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ABSTRACT 

  

 Android smartphone’s security and privacy of personal information remain threatened 

because of popularity. Noxious applications represent a danger to the security of the Android. Yet 

understanding Android malware utilizing dynamic examination can give a far-reaching view, it is 

still exposed to surprising expense in condition arrangement and manual endeavors in examination. 

To classify or detect android malware applications, it is important to identify pattern of malware.  

In this study, some important static features pattern of obfuscated android malware applications 

has been proposed. AndroShow, a broad static analysis-based feature analyzer is introduced that 

identifies important features pattern of Android. Permission, API call, app component, intent filter 

and system call patterns are embedded in vector matrix. In order to classification and detection of 

android malware application this malware pattern analysis will beneficial. AndroShow investigate 

10479 obfuscated malware applications. These malware applications consist of seven categories 

of obfuscation techniques taken from PRAGuard dataset.
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CHAPTER 1 

INTRODUCTION 

1.1 Background Study 

 

Android is a smartphone operating system developed by Google, introduced in 2008. Now 

it is most popular operating system than other platforms. Android smartphones have persistently 

been supplanting the customary cell phones. Smartphone have been changing activity of day-to-

day to people. Now, many desktop tasks can be completed by smartphone. Hotel room booking, 

airplane ticket, bus ticket, online banking, online marketing and so many important tasks are being 

completed “on the go”. These demandable tasks playing an important role to increase smartphone 

users. Monthly, there are over 2 billion active android devices around the world (Ben, 2017). 

According to International Data Corporation reports on smartphone market share, android system 

has 86.8% of the smartphone operating systems, up to the third quarter of 2018 (IDC). Besides, 

there are over 2 million apps in the app store (Statista). Smartphone user keeps personal, business 

information in the device which are very much sensitive. Therefore, smartphones running android 

are progressively focused by aggressors and tainted with vindictive programming. As opposed to 

different portion, android takes into account introducing applications from unsubstantiated 

sources. For example, outsider markets, which makes packaging and disseminating applications 

with malware simple for aggressors (Arp et al., 2014).  (Fereidooni et al., 2016) mentioned that in 

the principal half of 2014, F-Secure detailed that new risk families or 295 new variations of 

realized families were gathered. it merits referencing that 294 out of these 295 families keep 

running on Android. In addition, they also referred that in the main quarter of 2015, Kaspersky 

mobile security distinguished 103, 072 new perilous applications, a three-overlap increment from 

last quarter of 2014. Obviously quick and dependable components are required to distinguish and 

investigate possibly perilous applications (Suarez-Tangil et al., 2017)   

1.2 Motivation of the Research 

 

This part studies the three factors that motivate the research become involved in this 

bachelor study.  First, Pathao is a popular transportation company in Bangladesh. It’s local ride 

sharing app is Pathao. This app purportedly protects clients' personal messages abusing the 

information security control. The versatile application-based vehicle hailing administration keeps 

all information including individual discussion at inbox including contacts which is out of 

protection controls, affirmed a client demonstrating video archives. An ongoing video via web-

based networking media demonstrates that the application protects all contacts and individual 

messages to structure client administrations. Pathao specialists, be that as it may, precluded the 

claim from securing breaking client information (Jannatul, 2018).  It requires dangerous 

permissions like read sms, read contacts. These permissions are related to user’s privacy. Second, 
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lack of study in malware pattern analysis. Third, self-study in obfuscated android malware 

application.   

1.3 Problem Statement 

 

There are several many android malware trends exist in global aspect. For these trends, 

smartphone device security is compromising. Three latest trends are undertaken for problem 

statement. First, aggressive ads, it’s can (1) haphazardly promotions springing up, (2) leaks of 

private data. It requires dangerous permissions like permission of read and write to default 

browser, external code executes like DexClassLoader. Second, lockers, so called ransomware. It’s 

(1) encrypt device data (2) show ransom note in lock screen (3) request payment in 

cryptocurrencies. It requires System_Alert permission, also it can add new device administrator as 

well as delete files and so many. Third, bankers, the quickest developing category. Some 

characteristics are (1) persuading phishing assaults to bait clients into giving bank data, (2) very 

much perilous on the grounds that may have coordinate cost affect, (3) typically extremely 

advanced and complex malware (Jan & Ondrej, 2018). 

1.4 Research Question 

 

How does malware pattern analysis of different strategies beneficial for android malware 

detection? 

1.5 Research Objective 

 

To identify malware pattern for detecting android malware application. 

1.6 Research Contribution 

 

 In this paper, several works have been done. Main contribution of this paper analysis is 

given below -  

● Static analysis has been performed on obfuscated Android malware application. 

● Analysis performs on five features - permission, API call, intent filter, app component, 

system call. 

● Features pattern proposed in 2D matrix. Where column name is the feature tag name and 

rows are the 0/1 with family name. 

● Most uses features demonstrate in 2D bar chart. 

● Features extracted from obfuscated malware dataset, PRAGuard. This dataset contains 

10,479 obfuscated malware applications with seven different obfuscation techniques. 
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● Every obfuscated technique wise feature pattern has been proposed. 

1.7 Thesis Organization 

 

Following chapters are sort out as: literature review is discussed in chapter 2. Research 

methodology that contains research method, tools, environment that are used in this paper work, 

discussed in chapter 3. Results and discussions of analysis in chapter 4. Chapter 5 conclude the 

paper with recommendation, finally. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Previous Study 

 

(Arp et al., 2014) introduced DREBIN, a lightweight strategy for discovery of android 

malware that empowers recognizing pernicious applications specifically on the smartphone. It 

performs a wide static investigation, assembling number of highlighted features of an application 

as could reasonably be expected. They extract eight set of features but more specifically to robust 

analysis they extracted permissions, API calls, intent filters, network addresses. They implant these 

features in joint vector space so that classical patterns characteristics for malware can be simply 

identified. They evaluate 123,453 applications and 5560 malware samples in DREBIN and get a 

detection rate of 94% malware with false positive rate of 1%. It’s similar to 1 false alarm in 100 

applications. 

 (Suarez-Tangil et al., 2017) presented DroidSieve, an android malware classifier dependent 

on static examination that is quick, exact, and flexible to obfuscation. It’s depends on diverse 

features that are known to be characteristic of android malware, covering code structure, 

permissions, set of invoked components and API calls. DroidSieve plays out a novel profound 

assessment of the application to recognize separating highlights missed by existing strategies, 

counting local components, obfuscation relics, and features that are invariant under obfuscation. 

For malware recognition, they accomplish up to 99.82% precision with zero false positives and for 

family detection of obfuscated malware, they accomplish 99.26% accuracy. 

 (Iqbal & Zulkernine, 2018) implement SpyDroid, a multiple real time detection tool for 

android malware. This detection framework deploys multiple sub-detectors on real device. These 

sub-detectors monitor the app behavior and then report to SpyDroid detector. After analyzing the 

report, it takes decision the app malicious or not. On classifying 4956 apps including 2711 malware 

and 2254 malware samples different sub-detectors classify same application differently. But 

ensemble of sub-detectors raises the identification rate remarkably. 

A graph-based model applied by (Alasmary et al., 2019) to detect android malware. They 

name it Poster. They analyze Android and IoT malware to understand the characteristics. They 

conduct a depth analysis on graph properties binaries of Control Flow Graph (CFG) structure. 

General characteristics and graph algorithmic properties were identified from 2874 benign and 

2891 malware apps. They achieved best and highest accuracy rate 97.9%, FPR (1.1%), FNR 

(11.6%) with Random Forest. They apply different machine learning classifier like LR, SVM, RF 

and CNN deep learning methods on the entire dataset. 

A dynamic zero-day Android malware detection system presented by (Grace et al., 2012).  

Authors developed an automated system called RiskRanker. It examines whether a specific app 

disclose dangerous behavior like initiating a root exploit or transferring background SMS. They 

perform analysis on 118,318 apps to get effectiveness and accuracy. Their system uncovers 718 

malware samples in 29 families and 320 zero-day malware apps from 11 well defined families. 
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 Remarkable anomalies of network behavior of smartphone applications are planned in 

(Murtaz et al., 2018). The authors developed a system whose main goal is to protect smartphone 

user’s device and cellular infrastructure corporations from malicious apps from nine traffic feature 

measurements. They get a common accuracy of 94% for five machine learning classifiers; Random 

Forest, K-Nearest Neighbor, Decision Tree, Random Tree, and Regression. The model uses cluster 

strategies containing stream based, bundle based and time-based highlights to narrate malware 

families. 

 (Parker et al., 2018) inspect whether a data mining technique initially developed to detect 

malware on a Windows operating system can be deployed to detect malware in Android devices. 

They proposed a novel algorithm that depends on step sizes and a popularized multi-layer vector 

space (MLVC) model for detecting Android malware. They compare the effectiveness of two 

techniques and get a result that shows two methods are able to accurately classify the samples as 

malware or benign with powerful precision. 

  (Chang et al., 2018) demonstrate malware family’s main characteristic operations or 

activities mainly related to its intent. They introduced ANTSdroid, a novel automatic dynamic 

Android profiling system. They applied Runtime API sequence Motif Mining Algorithm 

(RasMMA) based on the analysis of the sensitive and permission -related execution traces of the 

threads and processes of a set of variant APKs of a malware family. They take 10 families of 2568 

malware samples from the DREBIN dataset. DroidKungFu malware family samples used to 

demonstrate the generated family signature actually captures key sample activities of the family. 

The investigation results reveal the usefulness of using the generated family signature to detect 

new variants using real-world datasets. 

 (Martín et al., 2019) proposed a machine learning based android malware detection based 

on signature. They inspect a large collection of Android applications (>80K) marked as malware 

by at least on AV from a set of 61 unlike engines, allowing almost 260K malware signatures. They 

perform a depth analysis on malware families and their interrelations engine wide, distinguishing 

up to 41 unlike malware families which belong to three large categories; Adware, Harmful and 

Unknown. They classify Unknown applications by machine learning classification tools; Logistic 

Regression with Lasso regularization and Random Forest for placing into Adware or Harmful. 

These classifier models yield outstanding classification result (F1-score of 0.84) and shows some 

of Unknown family classes into either Adware/Harmful threat. 

  Machine learning based static analysis proposed by (Tiwari & Shukla, 2018). Authors 

analyze API and permission for malware detection in android device. Their dataset consists of 669 

malware samples and 652 benign samples. They got 97.25% accuracy with the use of logistic 

regression and 96.21% of accuracy with the support vector machine further without any pre-

sequence of dataset. After preprocessing the dataset, they obtained 97.72% accuracy with 350 

features and 94.69% accuracy with 30 features using support vector machine. They use only 

common features instead of a large number of features and further optimized the feature using 

PCA and obtained 94.31% of accuracy with 30 features.   
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  A deep Autoencoder model is proposed by (He et al., 2018). It is a neural network model 

implemented with Google’s open source TensorFlow deep learning library. It is designed to reduce 

the dimension of feature vectors. They also applied logistic regression model to learn and classify 

the Android applications to be normal or not. They experiment on 5000 normal applications and 

1200 abnormal applications and get recall rate and F1 value respectively 0.93 and 0.643. 

(Qamar et al., 2019) reveals all endeavors towards versatile malware creation, spreads, 

dispersal and identification. The all-around characterized scientific classifications are extensively 

introduced and examined the need to crumble its unsafe effect on network. Besides, in this paper 

measurable examination and the exploration work led amid years 2013-2019 in the space of 

versatile malware investigation alongside man-made consciousness recognition systems are talked 

about. They propose some future headings for analysts that grows increasingly precise, productive, 

strong and versatile system in context of android malware identification. they additionally 

moderately characterize and look at avoidance systems, for example, polymorphism, java 

reflection, muddling and control stream change that is utilized by malware creators to sidestep 

from detection. Additionally, authors expressly decide a few shortcomings from existing 

methodologies that are not altogether examined by researchers. To adapt to this developing risk, 

difficulties and future work headings are likewise showed to give a brisk rule to the scholarly 

community and industry alike. 

Before study of (Hu et al., 2019), no existing studies have investigated the characteristics 

of money-making apps. They uncover a few fascinating perceptions: (1) cash making applications 

have turned into the objective of malware designers, as we discovered a considerable lot of them 

open versatile clients to genuine protection and security dangers. Generally, 26% of the examined 

applications are conceivably malignant. (2) these applications have pulled in a huge number of 

clients, be that as it may, numerous clients grumble that they are swindled by these applications. 

We likewise uncovered that positioning misrepresentation procedures are generally utilized in 

these applications to advance the positioning of applications inside application markets. (3) these 

applications generally spread unseemly and malignant substance, while unsuspicious clients could 

get contaminated. Authors exact examination results uncover different terrible substance, for 

example, malware, conflicting substance and substance with forceful promotions. Study reveals 

that "Content Sharing" applications and "Pay-Per-Install" applications have gotten the greatest 

number of client grumblings and most conceivably malevolent applications have a place with these 

two classes. Most number of client grumblings and most possibly pernicious applications have a 

place with these two classes. Authors investigation has uncovered different fascinating discoveries, 

including the nearness of positioning misrepresentation, protection issues, malware nearness, 

conflicting and pernicious appropriated substance. 
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2.2 FEATURE ENGINEERING 

2.2.1 Permission 

 

Permission plays an important role in Android apps. A huge piece of Android's worked in 

security is its permissions framework (Fereidooni et al., 2016). Protecting privacy of Android user 

is most important in online world. This important task is done by permission. To access sensitive 

user data (Contacts, SMS), moreover explicit system features (Camera, Location) permission must 

be requested by android apps. Based on feature, system allow the permission automatically or 

might provoke the user to allow the appeal. All permission present publicly in <uses-permission> 

tags in the manifest file. Android app that requires normal permission (do not harm to user’s 

privacy or device operation) system automatically allow these permissions to app. App that 

requires dangerous permission (permission that can harmful for user’s privacy or device normal 

operation) the user must explicitly allow to accept those permissions (Android Developers, a). 

Permissions enable an application to get to possibly perilous API calls. Numerous applications 

need a few authorizations to work appropriately and client must acknowledge them at install time. 

Permission gives a more top to bottom view on the functional qualities of an application. Malware 

authors include dangerous permission in manifest that is not relevant to app and also declare much 

more permissions than literally required (Felt et al., 2011, Johnson et al., 2012). Therefore, it is 

become more difficult to detect malicious application based on permissions.  

 
 Ref.              Features  Samples    Accuracy                 Machine Learning Methods  

 (Arslan et al., 2019) Permission      7400        91.95%                    BayesNet, Naive Bayes,  

            LogisticRegression, K-star, OneR, 

      Multilayer Perceptron, K-nearest, 

            Decision Tree, J48, Random Forest 

 

(Dighe et al.)  Permission      3784        94.50%                  J48, Random Forest 

 

(Huang et al., 2013) Permission    125,249     81%                  AdaBoost, Naïve Bayes,  

C4.5, SVM 

 

(Kumar et al., 2019) Permission      11,752     98.1%              Random Forest 

 

(Aung & Zaw, 2013) Permission      700          91.75%        K-Means, J48, RF, CART 

 

(Dong, 2017)  Permission      28,847      95.1%           Linear model, Tree Model, Neural 

                  Network and Ensemble Model 
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Table 2.1: Some Previous Works on Permission   

2.2.2 Intent Filter 

 

 An Intent is an informing object you can use to ask for an operation from another 

application component. Despite the fact that intent makes easier communication between 

components in a few different ways, there are three basic ways (1) starting an activity (2) starting 

a service (3) delivering a broadcast. Two types of intent are there (1) Explicit Intents (2) Implicit 

Intents (Android Developers, b). Explicit Intents identify the components to start with by 

containing targeted package names and class names. Normally, Explicit Intents are utilized to 

interface parts inside a similar application and intended for inter application communications. In 

contrast to Explicit Intents, Implicit Intents do not name a particular segment, however rather 

proclaim general activities to perform. At the point when an application makes an Implicit Intent, 

the Android framework finds the suitable segment to begin by contrasting the substance (i.e., 

action, category and data) of the Intent to the pronounced Intent Filters. On the off chance that the 

Intent matches an Intent Filter, the framework begins that segment and conveys it the Implicit 

Intent item (Xu et al., 2016). If multiple Intent filters are matches than system shows a dialog box 

to user to pick up which app to use. An Intent filter is a declaration in an app’s manifest.xml files 

that states the type of intents of the component will receive. Suppose, an activity declares an intent 

filter, means that other apps can directly start the activity with an undoubtable type of intent. 

Similarly, if an activity does not declare an intent, then it can be activated only by Explicit Intent 

(Android Developers, b). Intent used in inter component and inter app communication. Intent 

filters identify a particular access for a component as well as the application. Intent filters can be 

used for spying specific intents. Malware is responsive to particular set of system events. So, Intent 

filters can be indicator.  

 
 Ref.   Features  Samples     Accuracy/Findings                       Methods  

 
(Elish et al., 2015) Intent     2644  Shows effective solution Static Analysis 

             need to detect collusion attack 

 

(Xu et al., 2015) Intent   17,290  97.4%       SVM 

 

 

(Feng et al., 2014) Intent         -      Resilience to some obfuscation              Call Graph,  

           techniques in detection  Taint Analysis 

  

(Feizollah et al., 2017) Permission,    7406   95.5%            Bayesian 

Network,           K2, Geneticsearch, 

   Intent             HillClimber, LAGDHillClimber 



 

 

9                       ©Daffodil International University  

 

  

(Li et al., 2015) Intent     2283   96.6%       Taint Analysis, Data Flow 

                     Analysis  

 

(Li et al., 2014) Intent     2000   75%               Taint Analysis, CFG,  

                Data Flow Analysis  

 

Table 2.2: Existing Researches on Intent Filter 

2.2.3 API Call 

 

 API stands for Application Programming Interface. In simple terms, APIs simply enable 

applications to speak with each other. Envision the accompanying situation: You (as in, your 

application, or your customer, this could be an internet browser) needs to get to another 

application's information or usefulness. For instance, maybe you need to get to all Twitter tweets 

that notice the #malware hashtag. You could email Twitter and request a spreadsheet of every one 

of these tweets. In any case, at that point you'd need to figure out how to bring that spreadsheet 

into your application; and, regardless of whether you put away them in a database, as we have 

been, the information would end up obsolete in all respects rapidly. It is difficult to stay up with 

the latest. It would be better and easier for Twitter to give you an approach to question their 

application to get that information, so you can view or utilize it in your own application. It would 

remain state-of-the-art consequently that way (Perry, 2017). API includes of principle set of 

packages and classes. Most apps use large number of API calls, so it’s help us to characterize and 

differentiate malware from benign apps. (Peiravian & Zhu, 2013) state that benign apps use most 

APIs than malware apps. The author’s in (Seo et al., 2014) has listed some suspicious API calls 

used by malware applications. For example - sendTextMessage, getPackageManager, 

getDeviceId, Runtime.exec. 

 
 Ref.           Features       Samples  Accuracy / Findings                        Methods  

 
(Peiravian & Zhu, 2013)    Permission,       2510  96.39%         SVM, J48, Bagging  

       API Call 

 

(Yang et al., 2017)        Permission,      28558  84.9% [Offline]   String Subsequence  

       API Call    99.0% [Online]                Based SVM 

 

(Skovoroda &         Permission,      10449  90-94%   Static,   Model 

Gamayunov, 2017)        API Call               Matching 
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(Aafer et al., 2013)        API Call         20000  99.0%            ID3, C4.5, KNN, SVM 

 

(Shen et al., 2018)        API Call            8598  97.6% TP            Complex Flow, 

        91.0% TN         N-gram Analysis 

 

(Ghani et al., 2015)        API Call,   - SMSManager,             Static Analysis, 

       Manager Class   Telephony Manager          Feature Comparison 

most used in malware  

 

Table 2.3: Existing Researches on API Call 

2.2.4 System Call 

 

 Android core is the modified version of Linux 2.6 kernel. For adopting mobile operating 

system devices this modification was done. The Android Kernel explicit bit upgrades on power 

management, shared memory drivers, alert drivers, folios, bit debugger and lumberjack and low 

memory executioners. System calls connect Android application and kernel. Whenever a client 

asks for administrations like call a telephone in client mode through the telephone call application, 

the demand is sent to the Telephone Directory Service in the application structure. The Dalvik 

Virtual Machine in Android runtime changes the client ask for gone by the Telephone Manager 

Service to library calls, which results in various framework calls to Android Kernel. While 

executing the system call, there is a change from client mode to part mode to play out the delicate 

activities. At the point when the execution of activities asked for by the system call is finished, the 

control is come back to the client mode (Malik & Khatter, 2016). As talked about over, the system 

calls are the communicator between the client and the bit. This implies all solicitations from the 

applications will go through the System Call Interface before its execution through the equipment. 

So, catching and dissecting the system call can give data about the conduct of the application. (Seo 

et al., 2014) listed some system calls that are often used in malware applications. for example - 

chmod, su, mount, sh, killall, reboot, mkdir, ln, ps. 

 
 Ref.    Features   Samples      Accuracy / Findings                       Methods  

 
(Dimjaševic et al., 2015) System Call    12,660      93%                     SVM, RF, LASSO, 

            Ridge Regularization 

 

(Firdaus & Anuar, 2015) System Call,    1100       92.5%        Multilayer Perceptron, 

                                       Directory Path, Random Forest, 

                Code Based, Naïve Bayes 
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(Da et al., 2016)  System Call     152      >93.0%            Random Forest 

 

(Kedziora et al., 2018) Broadcast-    1958            80.3% - 80.7%        RF, SVM, K-NN, 

Receiver,                   Naive Bayes, 

    System Call,          Logistic Regression 

API Call  

          

(Tchakounté &  System Call  Malgenom       Click Event Perform          Dynamic  

 Dayang, 2013)          (DroidDream)        Malicious Tasks           Analysis       

                    

(Wahanggara &  System Call     460  90.0% (Polynomial Kernel)         SVM 

 Prayudi, 2015)         86.0% (RBF Kernel) 

        

(Malik & Khatter, 2016) System Call     645  Malware App Invokes          Dynamic  

        System Calls More           Analysis 

        Frequently Than 

 Benign App 

 

Table 2.4: Existing Researches on System Call 

2.2.5 App Component 

 

 Application components are the fundamental structure squares of an Android application. 

Every component is a section point through which the framework or a client can enter your 

application (Android Developers, c). These parts are inexactly coupled by the application show 

record AndroidManifest.xml that depicts every segment of the application and how they connect 

(tutorialspoint). Some of them depend on others. There are following four types of component 

used in Android application -  

● Activities 

An action is the section point for communicating with the client. It speaks to a solitary 

screen with a UI. For instance, an email application may have one movement that 

demonstrates a rundown of new messages, another action to create an email, and another 

action for perusing messages. In spite of the fact that the exercises cooperate to shape a 

durable client involvement in the email application, everyone is free of the others. All 

things considered; an alternate application can begin any of these exercises if the email 

application permits it. For instance, a camera application can begin the movement in the 

email application that makes new mail to enable the client to share an image.  
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● Services 

An administration is a broadly useful section point for keeping an application running out 

of sight for a wide range of reasons. An administration is a part that keeps running out of 

sight to perform long-running activities. An administration does not give a UI. For instance, 

an administration may play music out of sight while the client is in an alternate application, 

or it may get information over the system without blocking client connection with a 

movement. 

● Broadcast receivers 

A broadcast receiver is a part that empowers the framework to convey occasions to the 

application outside of standard client stream, permitting the application to react to 

framework wide communicate declarations. Since communicate collectors are another all-

around characterized section into the application, the framework can convey communicates 

even to applications that aren't as of now running. Thus, for instance, an application can 

plan an alert to present a warning on enlightening the client regarding an up and coming 

occasion... also, by conveying that caution to a BroadcastReceiver of the application, there 

is no requirement for the application to stay running until the alert goes off. In spite of the 

fact that communicate recipients don't show a UI, they may make a status bar warning to 

alarm the client when a communicate occasion happens (Android Developers, c). 

● Content providers 

A content provider part supplies information from one application to others on solicitation. 

The information might be put away in the record framework, the database or elsewhere 

altogether. Through the content provider, different applications can inquiry or change the 

information if the content provider permits it. For instance, the Android framework gives 

a content provider that deals with the client's contact data. Content provider are additionally 

helpful for perusing and composing information that is private to your application and not 

shared. 

 
 Ref.            Features    Samples   Accuracy / Findings             Methods  

 
(Wu et al., 2012)   App Component          1738   97.87%          Singular Value  

    etc.                 Decomposition 

                    KNN  

 

 (Wang et al., 2017)   App Component     8385   99.7%                           KNN,  

     etc.          Random Forest, J48 

 

(Kim et al., 2019)   App component    35,331  98.0%         MNN-z, MNN-s,  

etc.           DNN 
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(Shen et al., 2014)   App Component    308   86.36%            Topology Graph 

     etc. 

            

(Li et al., 2018)   App Component    19,000    99.01% (From DREBIN)   Factorization  

     etc.           99.2% (From AMD)           Machine 

 

(Rana et al., 2018)   App Component    11120  94.0%         RF, DT, EDT, GB,  

                 etc.       SVM, NN-MLP, NB, 

                   k-NN, DA, LR, BAGG, 

  KMN 

 

Table 2.5: Existing Researches on App Component 
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CHAPTER 3 

RESEARCH METHODOLOGY 

3.1 Dataset 

 

This paper is based on Android PRAGuard dataset that was proposed by (Maiorca et al., 

2015). It has 10479 malware samples. This dataset was established by obfuscating malware 

samples of the MalGenome and Contagio Minidump datasets with seven different obfuscation 

techniques such as string encryption, class encryption, reflection etc. 

3.2 Feature 

 

This paper’s aim is extracting most important features of Android that are often used by 

malware writers. To grant for a gentile and tensile analysis, this paper illustrates all extracted 

features such as permissions, app components, API calls, intent filters, system calls based on (Arp 

et al., 2014). 

 

Figure 3.1: Features 
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3.3 Tool 

 

This paper needs to analyze the details of APK. To explore such thing is called reverse 

engineering. Reverse engineering can be done with Androguard. Androguard is a tool for playing 

with android files which is developed in python done by VirusTotal project. What can play 

Androguard that’s below: 

● DEX / ODEX 

● APK 

● Android’s binary xml 

● Android resources 

● Disassemble DEX/ODEX bytecodes 

● Decompiler for DEX/ODEX files 

 

CLI or graphical UI can be used for Androguard. Besides, as a library Androguard is adaptable. 

This analysis uses Androguard as library or module (in python) to analyze DEX and APK files. 

3.4 Environment 

 

Collected dataset has seven obfuscation techniques along with 10479 malware samples. 

Androguard is a pretty much big library. Memory and CPU usage will be high while extracting 

information from dataset by Androguard. For comfort and efficient analysis this paper adopts HP 

i5 2.30 GHz 8GB computing environment. OS: Windows 10, language: Python 3, Module: CSV, 

Matplotlib. 

3.5 Procedure 

 

Every work has predefined process. So therefore, this paper works has some to gain 

paper's objective. Working procedure of this paper analysis demonstrated below - 

 

A. At first step, AndroShow inspect all 10479 malware apk samples whether they are valid or 

not. Because of using obfuscation technique some apk’s structure might be broken Maiorca 

et al. [7]. Therefore, it’s needs to examine first. So, Androguard could not extract some 

apk’s. These apk’s are not in proper zip format. 

B. Second step is extracting features (3.2) using Androguard. Androguard has command line 

interface. At a time only one apk can extracted.  So, extracting many apks are not efficient 

with CLI. For this situation AndroShow has been introduced. It uses Androguard library. 

AndroShow can extract multiple apks at a time. 
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C. In this step CSV file is created upon on features tag name got from second step. These 

features are columns name and rows are 0/1. If a feature found in apk than its 1 otherwise 

0. 

D. After that, creating a 2D bar chart with matplotlib from CSV file where X-axis is for 

features (3.2) tag name and Y-axis for total counted number of features (3.2) tag found 

from CSV, counting on how many 1 found from individual column related to feature tag 

name. 

E. Five and last is to get most uses features of individual obfuscated techniques from bar chart.  

 

 
 

Figure 3.2: Research Methodology 
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CHAPTER 4 

RESULT AND DISCUSSION 

 

 AndroShow inspect a broad static analysis of APK. It extracts all features (3.2) from 

PRAGuard dataset. In this following section this paper will shows every features single and 

possible combinations pattern of seven obfuscated techniques as well as gives a detailed overview 

of analysis. 

Full Short 

Permission  PR 

Requested Permission  RPR 

API Call  APC 

App Component  AC 

Intent IN 

System Command COM 

Table 4.1:  Short Version of Features 

4.1 PERMISSION ANALYSIS 

 

 In this section, this paper illustrates every obfuscated technique permission and requested 

permission analysis report. Besides, every techniques permission pattern and technique wise a 

malware family pattern is given. 

Full Version Short Version 

INTERNET PR1 

READ_PHONE_STATE PR2 

READ_CONTACTS PR3 

ACCESS_NETWORK_STATE PR4 

SEND_SMS PR5 

WRITE_EXTERNAL_STORAGE PR6 

Table 4.2: Shortened Name for Permissions 
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4.1.1 Trivial Encryption 

 

 From Trivial enc. analysis 152 permissions including 18 requested permissions found. Top 

50 permissions are displaying below - 

 

Figure 4.1: Permission Found from Trivial Enc.  

PR1 PR2 PR3 - PR4 PR5 PR6 

1 1 0 - 1 1 1 

Table 4.3: A Permission Pattern of Trivial Enc. 

Family PR1 PR2 PR3 - PR4 PR5 PR6 

jSMSHider 1 1 1 - 1 0 0 

jSMSHider 1 1 1 - 1 0 0 

AnserverBot 1 1 1 - 1 1 0 

AnserverBot 1 1 1 - 1 1 0 

Geinimi 1 1 1 - 0 1 1 

Geinimi 1 1 1 - 1 1 1 

Table 4.4: Family Permission Pattern of Trivial Enc. 
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4.1.2 String Encryption 

 

 Like Trivial enc., same number of normal permissions and requested permissions found 

from String enc. Top 50 are showing below - 

 

Figure 4.2: Permission Found from String Enc. 

PR1 PR2 PR3 - PR4 PR5 PR6 

1 1 1 - 0 0 0 

Table 4.5: A Permission Pattern of String Enc. 
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Family PR1 PR2 PR3 - PR4 PR5 PR6 

DroidKungFu1 1 1 0 - 1 0 1 

DroidKungFu1 1 1 0 - 1 0 1 

KMin 1 1 1 - 1 1 1 

KMin 1 1 1 - 1 1 1 

Plankton 1 1 1 - 0 0 1 

Plankton 1 1 1 - 0 0 0 

Table 4.6: Family Permission Pattern of String Enc. 

4.1.3 Reflection Encryption 

 

 Alike with above two techniques, Reflection enc. have also same findings. Figure 4.3 

shows top 50 features of Reflection enc. 

 

Figure 4.3: Permission Found from Reflection Enc. 
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PR1 PR2 PR3 - PR4 PR5 PR6 

1 1 0 - 1 0 1 

Table 4.7: A Permission Pattern of Reflection Enc. 

Family PR1 PR2 PR3 - PR4 PR5 PR6 

BaseBridge 1 1 0 - 1 0 1 

BaseBridge 1 1 0 - 1 0 1 

DroidKungFu3 1 1 0 - 1 0 1 

DroidKungFu3 1 1 1 - 1 0 1 

ADRD 1 1 0 - 1  0  1 

ADRD 1 1 0 - 1 0 1 

Table 4.8: Family Permission Pattern of Reflection Enc. 

4.1.4 Class Encryption 

 

 Similarly, upon three techniques number of permission and requested permissions are 

equivalent to Class enc. Top 50 features of Class enc. are in figure 4.4. 

 

Figure 4.4: Permission Found from Class Enc. 
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PR1 PR2 PR3 - PR4 PR5 PR6 

1 1 0 - 1 1 1 

Table 4.9: A Permission Pattern of Class Enc. 

Family PR1 PR2 PR3 - PR4 PR5 PR6 

DroidDream 1 1 1 - 1 0 1 

DroidDream 1 1 0 - 1 0 1 

GoldDream 1 0 0 - 1 0 0 

GoldDream 1 1 0 - 1 0 1 

YZHC 1 1 0 - 1 1 1 

YZHC 1 1 0 - 1 1 1 

Table 4.10: Family Permission Pattern of Class Enc. 

4.1.5 Combination of Trivial and String Encryption 

 

 115 normal permissions including 18 requested permissions found from Trivial+String 

enc. Much more different from above four techniques. Above four techniques have 152 

permissions but this combination techniques have only 115 permissions. Number of requested 

permissions with other techniques are same. Figure 4.5 shows top 50 features that are found from 

Trivial+String enc. 

 

Figure 4.5: Permission Found from Trivial+String Enc. 
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PR1 PR2 PR3 - PR4 PR5 PR6 

1 1 0 - 1 1 1 

Table 4.11: A Permission Pattern of Trivial+String Enc. 

Family PR1 PR2 PR3 - PR4 PR5 PR6 

FakePlayer 0 0 0 - 0 1 0 

FakePlayer 0 0 0 - 0 1 0 

Geinimi 1 1 1 - 1 1 1 

Geinimi 1 1 1 - 0 1 1 

Pjapps 1 1 1 - 1 1 1 

Pjapps 1 1 1 - 1 1 1 

Table 4.12: Family Permission Pattern of Trivial+String Enc. 

4.1.6 Combination of Trivial, String and Reflection Encryption 

 

 Comparing to previous technique, number of permissions found from this technique is 

decreased to 111. Number of requested permissions is same as it was. Figure 4.6 is showing 

permissions found from this technique. 

 

Figure 4.6: Permission Found from Trivial+String+Reflection Enc. 
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PR1 PR2 PR3 - PR4 PR5 PR6 

1 1 1 - 0 0 1 

Table 4.13: A Permission Pattern of Trivial+String+Reflection Enc. 

Family PR1 PR2 PR3 - PR4 PR5 PR6 

DroidDreamLight 1 1 1 - 1 0 1 

DroidDreamLight 1 1 1 - 1 0 1 

DroidKungFu4 1 1 0 - 1 0 1 

DroidKungFu4 1 1 1 - 1 0 1 

AnserverBot 1 1 1 - 1 1 0 

AnserverBot 1 1 1 - 1 1 0 

Table 4.14: Family Permission Pattern of Trivial+String+Reflection Enc. 

4.1.7 Combination of Trivial, String, Reflection and Class Encryption 

 

 With contrast of other techniques, most a smaller number of permissions found from this 

technique. Only 107 permissions found this combination. Number of requested permissions is 

same, 18. Figure 4.7 shows this technique most found features. 

 

Figure 4.7: Permission Found from Trivial+String+Reflection+Class Enc. 



 

 

25                       ©Daffodil International University  

 

PR1 PR2 PR3 - PR4 PR5 PR6 

1 0 1 - 1 0 1 

Table 4.15: A Permission Pattern of Trivial+String+Reflection+Class Enc. 

Family PR1 PR2 PR3 - PR4 PR5 PR6 

GoldDream 1 1 0 - 1 1 1 

GoldDream 1 1 0 - 1 1 1 

Bgserv 1 1 0 - 1 1 1 

Bgserv 1 1 0 - 1 1 1 

jSMSHider 1  0 0 - 1 0 0 

jSMSHider 1 1 1 - 1 0 0 

Table 4.16: A Family Permission Pattern of Trivial+String+Reflection+Class Enc. 

4.2 API CALL ANALYSIS 

 

 In this section this paper will illustrate every obfuscated techniques suspicious API call 

analysis report. Besides, every techniques API call pattern and technique wise a malware family 

pattern also given. 

 

Full Version Short Version 

getInputStream  APC1 

openConnection  APC2 

getDeviceId  APC3 

getPackageManager  APC4 

getSubscriberId  APC5 

getAssets  APC6 

Table 4.17: Shortened Name for API Call 
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4.2.1 Trivial Encryption 

 

 From Trivial enc. analysis 23 suspicious API call found. They are in figure 4.8. 

 

Figure 4.8: Suspicious API Call Found from Trivial Enc.  

APC1 APC2 APC3 - APC4 APC5 APC6 

1 0 0 - 1 0 1 

Table 4.18: An API Call Pattern of Trivial Enc. 

Family APC1 APC2 APC3 - APC4 APC5 APC6 

jSMSHider 1 1 1 - 1 1 0 

jSMSHider 1 1 1 - 1 1 0 

BaseBridge 1 1 0 - 1 1 1 

BaseBridge 1 1 0 - 1 0 1 

DroidKungFu1 1 1 1 - 1 0 1 

DroidKungFu1 1 1 1 - 1 1 1 

Table 4.19: Family API Call Pattern of Trivial Enc. 
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4.2.2 String Encryption 

 

 Like Trivial enc., there are same number of suspicious API call uses in String enc. They 

are given below - 

 

Figure 4.9: Suspicious API Call Found from String Enc.  

APC1 APC2 APC3 - APC4 APC5 APC6 

1 1 1 - 1 0 1 

Table 4.20: An API Call Pattern of String Enc. 

Family APC1 APC2 APC3 - APC4 APC5 APC6 

DroidKungFu1 1 1 1 - 1 1 1 

DroidKungFu1 1 1 1 - 1 0 1 

DroidDreamLight 1 1 1 - 1 1 1 

DroidDreamLight 1 1 1 - 1 1 1 

Pjapps 1 1 1 - 1 1 1 

Pjapps 1 1 1 - 1 1 1 

Table 4.21: Family API Call Pattern of String Enc. 
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4.2.3 Reflection Encryption 

 

 Similarly, with above two techniques, Reflection enc. have also same findings. Figure 4.10 

shows usage of suspicious API call of Reflection enc. 

 

Figure 4.10: Suspicious API Call Found from Reflection Enc. 

APC1 APC2 APC3 - APC4 APC5 APC6 

1 1 1 - 0 1 0 

Table 4.22: An API Call Pattern of Reflection Enc. 

Family APC1 APC2 APC3 - APC4 APC5 APC6 

BaseBridge 1 1 0 - 1 1 1 

BaseBridge 1 1 0 - 1 1 1 

RogueSPPush 1 1 1 - 1 0 0 

RogueSPPush 1 1 1 - 1 0 0 

KMin 1 1 1 - 1 1 1 

KMin 1 1 1 - 1 1 1 

Table 4.23: Family API Call Pattern of Reflection Enc. 
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4.2.4 Class Encryption 

 

 From Class enc analysis, it shows that 20 suspicious API call used in this technique. It uses 

3 less suspicious API call than other techniques.  These are given in figure 4.11. 

 

Figure 4.11: Suspicious API Call Found from Class Enc.  

APC1 APC2 APC3 - APC4 APC5 APC6 

1 1 1 - 1 0 1 

Table 4.24: An API Call Pattern of Class Enc. 

Family APC1 APC2 APC3 - APC4 APC5 APC6 

DroidDream 1 0 0 - 0 0 1 

DroidDream 0 0 0 - 0 0 0 

Zsone 0 0 0 - 1 0 1 

Zsone 0 0 0 - 1 0 1 

Asroot 0 0 0 - 0 0 1 

Asroot 0 0 0 - 0 0 1 

Table 4.25: Family API Call Pattern of Class Enc. 
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4.2.5 Combination of Trivial and String Encryption 

 

 Unlike with other techniques, 22 suspicious API call used in this technique. Figure 4.12 

shows them.  

 

Figure 4.12: Suspicious API Call Found from Trivial+String Enc.  

APC1 APC2 APC3 - APC4 APC5 APC6 

1 1 0 - 1 0 1 

Table 4.26: An API Call Pattern of Trivial+String Enc. 

Family APC1 APC2 APC3 - APC4 APC5 APC6 

FakePlayer 0 0 0 - 0 0 0 

FakePlayer 0 0 0 - 0 0 0 

DroidKungFu4 1 1 1 - 1 1 1 

DroidKungFu4 1 1 1 - 1 1 1 

DroidDreamLight 1 1 1 - 1 1 1 

DroidDreamLight 1 1 1 - 1 1 1 

Table 4.27: Family API Call Pattern of Trivial+String Enc. 



 

 

31                       ©Daffodil International University  

 

4.2.6 Combination of Trivial, String and Reflection Encryption 

 

 Like previous technique, same number of suspicious API call used in this technique. Usage 

are given in figure 4.13. 

 

Figure 4.13: Suspicious API Call Found from Trivial+String+Reflection Enc.  

APC1 APC2 APC3 - APC4 APC5 APC6 

1 1 1 - 1 1 0 

Table 4.28: An API Call Pattern of Trivial+String+Reflection Enc. 

Family APC1 APC2 APC3 - APC4 APC5 APC6 

DroidDreamLight 1 1 1 - 1 1 1 

DroidDreamLight 1 1 1 - 1 1 1 

Geinimi 1 1 1 - 1 1 0 

Geinimi 1 1 1 - 1 1 0 

BaseBridge 1 1 1 - 1 1 1 

BaseBridge 1 1 0 - 1 1 1 

Table 4.29: Family API Call Pattern of Trivial+String+Reflection Enc. 
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4.2.7 Combination of Trivial, String, Reflection and Class Encryption 

 

 With contrast of other techniques, most a smaller number of permissions found from this 

technique. From trivial+string+reflection+class enc analysis this paper finds that 19 suspicious 

API call used in this technique. Figure 4.14 illustrated usage of suspicious API call of this 

technique. 

 

Figure 4.14: Suspicious API Call Found from Trivial+String+Reflection+Class Enc.  

APC1 APC2 APC3 - APC4 APC5 APC6 

1 1 1 - 1 1 0 

Table 4.30: An API Call Pattern of Trivial+String+Reflection+Class Enc. 

Family APC1 APC2 APC3 - APC4 APC5 APC6 

GoldDream 0 0 0 - 0 0 0 

GoldDream 0 0 0 - 0 0 0 

DroidKungFu3 0 0 0 - 0 0 0 

DroidKungFu3 0 0 0 - 0 0 0 

GingerMaster 0 0 0 - 0 0 0 

GingerMaster 0 0 0 - 0 0 0 

Table 4.31: Family API Call Pattern of Trivial+String+Reflection+Class Enc. 
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4.3 SYSTEM COMMAND ANALYSIS 

 

 In this section this paper will illustrate every obfuscated technique system command 

analysis report. Besides, every techniques System Command pattern and technique wise a malware 

family pattern also given. 

 

Full Version Short Version 

mkdir COM1 

ln COM2 

su COM3 

getprop COM4 

ps COM5 

killall COM6 

Table 4.32: Shortened Name for System Command 

4.3.1 Trivial Encryption 

 

 This analysis find that 12 system command used in this technique. They are given in figure 

4.15 

 

Figure 4.15: System Command Found from Trivial Enc.  
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COM1 COM2 COM3 - COM4 COM5 COM6 

1 1 1 - 0 1 0 

Table 4.33: A System Command Pattern of Trivial Enc. 

Family COM1 COM

2 

COM3 - COM4 COM5 COM6 

jSMSHider 0 0 1 - 0 0 0 

jSMSHider 0 0 1 - 0 0 0 

Zsone 1 0 1 - 0 0 0 

Zsone 1 0 1 - 0 0 0 

DroidKungFu2 1 0 1 - 0 0 0 

DroidKungFu2 1 0 1 - 1 0 0 

Table 4.34: Family System Command Pattern of Trivial Enc. 

4.3.2 String Encryption 

 

 13 system command used in String enc. technique. All are showing in figure 4.16.  

 

Figure 4.16:  System Command Found from String Enc.  
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COM1 COM2 COM3 - COM4 COM5 COM6 

1 0 0 - 0 0 1 

Table 4.35: A System Command Pattern of String Enc. 

Family COM1 COM2 COM3 - COM4 COM5 COM6 

DroidKungFu1 1 0 0 - 1 0 0 

DroidKungFu1 1 0 0 - 1 0 0 

Pjapps 1 0 1 - 0 0 0 

Pjapps 1 0 0 - 0 0 0 

AnserverBot 1 0 0 - 0 0 0 

AnserverBot 1 0 0 - 0 0 0 

Table 4.36: Family System Command Pattern of String Enc. 

4.2.3 Reflection Encryption 

 

 From Reflection enc. analysis, 14 system command used in this technique. Comparing to 

first two techniques, number of suspicious API call use less in this technique. Figure 4.17 shows 

analysis result. 

 

Figure 4.17:  System Command Found from Reflection Enc.  
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COM1 COM2 COM3 - COM4 COM5 COM6 

1 0 1 - 0 0 0 

Table 4.37: A System Command Pattern of Reflection Enc. 

Family COM1 COM2 COM3 - COM4 COM5 COM6 

BaseBridge 1 0 0 - 0 0 0 

BaseBridge 1 0 0 - 0 0 0 

KMin 1 0 1 - 0 0 0 

KMin 1 0 1 - 0 0 0 

jSMSHider 0 0 1 - 0 0 0 

jSMSHider 1 0 1 - 0 0 0 

Table 4.38: Family System Command Pattern of Reflection Enc. 

4.3.4 Class Encryption 

 

 Class enc. uses 9 system command. That is much less than above three techniques. Figure 

4.18 shows usage of suspicious API call of this technique. 

 

Figure 4.18:  System Command Found from Class Enc.  
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COM1 COM2 COM3 - COM4 COM5 COM6 

1 0 1 - 0 0 0 

Table 4.39: A System Command Pattern of Class Enc. 

Family COM1 COM2 COM3 - COM4 COM5 COM6 

DroidDream 0 0 0 - 0 0 1 

DroidDream 0 0 0 - 0 0 0 

DroidKungFu4 0 1 0 - 0 0 0 

DroidKungFu4 0 1 0 - 0 0 0 

BeanBot 0 0 1 - 0 0 0 

BeanBot 0 0 1 - 0 0 0 

Table 4.40: Family System Command Pattern of Class Enc. 

4.3.5 Combination of Trivial and String Encryption 

 

 Similarity also shown in this technique with previous technique.10 system command used 

in this technique. They are demonstrating below in figure 4.19. 

 

Figure 4.19:  System Command Found from Trivial+String Enc.  
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COM1 COM2 COM3 COM4 COM5 

1 0 0 0 0 

Table 4.41: A System Command Pattern of Trivial+String Enc. 

Family COM1 COM2 COM3 - COM4 COM5 

FakePlayer 0 0 0 - 0 0 

FakePlayer 0 0 0 - 0 0 

GoldDream 1 0 0 - 0 0 

GoldDream 1 0 0 - 0 0 

DroidKungFu4 1 1 1 - 0 1 

DroidKungFu4 1 1 1 - 0 1 

Table 4.42: Family System Command Pattern of Trivial+String Enc. 

4.3.6 Combination of Trivial, String and Reflection Encryption 

 

 This technique also not so much used system command as other techniques used. Only 8 

system command used in this technique. Figure 4.20 shows 8 system commands. 

 

Figure 4.20:  System Command Found from Trivial+String+Reflection Enc.  
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COM1 COM2 COM3 - COM4 COM5 

0 1 1 - 0 1 

Table 4.43: A System Command Pattern of Trivial+String+Reflection Enc. 

Family COM1 COM2 COM3 - COM4 COM5 

DroidDreamLight 0 0 0 - 0 0 

DroidDreamLight 0 0 0 - 0 0 

DroidKungFu1 1 0 0 - 0 0 

DroidKungFu1 1 0 0 - 0 0 

Geinimi 0 1 1 - 0 1 

Geinimi 1 1 0 - 0 0 

Table 4.44: Family System Command Pattern of Trivial+String+Reflection Enc. 

4.3.7 Combination of Trivial, String, Reflection and Class Encryption 

 

 A big difference found in this technique. Number of system command used in this 

technique is most less than other techniques. 4 system command used in this technique only. All 

are showing in figure 4.21. 

 

Figure 4.21:  System Command Found from Trivial+String+Reflection+Class Enc.  



 

 

40                       ©Daffodil International University  

 

COM1 COM2 COM3 COM4 

0 1 0 0 

Table 4.45: A System Command Pattern of Trivial+String+Reflection+Class Enc. 

Family COM1 COM2 COM3 COM4 

GoldDream 0 0 0 0 

GoldDream 0 0 0 0 

DroidKungFu3 0 0 1 0 

DroidKungFu3 0 0 1 0 

ADRD 0 1 0 0 

ADRD 0 1 0 0 

Table 4.46: Family System Command Pattern of Trivial+String+Reflection+Class Enc. 

4.4 INTENT FILTER ANALYSIS 

 

 In this section this paper will illustrate every obfuscated technique intent analysis report. 

Besides, every technique intent pattern and technique wise a malware family pattern also given. 

 

Full Version Short Version 

BOOT_COMPLETED  IN1 

CONTENT_CHANGED  IN2 

PHONE_STATE  IN3 

NEW_OUTGOING_CALL  IN4 

SCREEN_ON  IN5 

SCREEN_OFF  IN6 

Table 4.47: Shortened Name for Intent 
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4.4.1 Trivial Encryption 

 

 Trivial enc. uses most number intent filter than other techniques. 90 intent filter used in 

this technique. Figure 4.22 shows top 50 intent filter used in this technique. 

 

Figure 4.22: Intent Filter Found from Trivial Enc.  

IN1 IN2 IN3 - IN4 IN5 IN6 

0 0 0 - 0 1 1 

Table 4.48: An Intent Pattern of Trivial Enc. 

Family IN1 IN2 IN3 - IN4 IN5 IN6 

jSMSHider 0 0 0 - 0 0 0 

jSMSHider 0 0 0 - 0 0 0 

GoldDream 1 0 0 - 1 0 0 

GoldDream 1 0 0 - 1 0 0 

DroidDreamLight 1 0 1 - 0 0 1 

DroidDreamLight 1 0 1 - 0 0 1 

Table 4.49: Family Intent Pattern of Trivial Enc. 
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4.4.2 String Encryption 

 

 String enc. uses 34 intent filters which is almost one third of Trivial enc. All have been 

shown in figure 4.23. 

 

Figure 4.23:  Intent Filter Found from String Enc.  

IN1 IN2 IN3 - IN4 IN5 IN6 

1 0 1 - 1 0 0 

Table 4.50: An Intent Pattern of String Enc. 

Family IN1 IN2 IN3 - IN4 IN5 IN6 

DroidKungFu1 0 0 0 - 0 0 0 

DroidKungFu1 0 0 0 - 0 0 0 

DroidKungFu4 0 1 0 - 0 0 0 

DroidKungFu4 0 1 0 - 0 0 0 

ADRD 1 0 0 - 0 0 0 

ADRD 1 0 0 - 0 0 0 

Table 4.51: Family Intent Pattern of String Enc. 
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4.4.3 Reflection Encryption 

 

 Like Trivial enc. this technique also used the greatest number of intent filters. 90 

intent filters used in this technique. Top 50 usage given in figure 4.24. 

 

Figure 4.24:  Intent Filter Found from Reflection Enc.  

IN1 IN2 IN3 - IN4 IN5 IN6 

1 0 1 - 0 1 1 

Table 4.52: An Intent Pattern of Reflection Enc. 

Family IN1 IN2 IN3 - IN4 IN5 IN6 

BaseBridge 0 0 0 - 0 1 1 

BaseBridge 0 0 0 - 0 1 1 

SndApps 1 0 0 - 0 0 0 

SndApps 1 0 0 - 0 0 0 

DroidKungFu2 1 0 0 - 0 0 0 

DroidKungFu2 1 0 0 - 0 0 0 

Table 4.53: Family Intent Pattern of Reflection Enc. 
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4.4.4 Class Encryption 

 

 68 intent filter used in Class enc. technique. Literally its used intent filter double of String 

enc. Top 50 used intent filter is in figure 4.25. 

 

Figure 4.25:  Intent Filter Found from Class Enc.  

IN1 IN3 IN4 - IN5 IN6 

1 1 0 - 1 1 

Table 4.54: An Intent Pattern of Class Enc. 

Family IN1 IN3 IN4 - IN5 IN6 

DroidDream 1 1 0 - 0 0 

DroidDream 1 0 0 - 0 0 

zHash 1 0 0 - 0 0 

zHash 1 0 0 - 0 0 

DroidKungFu3 1 0 0 - 0 1 

DroidKungFu3 1 0 0 - 0 0 

Table 4.55: Family Intent Pattern of Class Enc. 
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4.4.5 Combination of Trivial and String Encryption 

 

 This technique used much less intent filter than other single obfuscation techniques. Only 

21 intent filter used in this technique. Figure 4.26 shows them all. 

 

Figure 4.26:  Intent Filter Found from Trivial+String Enc.  

IN1 IN2 IN3 - IN4 IN5 IN6 

0 0 1 - 1 1 1 

Table 4.56: An Intent Pattern of Trivial+String Enc. 

Family IN1 IN2 IN3 - IN4 IN5 IN6 

FakePlayer 0 0 0 - 0 0 0 

FakePlayer 0 0 0 - 0 0 0 

DroidKungFu4 1 0 1 - 1 0 0 

DroidKungFu4 1 1 0 - 0 1 1 

DroidDreamLight 1 0 1 - 0 0 0 

DroidDreamLight 1 0 1 - 0 0 0 

Table 4.57: Family Intent Pattern of Trivial+String Enc. 
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4.4.6 Combination of Trivial, String and Reflection Encryption 

 

 Likewise, previous technique, this combination techniques also have use number of intent 

filters. All intents filters are showing below in figure 4.27. 

 

Figure 4.27:  Intent Filter Found from Trivial+String+Reflection Enc.  

 

IN1 IN2 IN3 - IN4 IN5 IN6 

0 0 1 - 1 1 1 

Table 4.58: An Intent Pattern of Trivial+String+Reflection Enc. 

Family IN1 IN2 IN3 - IN4 IN5 IN6 

DroidDreamLight 1 0 1 - 0 0 0 

DroidDreamLight 1 0 1 - 0 0 0 

DroidKungFu4 0 1 0 - 0 0 0 

DroidKungFu4 1 1 0 - 0 1 1 

DroidKungFu3 1 0 1 - 1 0 0 

DroidKungFu3 1 0 1 - 1 0 0 

Table 4.59: Family Intent Pattern of Trivial+String+Reflection Enc. 



 

 

47                       ©Daffodil International University  

 

4.4.7 Combination of Trivial, String, Reflection and Class Encryption 

 

 Unlikely this technique used most a smaller number of intent filter than other techniques. 

Only 3 intent used in this technique. Figure 4.28 illustrated them.  

 

Figure 4.28:  Intent Filter Found from Trivial+String+Reflection+Class Enc.  

IN1 IN3 IN4 

1 1 1 

Table 4.60: An Intent Pattern of Trivial+String+Reflection+Class Enc. 

Family IN1 IN3 IN4 

GoldDream 0 0 0 

GoldDream 0 0 0 

DroidKungFu3 1 1 1 

DroidKungFu3 0 0 0 

Geinimi 0 0 0 

Geinimi 0 0 0 

Table 4.61: Family Intent Pattern of Trivial+String+Reflection+Class Enc. 
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4.5 APP COMPONENT ANALYSIS 

 

 In this section this paper will illustrate every obfuscated technique app component analysis 

report. Besides, every techniques app component pattern and technique wise a malware family 

pattern also given. 

 

Full Version Short Version 

Receiver  AC1 

MainA  AC2 

BaseABroadcastReceiver  AC3 

MainActivity  AC4 

BootReceiver  AC5 

NotificationActivity  AC6 

Table 4.62: Shortened Name for App Component 

4.5.1 Trivial Encryption 

 

 Trivial obfuscation technique used 1774 app component. Top 50 usage of app component 

are in figure 4.29. 

 

Figure 4.29: App Component Found from Trivial Enc.  
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AC1 AC2 AC3 - AC4 AC5 AC6 

0 0 0 - 0 1 0 

Table 4.63: An App Component Pattern of Trivial Enc. 

Family AC1 AC2 AC3 - AC4 AC5 AC6 

jSMSHider 0 0 0 - 0 0 0 

jSMSHider 0 0 0 - 0 0 0 

AnserverBot 0 1 1 - 0 0 0 

AnserverBot 0 1 1 - 0 0 0 

ADRD 0 0 0 - 1 0 0 

ADRD 0 0 0 - 1 0 0 

Table 4.64: Family App Component Pattern of Trivial Enc. 

4.5.2 String Encryption 

 

 String enc. used second highest number of app component among other techniques.  2381 

app component used in this technique. Top 50 are in figure 4.30. 

 

Figure 4.30:  App Component Found from String Enc.  
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AC1 AC2 AC3 - AC4 AC5 AC6 

0 0 0 - 0 0 1 

Table 4.65: An App Component Pattern of String Enc. 

Family AC1 AC2 AC3 - AC4 AC5 AC6 

DroidKungFu1 1 0 0 - 0 0 0 

DroidKungFu1 1 0 0 - 0 0 0 

Bgserv 0 0 0 - 0 1 0 

Bgserv 0 0 0 - 0 1 0 

KMin 0 0 0 - 1 1 0 

KMin 0 0 0 - 1 0 0 

Table 4.66: Family App Component Pattern of String Enc. 

4.5.3 Reflection Encryption 

 

 Highest number of app component have been used by Reflection enc. 2429 app component 

applied in this technique. Top 50 apply of app component shown in figure 4.31. 

 

Figure 4.31:  App Component Found from Reflection Enc.  
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AC1 AC2 AC3 - AC4 AC5 AC6 

0 0 0 - 0 0 1 

Table 4.67: An App Component Pattern of Reflection Enc. 

Family AC1 AC2 AC3 - AC4 AC5 AC6 

BaseBridge 0 1 0 - 0 0 0 

BaseBridge 0 0 0 - 0 0 0 

AnserverBot 0 1 1 - 0 0 0 

AnserverBot 0 1 1 - 0 0 0 

DroidKungFu3 1 0 0 - 1 0 0 

DroidKungFu3 1 0 0 - 0 0 0 

Table 4.68: Family App Component Pattern of Reflection Enc. 

4.5.4 Class Encryption 

 

 Lowest number of app component have been seen in Class enc. 68 app component utilized 

here. Figure 4.32 shows 50 most usage feature of app component. 

 

Figure 4.32:  App Component Found from Class Enc.  
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AC1 AC2 AC3 - AC4 AC5 AC6 

0 0 0 - 1 0 0 

Table 4.69: An App Component Pattern of Class Enc. 

Family AC1 AC2 AC3 - AC4 AC5 AC6 

DroidDream 0 0 0 - 0 0 0 

 DroidDream 0 0 0 - 0 0 0 

RogueSPPush 0 0 0 - 1 0 0 

RogueSPPush 0 0 0 - 1 0 0 

YZHC 0 0 0 - 0 1 0 

YZHC 0 0 0 - 0 1 0 

Table 4.70: Family App Component Pattern of Class Enc. 

4.5.5 Combination of Trivial and String Encryption 

 

 1579 app component have been employed in this combination technique. Most usage 

features are shown in figure 4.33.  

 

Figure 4.33:  App Component Found from Trivial+String Enc.  
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AC1 AC2 AC3 - AC4 AC5 AC6 

0 0 0 - 0 1 0 

Table 4.71: An App Component Pattern of Trivial+String Enc. 

Family AC1 AC2 AC3 - AC4 AC5 AC6 

FakePlayer 0 0 0 - 0 0 0 

FakePlayer 0 0 0 - 0 0 0 

zHash 0 0 0 - 1 0 0 

zHash 0 0 0 - 1 0 0 

AnserverBot 0 1 1 - 0 0 0 

AnserverBot 0 1 1 - 0 0 0 

Table 4.72: Family App Component Pattern of Trivial+String Enc. 

4.5.6 Combination of Trivial, String and Reflection Encryption 

 

 1439 app component have been used by this complex obfuscation technique. Most usage 

features are shown in figure 4.34. 

 

Figure 4.34:  App Component Found from Trivial+String+Reflection Enc.  
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AC1 AC2 AC3 - AC4 AC5 AC6 

1 0 0 - 0 0 0 

Table 4.73: An App Component Pattern of Trivial+String+Reflection Enc. 

Family AC1 AC2 AC3 - AC4 AC5 AC6 

DroidDreamLight 1 0 0 - 0 0 0 

DroidDreamLight 1 0 0 - 0 0 0 

DroidKungFu3 1 0 0 - 1 0 0 

DroidKungFu3 1 0 0 - 1 0 0 

BeanBot 0 0 0 - 1 0 0 

BeanBot 0 0 0 - 1 0 0 

Table 4.74: Family App Component Pattern of Trivial+String+Reflection Enc. 

4.5.7 Combination of Trivial, String, Reflection and Class Encryption 

 

 This complex obfuscation strategy used 1365 app component. Figure 4.35 shows most 

usage features of app component of this strategy. 

 

Figure 4.35:  App Component Found from Trivial+String+Reflection+Class Enc.  
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AC1 AC2 AC3 - AC4 AC5 AC6 

0 0 0 - 0 0 1 

Table 4.75: An App Component Pattern of Trivial+String+Reflection+Class Enc. 

Family AC1 AC2 AC3 - AC4 AC5 AC6 

GoldDream 0 0 0 - 0 0 0 

GoldDream 0 0 0 - 0 0 0 

DroidKungFu2 1 0 0 - 1 0 0 

DroidKungFu2 1 0 0 - 1 0 0 

NickySpy 0 0 0 - 0 1 0 

NickySpy 0 0 0 - 1 1 0 

Table 4.76: A Family App Component Pattern of Trivial+String+Reflection+Class Enc. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Findings and Contributions 

 

In this study, AndroShow perform a static analysis of obfuscated Android malware 

applications. Permission, API call, Intent filter, App component and System call features are 

analyzed.   AndroShow demonstrate confound malwares uses trend of these features. Several 

works have been done. Main contribution of this paper analysis is given below -  

● Static analysis has been performed on obfuscated Android malware application. 

● Analysis performs on five features - permission, API call, intent filter, app component, 

system call. 

● Features pattern proposed in 2D matrix. Where column name is the feature tag name and 

rows are the 0/1 with family name. 

● Most uses features demonstrate in 2D bar chart. 

● Features extracted from obfuscated malware dataset, PRAGuard. This dataset contains 

10,479 obfuscated malware applications with seven different obfuscation techniques. 

5.2 Recommendations for Future Works 

 .  

Future work will be classifying every muddle malware family wise. Detection of new 

malware app by machine learning based on features pattern can be a good thought. 

REFERENCES 

 

Aafer, Y., Du, W., & Yin, H. (2013, September). Droidapiminer: Mining API-level features for 

robust malware detection in android. In International conference on security and privacy 

in communication systems (pp. 86-103). Springer, Cham 

 

Alasmary, H., Khormali, A., Anwar, A., Park, J., Choi, J., Nyang, D., & Mohaisen, A. (2019, 

February). Poster: Analyzing, Comparing, and Detecting Emerging Malware: A Graph-

based Approach. 

 

Android Developers. (n.d.-a). Permissions overview. Retrieved from  

https://developer.android.com/guide/topics/permissions/overview 

 

Android Developers. (n.d.-b). Intents and Intent Filters. Retrieved from 

https://developer.android.com/guide/components/intents-filters 

https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/components/intents-filters


 

 

57                       ©Daffodil International University  

 

 

Android Developers. (n.d.-c). App components. Retrieved from 

https://developer.android.com/guide/components/fundamentals#Components 

 

Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., & Siemens, C. E. R. T. (2014, 

February). DREBIN: Effective and Explainable Detection of Android Malware in Your 

Pocket. In Ndss (Vol. 14, pp. 23-26). 

 

Arslan, R. S., Doğru, İ. A., & Barişçi, N. (2019). Permission-Based Malware Detection System 

for Android Using Machine Learning Techniques. International Journal of Software 

Engineering and Knowledge Engineering, 29(01), 43-61. 

 

Aung, Z., & Zaw, W. (2013). Permission-based android malware detection. International Journal 

of Scientific & Technology Research, 2(3), 228-234. 

 

Ben, P. (2017, May 17). Google announces over 2 billion monthly active devices on Android [web 

log post]. Retrieved from https://www.theverge.com/2017/5/17/15654454/android-

reaches-2-billion-monthly-active-users 

 

Chang, S. C., Sun, Y. S., Chuang, W. L., Chen, M. C., Sun, B., & Takahashi, T. (2018, December). 

ANTSdroid: Using RasMMA Algorithm to Generate Malware Behavior Characteristics of 

Android Malware Family. In 2018 IEEE 23rd Pacific Rim International Symposium on 

Dependable Computing (PRDC) (pp. 257-262). IEEE. 

 

Da, C., Hongmei, Z., & Xiangli, Z. (2016, October). Detection of Android malware security on 

system calls. In 2016 IEEE Advanced Information Management, Communicates, 

Electronic and Automation Control Conference (IMCEC) (pp. 974-978). IEEE. 

 

Dighe, S., Jondhale, A., & Salunke, D. J. Permission Based Android Malware Detection 

 

Dimjaševic, M., Atzeni, S., Ugrina, I., & Rakamaric, Z. (2015). Android malware detection based 

on system calls. University of Utah, Tech. Rep. 

 

Dong, Y. (2017). Android Malware Prediction by Permission Analysis and Data Mining. 

 

Elish, K. O., Yao, D., & Ryder, B. G. (2015, May). On the need of precise inter-app ICC 

classification for detecting Android malware collusions. In Proceedings of IEEE mobile 

security technologies (MoST), in conjunction with the IEEE symposium on security and 

privacy. 

 

https://developer.android.com/guide/components/fundamentals#Components
https://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-active-users
https://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-active-users


 

 

58                       ©Daffodil International University  

 

 

Feizollah, A., Anuar, N. B., Salleh, R., Suarez-Tangil, G., & Furnell, S. (2017). Androdialysis: 

Analysis of android intent effectiveness in malware detection. computers & security, 65, 

121-134. 

 

Felt, A. P., Chin, E., Hanna, S., Song, D., & Wagner, D. (2011, October). Android permissions 

demystified. In Proceedings of the 18th ACM conference on Computer and 

communications security (pp. 627-638). ACM. 

 

Feng, Y., Anand, S., Dillig, I., & Aiken, A. (2014, November). Apposcopy: Semantics-based 

detection of android malware through static analysis. In Proceedings of the 22nd ACM 

SIGSOFT International Symposium on Foundations of Software Engineering (pp. 576-

587). ACM. 

 

Fereidooni, H., Moonsamy, V., Conti, M., & Batina, L. (2016). Efficient classification of android 

malware in the wild using robust static features. Protecting Mobile Networks and Devices: 

Challenges and Solutions, 1, 181-209. 

 

Firdaus, A., & Anuar, N. B. (2015). Root-exploit malware detection using static analysis and 

machine learning. In Proceedings of the fourth international conference on Computer 

Science & Computational Mathematics (ICCSCM 2015). Langkawi, Malaysia (pp. 177-

183). 

 

Ghani, S. M. A., Abdollah, M. F., Yusof, R., & Mas’ud, M. Z. (2015). Recognizing API Features 

for Malware Detection Using Static Analysis. Journal of Wireless Networking and 

Communications, 5(2A), 6-12. 

 

Grace, M., Zhou, Y., Zhang, Q., Zou, S., & Jiang, X. (2012, June). Riskranker: scalable and 

accurate zero-day android malware detection. In Proceedings of the 10th international 

conference on Mobile systems, applications, and services (pp. 281-294). ACM. 

 

He, N., Wang, T., Chen, P., Yan, H., & Jin, Z. (2018, December). An Android Malware Detection 

Method Based on Deep AutoEncoder. In Proceedings of the 2018 Artificial Intelligence 

and Cloud Computing Conference (pp. 88-93). ACM. 

 

Hu, Y., Wang, H., Li, L., Guo, Y., Xu, G., & He, R. (2019, February). Want to Earn a Few Extra 

Bucks? A First Look at Money-Making Apps. In 2019 IEEE 26th International Conference 

on Software Analysis, Evolution and Reengineering (SANER) (pp. 332-343). IEEE. 

 



 

 

59                       ©Daffodil International University  

 

Huang, C. Y., Tsai, Y. T., & Hsu, C. H. (2013). Performance evaluation on permission-based 

detection for android malware. In Advances in Intelligent Systems and Applications-

Volume 2 (pp. 111-120). Springer, Berlin, Heidelberg. 

 

IDC. (n.d.). Smartphone Market Share. Retrieved from  

https://www.idc.com/promo/smartphone-market-share/os 

 

Iqbal, S., & Zulkernine, M. (2018, October). SpyDroid: A Framework for Employing Multiple 

Real-Time Malware Detectors on Android. In 2018 13th International Conference on 

Malicious and Unwanted Software (MALWARE) (pp. 1-8). IEEE 

 

Jan, S. & Ondrej, D. (2018, July 25-27). Retrieved from 

https://www.rsaconference.com/writable/presentations/file_upload/tta-

r09_android_malware_trends_on_a_global_scale_final.pdf 

 

Jannatul, I. (2018, November 9). Pathao violates users’ privacy. Retrieved from  

https://www.daily-sun.com/printversion/details/348905/2018/11/09/Pathao-violates-

users%E2%80%99-privacy 

 

Johnson, R., Wang, Z., Gagnon, C., & Stavrou, A. (2012, June). Analysis of android applications' 

permissions. In 2012 IEEE Sixth International Conference on Software Security and 

Reliability Companion (pp. 45-46). IEEE. 

 

Kedziora, M., Gawin, P., Szczepanik, M., & Jozwiak, I. (2018). Android Malware Detection Using 

Machine Learning And Reverse Engineering. Computer Science & Information 

Technology (CS & IT). 95-107. 

 

Kim, T., Kang, B., Rho, M., Sezer, S., & Im, E. G. (2019). A Multimodal Deep Learning Method 

for Android Malware Detection Using Various Features. IEEE Transactions on 

Information Forensics and Security, 14(3), 773-788. 

 

Kumar, R., Zhang, X., Khan, R. U., & Sharif, A. (2019). Research on Data Mining of Permission-

Induced Risk for Android IoT Devices. Applied Sciences, 9(2), 277. 

 

Li, C., Zhu, R., Niu, D., Mills, K., Zhang, H., & Kinawi, H. (2018). Android Malware Detection 

based on Factorization Machine. arXiv preprint arXiv:1805.11843. 

 

Li, L., Bartel, A., Bissyandé, T. F., Klein, J., Le Traon, Y., Arzt, S., ... & McDaniel, P. (2015, 

May). Iccta: Detecting inter-component privacy leaks in android apps. In Proceedings of 

https://www.idc.com/promo/smartphone-market-share/os
https://www.daily-sun.com/printversion/details/348905/2018/11/09/Pathao-violates-users%E2%80%99-privacy
https://www.daily-sun.com/printversion/details/348905/2018/11/09/Pathao-violates-users%E2%80%99-privacy


 

 

60                       ©Daffodil International University  

 

the 37th International Conference on Software Engineering-Volume 1 (pp. 280-291). IEEE 

Press. 

 

Li, L., Bartel, A., Klein, J., & Le Traon, Y. (2014, September). Automatically exploiting potential 

component leaks in android applications. In 2014 IEEE 13th International Conference on 

Trust, Security and Privacy in Computing and Communications (pp. 388-397). IEEE. 

 

Maiorca, D., Ariu, D., Corona, I., Aresu, M., & Giacinto, G. (2015). Stealth attacks: An extended 

insight into the obfuscation effects on android malware. Computers & Security, 51, 16-31. 

 

Malik, S., & Khatter, K. (2016). System call analysis of android malware families. Indian Journal 

of Science and Technology, 9(21). 

 

Martín, I., Hernández, J. A., & de los Santos, S. (2019). Machine-Learning based analysis and 

classification of Android malware signatures. Future Generation Computer Systems. 

 

Murtaz, M., Azwar, H., Ali, S. B., & Rehman, S. (2018, November). A framework for Android 

Malware detection and classification. In 2018 IEEE 5th International Conference on 

Engineering Technologies and Applied Sciences (ICETAS) (pp. 1-5). IEEE. 

 

Parker, C., McDonald, J. T., Johnsten, T., & Benton, R. G. (2018, October). Android Malware 

Detection Using Step-Size Based Multi-layered Vector Space Models. In 2018 13th 

International Conference on Malicious and Unwanted Software (MALWARE) (pp. 1-10). 

IEEE. 

 

Peiravian, N., & Zhu, X. (2013, November). Machine learning for android malware detection using 

permission and API calls. In 2013 IEEE 25th international conference on tools with 

artificial intelligence (pp. 300-305). IEEE. 

 

Perry, E. (2017, December 7). What exactly IS an API? [web log post]. Retrieved from 

https://medium.com/@perrysetgo/what-exactly-is-an-API-69f36968a41f 

 

Rana, M. S., Gudla, C., & Sung, A. H. (2018, December). Evaluating Machine Learning Models 

for Android Malware Detection: A Comparison Study. In Proceedings of the 2018 VII 

International Conference on Network, Communication and Computing (pp. 17-21). ACM. 

 

Seo, S. H., Gupta, A., Sallam, A. M., Bertino, E., & Yim, K. (2014). Detecting mobile malware 

threats to homeland security through static analysis. Journal of Network and Computer 

Applications, 38, 43-53. 

 



 

 

61                       ©Daffodil International University  

 

Shen, F., Del Vecchio, J., Mohaisen, A., Ko, S. Y., & Ziarek, L. (2018). Android malware detection 

using complex-flows. IEEE Transactions on Mobile Computing. 

 

Shen, T., Zhongyang, Y., Xin, Z., Mao, B., & Huang, H. (2014, September). Detect Android 

malware variants using component based topology graph. In 2014 IEEE 13th International 

Conference on Trust, Security and Privacy in Computing and Communications (pp. 406-

413). IEEE. 

 

Skovoroda, A., & Gamayunov, D. (2017, August). Automated static analysis and classification of 

Android malware using permission and API calls models. In 2017 15th Annual Conference 

on Privacy, Security and Trust (PST) (pp. 243-24309). IEEE. 

 

Statista. (n.d.). Number of apps available in leading app stores as of 3rd quarter 2018. Retrieved 

from https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-

app-stores/ 

 

Suarez-Tangil, G., Dash, S. K., Ahmadi, M., Kinder, J., Giacinto, G., & Cavallaro, L. (2017, 

March). DroidSieve: Fast and accurate classification of obfuscated android malware. In 

Proceedings of the Seventh ACM on Conference on Data and Application Security and 

Privacy (pp. 309-320). ACM. 

 

Tchakounté, F., & Dayang, P. (2013). System calls analysis of malwares on android. International 

Journal of Science and Technology, 2(9), 669-674. 

 

Tiwari, S. R., & Shukla, R. U. (2018, June). An Android Malware Detection Technique Using 

Optimized Permission and API with PCA. In 2018 Second International Conference on 

Intelligent Computing and Control Systems (ICICCS) (pp. 2611-2616). IEEE. 

 

tutorialspoint. (n.d.). Android - Application Components. Retrieved from 

https://www.tutorialspoint.com/android/android_application_components.htm 

 

Qamar, A., Karim, A., & Chang, V. (2019). Mobile malware attacks: Review, taxonomy & future 

directions. Future Generation Computer Systems. 

 

Wahanggara, V., & Prayudi, Y. (2015, October). Malware detection through call system on 

android smartphone using vector machine method. In 2015 Fourth International 

Conference on Cyber Security, Cyber Warfare, and Digital Forensic (CyberSec) (pp. 62-

67). IEEE. 

 

https://www.tutorialspoint.com/android/android_application_components.htm


 

 

62                       ©Daffodil International University  

 

Wang, X., Zhang, D., Su, X., & Li, W. (2017). Mlifdect: android malware detection based on 

parallel machine learning and information fusion. Security and Communication Networks, 

2017. 

 

Wu, D. J., Mao, C. H., Wei, T. E., Lee, H. M., & Wu, K. P. (2012, August). Droidmat: Android 

malware detection through manifest and API calls tracing. In 2012 Seventh Asia Joint 

Conference on Information Security (pp. 62-69). IEEE. 

 

Xu, K., Li, Y., & Deng, R. H. (2016). Iccdetector: Icc-based malware detection on android. IEEE 

Transactions on Information Forensics and Security, 11(6), 1252-1264. 

 

Yang, M., Wang, S., Ling, Z., Liu, Y., & Ni, Z. (2017). Detection of malicious behavior in android 

apps through API calls and permission uses analysis. Concurrency and Computation: 

Practice and Experience, 29(19), e4172. 


