake et al. (2018) proposed a method that can solve path planning problem with moving

goal[7]. The algorithm start it process from goal and assign id to all expanded cells. And by

following this process it initiate a path. If sometime the goal changed then it try to find the goal

around the previous goal location and try to initiate a new path.

 11 ©Daffodil International University

 CHAPTER 4

 RESEARCH METHODOLOGY

4.1 A* algorithm introducing parent node:

An A* algorithm can be improved by adding heuristic value of parent node of current node[1].

Usual cost function of A* algorithm is –

 f(n) = g(n) + h(n)

In the usual formula of calculating the cost of current node only the actual cost from start node to

current node and estimated cheapest cost from current node to destination is added. But they also

add the heuristic value of the parent node of current node. So their proposed formula is

 f(n) = g(n) + h(n) + h(p) ………. (4)

A robot on grid can move to eight direction. So from a particular cell there are eight possible cells

where robot can go in the next move. Consequently there are eight possible cell from where a cell

can be visited by robot. That means there are eight possible parent cell for a particular cell.

 12 ©Daffodil International University

4.2 Procedure of previous improved A* algorithm:

function Astar

 initialize open list and closed list

 add starting point into open list

 while open list not empty

 choose a node from open list

 delete the node

 if it is the terminal point then

 get the path

 for each child point Y

 if Y is not in either list then

 find the value of Y

 add Y into open list

 else if Y is in open list then

 compare the value of Y

 update the list

 else if less than value of closed list then

 update the value of closed list

 remove Y to open list

 end if

 end if

 end if

 end for

 add x to closed list

 rank the nodes in open list

 end while

end of function Astar

 13 ©Daffodil International University

4.3 Demonstration of improved A* algorithm:

Fig 4.1 Eight different cell from where a cell can be visited.

Figure 2 shown all eight possible cells from where a cell n can be visited. So it can be said that for

a given time there can be multiple information for a particular cell n. For example –

1) Current cell is n, parent cell is p1 and cost is c1.

2) Current cell is n, parent cell is p2 and cost is c2.

3) Current cell is n, parent cell is p3 and cost is c3.

4) Current cell is n, parent cell is p4 and cost is c4.

5) Current cell is n, parent cell is p5 and cost is c5.

6) Current cell is n, parent cell is p6 and cost is c6.

7) Current cell is n, parent cell is p7 and cost is c7.

8) Current cell is n, parent cell is p8 and cost is c8.

It is clear that in the list there can be more than one information for a particular cell. If heuristic

value of parent is not added then this multiple information can be expanded in some random order

because cost of different information can be same. And this will lead to unnecessary cell

expansion.

So they proposed to add heuristic value of parent node of the current cell to give more priority to

the information which may reach to goal sooner than other. But this makes the heuristic value large

than usual as two heuristic value (h(n) and h(p)) added. This leads to another problem that large

heuristic value may lead the algorithm to local optimal solution. So they multiply the summation

of heuristic value (h(n) + h(p)) with a fraction value.

 14 ©Daffodil International University

Let’s consider the following grid –

In this grid robot’s starting cell is (13,14), current position is (15,15). And cells with obstacles are

(13,15); (13,16);(13,17). And goal cell is (50,50).

Following grid represents g(n) [actual cheapest cost to reach a cell from starting cell] for every

adjacent cells of current cell -

Following grid represents h(n) [estimated cheapest cost to reach goal from a cell n] for every

adjacent cells of current cell –

13,14

Start cell

 13,15

 obstacle

 13,16

 obstacle

 13,17

 obstacle

 14,14 14,15 14,16 14,17

 15,14 15,15

 Current cell

 15,16 15,17

 16,14 16,15 16,16 16,17

13,14

 Start cell

 13,15

 obstacle

 13,16

 obstacle

 13,17

 obstacle

 14,14

 g(n) = 1

 14,15

 g(n) = 2

 14,16

 g(n) = 2

 14,17

 15,14

 g(n) = 2

 15,15

 g(n) = 2

 15,16

 g(n) = 3

 15,17

 16,14

 g(n) = 3

 16,15

 g(n) = 3

 16,16

 g(n) = 3

 16,17

13,14

 13,15

 obstacle

 13,16

 obstacle

 13,17

 obstacle

 14,14

 h(n) = 72

 14,15

 h(n) = 71

 14,16

 h(n) = 70

 14,17

 15,14

 h(n) = 71

 15,15

 h(n) = 70

 15,16

 h(n) = 69

 15,17

 16,14

 h(n) = 70

 16,15

 h(n) = 69

 16,16

 h(n) = 68

 16,17

 15 ©Daffodil International University

As we know there can be eight possible parent for a certain cell. The following table demonstrates

the cost for our current cell (15,15) for all possible parent –

parent of

(15,15)

 h(p)

heuristic

value of

parent cell

 g(n)

(cost from start

cell to current

cell (15,15))

 h(n)

(heuristic

value of cell

(15,15))

 h(n)+g(n)

h(n)+g(n)+h(p)

 (14,14)

 72

 2

70

72

144

 (14,15)

 71

 2

 70

 72

 143

 (14,16)

 70

 2

 70

 72

 142

 (15,14)

 71

 2

 70

 72

 143

 (15,16)

 69

 2

 70

 72

 141

 (16,14)

 70

 2

 70

 72

 142

 (16,15)

 69

 2

 70

 72

 141

 (16,16)

 68

 2

 70

 72

 140

So in the table above we can see that h(n) + g(n) is same for all possible parent of current cell. That

means algorithm gives same priority to each of these cells. That’s why it can lead the algorithm to

expand unnecessary cells.

But if we add value of h(p) with the previous value of h(n) + g(n) then some cell will get more

priority than other. And algorithm may find the shortest path by expanding less cells than the

original A* search algorithm.

 16 ©Daffodil International University

Following grids will demonstrate how this algorithm expand cells-

Lets consider a grid where start cell is (2,1) and the goal is on cell (5,3). There are obstacle on cell

(1,3); (2,2) and (3,3).

Initiation of process:

Calculate the cost of starting cell (2,1) and add it to openlist along with it’s cost.

There will be only one information in closed list-

Cell – (2,1) and cost = g(2,1) + h(2,1) + h(p) = 0 + 5 + 0 = 5.

Step 1:

Row/column

 1

 2

 3

 4

 5

 1

 obstacle

 2

 S

obstacle

 3

 Obstacle

 4

 5

 G

Fig 4.2 Procedure of improved A* algorithm (step 1)

In step 1 all free (without obstacle) adjacent cell of starting cell will be discovered and they will

be added in open list with their respective cost which will be calculated by formula f(n) = h(n) +

h(p) + g(n).

Start cell (2,1) will be removed from open list and will be added in closed list.

 17 ©Daffodil International University

After step 1 there will be 4 information in closed list and also will be ordered in increasing order

of cost of cells –

cell (3,2), parent = (2,1) and cost = g(n) + h(n) + h(p) = 1 + 3 + 5 = 9.

cell (3,1), parent = (2,1) and cost = g(n) + h(n) + h(p) = 1 + 4 + 5 = 10.

cell (1,2), parent = (2,1) and cost = g(n) + h(n) + h(p) = 1 + 5 + 5 = 11.

cell (1,1), parent = (2,1) and cost = g(n) + h(n) + h(p) = 1 + 6 + 5 = 12.

Step 2:

In step 2 cell with lowest cost from the open list will be taken as current cell which is in this case

cell (3,2).

Fig 4.3 Procedure of improved A* algorithm (step 2)

All free (without obstacle) adjacent cell of current cell will be discovered and they will be added

in open list with their respective cost which will be calculated by formula f(n) = h(n) + h(p) + g(n).

Current cell (2,1) will be removed from open list and will be added in closed list.

After step 2 there will be 7 information in closed list and also will be ordered in increasing order

of cost of cells –

cell (4,3), parent = (3,2) and cost = g(n) + h(n) + h(p) = 2 + 1 + 3 = 6.

cell (4,2), parent = (3,2) and cost = g(n) + h(n) + h(p) = 2 + 2 + 3 = 7.

Row/column

 1

 2

 3

 4

 5

 1

 obstacle

 2

 S

obstacle

 3

 Current

 cell

 Obstacle

 4

 5

 G

 18 ©Daffodil International University

cell (4,1), parent = (3,2) and cost = g(n) + h(n) + h(p) = 2 + 3 + 3 = 8.

cell (2,3), parent = (3,2) and cost = g(n) + h(n) + h(p) = 2 + 3 + 3 = 8.

cell (3,2), parent = (2,1) and cost = g(n) + h(n) + h(p) = 1 + 3 + 5 = 9.

cell (3,1), parent = (2,1) and cost = g(n) + h(n) + h(p) = 1 + 4 + 5 = 10.

cell (1,2), parent = (2,1) and cost = g(n) + h(n) + h(p) = 1 + 5 + 5 = 11.

cell (1,1), parent = (2,1) and cost = g(n) + h(n) + h(p) = 1 + 6 + 5 = 12.

Step 3:

In step 3 cell with lowest cost from the open list will be taken as current cell which is in this case

cell (4,3).

Fig 4.4 Procedure of improved A* algorithm (step 3)

All free (without obstacle) adjacent cell of current cell will be discovered and they will be added

in open list with their respective cost which will be calculated by formula f(n) = h(n) + h(p) + g(n).

But in the mean time goal cell (5,3) which is adjacent cell of current cell (4,3) will be found and

the path from starting cell to goal cell will be stored.

Path from starting cell to goal cell for this case is –

(2,1) -> (3,2) -> (4,3) -> (5,3)

Row/column

 1

 2

 3

 4

 5

 1

 obstacle

 2

 S

obstacle

 3

 Obstacle

 4

 current

 cell

 5

 G

 19 ©Daffodil International University

Following grid will demonstrate the path-

Fig 4.5 Procedure of improved A* algorithm (planned path)

But when heuristic value of parent cell is added with the cost of a cell there still remain some

chance to improve the performance of the algorithm. A* algorithm is sort of breadth first search.

So this algorithm expand cell by level. And also consider the cost. Sometime this approach leads

to expand unnecessary cells too.

4.4 Modification of improved A* algorithm:

Even if heuristic value helps to find shortest path more purposefully. But as grid contains obstacle

some optimal cell can have higher g(n) and low heuristic value but still can have low priority than

the cell which have low g(n). As a result that non optimal cell can be expanded unnecessarily. And

throughout the whole process number this kind of cell can be a lot.

To reduce this problem we can increase the priority of cells which have more possibility to reach

to the goal. Of course heuristic value also suppose to do the same task. But sometime higher value

of g(n) can decrease the priority of the optimal cells.

Row/column

 1

 2

 3

 4

 5

 1

 obstacle

 2

 S

obstacle

 3

 Obstacle

 4

 5

 G

 20 ©Daffodil International University

To increase the priority of the optimal cell when we expand the adjacent cell of a certain cell we

will check which of those cell have more possibility to reach the goal. And we will add a certain

value (let’s call it V) with all adjacent cell of current cell without the optimal one. As a result all

cell without the optimal one will have lower priority. And value V will be added with all adjacent

cells without that optimal cell all cell. So if this cell can’t reach the goal all other cell will be

operate as normal A* algorithm.

Value V which will be added with the cells to change the order of priority of cells is not a constant

value. Rather this value will change according to the cell’s position. A cell which has low heuristic

value or in other word is close to the goal, it’s value V for it’s adjacent cell will be lower than the

cell which have higher heuristic value. Because cell which are closed to the goal may reach to the

goal sooner. So adjacent cell will get higher priority than the cell which have more distance. This

value can calculated by several method.

For this paper we calculate value of V for different cells by following method-

We take the row and column of current cell and row and column of starting cell. Then we calculate

the ratio of heuristic value of current cell and starting value of current cell. And we multiply the

ration with the product of number of row and number of column.

V = [h(current cell) / h(starting cell)] * (number of row * number of column).

So the value of V of staring cell will be (number of row * number of column). And V will decrease

when heuristic value of current cell decrease. This V will be added with all adjacent cell of current

cell without the optimal one.

This method will expand less cell than previous improved algorithm because it will always try

check the optimal cells before the other cells. And if it finds an obstacle then it will try to expand

the other cells with previous priority.

Following pictures demonstrate the expanded cell of previous improved algorithm and expanded

cells of new modified algorithm for a specific environment –

 21 ©Daffodil International University

Previous improved algorithm:

Starting cell are marked with S, goal cell are marked with G, all traversed cell are marked with

“ * ”, obstacle cells are marked with “ # ” and all free and untraversed cells are marked with “ . ”.

Fig 4.6 Demonstration of traversed cell for improved A* algorithm

For this (20 * 20) cell with starting cell being initiated at cell (1,8) and goal cell being initiated at

(20,20) previous improved algorithm need to traverse 222 grids before find the goal cells.

New modified algorithm:

Starting cell are marked with S, goal cell are marked with G, all traversed cell are marked with

“ * ”, obstacle cells are marked with “ # ” and all free and untraversed cells are marked with “ . ”.

 22 ©Daffodil International University

Fig 4.7 Demonstration of traversed cell for modified version improved A* algorithm

For this (20 * 20) cell with starting cell being initiated at cell (1,8) and goal cell being initiated at

(20,20) new modified algorithm need to traverse 131 grids before find the goal cells.

From these two picture showed that the new modified version of previous improved algorithm

perform better.

 23 ©Daffodil International University

4.5 Procedure of newly modified improved A* algorithm:

function calculate

 find the ration of heuristic value of current cell and heuristic value of starting cell

 multiply the ration with product of number of row and number of column

end of function calculateV

function Astar

initialize open list and closed list

add starting point into open list

while open list not empty

 choose a node from open list

 delete the node

 if it is the terminal point then

 get the path

 find the optimal child P for current cell

 calculate the value V for current cell by function calculateV

 for each child point Y

 if Y is not in either list then

 find the value of Y

 if Y is not P then add value V with value of Y

 add Y into open list

 else if Y is in open list then

 compare the value of Y

 update the list

 else if less than value of closed list then

 update the value of closed list

 remove Y to open list

 end if

 end if

 end if

 end for

 add x to closed list

 rank the nodes in open list

end while

end of function Astar

 24 ©Daffodil International University

The core idea of this newly modified algorithm is to always try to select the cell from list which

has more possibility to reach goal. So the algorithm will always increase the priority of this kind

of cell and will give other cells their regular priority. So if the optimal cell fails to reach goal rest

of the cell will be expanded in regular basis. And then algorithm will try to find the optimal cells

from rest of the cells.

 25 ©Daffodil International University

 CHAPTER 5

 RESULTS AND DISCUSSIONS

Test 1: (2)

 Number of row – 20.

 Number of row – 20.

 Size of grid – 400.

 Start cell – (1,7).

 Goal cell – (19,19).

 Obstacle density: 3%.

Performance comparison for Test 1:

 Comparison based

 on

 Previous improved

 algorithm

 Newly modified

 algorithm

 A* algorithm

 Time

 0.0000122

 0.00000131

 0.0000139

 Path Length

 18

 18

 18

 Number of traversed

 grid

 222

 131

 388

Test 2: (3)

 Number of row – 40.

 Number of row – 45.

 Size of grid – 1800.

 Start cell – (2,3).

 Goal cell – (36,30).

 Obstacle density: 9%.

 26 ©Daffodil International University

Performance comparison for Test 2:

 Comparison based

 on

 Previous improved

 algorithm

 Newly modified

 algorithm

 A* algorithm

 Time

 0.0000165

 0.0000141

 0.0000247

 Path Length

 35

 35

 34

 Number of traversed

 grid

 649

 406

 1466

Test 3: (1)

 Number of row – 20.

 Number of row – 20.

 Size of grid – 400.

 Start cell – (0,0).

 Goal cell – (19,19).

 Obstacle density: 22%.

 27 ©Daffodil International University

Performance comparison for Test 3:

 Comparison based

 on

 Previous improved

 algorithm

 Newly modified

 algorithm

 A* algorithm

 Time

 0.0000115

 0.0000113

 0.0000126

 Path Length

 26

 26

 26

Number of traversed

 grid

 146

 130

 260

Test 4: (4)

 Number of row – 10.

 Number of row – 10.

 Size of grid – 100.

 Start cell – (0,0).

 Goal cell – (1,9).

 Obstacle density: 10%.

 28 ©Daffodil International University

Performance comparison for Test 4:

 Comparison based

 on

 Previous improved A*

 Newly modified A*

 A* algorithm

 Time

 0.0000107

 0.0000106

 0.0000108

 Path Length

 16

 17

 16

Number of traversed

 cell

 67

 58

 79

Test 5: (6)

 Number of row – 45.

 Number of row – 50.

 Size of grid – 2250.

 Start cell – (2,47).

 Goal cell – (21,0).

 Obstacle density: 28%.

 29 ©Daffodil International University

Performance comparison for Test 5:

Comparison based

 on

 Previous improved

 algorithm

 Newly modified

 algorithm

 A* algorithm

 Time

 0.0000189

 0.0000175

 0.000259

 Path Length

 58

 58

 57

Number of traversed

 grid

 892

 745

 1593

Test 6: (7)

 Number of row – 50.

 Number of row – 55.

 Size of grid – 2750.

 Start cell – (3,23).

 Goal cell – (27,9).

 Obstacle density: 56%.

 30 ©Daffodil International University

Performance comparison for Test 6:

 Comparison based

 on

 Previous improved

 algorithm

 Newly modified

 algorithm

 A* algorithm

 Time

 0.0000107

 0.0000106

 0.0000109

 Path Length

 29

 29

 29

Number of traversed

 grid

 74

 64

 88

Test 7: (5)

 Number of row – 50.

 Number of row – 55.

 Size of grid – 2750.

 Start cell – (0,54).

 Goal cell – (27,0).

 Obstacle density: 20%.

 31 ©Daffodil International University

Performance comparison for Test 7:

 Comparison based

 on

 Previous improved

 algorithm

 Newly modified

 algorithm

 A* algorithm

 Time

 0.0000206

 0.0000175

 0.0000301

 Path Length

 54

 54

 53

 Number of traversed

 grid

 1055

 754

 2013

Based on these 7 cases demonstrated above we calculate the average time decreased, average path

length increased and average number of traversed cell decreased –

1) Search time

► Average search time decreased by 19.49 % than A* algorithm.

► Average search time decreased by 6.82 % than previous improved A* algorithm.

2) Path length

► Average path length increased by 0.4286 % than A* algorithm.

►Average path length increased by 0.1428 % than previous improved A* algorithm.

3) Number of traversed grid

► Number of traversed grid decreased by 21.493 % than A* algorithm.

►Number of traversed grid decreased by 8.82 % than improved A* algorithm.

 32 ©Daffodil International University

 CHAPTER 6

 Conclusions and Recommendations

5.1 Findings and Contribution

In this paper a previously proposed improved A* algorithm is improved further. Previously

proposed improved algorithm was based on the introduction of parent node and the change of

heuristic cost weight was proposed. And the newly proposed algorithm was an improved version

of previous improved algorithm. In this newly improved algorithm a cell called optimal cell among

eight adjacent cell of a certain cell is selected and its priority is increased. To increase the priority

a value is added with the cost of every adjacent cell of that cell. This newly improved algorithm

reduces time of path generation and number of traversed grid. But for some environment it may

generate bit larger path.

5.2 Recommendation for Future Work

Although newly proposed improved algorithm can find path in any type of environment but for

some environment it may generate a longer path. But this path length is not must larger than the

optimal path length.

 33 ©Daffodil International University

 REFERENCES

[1] Mingxiu Lin, Kai Yuan, Chengzhi Shi , Yutong Wang. Path Planning of Mobile Robot Based

on Improved A* Algorithm,2017.

[2] František Duchon, Andrej Babineca, Martin Kajana, Peter Beno, Martin Floreka, Tomáš Ficoa,

Ladislav Jurišica. Real-time path planning for the robot in known environment,2014.

[3] Thi Thoa Mac, Cosmin Copot, Duc Trung Tran, Robin De Keyser. Heuristic approaches in

robot path planning: A survey, 2016.

[4] M.S.Ganeshmurthy, Dr.G.R.Suresh. Path Planning Algorithm for Autonomous Mobile

Robot in Dynamic Environment,2015.

[5] Akshay Kumar Guruji, Himansh Agarwal, D. K. Parsediya. Time-Efficient A* Algorithm for

Robot Path Planning, 2016.

[6] Ke Da1, Liu Xiaoyu1, Zhang Bi1. Variable-Step-Length A* Algorithm for Path Planning of

Mobile Robot, 2017.

[7] DANIEL DRAKE, SCOTT KOZIOL, EUGENE CHABOT. Mobile Robot Path Planning with

a Moving Goal, 2017.

[8] Behrang Mohajer, Kourosh Kiani, Ehsan Samiei, etc. A New Online Random Ppapers

Optimization Algorithm for Mobile Robot Path Planning in Dynamic Environments

[J].Mathematical Problems in Engineering, 2013.

[9] P. Raja, S. Pugazhenthi. Optimal path planning of mobile robots: A review, 2012.

