

AndroShow : Pattern Identification of Obfuscated Android

Malware Application

By

Md. Omar Faruque Khan Russel

ID : 152-35-1170

A thesis submitted in partial fulfillment of the requirement for the degree of

Bachelor of Science in Software Engineering

Department of Software Engineering

DAFFODIL INTERNATIONAL UNIVERSITY

Spring – 2019

i ©Daffodil International University

APPROVAL

This Thesis titled AndroShow : Pattern Identification of Obfuscated Android Malware

Application, submitted by MD. OMAR FARUQUE KHAN RUSSEL, ID: 152-35-1170

to the Department of Software Engineering, Daffodil International University, has been accepted

as satisfactory for the partial fulfillment of the requirements for the degree of B.Sc. in Software

Engineering (SWE) and approved as to its style and contents.

ii ©Daffodil International University

THESIS DECLARATION

We hereby declare that, this thesis has been done by me under the supervision of SHEIKH

SHAH MOHAMMAD MOTIUR RAHMAN, Lecturer, Department of SWE, Daffodil

International University. We also declare that neither this project nor any part of this project has

been submitted elsewhere for award of any degree or diploma.

iii ©Daffodil International University

ACKNOWLEDGEMENT

First, we express our heartiest thanks and gratefulness to almighty Allah for his divine blessing

makes us possible to complete the final year thesis successfully.

I really grateful and wish my profound my indebtedness to SHEIKH SHAH MOHAMMAD

MOTIUR RAHMAN, Lecturer, Department of SWE, Daffodil International University. Deep

Knowledge & keen interest of my supervisor in the field of “Android Security” to carry out this

project. His endless patience, scholarly guidance, continual encouragement, constant and energetic

supervision, constructive criticism, valuable advice, reading many inferior drafts and correcting

them at all stage have made it possible to complete this thesis.

I would like to express my heartiest gratitude to Dr. Touhid Bhuiyan, Professor and Head,

Department of SWE, for his kind help to finish my thesis and also to other faculty member and the

staff of SWE department of Daffodil International University.

I would like to thank my entire course mate in Daffodil International University, who took part in

this discuss while completing the course work.

Finally, I must acknowledge with due respect the constant support and patients of my loving

parents.

iv ©Daffodil International University

TABLE OF CONTENTS

APPROVAL i

THESIS DECLARATION i

ACKNOWLEDGEMENT iii

TABLE OF CONTENTS iv

LIST OF TABLES vii

LIST OF FIGURES x

ABSTRACT xi

CHAPTER 1: INTRODUCTION 1

1.1 Background Study 1

1.2 Motivation of the Research 1

1.3 Problem Statement 2

1.4 Research Question 2

1.5 Research Objective 2

1.6 Research Contribution 2

1.7 Thesis Organization 3

CHAPTER 2: LITERATURE REVIEW 4

2.1 Previous Study 4

2.2 FEATURE ENGINEERING 7

2.2.1 Permission 7

2.2.2 Intent Filter 8

2.2.3 API Call 9

2.2.4 System Call 10

2.2.5 App Component 11

CHAPTER 3: RESEARCH METHODOLOGY 14

3.1 Dataset 14

3.2 Feature 14

3.3 Tool 15

3.4 Environment 15

3.5 Procedure 15

v ©Daffodil International University

CHAPTER 4: RESULT AND DISCUSSION 17

4.1 PERMISSION ANALYSIS 17

4.1.1 Trivial Encryption 18

4.1.2 String Encryption 19

4.1.3 Reflection Encryption 20

4.1.4 Class Encryption 21

4.1.5 Combination of Trivial and String Encryption 22

4.1.6 Combination of Trivial, String and Reflection Encryption 23

4.1.7 Combination of Trivial, String, Reflection and Class Encryption 24

4.2 API CALL ANALYSIS 25

4.2.1 Trivial Encryption 26

4.2.2 String Encryption 27

4.2.3 Reflection Encryption 28

4.2.4 Class Encryption 29

4.2.5 Combination of Trivial and String Encryption 30

4.2.6 Combination of Trivial, String and Reflection Encryption 31

4.2.7 Combination of Trivial, String, Reflection and Class Encryption 32

4.3 SYSTEM COMMAND ANALYSIS 33

4.3.1 Trivial Encryption 33

4.3.2 String Encryption 34

4.2.3 Reflection Encryption 35

4.3.4 Class Encryption 36

4.3.5 Combination of Trivial and String Encryption 37

4.3.6 Combination of Trivial, String and Reflection Encryption 38

4.3.7 Combination of Trivial, String, Reflection and Class Encryption 39

4.4 INTENT FILTER ANALYSIS 40

4.4.1 Trivial Encryption 41

4.4.2 String Encryption 42

4.4.3 Reflection Encryption 43

4.4.4 Class Encryption 44

4.4.5 Combination of Trivial and String Encryption 45

vi ©Daffodil International University

4.4.6 Combination of Trivial, String and Reflection Encryption 46

4.4.7 Combination of Trivial, String, Reflection and Class Encryption 47

4.5 APP COMPONENT ANALYSIS 48

4.5.1 Trivial Encryption 48

4.5.2 String Encryption 49

4.5.3 Reflection Encryption 50

4.5.4 Class Encryption 51

4.5.5 Combination of Trivial and String Encryption 52

4.5.6 Combination of Trivial, String and Reflection Encryption 53

4.5.7 Combination of Trivial, String, Reflection and Class Encryption 54

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 56

5.1 Findings and Contributions 56

5.2 Recommendations for Future Works 56

REFERENCES 56

vii ©Daffodil International University

LIST OF TABLES

Table 2.1: Some Previous Works on Permission 8

Table 2.2: Existing Researches on Intent Filter 9

Table 2.3: Existing Researches on API Call 10

Table 2.4: Existing Researches on System Call 11

Table 2.5: Existing Researches on App Component 13

Table 4.1: Short Version of Features 17

Table 4.2: Shortened Name for Permissions 17

Table 4.3: A Permission Pattern of Trivial Enc. 18

Table 4.4: Family Permission Pattern of Trivial Enc. 18

Table 4.5: A Permission Pattern of String Enc. 19

Table 4.6: Family Permission Pattern of String Enc. 20

Table 4.7: A Permission Pattern of Reflection Enc. 21

Table 4.8: Family Permission Pattern of Reflection Enc. 21

Table 4.9: A Permission Pattern of Class Enc. 22

Table 4.10: Family Permission Pattern of Class Enc. 22

Table 4.11: A Permission Pattern of Trivial+String Enc. 23

Table 4.12: Family Permission Pattern of Trivial+String Enc. 23

Table 4.13: A Permission Pattern of Trivial+String+Reflection Enc. 24

Table 4.14: Family Permission Pattern of Trivial+String+Reflection Enc. 24

Table 4.15: A Permission Pattern of Trivial+String+Reflection+Class Enc. 25

Table 4.16: A Family Permission Pattern of Trivial+String+Reflection+Class Enc. 25

Table 4.17: Shortened Name for API Call 25

Table 4.18: An API Call Pattern of Trivial Enc. 26

Table 4.19: Family API Call Pattern of Trivial Enc. 26

Table 4.20: An API Call Pattern of String Enc. 27

Table 4.21: Family API Call Pattern of String Enc. 27

Table 4.22: An API Call Pattern of Reflection Enc. 28

Table 4.23: Family API Call Pattern of Reflection Enc. 28

Table 4.24: An API Call Pattern of Class Enc. 29

Table 4.25: Family API Call Pattern of Class Enc. 29

Table 4.26: An API Call Pattern of Trivial+String Enc. 30

Table 4.27: Family API Call Pattern of Trivial+String Enc. 30

Table 4.28: An API Call Pattern of Trivial+String+Reflection Enc. 31

Table 4.29: Family API Call Pattern of Trivial+String+Reflection Enc. 31

Table 4.30: An API Call Pattern of Trivial+String+Reflection+Class Enc. 32

Table 4.31: Family API Call Pattern of Trivial+String+Reflection+Class Enc. 32

Table 4.32: Shortened Name for System Command 33

Table 4.33: A System Command Pattern of Trivial Enc. 34

Table 4.34: Family System Command Pattern of Trivial Enc. 34

viii ©Daffodil International University

Table 4.35: A System Command Pattern of String Enc. 35

Table 4.36: Family System Command Pattern of String Enc. 35

Table 4.37: A System Command Pattern of Reflection Enc. 36

Table 4.38: Family System Command Pattern of Reflection Enc. 36

Table 4.39: A System Command Pattern of Class Enc. 37

Table 4.40: Family System Command Pattern of Class Enc. 37

Table 4.41: A System Command Pattern of Trivial+String Enc. 38

Table 4.42: Family System Command Pattern of Trivial+String Enc. 38

Table 4.43: A System Command Pattern of Trivial+String+Reflection Enc. 39

Table 4.44: Family System Command Pattern of Trivial+String+Reflection Enc. 39

Table 4.45: A System Command Pattern of Trivial+String+Reflection+Class Enc. 40

Table 4.46: Family System Command Pattern of Trivial+String+Reflection+Class Enc. 40

Table 4.47: Shortened Name for Intent 40

Table 4.48: An Intent Pattern of Trivial Enc. 41

Table 4.49: Family Intent Pattern of Trivial Enc. 41

Table 4.50: An Intent Pattern of String Enc. 42

Table 4.51: Family Intent Pattern of String Enc. 42

Table 4.52: An Intent Pattern of Reflection Enc. 43

Table 4.53: Family Intent Pattern of Reflection Enc. 43

Table 4.54: An Intent Pattern of Class Enc. 44

Table 4.55: Family Intent Pattern of Class Enc. 44

Table 4.56: An Intent Pattern of Trivial+String Enc. 45

Table 4.57: Family Intent Pattern of Trivial+String Enc. 45

Table 4.58: An Intent Pattern of Trivial+String+Reflection Enc. 46

Table 4.59: Family Intent Pattern of Trivial+String+Reflection Enc. 46

Table 4.60: An Intent Pattern of Trivial+String+Reflection+Class Enc. 47

Table 4.61: Family Intent Pattern of Trivial+String+Reflection+Class Enc. 47

Table 4.62: Shortened Name for App Component 48

Table 4.63: An App Component Pattern of Trivial Enc. 49

Table 4.64: Family App Component Pattern of Trivial Enc. 49

Table 4.65: An App Component Pattern of String Enc. 50

Table 4.66: Family App Component Pattern of String Enc. 50

Table 4.67: An App Component Pattern of Reflection Enc. 51

Table 4.68: Family App Component Pattern of Reflection Enc. 51

Table 4.69: An App Component Pattern of Class Enc. 52

Table 4.70: Family App Component Pattern of Class Enc. 52

Table 4.71: An App Component Pattern of Trivial+String Enc. 53

Table 4.72: Family App Component Pattern of Trivial+String Enc. 53

Table 4.73: An App Component Pattern of Trivial+String+Reflection Enc. 54

Table 4.74: Family App Component Pattern of Trivial+String+Reflection Enc. 54

ix ©Daffodil International University

Table 4.75: An App Component Pattern of Trivial+String+Reflection+Class Enc. 55

Table 4.76: A Family App Component Pattern of Trivial+String+Reflection+Class Enc. 55

x ©Daffodil International University

LIST OF FIGURES

Figure 3.1: Features 14

Figure 3.2: Research Methodology 16

Figure 4.1: Permission Found from Trivial Enc. 18

Figure 4.2: Permission Found from String Enc. 19

Figure 4.3: Permission Found from Reflection Enc. 20

Figure 4.4: Permission Found from Class Enc. 21

Figure 4.5: Permission Found from Trivial+String Enc. 22

Figure 4.6: Permission Found from Trivial+String+Reflection Enc. 23

Figure 4.7: Permission Found from Trivial+String+Reflection+Class Enc. 24

Figure 4.8: Suspicious API Call Found from Trivial Enc. 26

Figure 4.9: Suspicious API Call Found from String Enc. 27

Figure 4.10: Suspicious API Call Found from Reflection Enc. 28

Figure 4.11: Suspicious API Call Found from Class Enc. 29

Figure 4.12: Suspicious API Call Found from Trivial+String Enc. 30

Figure 4.13: Suspicious API Call Found from Trivial+String+Reflection Enc. 31

Figure 4.14: Suspicious API Call Found from Trivial+String+Reflection+Class Enc. 32

Figure 4.15: System Command Found from Trivial Enc. 33

Figure 4.16: System Command Found from String Enc. 34

Figure 4.17: System Command Found from Reflection Enc. 35

Figure 4.18: System Command Found from Class Enc. 36

Figure 4.19: System Command Found from Trivial+String Enc. 37

Figure 4.20: System Command Found from Trivial+String+Reflection Enc. 38

Figure 4.21: System Command Found from Trivial+String+Reflection+Class Enc. 39

Figure 4.22: Intent Filter Found from Trivial Enc. 41

Figure 4.23: Intent Filter Found from String Enc. 42

Figure 4.24: Intent Filter Found from Reflection Enc. 43

Figure 4.25: Intent Filter Found from Class Enc. 44

Figure 4.26: Intent Filter Found from Trivial+String Enc. 45

Figure 4.27: Intent Filter Found from Trivial+String+Reflection Enc. 46

Figure 4.28: Intent Filter Found from Trivial+String+Reflection+Class Enc. 47

Figure 4.29: App Component Found from Trivial Enc. 48

Figure 4.30: App Component Found from String Enc. 49

Figure 4.31: App Component Found from Reflection Enc. 50

Figure 4.32: App Component Found from Class Enc. 51

Figure 4.33: App Component Found from Trivial+String Enc. 52

Figure 4.34: App Component Found from Trivial+String+Reflection Enc. 53

Figure 4.35: App Component Found from Trivial+String+Reflection+Class Enc. 54

xi ©Daffodil International University

ABSTRACT

 Android smartphone’s security and privacy of personal information remain threatened

because of popularity. Noxious applications represent a danger to the security of the Android. Yet

understanding Android malware utilizing dynamic examination can give a far-reaching view, it is

still exposed to surprising expense in condition arrangement and manual endeavors in examination.

To classify or detect android malware applications, it is important to identify pattern of malware.

In this study, some important static features pattern of obfuscated android malware applications

has been proposed. AndroShow, a broad static analysis-based feature analyzer is introduced that

identifies important features pattern of Android. Permission, API call, app component, intent filter

and system call patterns are embedded in vector matrix. In order to classification and detection of

android malware application this malware pattern analysis will beneficial. AndroShow investigate

10479 obfuscated malware applications. These malware applications consist of seven categories

of obfuscation techniques taken from PRAGuard dataset.

1 ©Daffodil International University

CHAPTER 1

INTRODUCTION

1.1 Background Study

Android is a smartphone operating system developed by Google, introduced in 2008. Now

it is most popular operating system than other platforms. Android smartphones have persistently

been supplanting the customary cell phones. Smartphone have been changing activity of day-to-

day to people. Now, many desktop tasks can be completed by smartphone. Hotel room booking,

airplane ticket, bus ticket, online banking, online marketing and so many important tasks are being

completed “on the go”. These demandable tasks playing an important role to increase smartphone

users. Monthly, there are over 2 billion active android devices around the world (Ben, 2017).

According to International Data Corporation reports on smartphone market share, android system

has 86.8% of the smartphone operating systems, up to the third quarter of 2018 (IDC). Besides,

there are over 2 million apps in the app store (Statista). Smartphone user keeps personal, business

information in the device which are very much sensitive. Therefore, smartphones running android

are progressively focused by aggressors and tainted with vindictive programming. As opposed to

different portion, android takes into account introducing applications from unsubstantiated

sources. For example, outsider markets, which makes packaging and disseminating applications

with malware simple for aggressors (Arp et al., 2014). (Fereidooni et al., 2016) mentioned that in

the principal half of 2014, F-Secure detailed that new risk families or 295 new variations of

realized families were gathered. it merits referencing that 294 out of these 295 families keep

running on Android. In addition, they also referred that in the main quarter of 2015, Kaspersky

mobile security distinguished 103, 072 new perilous applications, a three-overlap increment from

last quarter of 2014. Obviously quick and dependable components are required to distinguish and

investigate possibly perilous applications (Suarez-Tangil et al., 2017)

1.2 Motivation of the Research

This part studies the three factors that motivate the research become involved in this

bachelor study. First, Pathao is a popular transportation company in Bangladesh. It’s local ride

sharing app is Pathao. This app purportedly protects clients' personal messages abusing the

information security control. The versatile application-based vehicle hailing administration keeps

all information including individual discussion at inbox including contacts which is out of

protection controls, affirmed a client demonstrating video archives. An ongoing video via web-

based networking media demonstrates that the application protects all contacts and individual

messages to structure client administrations. Pathao specialists, be that as it may, precluded the

claim from securing breaking client information (Jannatul, 2018). It requires dangerous

permissions like read sms, read contacts. These permissions are related to user’s privacy. Second,

2 ©Daffodil International University

lack of study in malware pattern analysis. Third, self-study in obfuscated android malware

application.

1.3 Problem Statement

There are several many android malware trends exist in global aspect. For these trends,

smartphone device security is compromising. Three latest trends are undertaken for problem

statement. First, aggressive ads, it’s can (1) haphazardly promotions springing up, (2) leaks of

private data. It requires dangerous permissions like permission of read and write to default

browser, external code executes like DexClassLoader. Second, lockers, so called ransomware. It’s

(1) encrypt device data (2) show ransom note in lock screen (3) request payment in

cryptocurrencies. It requires System_Alert permission, also it can add new device administrator as

well as delete files and so many. Third, bankers, the quickest developing category. Some

characteristics are (1) persuading phishing assaults to bait clients into giving bank data, (2) very

much perilous on the grounds that may have coordinate cost affect, (3) typically extremely

advanced and complex malware (Jan & Ondrej, 2018).

1.4 Research Question

How does malware pattern analysis of different strategies beneficial for android malware

detection?

1.5 Research Objective

To identify malware pattern for detecting android malware application.

1.6 Research Contribution

 In this paper, several works have been done. Main contribution of this paper analysis is

given below -

● Static analysis has been performed on obfuscated Android malware application.

● Analysis performs on five features - permission, API call, intent filter, app component,

system call.

● Features pattern proposed in 2D matrix. Where column name is the feature tag name and

rows are the 0/1 with family name.

● Most uses features demonstrate in 2D bar chart.

● Features extracted from obfuscated malware dataset, PRAGuard. This dataset contains

10,479 obfuscated malware applications with seven different obfuscation techniques.

3 ©Daffodil International University

● Every obfuscated technique wise feature pattern has been proposed.

1.7 Thesis Organization

Following chapters are sort out as: literature review is discussed in chapter 2. Research

methodology that contains research method, tools, environment that are used in this paper work,

discussed in chapter 3. Results and discussions of analysis in chapter 4. Chapter 5 conclude the

paper with recommendation, finally.

4 ©Daffodil International University

CHAPTER 2

LITERATURE REVIEW

2.1 Previous Study

(Arp et al., 2014) introduced DREBIN, a lightweight strategy for discovery of android

malware that empowers recognizing pernicious applications specifically on the smartphone. It

performs a wide static investigation, assembling number of highlighted features of an application

as could reasonably be expected. They extract eight set of features but more specifically to robust

analysis they extracted permissions, API calls, intent filters, network addresses. They implant these

features in joint vector space so that classical patterns characteristics for malware can be simply

identified. They evaluate 123,453 applications and 5560 malware samples in DREBIN and get a

detection rate of 94% malware with false positive rate of 1%. It’s similar to 1 false alarm in 100

applications.

 (Suarez-Tangil et al., 2017) presented DroidSieve, an android malware classifier dependent

on static examination that is quick, exact, and flexible to obfuscation. It’s depends on diverse

features that are known to be characteristic of android malware, covering code structure,

permissions, set of invoked components and API calls. DroidSieve plays out a novel profound

assessment of the application to recognize separating highlights missed by existing strategies,

counting local components, obfuscation relics, and features that are invariant under obfuscation.

For malware recognition, they accomplish up to 99.82% precision with zero false positives and for

family detection of obfuscated malware, they accomplish 99.26% accuracy.

 (Iqbal & Zulkernine, 2018) implement SpyDroid, a multiple real time detection tool for

android malware. This detection framework deploys multiple sub-detectors on real device. These

sub-detectors monitor the app behavior and then report to SpyDroid detector. After analyzing the

report, it takes decision the app malicious or not. On classifying 4956 apps including 2711 malware

and 2254 malware samples different sub-detectors classify same application differently. But

ensemble of sub-detectors raises the identification rate remarkably.

A graph-based model applied by (Alasmary et al., 2019) to detect android malware. They

name it Poster. They analyze Android and IoT malware to understand the characteristics. They

conduct a depth analysis on graph properties binaries of Control Flow Graph (CFG) structure.

General characteristics and graph algorithmic properties were identified from 2874 benign and

2891 malware apps. They achieved best and highest accuracy rate 97.9%, FPR (1.1%), FNR

(11.6%) with Random Forest. They apply different machine learning classifier like LR, SVM, RF

and CNN deep learning methods on the entire dataset.

A dynamic zero-day Android malware detection system presented by (Grace et al., 2012).

Authors developed an automated system called RiskRanker. It examines whether a specific app

disclose dangerous behavior like initiating a root exploit or transferring background SMS. They

perform analysis on 118,318 apps to get effectiveness and accuracy. Their system uncovers 718

malware samples in 29 families and 320 zero-day malware apps from 11 well defined families.

5 ©Daffodil International University

 Remarkable anomalies of network behavior of smartphone applications are planned in

(Murtaz et al., 2018). The authors developed a system whose main goal is to protect smartphone

user’s device and cellular infrastructure corporations from malicious apps from nine traffic feature

measurements. They get a common accuracy of 94% for five machine learning classifiers; Random

Forest, K-Nearest Neighbor, Decision Tree, Random Tree, and Regression. The model uses cluster

strategies containing stream based, bundle based and time-based highlights to narrate malware

families.

 (Parker et al., 2018) inspect whether a data mining technique initially developed to detect

malware on a Windows operating system can be deployed to detect malware in Android devices.

They proposed a novel algorithm that depends on step sizes and a popularized multi-layer vector

space (MLVC) model for detecting Android malware. They compare the effectiveness of two

techniques and get a result that shows two methods are able to accurately classify the samples as

malware or benign with powerful precision.

 (Chang et al., 2018) demonstrate malware family’s main characteristic operations or

activities mainly related to its intent. They introduced ANTSdroid, a novel automatic dynamic

Android profiling system. They applied Runtime API sequence Motif Mining Algorithm

(RasMMA) based on the analysis of the sensitive and permission -related execution traces of the

threads and processes of a set of variant APKs of a malware family. They take 10 families of 2568

malware samples from the DREBIN dataset. DroidKungFu malware family samples used to

demonstrate the generated family signature actually captures key sample activities of the family.

The investigation results reveal the usefulness of using the generated family signature to detect

new variants using real-world datasets.

 (Martín et al., 2019) proposed a machine learning based android malware detection based

on signature. They inspect a large collection of Android applications (>80K) marked as malware

by at least on AV from a set of 61 unlike engines, allowing almost 260K malware signatures. They

perform a depth analysis on malware families and their interrelations engine wide, distinguishing

up to 41 unlike malware families which belong to three large categories; Adware, Harmful and

Unknown. They classify Unknown applications by machine learning classification tools; Logistic

Regression with Lasso regularization and Random Forest for placing into Adware or Harmful.

These classifier models yield outstanding classification result (F1-score of 0.84) and shows some

of Unknown family classes into either Adware/Harmful threat.

 Machine learning based static analysis proposed by (Tiwari & Shukla, 2018). Authors

analyze API and permission for malware detection in android device. Their dataset consists of 669

malware samples and 652 benign samples. They got 97.25% accuracy with the use of logistic

regression and 96.21% of accuracy with the support vector machine further without any pre-

sequence of dataset. After preprocessing the dataset, they obtained 97.72% accuracy with 350

features and 94.69% accuracy with 30 features using support vector machine. They use only

common features instead of a large number of features and further optimized the feature using

PCA and obtained 94.31% of accuracy with 30 features.

6 ©Daffodil International University

 A deep Autoencoder model is proposed by (He et al., 2018). It is a neural network model

implemented with Google’s open source TensorFlow deep learning library. It is designed to reduce

the dimension of feature vectors. They also applied logistic regression model to learn and classify

the Android applications to be normal or not. They experiment on 5000 normal applications and

1200 abnormal applications and get recall rate and F1 value respectively 0.93 and 0.643.

(Qamar et al., 2019) reveals all endeavors towards versatile malware creation, spreads,

dispersal and identification. The all-around characterized scientific classifications are extensively

introduced and examined the need to crumble its unsafe effect on network. Besides, in this paper

measurable examination and the exploration work led amid years 2013-2019 in the space of

versatile malware investigation alongside man-made consciousness recognition systems are talked

about. They propose some future headings for analysts that grows increasingly precise, productive,

strong and versatile system in context of android malware identification. they additionally

moderately characterize and look at avoidance systems, for example, polymorphism, java

reflection, muddling and control stream change that is utilized by malware creators to sidestep

from detection. Additionally, authors expressly decide a few shortcomings from existing

methodologies that are not altogether examined by researchers. To adapt to this developing risk,

difficulties and future work headings are likewise showed to give a brisk rule to the scholarly

community and industry alike.

Before study of (Hu et al., 2019), no existing studies have investigated the characteristics

of money-making apps. They uncover a few fascinating perceptions: (1) cash making applications

have turned into the objective of malware designers, as we discovered a considerable lot of them

open versatile clients to genuine protection and security dangers. Generally, 26% of the examined

applications are conceivably malignant. (2) these applications have pulled in a huge number of

clients, be that as it may, numerous clients grumble that they are swindled by these applications.

We likewise uncovered that positioning misrepresentation procedures are generally utilized in

these applications to advance the positioning of applications inside application markets. (3) these

applications generally spread unseemly and malignant substance, while unsuspicious clients could

get contaminated. Authors exact examination results uncover different terrible substance, for

example, malware, conflicting substance and substance with forceful promotions. Study reveals

that "Content Sharing" applications and "Pay-Per-Install" applications have gotten the greatest

number of client grumblings and most conceivably malevolent applications have a place with these

two classes. Most number of client grumblings and most possibly pernicious applications have a

place with these two classes. Authors investigation has uncovered different fascinating discoveries,

including the nearness of positioning misrepresentation, protection issues, malware nearness,

conflicting and pernicious appropriated substance.

7 ©Daffodil International University

2.2 FEATURE ENGINEERING

2.2.1 Permission

Permission plays an important role in Android apps. A huge piece of Android's worked in

security is its permissions framework (Fereidooni et al., 2016). Protecting privacy of Android user

is most important in online world. This important task is done by permission. To access sensitive

user data (Contacts, SMS), moreover explicit system features (Camera, Location) permission must

be requested by android apps. Based on feature, system allow the permission automatically or

might provoke the user to allow the appeal. All permission present publicly in <uses-permission>

tags in the manifest file. Android app that requires normal permission (do not harm to user’s

privacy or device operation) system automatically allow these permissions to app. App that

requires dangerous permission (permission that can harmful for user’s privacy or device normal

operation) the user must explicitly allow to accept those permissions (Android Developers, a).

Permissions enable an application to get to possibly perilous API calls. Numerous applications

need a few authorizations to work appropriately and client must acknowledge them at install time.

Permission gives a more top to bottom view on the functional qualities of an application. Malware

authors include dangerous permission in manifest that is not relevant to app and also declare much

more permissions than literally required (Felt et al., 2011, Johnson et al., 2012). Therefore, it is

become more difficult to detect malicious application based on permissions.

 Ref. Features Samples Accuracy Machine Learning Methods

 (Arslan et al., 2019) Permission 7400 91.95% BayesNet, Naive Bayes,

 LogisticRegression, K-star, OneR,

 Multilayer Perceptron, K-nearest,

 Decision Tree, J48, Random Forest

(Dighe et al.) Permission 3784 94.50% J48, Random Forest

(Huang et al., 2013) Permission 125,249 81% AdaBoost, Naïve Bayes,

C4.5, SVM

(Kumar et al., 2019) Permission 11,752 98.1% Random Forest

(Aung & Zaw, 2013) Permission 700 91.75% K-Means, J48, RF, CART

(Dong, 2017) Permission 28,847 95.1% Linear model, Tree Model, Neural

 Network and Ensemble Model

8 ©Daffodil International University

Table 2.1: Some Previous Works on Permission

2.2.2 Intent Filter

 An Intent is an informing object you can use to ask for an operation from another

application component. Despite the fact that intent makes easier communication between

components in a few different ways, there are three basic ways (1) starting an activity (2) starting

a service (3) delivering a broadcast. Two types of intent are there (1) Explicit Intents (2) Implicit

Intents (Android Developers, b). Explicit Intents identify the components to start with by

containing targeted package names and class names. Normally, Explicit Intents are utilized to

interface parts inside a similar application and intended for inter application communications. In

contrast to Explicit Intents, Implicit Intents do not name a particular segment, however rather

proclaim general activities to perform. At the point when an application makes an Implicit Intent,

the Android framework finds the suitable segment to begin by contrasting the substance (i.e.,

action, category and data) of the Intent to the pronounced Intent Filters. On the off chance that the

Intent matches an Intent Filter, the framework begins that segment and conveys it the Implicit

Intent item (Xu et al., 2016). If multiple Intent filters are matches than system shows a dialog box

to user to pick up which app to use. An Intent filter is a declaration in an app’s manifest.xml files

that states the type of intents of the component will receive. Suppose, an activity declares an intent

filter, means that other apps can directly start the activity with an undoubtable type of intent.

Similarly, if an activity does not declare an intent, then it can be activated only by Explicit Intent

(Android Developers, b). Intent used in inter component and inter app communication. Intent

filters identify a particular access for a component as well as the application. Intent filters can be

used for spying specific intents. Malware is responsive to particular set of system events. So, Intent

filters can be indicator.

 Ref. Features Samples Accuracy/Findings Methods

(Elish et al., 2015) Intent 2644 Shows effective solution Static Analysis

 need to detect collusion attack

(Xu et al., 2015) Intent 17,290 97.4% SVM

(Feng et al., 2014) Intent - Resilience to some obfuscation Call Graph,

 techniques in detection Taint Analysis

(Feizollah et al., 2017) Permission, 7406 95.5% Bayesian

Network, K2, Geneticsearch,

 Intent HillClimber, LAGDHillClimber

9 ©Daffodil International University

(Li et al., 2015) Intent 2283 96.6% Taint Analysis, Data Flow

 Analysis

(Li et al., 2014) Intent 2000 75% Taint Analysis, CFG,

 Data Flow Analysis

Table 2.2: Existing Researches on Intent Filter

2.2.3 API Call

 API stands for Application Programming Interface. In simple terms, APIs simply enable

applications to speak with each other. Envision the accompanying situation: You (as in, your

application, or your customer, this could be an internet browser) needs to get to another

application's information or usefulness. For instance, maybe you need to get to all Twitter tweets

that notice the #malware hashtag. You could email Twitter and request a spreadsheet of every one

of these tweets. In any case, at that point you'd need to figure out how to bring that spreadsheet

into your application; and, regardless of whether you put away them in a database, as we have

been, the information would end up obsolete in all respects rapidly. It is difficult to stay up with

the latest. It would be better and easier for Twitter to give you an approach to question their

application to get that information, so you can view or utilize it in your own application. It would

remain state-of-the-art consequently that way (Perry, 2017). API includes of principle set of

packages and classes. Most apps use large number of API calls, so it’s help us to characterize and

differentiate malware from benign apps. (Peiravian & Zhu, 2013) state that benign apps use most

APIs than malware apps. The author’s in (Seo et al., 2014) has listed some suspicious API calls

used by malware applications. For example - sendTextMessage, getPackageManager,

getDeviceId, Runtime.exec.

 Ref. Features Samples Accuracy / Findings Methods

(Peiravian & Zhu, 2013) Permission, 2510 96.39% SVM, J48, Bagging

 API Call

(Yang et al., 2017) Permission, 28558 84.9% [Offline] String Subsequence

 API Call 99.0% [Online] Based SVM

(Skovoroda & Permission, 10449 90-94% Static, Model

Gamayunov, 2017) API Call Matching

10 ©Daffodil International University

(Aafer et al., 2013) API Call 20000 99.0% ID3, C4.5, KNN, SVM

(Shen et al., 2018) API Call 8598 97.6% TP Complex Flow,

 91.0% TN N-gram Analysis

(Ghani et al., 2015) API Call, - SMSManager, Static Analysis,

 Manager Class Telephony Manager Feature Comparison

most used in malware

Table 2.3: Existing Researches on API Call

2.2.4 System Call

 Android core is the modified version of Linux 2.6 kernel. For adopting mobile operating

system devices this modification was done. The Android Kernel explicit bit upgrades on power

management, shared memory drivers, alert drivers, folios, bit debugger and lumberjack and low

memory executioners. System calls connect Android application and kernel. Whenever a client

asks for administrations like call a telephone in client mode through the telephone call application,

the demand is sent to the Telephone Directory Service in the application structure. The Dalvik

Virtual Machine in Android runtime changes the client ask for gone by the Telephone Manager

Service to library calls, which results in various framework calls to Android Kernel. While

executing the system call, there is a change from client mode to part mode to play out the delicate

activities. At the point when the execution of activities asked for by the system call is finished, the

control is come back to the client mode (Malik & Khatter, 2016). As talked about over, the system

calls are the communicator between the client and the bit. This implies all solicitations from the

applications will go through the System Call Interface before its execution through the equipment.

So, catching and dissecting the system call can give data about the conduct of the application. (Seo

et al., 2014) listed some system calls that are often used in malware applications. for example -

chmod, su, mount, sh, killall, reboot, mkdir, ln, ps.

 Ref. Features Samples Accuracy / Findings Methods

(Dimjaševic et al., 2015) System Call 12,660 93% SVM, RF, LASSO,

 Ridge Regularization

(Firdaus & Anuar, 2015) System Call, 1100 92.5% Multilayer Perceptron,

 Directory Path, Random Forest,

 Code Based, Naïve Bayes

11 ©Daffodil International University

(Da et al., 2016) System Call 152 >93.0% Random Forest

(Kedziora et al., 2018) Broadcast- 1958 80.3% - 80.7% RF, SVM, K-NN,

Receiver, Naive Bayes,

 System Call, Logistic Regression

API Call

(Tchakounté & System Call Malgenom Click Event Perform Dynamic

 Dayang, 2013) (DroidDream) Malicious Tasks Analysis

(Wahanggara & System Call 460 90.0% (Polynomial Kernel) SVM

 Prayudi, 2015) 86.0% (RBF Kernel)

(Malik & Khatter, 2016) System Call 645 Malware App Invokes Dynamic

 System Calls More Analysis

 Frequently Than

 Benign App

Table 2.4: Existing Researches on System Call

2.2.5 App Component

 Application components are the fundamental structure squares of an Android application.

Every component is a section point through which the framework or a client can enter your

application (Android Developers, c). These parts are inexactly coupled by the application show

record AndroidManifest.xml that depicts every segment of the application and how they connect

(tutorialspoint). Some of them depend on others. There are following four types of component

used in Android application -

● Activities

An action is the section point for communicating with the client. It speaks to a solitary

screen with a UI. For instance, an email application may have one movement that

demonstrates a rundown of new messages, another action to create an email, and another

action for perusing messages. In spite of the fact that the exercises cooperate to shape a

durable client involvement in the email application, everyone is free of the others. All

things considered; an alternate application can begin any of these exercises if the email

application permits it. For instance, a camera application can begin the movement in the

email application that makes new mail to enable the client to share an image.

12 ©Daffodil International University

● Services

An administration is a broadly useful section point for keeping an application running out

of sight for a wide range of reasons. An administration is a part that keeps running out of

sight to perform long-running activities. An administration does not give a UI. For instance,

an administration may play music out of sight while the client is in an alternate application,

or it may get information over the system without blocking client connection with a

movement.

● Broadcast receivers

A broadcast receiver is a part that empowers the framework to convey occasions to the

application outside of standard client stream, permitting the application to react to

framework wide communicate declarations. Since communicate collectors are another all-

around characterized section into the application, the framework can convey communicates

even to applications that aren't as of now running. Thus, for instance, an application can

plan an alert to present a warning on enlightening the client regarding an up and coming

occasion... also, by conveying that caution to a BroadcastReceiver of the application, there

is no requirement for the application to stay running until the alert goes off. In spite of the

fact that communicate recipients don't show a UI, they may make a status bar warning to

alarm the client when a communicate occasion happens (Android Developers, c).

● Content providers

A content provider part supplies information from one application to others on solicitation.

The information might be put away in the record framework, the database or elsewhere

altogether. Through the content provider, different applications can inquiry or change the

information if the content provider permits it. For instance, the Android framework gives

a content provider that deals with the client's contact data. Content provider are additionally

helpful for perusing and composing information that is private to your application and not

shared.

 Ref. Features Samples Accuracy / Findings Methods

(Wu et al., 2012) App Component 1738 97.87% Singular Value

 etc. Decomposition

 KNN

 (Wang et al., 2017) App Component 8385 99.7% KNN,

 etc. Random Forest, J48

(Kim et al., 2019) App component 35,331 98.0% MNN-z, MNN-s,

etc. DNN

13 ©Daffodil International University

(Shen et al., 2014) App Component 308 86.36% Topology Graph

 etc.

(Li et al., 2018) App Component 19,000 99.01% (From DREBIN) Factorization

 etc. 99.2% (From AMD) Machine

(Rana et al., 2018) App Component 11120 94.0% RF, DT, EDT, GB,

 etc. SVM, NN-MLP, NB,

 k-NN, DA, LR, BAGG,

 KMN

Table 2.5: Existing Researches on App Component

14 ©Daffodil International University

CHAPTER 3

RESEARCH METHODOLOGY

3.1 Dataset

This paper is based on Android PRAGuard dataset that was proposed by (Maiorca et al.,

2015). It has 10479 malware samples. This dataset was established by obfuscating malware

samples of the MalGenome and Contagio Minidump datasets with seven different obfuscation

techniques such as string encryption, class encryption, reflection etc.

3.2 Feature

This paper’s aim is extracting most important features of Android that are often used by

malware writers. To grant for a gentile and tensile analysis, this paper illustrates all extracted

features such as permissions, app components, API calls, intent filters, system calls based on (Arp

et al., 2014).

Figure 3.1: Features

15 ©Daffodil International University

3.3 Tool

This paper needs to analyze the details of APK. To explore such thing is called reverse

engineering. Reverse engineering can be done with Androguard. Androguard is a tool for playing

with android files which is developed in python done by VirusTotal project. What can play

Androguard that’s below:

● DEX / ODEX

● APK

● Android’s binary xml

● Android resources

● Disassemble DEX/ODEX bytecodes

● Decompiler for DEX/ODEX files

CLI or graphical UI can be used for Androguard. Besides, as a library Androguard is adaptable.

This analysis uses Androguard as library or module (in python) to analyze DEX and APK files.

3.4 Environment

Collected dataset has seven obfuscation techniques along with 10479 malware samples.

Androguard is a pretty much big library. Memory and CPU usage will be high while extracting

information from dataset by Androguard. For comfort and efficient analysis this paper adopts HP

i5 2.30 GHz 8GB computing environment. OS: Windows 10, language: Python 3, Module: CSV,

Matplotlib.

3.5 Procedure

Every work has predefined process. So therefore, this paper works has some to gain

paper's objective. Working procedure of this paper analysis demonstrated below -

A. At first step, AndroShow inspect all 10479 malware apk samples whether they are valid or

not. Because of using obfuscation technique some apk’s structure might be broken Maiorca

et al. [7]. Therefore, it’s needs to examine first. So, Androguard could not extract some

apk’s. These apk’s are not in proper zip format.

B. Second step is extracting features (3.2) using Androguard. Androguard has command line

interface. At a time only one apk can extracted. So, extracting many apks are not efficient

with CLI. For this situation AndroShow has been introduced. It uses Androguard library.

AndroShow can extract multiple apks at a time.

16 ©Daffodil International University

C. In this step CSV file is created upon on features tag name got from second step. These

features are columns name and rows are 0/1. If a feature found in apk than its 1 otherwise

0.

D. After that, creating a 2D bar chart with matplotlib from CSV file where X-axis is for

features (3.2) tag name and Y-axis for total counted number of features (3.2) tag found

from CSV, counting on how many 1 found from individual column related to feature tag

name.

E. Five and last is to get most uses features of individual obfuscated techniques from bar chart.

Figure 3.2: Research Methodology

17 ©Daffodil International University

CHAPTER 4

RESULT AND DISCUSSION

 AndroShow inspect a broad static analysis of APK. It extracts all features (3.2) from

PRAGuard dataset. In this following section this paper will shows every features single and

possible combinations pattern of seven obfuscated techniques as well as gives a detailed overview

of analysis.

Full Short

Permission PR

Requested Permission RPR

API Call APC

App Component AC

Intent IN

System Command COM

Table 4.1: Short Version of Features

4.1 PERMISSION ANALYSIS

 In this section, this paper illustrates every obfuscated technique permission and requested

permission analysis report. Besides, every techniques permission pattern and technique wise a

malware family pattern is given.

Full Version Short Version

INTERNET PR1

READ_PHONE_STATE PR2

READ_CONTACTS PR3

ACCESS_NETWORK_STATE PR4

SEND_SMS PR5

WRITE_EXTERNAL_STORAGE PR6

Table 4.2: Shortened Name for Permissions

18 ©Daffodil International University

4.1.1 Trivial Encryption

 From Trivial enc. analysis 152 permissions including 18 requested permissions found. Top

50 permissions are displaying below -

Figure 4.1: Permission Found from Trivial Enc.

PR1 PR2 PR3 - PR4 PR5 PR6

1 1 0 - 1 1 1

Table 4.3: A Permission Pattern of Trivial Enc.

Family PR1 PR2 PR3 - PR4 PR5 PR6

jSMSHider 1 1 1 - 1 0 0

jSMSHider 1 1 1 - 1 0 0

AnserverBot 1 1 1 - 1 1 0

AnserverBot 1 1 1 - 1 1 0

Geinimi 1 1 1 - 0 1 1

Geinimi 1 1 1 - 1 1 1

Table 4.4: Family Permission Pattern of Trivial Enc.

19 ©Daffodil International University

4.1.2 String Encryption

 Like Trivial enc., same number of normal permissions and requested permissions found

from String enc. Top 50 are showing below -

Figure 4.2: Permission Found from String Enc.

PR1 PR2 PR3 - PR4 PR5 PR6

1 1 1 - 0 0 0

Table 4.5: A Permission Pattern of String Enc.

20 ©Daffodil International University

Family PR1 PR2 PR3 - PR4 PR5 PR6

DroidKungFu1 1 1 0 - 1 0 1

DroidKungFu1 1 1 0 - 1 0 1

KMin 1 1 1 - 1 1 1

KMin 1 1 1 - 1 1 1

Plankton 1 1 1 - 0 0 1

Plankton 1 1 1 - 0 0 0

Table 4.6: Family Permission Pattern of String Enc.

4.1.3 Reflection Encryption

 Alike with above two techniques, Reflection enc. have also same findings. Figure 4.3

shows top 50 features of Reflection enc.

Figure 4.3: Permission Found from Reflection Enc.

21 ©Daffodil International University

PR1 PR2 PR3 - PR4 PR5 PR6

1 1 0 - 1 0 1

Table 4.7: A Permission Pattern of Reflection Enc.

Family PR1 PR2 PR3 - PR4 PR5 PR6

BaseBridge 1 1 0 - 1 0 1

BaseBridge 1 1 0 - 1 0 1

DroidKungFu3 1 1 0 - 1 0 1

DroidKungFu3 1 1 1 - 1 0 1

ADRD 1 1 0 - 1 0 1

ADRD 1 1 0 - 1 0 1

Table 4.8: Family Permission Pattern of Reflection Enc.

4.1.4 Class Encryption

 Similarly, upon three techniques number of permission and requested permissions are

equivalent to Class enc. Top 50 features of Class enc. are in figure 4.4.

Figure 4.4: Permission Found from Class Enc.

22 ©Daffodil International University

PR1 PR2 PR3 - PR4 PR5 PR6

1 1 0 - 1 1 1

Table 4.9: A Permission Pattern of Class Enc.

Family PR1 PR2 PR3 - PR4 PR5 PR6

DroidDream 1 1 1 - 1 0 1

DroidDream 1 1 0 - 1 0 1

GoldDream 1 0 0 - 1 0 0

GoldDream 1 1 0 - 1 0 1

YZHC 1 1 0 - 1 1 1

YZHC 1 1 0 - 1 1 1

Table 4.10: Family Permission Pattern of Class Enc.

4.1.5 Combination of Trivial and String Encryption

 115 normal permissions including 18 requested permissions found from Trivial+String

enc. Much more different from above four techniques. Above four techniques have 152

permissions but this combination techniques have only 115 permissions. Number of requested

permissions with other techniques are same. Figure 4.5 shows top 50 features that are found from

Trivial+String enc.

Figure 4.5: Permission Found from Trivial+String Enc.

23 ©Daffodil International University

PR1 PR2 PR3 - PR4 PR5 PR6

1 1 0 - 1 1 1

Table 4.11: A Permission Pattern of Trivial+String Enc.

Family PR1 PR2 PR3 - PR4 PR5 PR6

FakePlayer 0 0 0 - 0 1 0

FakePlayer 0 0 0 - 0 1 0

Geinimi 1 1 1 - 1 1 1

Geinimi 1 1 1 - 0 1 1

Pjapps 1 1 1 - 1 1 1

Pjapps 1 1 1 - 1 1 1

Table 4.12: Family Permission Pattern of Trivial+String Enc.

4.1.6 Combination of Trivial, String and Reflection Encryption

 Comparing to previous technique, number of permissions found from this technique is

decreased to 111. Number of requested permissions is same as it was. Figure 4.6 is showing

permissions found from this technique.

Figure 4.6: Permission Found from Trivial+String+Reflection Enc.

24 ©Daffodil International University

PR1 PR2 PR3 - PR4 PR5 PR6

1 1 1 - 0 0 1

Table 4.13: A Permission Pattern of Trivial+String+Reflection Enc.

Family PR1 PR2 PR3 - PR4 PR5 PR6

DroidDreamLight 1 1 1 - 1 0 1

DroidDreamLight 1 1 1 - 1 0 1

DroidKungFu4 1 1 0 - 1 0 1

DroidKungFu4 1 1 1 - 1 0 1

AnserverBot 1 1 1 - 1 1 0

AnserverBot 1 1 1 - 1 1 0

Table 4.14: Family Permission Pattern of Trivial+String+Reflection Enc.

4.1.7 Combination of Trivial, String, Reflection and Class Encryption

 With contrast of other techniques, most a smaller number of permissions found from this

technique. Only 107 permissions found this combination. Number of requested permissions is

same, 18. Figure 4.7 shows this technique most found features.

Figure 4.7: Permission Found from Trivial+String+Reflection+Class Enc.

25 ©Daffodil International University

PR1 PR2 PR3 - PR4 PR5 PR6

1 0 1 - 1 0 1

Table 4.15: A Permission Pattern of Trivial+String+Reflection+Class Enc.

Family PR1 PR2 PR3 - PR4 PR5 PR6

GoldDream 1 1 0 - 1 1 1

GoldDream 1 1 0 - 1 1 1

Bgserv 1 1 0 - 1 1 1

Bgserv 1 1 0 - 1 1 1

jSMSHider 1 0 0 - 1 0 0

jSMSHider 1 1 1 - 1 0 0

Table 4.16: A Family Permission Pattern of Trivial+String+Reflection+Class Enc.

4.2 API CALL ANALYSIS

 In this section this paper will illustrate every obfuscated techniques suspicious API call

analysis report. Besides, every techniques API call pattern and technique wise a malware family

pattern also given.

Full Version Short Version

getInputStream APC1

openConnection APC2

getDeviceId APC3

getPackageManager APC4

getSubscriberId APC5

getAssets APC6

Table 4.17: Shortened Name for API Call

26 ©Daffodil International University

4.2.1 Trivial Encryption

 From Trivial enc. analysis 23 suspicious API call found. They are in figure 4.8.

Figure 4.8: Suspicious API Call Found from Trivial Enc.

APC1 APC2 APC3 - APC4 APC5 APC6

1 0 0 - 1 0 1

Table 4.18: An API Call Pattern of Trivial Enc.

Family APC1 APC2 APC3 - APC4 APC5 APC6

jSMSHider 1 1 1 - 1 1 0

jSMSHider 1 1 1 - 1 1 0

BaseBridge 1 1 0 - 1 1 1

BaseBridge 1 1 0 - 1 0 1

DroidKungFu1 1 1 1 - 1 0 1

DroidKungFu1 1 1 1 - 1 1 1

Table 4.19: Family API Call Pattern of Trivial Enc.

27 ©Daffodil International University

4.2.2 String Encryption

 Like Trivial enc., there are same number of suspicious API call uses in String enc. They

are given below -

Figure 4.9: Suspicious API Call Found from String Enc.

APC1 APC2 APC3 - APC4 APC5 APC6

1 1 1 - 1 0 1

Table 4.20: An API Call Pattern of String Enc.

Family APC1 APC2 APC3 - APC4 APC5 APC6

DroidKungFu1 1 1 1 - 1 1 1

DroidKungFu1 1 1 1 - 1 0 1

DroidDreamLight 1 1 1 - 1 1 1

DroidDreamLight 1 1 1 - 1 1 1

Pjapps 1 1 1 - 1 1 1

Pjapps 1 1 1 - 1 1 1

Table 4.21: Family API Call Pattern of String Enc.

28 ©Daffodil International University

4.2.3 Reflection Encryption

 Similarly, with above two techniques, Reflection enc. have also same findings. Figure 4.10

shows usage of suspicious API call of Reflection enc.

Figure 4.10: Suspicious API Call Found from Reflection Enc.

APC1 APC2 APC3 - APC4 APC5 APC6

1 1 1 - 0 1 0

Table 4.22: An API Call Pattern of Reflection Enc.

Family APC1 APC2 APC3 - APC4 APC5 APC6

BaseBridge 1 1 0 - 1 1 1

BaseBridge 1 1 0 - 1 1 1

RogueSPPush 1 1 1 - 1 0 0

RogueSPPush 1 1 1 - 1 0 0

KMin 1 1 1 - 1 1 1

KMin 1 1 1 - 1 1 1

Table 4.23: Family API Call Pattern of Reflection Enc.

29 ©Daffodil International University

4.2.4 Class Encryption

 From Class enc analysis, it shows that 20 suspicious API call used in this technique. It uses

3 less suspicious API call than other techniques. These are given in figure 4.11.

Figure 4.11: Suspicious API Call Found from Class Enc.

APC1 APC2 APC3 - APC4 APC5 APC6

1 1 1 - 1 0 1

Table 4.24: An API Call Pattern of Class Enc.

Family APC1 APC2 APC3 - APC4 APC5 APC6

DroidDream 1 0 0 - 0 0 1

DroidDream 0 0 0 - 0 0 0

Zsone 0 0 0 - 1 0 1

Zsone 0 0 0 - 1 0 1

Asroot 0 0 0 - 0 0 1

Asroot 0 0 0 - 0 0 1

Table 4.25: Family API Call Pattern of Class Enc.

30 ©Daffodil International University

4.2.5 Combination of Trivial and String Encryption

 Unlike with other techniques, 22 suspicious API call used in this technique. Figure 4.12

shows them.

Figure 4.12: Suspicious API Call Found from Trivial+String Enc.

APC1 APC2 APC3 - APC4 APC5 APC6

1 1 0 - 1 0 1

Table 4.26: An API Call Pattern of Trivial+String Enc.

Family APC1 APC2 APC3 - APC4 APC5 APC6

FakePlayer 0 0 0 - 0 0 0

FakePlayer 0 0 0 - 0 0 0

DroidKungFu4 1 1 1 - 1 1 1

DroidKungFu4 1 1 1 - 1 1 1

DroidDreamLight 1 1 1 - 1 1 1

DroidDreamLight 1 1 1 - 1 1 1

Table 4.27: Family API Call Pattern of Trivial+String Enc.

31 ©Daffodil International University

4.2.6 Combination of Trivial, String and Reflection Encryption

 Like previous technique, same number of suspicious API call used in this technique. Usage

are given in figure 4.13.

Figure 4.13: Suspicious API Call Found from Trivial+String+Reflection Enc.

APC1 APC2 APC3 - APC4 APC5 APC6

1 1 1 - 1 1 0

Table 4.28: An API Call Pattern of Trivial+String+Reflection Enc.

Family APC1 APC2 APC3 - APC4 APC5 APC6

DroidDreamLight 1 1 1 - 1 1 1

DroidDreamLight 1 1 1 - 1 1 1

Geinimi 1 1 1 - 1 1 0

Geinimi 1 1 1 - 1 1 0

BaseBridge 1 1 1 - 1 1 1

BaseBridge 1 1 0 - 1 1 1

Table 4.29: Family API Call Pattern of Trivial+String+Reflection Enc.

32 ©Daffodil International University

4.2.7 Combination of Trivial, String, Reflection and Class Encryption

 With contrast of other techniques, most a smaller number of permissions found from this

technique. From trivial+string+reflection+class enc analysis this paper finds that 19 suspicious

API call used in this technique. Figure 4.14 illustrated usage of suspicious API call of this

technique.

Figure 4.14: Suspicious API Call Found from Trivial+String+Reflection+Class Enc.

APC1 APC2 APC3 - APC4 APC5 APC6

1 1 1 - 1 1 0

Table 4.30: An API Call Pattern of Trivial+String+Reflection+Class Enc.

Family APC1 APC2 APC3 - APC4 APC5 APC6

GoldDream 0 0 0 - 0 0 0

GoldDream 0 0 0 - 0 0 0

DroidKungFu3 0 0 0 - 0 0 0

DroidKungFu3 0 0 0 - 0 0 0

GingerMaster 0 0 0 - 0 0 0

GingerMaster 0 0 0 - 0 0 0

Table 4.31: Family API Call Pattern of Trivial+String+Reflection+Class Enc.

33 ©Daffodil International University

4.3 SYSTEM COMMAND ANALYSIS

 In this section this paper will illustrate every obfuscated technique system command

analysis report. Besides, every techniques System Command pattern and technique wise a malware

family pattern also given.

Full Version Short Version

mkdir COM1

ln COM2

su COM3

getprop COM4

ps COM5

killall COM6

Table 4.32: Shortened Name for System Command

4.3.1 Trivial Encryption

 This analysis find that 12 system command used in this technique. They are given in figure

4.15

Figure 4.15: System Command Found from Trivial Enc.

34 ©Daffodil International University

COM1 COM2 COM3 - COM4 COM5 COM6

1 1 1 - 0 1 0

Table 4.33: A System Command Pattern of Trivial Enc.

Family COM1 COM

2

COM3 - COM4 COM5 COM6

jSMSHider 0 0 1 - 0 0 0

jSMSHider 0 0 1 - 0 0 0

Zsone 1 0 1 - 0 0 0

Zsone 1 0 1 - 0 0 0

DroidKungFu2 1 0 1 - 0 0 0

DroidKungFu2 1 0 1 - 1 0 0

Table 4.34: Family System Command Pattern of Trivial Enc.

4.3.2 String Encryption

 13 system command used in String enc. technique. All are showing in figure 4.16.

Figure 4.16: System Command Found from String Enc.

35 ©Daffodil International University

COM1 COM2 COM3 - COM4 COM5 COM6

1 0 0 - 0 0 1

Table 4.35: A System Command Pattern of String Enc.

Family COM1 COM2 COM3 - COM4 COM5 COM6

DroidKungFu1 1 0 0 - 1 0 0

DroidKungFu1 1 0 0 - 1 0 0

Pjapps 1 0 1 - 0 0 0

Pjapps 1 0 0 - 0 0 0

AnserverBot 1 0 0 - 0 0 0

AnserverBot 1 0 0 - 0 0 0

Table 4.36: Family System Command Pattern of String Enc.

4.2.3 Reflection Encryption

 From Reflection enc. analysis, 14 system command used in this technique. Comparing to

first two techniques, number of suspicious API call use less in this technique. Figure 4.17 shows

analysis result.

Figure 4.17: System Command Found from Reflection Enc.

36 ©Daffodil International University

COM1 COM2 COM3 - COM4 COM5 COM6

1 0 1 - 0 0 0

Table 4.37: A System Command Pattern of Reflection Enc.

Family COM1 COM2 COM3 - COM4 COM5 COM6

BaseBridge 1 0 0 - 0 0 0

BaseBridge 1 0 0 - 0 0 0

KMin 1 0 1 - 0 0 0

KMin 1 0 1 - 0 0 0

jSMSHider 0 0 1 - 0 0 0

jSMSHider 1 0 1 - 0 0 0

Table 4.38: Family System Command Pattern of Reflection Enc.

4.3.4 Class Encryption

 Class enc. uses 9 system command. That is much less than above three techniques. Figure

4.18 shows usage of suspicious API call of this technique.

Figure 4.18: System Command Found from Class Enc.

37 ©Daffodil International University

COM1 COM2 COM3 - COM4 COM5 COM6

1 0 1 - 0 0 0

Table 4.39: A System Command Pattern of Class Enc.

Family COM1 COM2 COM3 - COM4 COM5 COM6

DroidDream 0 0 0 - 0 0 1

DroidDream 0 0 0 - 0 0 0

DroidKungFu4 0 1 0 - 0 0 0

DroidKungFu4 0 1 0 - 0 0 0

BeanBot 0 0 1 - 0 0 0

BeanBot 0 0 1 - 0 0 0

Table 4.40: Family System Command Pattern of Class Enc.

4.3.5 Combination of Trivial and String Encryption

 Similarity also shown in this technique with previous technique.10 system command used

in this technique. They are demonstrating below in figure 4.19.

Figure 4.19: System Command Found from Trivial+String Enc.

38 ©Daffodil International University

COM1 COM2 COM3 COM4 COM5

1 0 0 0 0

Table 4.41: A System Command Pattern of Trivial+String Enc.

Family COM1 COM2 COM3 - COM4 COM5

FakePlayer 0 0 0 - 0 0

FakePlayer 0 0 0 - 0 0

GoldDream 1 0 0 - 0 0

GoldDream 1 0 0 - 0 0

DroidKungFu4 1 1 1 - 0 1

DroidKungFu4 1 1 1 - 0 1

Table 4.42: Family System Command Pattern of Trivial+String Enc.

4.3.6 Combination of Trivial, String and Reflection Encryption

 This technique also not so much used system command as other techniques used. Only 8

system command used in this technique. Figure 4.20 shows 8 system commands.

Figure 4.20: System Command Found from Trivial+String+Reflection Enc.

39 ©Daffodil International University

COM1 COM2 COM3 - COM4 COM5

0 1 1 - 0 1

Table 4.43: A System Command Pattern of Trivial+String+Reflection Enc.

Family COM1 COM2 COM3 - COM4 COM5

DroidDreamLight 0 0 0 - 0 0

DroidDreamLight 0 0 0 - 0 0

DroidKungFu1 1 0 0 - 0 0

DroidKungFu1 1 0 0 - 0 0

Geinimi 0 1 1 - 0 1

Geinimi 1 1 0 - 0 0

Table 4.44: Family System Command Pattern of Trivial+String+Reflection Enc.

4.3.7 Combination of Trivial, String, Reflection and Class Encryption

 A big difference found in this technique. Number of system command used in this

technique is most less than other techniques. 4 system command used in this technique only. All

are showing in figure 4.21.

Figure 4.21: System Command Found from Trivial+String+Reflection+Class Enc.

40 ©Daffodil International University

COM1 COM2 COM3 COM4

0 1 0 0

Table 4.45: A System Command Pattern of Trivial+String+Reflection+Class Enc.

Family COM1 COM2 COM3 COM4

GoldDream 0 0 0 0

GoldDream 0 0 0 0

DroidKungFu3 0 0 1 0

DroidKungFu3 0 0 1 0

ADRD 0 1 0 0

ADRD 0 1 0 0

Table 4.46: Family System Command Pattern of Trivial+String+Reflection+Class Enc.

4.4 INTENT FILTER ANALYSIS

 In this section this paper will illustrate every obfuscated technique intent analysis report.

Besides, every technique intent pattern and technique wise a malware family pattern also given.

Full Version Short Version

BOOT_COMPLETED IN1

CONTENT_CHANGED IN2

PHONE_STATE IN3

NEW_OUTGOING_CALL IN4

SCREEN_ON IN5

SCREEN_OFF IN6

Table 4.47: Shortened Name for Intent

41 ©Daffodil International University

4.4.1 Trivial Encryption

 Trivial enc. uses most number intent filter than other techniques. 90 intent filter used in

this technique. Figure 4.22 shows top 50 intent filter used in this technique.

Figure 4.22: Intent Filter Found from Trivial Enc.

IN1 IN2 IN3 - IN4 IN5 IN6

0 0 0 - 0 1 1

Table 4.48: An Intent Pattern of Trivial Enc.

Family IN1 IN2 IN3 - IN4 IN5 IN6

jSMSHider 0 0 0 - 0 0 0

jSMSHider 0 0 0 - 0 0 0

GoldDream 1 0 0 - 1 0 0

GoldDream 1 0 0 - 1 0 0

DroidDreamLight 1 0 1 - 0 0 1

DroidDreamLight 1 0 1 - 0 0 1

Table 4.49: Family Intent Pattern of Trivial Enc.

42 ©Daffodil International University

4.4.2 String Encryption

 String enc. uses 34 intent filters which is almost one third of Trivial enc. All have been

shown in figure 4.23.

Figure 4.23: Intent Filter Found from String Enc.

IN1 IN2 IN3 - IN4 IN5 IN6

1 0 1 - 1 0 0

Table 4.50: An Intent Pattern of String Enc.

Family IN1 IN2 IN3 - IN4 IN5 IN6

DroidKungFu1 0 0 0 - 0 0 0

DroidKungFu1 0 0 0 - 0 0 0

DroidKungFu4 0 1 0 - 0 0 0

DroidKungFu4 0 1 0 - 0 0 0

ADRD 1 0 0 - 0 0 0

ADRD 1 0 0 - 0 0 0

Table 4.51: Family Intent Pattern of String Enc.

43 ©Daffodil International University

4.4.3 Reflection Encryption

 Like Trivial enc. this technique also used the greatest number of intent filters. 90

intent filters used in this technique. Top 50 usage given in figure 4.24.

Figure 4.24: Intent Filter Found from Reflection Enc.

IN1 IN2 IN3 - IN4 IN5 IN6

1 0 1 - 0 1 1

Table 4.52: An Intent Pattern of Reflection Enc.

Family IN1 IN2 IN3 - IN4 IN5 IN6

BaseBridge 0 0 0 - 0 1 1

BaseBridge 0 0 0 - 0 1 1

SndApps 1 0 0 - 0 0 0

SndApps 1 0 0 - 0 0 0

DroidKungFu2 1 0 0 - 0 0 0

DroidKungFu2 1 0 0 - 0 0 0

Table 4.53: Family Intent Pattern of Reflection Enc.

44 ©Daffodil International University

4.4.4 Class Encryption

 68 intent filter used in Class enc. technique. Literally its used intent filter double of String

enc. Top 50 used intent filter is in figure 4.25.

Figure 4.25: Intent Filter Found from Class Enc.

IN1 IN3 IN4 - IN5 IN6

1 1 0 - 1 1

Table 4.54: An Intent Pattern of Class Enc.

Family IN1 IN3 IN4 - IN5 IN6

DroidDream 1 1 0 - 0 0

DroidDream 1 0 0 - 0 0

zHash 1 0 0 - 0 0

zHash 1 0 0 - 0 0

DroidKungFu3 1 0 0 - 0 1

DroidKungFu3 1 0 0 - 0 0

Table 4.55: Family Intent Pattern of Class Enc.

45 ©Daffodil International University

4.4.5 Combination of Trivial and String Encryption

 This technique used much less intent filter than other single obfuscation techniques. Only

21 intent filter used in this technique. Figure 4.26 shows them all.

Figure 4.26: Intent Filter Found from Trivial+String Enc.

IN1 IN2 IN3 - IN4 IN5 IN6

0 0 1 - 1 1 1

Table 4.56: An Intent Pattern of Trivial+String Enc.

Family IN1 IN2 IN3 - IN4 IN5 IN6

FakePlayer 0 0 0 - 0 0 0

FakePlayer 0 0 0 - 0 0 0

DroidKungFu4 1 0 1 - 1 0 0

DroidKungFu4 1 1 0 - 0 1 1

DroidDreamLight 1 0 1 - 0 0 0

DroidDreamLight 1 0 1 - 0 0 0

Table 4.57: Family Intent Pattern of Trivial+String Enc.

46 ©Daffodil International University

4.4.6 Combination of Trivial, String and Reflection Encryption

 Likewise, previous technique, this combination techniques also have use number of intent

filters. All intents filters are showing below in figure 4.27.

Figure 4.27: Intent Filter Found from Trivial+String+Reflection Enc.

IN1 IN2 IN3 - IN4 IN5 IN6

0 0 1 - 1 1 1

Table 4.58: An Intent Pattern of Trivial+String+Reflection Enc.

Family IN1 IN2 IN3 - IN4 IN5 IN6

DroidDreamLight 1 0 1 - 0 0 0

DroidDreamLight 1 0 1 - 0 0 0

DroidKungFu4 0 1 0 - 0 0 0

DroidKungFu4 1 1 0 - 0 1 1

DroidKungFu3 1 0 1 - 1 0 0

DroidKungFu3 1 0 1 - 1 0 0

Table 4.59: Family Intent Pattern of Trivial+String+Reflection Enc.

47 ©Daffodil International University

4.4.7 Combination of Trivial, String, Reflection and Class Encryption

 Unlikely this technique used most a smaller number of intent filter than other techniques.

Only 3 intent used in this technique. Figure 4.28 illustrated them.

Figure 4.28: Intent Filter Found from Trivial+String+Reflection+Class Enc.

IN1 IN3 IN4

1 1 1

Table 4.60: An Intent Pattern of Trivial+String+Reflection+Class Enc.

Family IN1 IN3 IN4

GoldDream 0 0 0

GoldDream 0 0 0

DroidKungFu3 1 1 1

DroidKungFu3 0 0 0

Geinimi 0 0 0

Geinimi 0 0 0

Table 4.61: Family Intent Pattern of Trivial+String+Reflection+Class Enc.

48 ©Daffodil International University

4.5 APP COMPONENT ANALYSIS

 In this section this paper will illustrate every obfuscated technique app component analysis

report. Besides, every techniques app component pattern and technique wise a malware family

pattern also given.

Full Version Short Version

Receiver AC1

MainA AC2

BaseABroadcastReceiver AC3

MainActivity AC4

BootReceiver AC5

NotificationActivity AC6

Table 4.62: Shortened Name for App Component

4.5.1 Trivial Encryption

 Trivial obfuscation technique used 1774 app component. Top 50 usage of app component

are in figure 4.29.

Figure 4.29: App Component Found from Trivial Enc.

49 ©Daffodil International University

AC1 AC2 AC3 - AC4 AC5 AC6

0 0 0 - 0 1 0

Table 4.63: An App Component Pattern of Trivial Enc.

Family AC1 AC2 AC3 - AC4 AC5 AC6

jSMSHider 0 0 0 - 0 0 0

jSMSHider 0 0 0 - 0 0 0

AnserverBot 0 1 1 - 0 0 0

AnserverBot 0 1 1 - 0 0 0

ADRD 0 0 0 - 1 0 0

ADRD 0 0 0 - 1 0 0

Table 4.64: Family App Component Pattern of Trivial Enc.

4.5.2 String Encryption

 String enc. used second highest number of app component among other techniques. 2381

app component used in this technique. Top 50 are in figure 4.30.

Figure 4.30: App Component Found from String Enc.

50 ©Daffodil International University

AC1 AC2 AC3 - AC4 AC5 AC6

0 0 0 - 0 0 1

Table 4.65: An App Component Pattern of String Enc.

Family AC1 AC2 AC3 - AC4 AC5 AC6

DroidKungFu1 1 0 0 - 0 0 0

DroidKungFu1 1 0 0 - 0 0 0

Bgserv 0 0 0 - 0 1 0

Bgserv 0 0 0 - 0 1 0

KMin 0 0 0 - 1 1 0

KMin 0 0 0 - 1 0 0

Table 4.66: Family App Component Pattern of String Enc.

4.5.3 Reflection Encryption

 Highest number of app component have been used by Reflection enc. 2429 app component

applied in this technique. Top 50 apply of app component shown in figure 4.31.

Figure 4.31: App Component Found from Reflection Enc.

51 ©Daffodil International University

AC1 AC2 AC3 - AC4 AC5 AC6

0 0 0 - 0 0 1

Table 4.67: An App Component Pattern of Reflection Enc.

Family AC1 AC2 AC3 - AC4 AC5 AC6

BaseBridge 0 1 0 - 0 0 0

BaseBridge 0 0 0 - 0 0 0

AnserverBot 0 1 1 - 0 0 0

AnserverBot 0 1 1 - 0 0 0

DroidKungFu3 1 0 0 - 1 0 0

DroidKungFu3 1 0 0 - 0 0 0

Table 4.68: Family App Component Pattern of Reflection Enc.

4.5.4 Class Encryption

 Lowest number of app component have been seen in Class enc. 68 app component utilized

here. Figure 4.32 shows 50 most usage feature of app component.

Figure 4.32: App Component Found from Class Enc.

52 ©Daffodil International University

AC1 AC2 AC3 - AC4 AC5 AC6

0 0 0 - 1 0 0

Table 4.69: An App Component Pattern of Class Enc.

Family AC1 AC2 AC3 - AC4 AC5 AC6

DroidDream 0 0 0 - 0 0 0

 DroidDream 0 0 0 - 0 0 0

RogueSPPush 0 0 0 - 1 0 0

RogueSPPush 0 0 0 - 1 0 0

YZHC 0 0 0 - 0 1 0

YZHC 0 0 0 - 0 1 0

Table 4.70: Family App Component Pattern of Class Enc.

4.5.5 Combination of Trivial and String Encryption

 1579 app component have been employed in this combination technique. Most usage

features are shown in figure 4.33.

Figure 4.33: App Component Found from Trivial+String Enc.

53 ©Daffodil International University

AC1 AC2 AC3 - AC4 AC5 AC6

0 0 0 - 0 1 0

Table 4.71: An App Component Pattern of Trivial+String Enc.

Family AC1 AC2 AC3 - AC4 AC5 AC6

FakePlayer 0 0 0 - 0 0 0

FakePlayer 0 0 0 - 0 0 0

zHash 0 0 0 - 1 0 0

zHash 0 0 0 - 1 0 0

AnserverBot 0 1 1 - 0 0 0

AnserverBot 0 1 1 - 0 0 0

Table 4.72: Family App Component Pattern of Trivial+String Enc.

4.5.6 Combination of Trivial, String and Reflection Encryption

 1439 app component have been used by this complex obfuscation technique. Most usage

features are shown in figure 4.34.

Figure 4.34: App Component Found from Trivial+String+Reflection Enc.

54 ©Daffodil International University

AC1 AC2 AC3 - AC4 AC5 AC6

1 0 0 - 0 0 0

Table 4.73: An App Component Pattern of Trivial+String+Reflection Enc.

Family AC1 AC2 AC3 - AC4 AC5 AC6

DroidDreamLight 1 0 0 - 0 0 0

DroidDreamLight 1 0 0 - 0 0 0

DroidKungFu3 1 0 0 - 1 0 0

DroidKungFu3 1 0 0 - 1 0 0

BeanBot 0 0 0 - 1 0 0

BeanBot 0 0 0 - 1 0 0

Table 4.74: Family App Component Pattern of Trivial+String+Reflection Enc.

4.5.7 Combination of Trivial, String, Reflection and Class Encryption

 This complex obfuscation strategy used 1365 app component. Figure 4.35 shows most

usage features of app component of this strategy.

Figure 4.35: App Component Found from Trivial+String+Reflection+Class Enc.

55 ©Daffodil International University

AC1 AC2 AC3 - AC4 AC5 AC6

0 0 0 - 0 0 1

Table 4.75: An App Component Pattern of Trivial+String+Reflection+Class Enc.

Family AC1 AC2 AC3 - AC4 AC5 AC6

GoldDream 0 0 0 - 0 0 0

GoldDream 0 0 0 - 0 0 0

DroidKungFu2 1 0 0 - 1 0 0

DroidKungFu2 1 0 0 - 1 0 0

NickySpy 0 0 0 - 0 1 0

NickySpy 0 0 0 - 1 1 0

Table 4.76: A Family App Component Pattern of Trivial+String+Reflection+Class Enc.

56 ©Daffodil International University

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Findings and Contributions

In this study, AndroShow perform a static analysis of obfuscated Android malware

applications. Permission, API call, Intent filter, App component and System call features are

analyzed. AndroShow demonstrate confound malwares uses trend of these features. Several

works have been done. Main contribution of this paper analysis is given below -

● Static analysis has been performed on obfuscated Android malware application.

● Analysis performs on five features - permission, API call, intent filter, app component,

system call.

● Features pattern proposed in 2D matrix. Where column name is the feature tag name and

rows are the 0/1 with family name.

● Most uses features demonstrate in 2D bar chart.

● Features extracted from obfuscated malware dataset, PRAGuard. This dataset contains

10,479 obfuscated malware applications with seven different obfuscation techniques.

5.2 Recommendations for Future Works

 .

Future work will be classifying every muddle malware family wise. Detection of new

malware app by machine learning based on features pattern can be a good thought.

REFERENCES

Aafer, Y., Du, W., & Yin, H. (2013, September). Droidapiminer: Mining API-level features for

robust malware detection in android. In International conference on security and privacy

in communication systems (pp. 86-103). Springer, Cham

Alasmary, H., Khormali, A., Anwar, A., Park, J., Choi, J., Nyang, D., & Mohaisen, A. (2019,

February). Poster: Analyzing, Comparing, and Detecting Emerging Malware: A Graph-

based Approach.

Android Developers. (n.d.-a). Permissions overview. Retrieved from

https://developer.android.com/guide/topics/permissions/overview

Android Developers. (n.d.-b). Intents and Intent Filters. Retrieved from

https://developer.android.com/guide/components/intents-filters

https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/components/intents-filters

57 ©Daffodil International University

Android Developers. (n.d.-c). App components. Retrieved from

https://developer.android.com/guide/components/fundamentals#Components

Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., & Siemens, C. E. R. T. (2014,

February). DREBIN: Effective and Explainable Detection of Android Malware in Your

Pocket. In Ndss (Vol. 14, pp. 23-26).

Arslan, R. S., Doğru, İ. A., & Barişçi, N. (2019). Permission-Based Malware Detection System

for Android Using Machine Learning Techniques. International Journal of Software

Engineering and Knowledge Engineering, 29(01), 43-61.

Aung, Z., & Zaw, W. (2013). Permission-based android malware detection. International Journal

of Scientific & Technology Research, 2(3), 228-234.

Ben, P. (2017, May 17). Google announces over 2 billion monthly active devices on Android [web

log post]. Retrieved from https://www.theverge.com/2017/5/17/15654454/android-

reaches-2-billion-monthly-active-users

Chang, S. C., Sun, Y. S., Chuang, W. L., Chen, M. C., Sun, B., & Takahashi, T. (2018, December).

ANTSdroid: Using RasMMA Algorithm to Generate Malware Behavior Characteristics of

Android Malware Family. In 2018 IEEE 23rd Pacific Rim International Symposium on

Dependable Computing (PRDC) (pp. 257-262). IEEE.

Da, C., Hongmei, Z., & Xiangli, Z. (2016, October). Detection of Android malware security on

system calls. In 2016 IEEE Advanced Information Management, Communicates,

Electronic and Automation Control Conference (IMCEC) (pp. 974-978). IEEE.

Dighe, S., Jondhale, A., & Salunke, D. J. Permission Based Android Malware Detection

Dimjaševic, M., Atzeni, S., Ugrina, I., & Rakamaric, Z. (2015). Android malware detection based

on system calls. University of Utah, Tech. Rep.

Dong, Y. (2017). Android Malware Prediction by Permission Analysis and Data Mining.

Elish, K. O., Yao, D., & Ryder, B. G. (2015, May). On the need of precise inter-app ICC

classification for detecting Android malware collusions. In Proceedings of IEEE mobile

security technologies (MoST), in conjunction with the IEEE symposium on security and

privacy.

https://developer.android.com/guide/components/fundamentals#Components
https://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-active-users
https://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-active-users

58 ©Daffodil International University

Feizollah, A., Anuar, N. B., Salleh, R., Suarez-Tangil, G., & Furnell, S. (2017). Androdialysis:

Analysis of android intent effectiveness in malware detection. computers & security, 65,

121-134.

Felt, A. P., Chin, E., Hanna, S., Song, D., & Wagner, D. (2011, October). Android permissions

demystified. In Proceedings of the 18th ACM conference on Computer and

communications security (pp. 627-638). ACM.

Feng, Y., Anand, S., Dillig, I., & Aiken, A. (2014, November). Apposcopy: Semantics-based

detection of android malware through static analysis. In Proceedings of the 22nd ACM

SIGSOFT International Symposium on Foundations of Software Engineering (pp. 576-

587). ACM.

Fereidooni, H., Moonsamy, V., Conti, M., & Batina, L. (2016). Efficient classification of android

malware in the wild using robust static features. Protecting Mobile Networks and Devices:

Challenges and Solutions, 1, 181-209.

Firdaus, A., & Anuar, N. B. (2015). Root-exploit malware detection using static analysis and

machine learning. In Proceedings of the fourth international conference on Computer

Science & Computational Mathematics (ICCSCM 2015). Langkawi, Malaysia (pp. 177-

183).

Ghani, S. M. A., Abdollah, M. F., Yusof, R., & Mas’ud, M. Z. (2015). Recognizing API Features

for Malware Detection Using Static Analysis. Journal of Wireless Networking and

Communications, 5(2A), 6-12.

Grace, M., Zhou, Y., Zhang, Q., Zou, S., & Jiang, X. (2012, June). Riskranker: scalable and

accurate zero-day android malware detection. In Proceedings of the 10th international

conference on Mobile systems, applications, and services (pp. 281-294). ACM.

He, N., Wang, T., Chen, P., Yan, H., & Jin, Z. (2018, December). An Android Malware Detection

Method Based on Deep AutoEncoder. In Proceedings of the 2018 Artificial Intelligence

and Cloud Computing Conference (pp. 88-93). ACM.

Hu, Y., Wang, H., Li, L., Guo, Y., Xu, G., & He, R. (2019, February). Want to Earn a Few Extra

Bucks? A First Look at Money-Making Apps. In 2019 IEEE 26th International Conference

on Software Analysis, Evolution and Reengineering (SANER) (pp. 332-343). IEEE.

59 ©Daffodil International University

Huang, C. Y., Tsai, Y. T., & Hsu, C. H. (2013). Performance evaluation on permission-based

detection for android malware. In Advances in Intelligent Systems and Applications-

Volume 2 (pp. 111-120). Springer, Berlin, Heidelberg.

IDC. (n.d.). Smartphone Market Share. Retrieved from

https://www.idc.com/promo/smartphone-market-share/os

Iqbal, S., & Zulkernine, M. (2018, October). SpyDroid: A Framework for Employing Multiple

Real-Time Malware Detectors on Android. In 2018 13th International Conference on

Malicious and Unwanted Software (MALWARE) (pp. 1-8). IEEE

Jan, S. & Ondrej, D. (2018, July 25-27). Retrieved from

https://www.rsaconference.com/writable/presentations/file_upload/tta-

r09_android_malware_trends_on_a_global_scale_final.pdf

Jannatul, I. (2018, November 9). Pathao violates users’ privacy. Retrieved from

https://www.daily-sun.com/printversion/details/348905/2018/11/09/Pathao-violates-

users%E2%80%99-privacy

Johnson, R., Wang, Z., Gagnon, C., & Stavrou, A. (2012, June). Analysis of android applications'

permissions. In 2012 IEEE Sixth International Conference on Software Security and

Reliability Companion (pp. 45-46). IEEE.

Kedziora, M., Gawin, P., Szczepanik, M., & Jozwiak, I. (2018). Android Malware Detection Using

Machine Learning And Reverse Engineering. Computer Science & Information

Technology (CS & IT). 95-107.

Kim, T., Kang, B., Rho, M., Sezer, S., & Im, E. G. (2019). A Multimodal Deep Learning Method

for Android Malware Detection Using Various Features. IEEE Transactions on

Information Forensics and Security, 14(3), 773-788.

Kumar, R., Zhang, X., Khan, R. U., & Sharif, A. (2019). Research on Data Mining of Permission-

Induced Risk for Android IoT Devices. Applied Sciences, 9(2), 277.

Li, C., Zhu, R., Niu, D., Mills, K., Zhang, H., & Kinawi, H. (2018). Android Malware Detection

based on Factorization Machine. arXiv preprint arXiv:1805.11843.

Li, L., Bartel, A., Bissyandé, T. F., Klein, J., Le Traon, Y., Arzt, S., ... & McDaniel, P. (2015,

May). Iccta: Detecting inter-component privacy leaks in android apps. In Proceedings of

https://www.idc.com/promo/smartphone-market-share/os
https://www.daily-sun.com/printversion/details/348905/2018/11/09/Pathao-violates-users%E2%80%99-privacy
https://www.daily-sun.com/printversion/details/348905/2018/11/09/Pathao-violates-users%E2%80%99-privacy

60 ©Daffodil International University

the 37th International Conference on Software Engineering-Volume 1 (pp. 280-291). IEEE

Press.

Li, L., Bartel, A., Klein, J., & Le Traon, Y. (2014, September). Automatically exploiting potential

component leaks in android applications. In 2014 IEEE 13th International Conference on

Trust, Security and Privacy in Computing and Communications (pp. 388-397). IEEE.

Maiorca, D., Ariu, D., Corona, I., Aresu, M., & Giacinto, G. (2015). Stealth attacks: An extended

insight into the obfuscation effects on android malware. Computers & Security, 51, 16-31.

Malik, S., & Khatter, K. (2016). System call analysis of android malware families. Indian Journal

of Science and Technology, 9(21).

Martín, I., Hernández, J. A., & de los Santos, S. (2019). Machine-Learning based analysis and

classification of Android malware signatures. Future Generation Computer Systems.

Murtaz, M., Azwar, H., Ali, S. B., & Rehman, S. (2018, November). A framework for Android

Malware detection and classification. In 2018 IEEE 5th International Conference on

Engineering Technologies and Applied Sciences (ICETAS) (pp. 1-5). IEEE.

Parker, C., McDonald, J. T., Johnsten, T., & Benton, R. G. (2018, October). Android Malware

Detection Using Step-Size Based Multi-layered Vector Space Models. In 2018 13th

International Conference on Malicious and Unwanted Software (MALWARE) (pp. 1-10).

IEEE.

Peiravian, N., & Zhu, X. (2013, November). Machine learning for android malware detection using

permission and API calls. In 2013 IEEE 25th international conference on tools with

artificial intelligence (pp. 300-305). IEEE.

Perry, E. (2017, December 7). What exactly IS an API? [web log post]. Retrieved from

https://medium.com/@perrysetgo/what-exactly-is-an-API-69f36968a41f

Rana, M. S., Gudla, C., & Sung, A. H. (2018, December). Evaluating Machine Learning Models

for Android Malware Detection: A Comparison Study. In Proceedings of the 2018 VII

International Conference on Network, Communication and Computing (pp. 17-21). ACM.

Seo, S. H., Gupta, A., Sallam, A. M., Bertino, E., & Yim, K. (2014). Detecting mobile malware

threats to homeland security through static analysis. Journal of Network and Computer

Applications, 38, 43-53.

61 ©Daffodil International University

Shen, F., Del Vecchio, J., Mohaisen, A., Ko, S. Y., & Ziarek, L. (2018). Android malware detection

using complex-flows. IEEE Transactions on Mobile Computing.

Shen, T., Zhongyang, Y., Xin, Z., Mao, B., & Huang, H. (2014, September). Detect Android

malware variants using component based topology graph. In 2014 IEEE 13th International

Conference on Trust, Security and Privacy in Computing and Communications (pp. 406-

413). IEEE.

Skovoroda, A., & Gamayunov, D. (2017, August). Automated static analysis and classification of

Android malware using permission and API calls models. In 2017 15th Annual Conference

on Privacy, Security and Trust (PST) (pp. 243-24309). IEEE.

Statista. (n.d.). Number of apps available in leading app stores as of 3rd quarter 2018. Retrieved

from https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-

app-stores/

Suarez-Tangil, G., Dash, S. K., Ahmadi, M., Kinder, J., Giacinto, G., & Cavallaro, L. (2017,

March). DroidSieve: Fast and accurate classification of obfuscated android malware. In

Proceedings of the Seventh ACM on Conference on Data and Application Security and

Privacy (pp. 309-320). ACM.

Tchakounté, F., & Dayang, P. (2013). System calls analysis of malwares on android. International

Journal of Science and Technology, 2(9), 669-674.

Tiwari, S. R., & Shukla, R. U. (2018, June). An Android Malware Detection Technique Using

Optimized Permission and API with PCA. In 2018 Second International Conference on

Intelligent Computing and Control Systems (ICICCS) (pp. 2611-2616). IEEE.

tutorialspoint. (n.d.). Android - Application Components. Retrieved from

https://www.tutorialspoint.com/android/android_application_components.htm

Qamar, A., Karim, A., & Chang, V. (2019). Mobile malware attacks: Review, taxonomy & future

directions. Future Generation Computer Systems.

Wahanggara, V., & Prayudi, Y. (2015, October). Malware detection through call system on

android smartphone using vector machine method. In 2015 Fourth International

Conference on Cyber Security, Cyber Warfare, and Digital Forensic (CyberSec) (pp. 62-

67). IEEE.

https://www.tutorialspoint.com/android/android_application_components.htm

62 ©Daffodil International University

Wang, X., Zhang, D., Su, X., & Li, W. (2017). Mlifdect: android malware detection based on

parallel machine learning and information fusion. Security and Communication Networks,

2017.

Wu, D. J., Mao, C. H., Wei, T. E., Lee, H. M., & Wu, K. P. (2012, August). Droidmat: Android

malware detection through manifest and API calls tracing. In 2012 Seventh Asia Joint

Conference on Information Security (pp. 62-69). IEEE.

Xu, K., Li, Y., & Deng, R. H. (2016). Iccdetector: Icc-based malware detection on android. IEEE

Transactions on Information Forensics and Security, 11(6), 1252-1264.

Yang, M., Wang, S., Ling, Z., Liu, Y., & Ni, Z. (2017). Detection of malicious behavior in android

apps through API calls and permission uses analysis. Concurrency and Computation:

Practice and Experience, 29(19), e4172.

