
Natural Language Query to SQL: Dissecting the semantic word

dependency graph

BY

MAHMUD SAJJAD ABEER

ID: 161-15-6764

This Report Presented in Partial Fulfillment of the Requirements for

the Degree of Bachelor of Science in Computer Science and

Engineering

Supervised By

Mr. Mohammad Mahmudur Rahman

Associate Professor

Department of CSE

Daffodil International University

Co-Supervised By

Mr. Saiful Islam

Senior Lecturer

Department of CSE

Daffodil International University

DAFFODIL INTERNATIONAL UNIVERSITY

DHAKA, BANGLADESH

DECEMBER, 2019

© Daffodil International University i

© Daffodil International University ii

© Daffodil International University iii

© Daffodil International University iv

ACKNOWLEDGEMENT

First, I express my heartiest thanks and gratefulness to almighty Allah for His divine

blessing makes it possible to complete the final year thesis successfully.

I am really grateful and wish my profound indebtedness to Mr. Mohammad

Mahmudur Rahman, Associate Professor, Department of CSE, Daffodil

International University, Dhaka. Deep Knowledge & keen interest of my supervisor

in the field of Natural Language Processing helped me a lot to carry out this

research. His endless patience, scholarly guidance, continual encouragement,

constant and energetic supervision, constructive criticism, valuable advice, reading

many inferior drafts and correcting them at all stages have made it possible to

complete this project.

I would like to express my heartiest gratitude to Almighty Allah and Head,

Department of CSE, for his kind help to finish my project and also to other faculty

members and the staffs of CSE department of Daffodil International University.

I would like to thank Mr. Mahafuzur Rahman, CTO, CodeMarshal, for his

enormous help, support and direct guidance throughout the research to enable me

reaching the stage that my work currently is in.

I would also like to thank Mr. Saiful Islam, Senior Lecturer, Department of CSE,

Daffodil International University, for his continuous help and support during the

entire time.

I would like to thank Mr. Mehedi Imam Shafi, Research and Development

Engineer, CodeMarshal, for his continuous help, support and guidance from the

beginning to end.

I would like to thank my entire course mates in Daffodil International University,

who took part in this discussion while completing the course work.

Finally, I must acknowledge with due respect the constant supports and patients of

my parents.

© Daffodil International University v

ABSTRACT

Data and Information is the core of Science and Technology. The more we are

progressing the more data we are contributing to this vault which will be accessed

by millions of people for further learning and uses. Now, the problem is, they are

not as versatile as we expect them to be. The amount of information accessible

currently is way past the wild estimate of a couple of years prior. No wonder that

the digital data is stored in Computational Databases. These data are stored,

accessed, updated and retrieved using a complex programming language which is

in most of the situation SQL(Structured Query Language) for efficiency and it’s

applications. The problem is that we need to learn specific SQL languages to access

those data even if it’s for searching or researching purposes. This is the hardest part.

We’re creating a huge gap between the data and regular human. What if we don't

need to learn any database query languages anymore to retrieve data from

databases? We could create an intermediate medium that would capture the natural

language query from human, generate the relevant SQL query and retrieve the

expected data. This is a continuation of another research where this report has

itemized understanding on a different kind of approach where we’d breakdown the

words, classify it’s internal characteristics and relationships with other sub contexts

and iterate over it’s dependency graph to determine the selection clauses and column

matchings. Also, we will have a good understanding of what have just been done in

this particular theme but focusing on the aggregation queries.

© Daffodil International University vi

Table of Contents

APPROVAL ERROR! BOOKMARK NOT DEFINED.

DECLARATION ... II

ACKNOWLEDGEMENT ... IV

ABSTRACT ... V

CHAPTER 1: INTRODUCTION .. 1-4

1.1 Introduction .. 1

1.2 Motivation .. 2

1.3 Rationale of the Study ... 2

1.4 Research Questions .. 3

1.5 Expected Outcome ... 4

1.6 Report Layout .. 4

CHAPTER 2: BACKGROUND .. 5-8

2.1 Introduction .. 5

2.2 Related Works ... 5

2.3 Research Summary .. 7

2.4 Scope of the problem ... 7

2.5 Challenges .. 8

CHAPTER 3: RESEARCH METHODOLOGY 9-15

3.1 Introduction .. 9

3.2 Research Subject and Instrumentation ... 9

3.3 Data Collection .. 10

3.4 Detailed Methodology ... 11

© Daffodil International University vii

3.5 Implementation Requirements ... 15

CHAPTER 4: SYSTEM IMPLEMENTATION 16-21

4.1 Introduction .. 16

4.2 Overview .. 16

4.3 Front End ... 16

4.4 Back End .. 17

4.5 Connection ... 20

CHAPTER 5: EXPERIMENTAL RESULTS AND DISCUSSION . 22-27

5.1 Introduction .. 22

5.2 Experimental Results ... 22

5.3 Descriptive Analysis .. 24

5.4 Comparison .. 26

5.5 Summary .. 27

CHAPTER 6: SUMMARY, CONCLUSION, RECOMMENDATION

AND IMPLICATION FOR FUTURE RESEARCH 28-30

6.1 Summary of the Study ... 28

6.2 Conclusions .. 28

6.3 Recommendation ... 28

6.4 Implications for Further Study ... 30

REFERENCES ... 31

APPENDIX ... 32

© Daffodil International University viii

List of Figures

Figure 3.1 System Figure 11

Figure 3.2 spaCy dependency parser 13

Figure 3.3 StanfordCoreNLP dependency parser 13

Figure 3.4 Lack of relative accuracy in stanfordCoreNLP 14

Figure 3.5 Change of pos tag after changing the casing 14

Figure 4.1 Aggregate query findings 17

Figure 4.2 Class diagram 19

Figure 4.3 Connection Diagram 21

© Daffodil International University ix

List of Tables

Table 5.1 Experimental results from topcsmr17.csv 22

Table 5.2 Experimental results from music.db 23

© Daffodil International University 1

INTRODUCTION

1.1 Introduction

Current world is all about data and information. The progress we are making right now

is because we’re reusing the past learnings which are knowledge based on information.

We take all that information for granted but we didn’t stop right there. We’re still

working on and making new findings for future generation. This is a matter of

realization that knowledge, information they all are basically made of data. Most of

them were and are kept in books for centuries but what about our current world? We

won’t be able to cope with the speed of progress if we had to store, process and retrieve

data from hard written books.

Thus, we use computational methods to do all these with best possible efficiency where

the DBMS(Database Management System), RDBMS(Relational Database

Management System) comes in. This is fantastic and mind blowing how fast we can

work with them to store, process or retrieve the data from digital databases nowadays.

We just need to make the queries using SQL(Structured Query Language).

The problem is, this is not like human language. The queries are highly structured and

complex from the perspective of a regular human. So, even if the data retrieval is

efficient, we can’t communicate with the database in natural language. However, the

Natural Language Processing field of computer science deals with such problem but it

only works to process the language. If we can combine the methods of Natural

Language Processing this seems very much possible to build an intermediate system

that would be able to extract the SQL query from a natural language query.

© Daffodil International University 2

1.2 Motivation

The idea of Natural Language Processing is by itself very interesting to work on. When

we’re using the term “Natural Language”, we’re referring to “Human Language”.

Making a computer understand a natural language is like the dream of human flying in

the sky. Although it’s been an old area of research, there are many scopes to explore.

However, as computer enthusiast we look for unresolved problems, dig into it and look

for new and improved solutions. While learning SQL queries it’s not very uncertain to

wonder if there exist any system available where we can alter the SQL queries with

Natural Language Query.

Looking into past few works I noticed that one of my university graduate Mehedi Imam

Shafi has proposed a system naming “Natural Language Query to SQL: Dynamically

Adaptive System” regarding this very same topic. I went through the paper and

observed his approach to solving the problem and I was very happy to see that there’s

already an available GUI based system developed. It handled the very basic queries

analyzing the query, column names and data. He’s proposed a complete system and

implemented a segment of his approach which leaves many future scopes to work on

regarding this topic. Keeping that in mind I decided to research on some of the future

scopes he mentioned and find out a solution that could be used as an extension the

previous approach.

1.3 Rationale of the Study

A mentionable number of researchers have and are still working for finding a solution

to adapt a system that can convert human language query to structured query language.

We’ll check out some of them in “related works” section. Most of them targeting a fixed

database to improve accuracy but it doesn’t solve the actual problem existing in general

terms. As we know, it may work good for that specific database it’s scope of service is

very small. Even though you train up a system, it may work differently affecting the

accuracy with a different database. The “Dynamically adaptive system” proposes a nice

approach but some segments are proposed nicely but still underdeveloped and the one

we’re going to focus is aggregation query.

© Daffodil International University 3

1.4 Research Questions

As we go on with this research we’re going to face some basic questions which must be

defined properly before reading any further.

1.4.1 Natural Language Query:

In this context we’re defining the Natural Language Query as a query made by a regular

human in his/her native language. For now let’s just suppose it’s English but

unfortunately when making queries no matter what the language is, a single query can

be written in many human readable forms even in the same language. All of which are

considered as unstructured sentences from computational perspective in this scenario.

1.4.2 SQL(Structured Query Language):

Structured Query Language is a programming language developed to manage

Relational Database Management Systems. There are available variations regarding

different RDBMS but SQL is conventionally considered as the basic. This requires

experience and expertise to create highly structured and efficient database queries.

1.4.3 Aggregate Query:

An aggregate query in database management system is used when we need to derive

some specific information such as sum, max, min, average etc over a set of entries.

Some common aggregate queries in natural language are mentioned below:-

 What’s the maximum marks in today’s exam?

 Find the average marks.

 Sum of costs

© Daffodil International University 4

1.5 Expected Outcome

The primary goal of this project is to propose an improved solution specifically for

aggregate queries and implementing it with a graphical interface to test the hypothesis

and it’s results which will be added to the pervious version developed by Mehedi Imam

Shafi. However, I’m pointing out the objectives I’ll be focusing on to reach an expected

state where we’ll see: -

 Ability to detect and mark aggregate query with flexibility in choice of words in

natural language query.

 Ability to mark general selection clauses like before.

 Ability to find relation between columns and relevant data without checking data

entries in database.

 Ability to generate SQL query more time efficiently with/without checking hash

of words.

1.6 Report Layout

The report is designed in a way such that readers will get complete understanding of the

aggregation query generation approach, how it’s designed and implemented currently,

the results and what can be done to improve from current state.

Chapter 1 gives the basic understanding of the problem, motivation behind it and the

objectives of this research.

In Chapter 2 we’re going to discuss it’s background, past related works and challenges

regarding this problem.

Chapter 3 will contain the back to back explanation of the techniques and methodology

used in this research.

Chapter 4 is all about the implemented system and all of it’s functionalities with proper

manual and description.

Chapter 5 will mostly contain the analysis and comparison of results.

Chapter 6 will contain the summary, conclusion, constraints and future scopes of the

work.

© Daffodil International University 5

BACKGROUND

2.1 Introduction

Background studies are like ABCs of the research works. Designing a solution that

already exists is useless. Many people around the world are researching about new and

old stuffs, giving new observations, improvements and results. As any topic Natural

Language to Queries is an interesting topic to many. And ideas from other sources are

almost always helpful. Even the failures are part of the research. In this chapter we’ll

look out into some related works.

2.2 Related Works

There have been numerous inquiries about on this particular issue. The two

recommendations and frameworks have been made to take care of the issue proficiently.

Throughout the previous not many decades a great deal of new approaches and thoughts

have been acquainted with illuminate this issue. Each work has its advantages and

disadvantages. All proposition, made, have been useful to the pathway for a superior

arrangement later on.

Lunar (Woods, 1973) [1] is the main distributed arrangement of such kind. Lunar took

client's question in normal language and replied about rocks that were brought from

moon. The framework made was kept to its utilization to the database containing data

about the brought rocks. In spite of the fact that the work was constrained however it

absolutely showed what is conceivable and what help might it be able to be if it's

culminated.

Allen J, 1983 [2] has depicted the significance about such sort of framework in his

book. In his book he portrayed how the phonetic in software engineering has been

© Daffodil International University 6

changing over the timeframe. The need to see little bits of knowledge from dialects are

unmistakably examined here. Different sort of numerical models are presented and how

parsing normal language can bring greater adaptability is tended to. This likewise

remembers a reasonable clarification for how more extensive and progressively sensible

scope of highlights found in human language and to confine the components of program

objectives.

Lifer/Ladder structured by Hendrix, 1978 [3] is another usage of such framework

which upheld single table from a database. This framework was for Navy ships which

could address straightforward inquiries regarding them. This speaks to how an interface

to give access to huge group of information circulated over a PC arrange by means of

characteristic language can be presented. The work restricted to one explicit table of

information that is worked beforehand upon.

System by Rao et al, 2010 [4] have built up a framework good with basic questions

alongside fundamental understood inquiries. Though Chaudhuri et al, 2013 covers some

accumulation functionalities also. Conglomeration capacities are more intricate than

simply recovering information from database. It requires all the more mapping and

more profound comprehension of the information inquiries.

A much more up to date work nQuery, 2017 [5] has endeavored to make a substantially

more proficient and autonomous framework. Their framework centers around

fundamentally table, attribute mapping just as clause tagging which permits to produce

progressively accurate yield. Our work relies upon both query analyzing and mapping.

A language MASQUE/SQL [6] was proposed, an update to the past MASQUE, by I.

Androutsopoulos, G. Ritchie, P. Thanisch to acknowledge normal language queries

from clients. The framework maps the language to an auxiliary contingent base named

LQL which at that point is changed over to SQL query. Our framework maps

straightforwardly to SQL with no new dialect.

© Daffodil International University 7

Natural Language Query to SQL, Dynamically Adaptive System(Mehedi Imam Shafi,

2018) [7], a system that’s proposed and developed to a basic stage to take user queries,

do some nlp operations directly on the query and finally mapping the columns and data

that fits the users query to a reasonable stage to convert it to a SQL query. However it

didn’t handle the aggregation queries which we’re going to work on in this research.

Rule-SQL(Tong Guo, Huilin Gao, 2019) [8] is one of such research works done

recently. Offered the query and the results from the database table without the SQL

rationale structure, RuleSQL utilizes the principles dependent on table segment names

and question string for the SQL investigation first and afterward utilizes the investigated

SQL for supervised training.

2.3 Research Summary

Researching above mentioned related works this is clear that the problem still exists in

some manner. Some works are actually good and helped this research to open up some

ideas. As we can see there are only few works on aggregation methods. We’ve also

found some solutions working nice with neural network but in terms of query analyzing

it’s not pretty much clearing up the natural language processing. In our system we’re

analyzing the query and through deep understanding of the query finding a solution that

most probably will open up more options to improve but will also give a reasonable

approach to solve aggregate query related problems.

2.4 Scope of the problem

This research is going to act as an extension or continuation of Natural Language Query

to SQL, Dynamically Adaptive System. The previous research gave an amazing

approach with a simple implementation that can already work with simple queries but

can’t handle aggregation queries and join queries which requires a different kind of

© Daffodil International University 8

approach to solve. In this research we’re only going to focus how aggregation queries

can be analyzed to find a relevant SQL query.

2.5 Challenges

First of all, I’d like to acknowledge that the previous solution does most of the web-app

implementation part but the research regarding aggregation queries is going to be very

much different than that version.

Natural Language by itself is already very complex. Let’s say for example we need to

know the number of students with highest marks, one can ask “Give me highest marks?”

one might ask “What’s the maximum marks a student got?” both the queries will

produce the same result but if you look closer you’ll notice that the structure of the

queries is in no way same. So, we’re going to analyze the query properly so that both

of them produce the same results and that’s a challenge to look out.

Some words in the query may not hold any significance in terms of the actual SQL

query but you can’t tell the users that you can’t use them in your natural language

queries. This one is a problem we can’t get rid of and rather adapt to it otherwise we’re

limiting the natural language as well as creating new structure to follow which leaves

us back into the same problem we are trying to solve.

Along the way we’ll see few more challenges and how we approached to solve them.

© Daffodil International University 9

RESEARCH METHODOLOGY

3.1 Introduction

We’ve explored many of the recent approaches and after researching all those

methodologies we have adapted every one of the advantages of approaches and their

constraints and extensions also. Along these lines our proposed system incorporates a

review of what is done to avert what or to broaden what ability. However, this part of

the report holds all the steps used for classifying the problems, data collection and

research methodologies used to find a solution for aggregate queries.

3.2 Research Subject and Instrumentation

Domain: This should already be very much clear that this research lies solely on the

natural language processing domain. We’re going to use many of the tools that are

already available. As of the previous we’re sticking to English language. We’re going

to take the basic SQL query structures as it’s almost of the same figure as others and

conventionally followed for starters.

Instrumentation: In our research we’re going to need some of the tools and instruments

that were already used on previous solution for similar purposes. However, the methods

are mentioned below: -

1. Tokenization

2. POS Tagging

3. Lemmatizing/Stemming

4. Dependency Parsing

You can find the details online. Why we needed these tools will be explained on later

subsections where needed.

© Daffodil International University 10

3.3 Data Collection

In our research we mostly relied on some well-established sources. For our specific

scope of research, we had to do some manual work on building some dataset. We’re

testing on the similar test data used on the previous solution. So, we’re only sharing the

new Development Data that we’ve used in this project.

3.3.1 Development Data

As we’re working on aggregation function, we needed to understand how one might ask

max, min etc in natural language. One might ask “What’s the largest size of boxes?”.

As you can see, he’s asking for the maximum or MAX size of the boxes but saying

“largest” in his query. Same for “smallest” which maps to MIN. We had to collect all

such words (superlative degrees) and map it to the related aggregation. This could be

done with other learning procedures which can be taken as further improvements on

current solution.

For that we’ve collected the data from List of comparative superlative words [9] and

then manually map the aggregation relation which you’ll find on the agg_functions.txt

on the project files.

Rest of the test databases were collected from the open source project of NLQ2SQL:

Dynamic Adaptive Approach [10].

Data Source: All the information utilized all throughout the research works are from

open sources and were ensured no copyright was disregarded. Libraries that are utilized

are likewise under open source area in this way information accompanied them are

additionally dependent upon their copyright and under the open source space.

© Daffodil International University 11

3.4 Detailed Methodology

In this section we’re going to see the detailed methodology we followed in current

approach and implementation.

3.4.1 Overview of the System

The system is running in linear configuration except for the part where we’re looking

for relationships between data and columns/selection clauses. The system can be

divided into some smaller subtasks and are tried to explain through a flow chart given

below: -

Figure 3.1 System Figure

© Daffodil International University 12

3.4.2 Detailed steps

1. Table names and column names collection: In our approach we’re only going

to use table name and column names from the given database. No relationship

with database data is going to be mapped like the previous approach.

This is surely going to improve the speed but may lessen some accuracy in some

fields. However, the actual mode we’ve planned at initial phase of research had

some analysis on the table data and how it can be used to improve the results.

This can be taken as future improvements of current approach.

In this research we’re going to keep a version like the previous one where these

data would be collected as meta-data of .db file after selecting/dumping a

database.

2. NLP annotation: This phase is ran after taking the natural language query. In

this phase we’re using StanfordCoreNLP to collect the tokens, lemmas, pos tags

and Dependency graph over the sentence and words.

In our approach Dependency Parsing plays a significant role. We’ve tried other

dependency parsers where spaCy(done in later) dependency parser did very well

comparing to StanfordCoreNLP but in some cases spaCy was tokenizing it in

such a way that we found it hard to implement. Other than that both of them had

high accuracy but we chose to go with the StanfordCoreNLP for some

advantages in our implementation.

i.e: When we tried out the dependency parse for query “All details of 171-15-

9400”

The spaCy [11] found: -

© Daffodil International University 13

Figure 3.2 spaCy dependency parser

Whereas, StanfordCoreNLP [12] found: -

Figure 3.3 StanfordCoreNLP dependency parser

3. Converting to qWords: The words individually holds many characteristics.

Combining all of them and putting them altogether was necessary. Which also

helps to find relations with other words when we’ll be looking for it in details.

The object model will be discussed on Back-End subsection on 4th chapter[read

the note there].

4. Creating graph of qWords: We’re going to join all the qWords back again

following the dependency parsing rules. Theoretically, this is no big deal but

while implementing a solution to it, we had to create a new graph to include

additional information for future iteration over it.

5. Iterating on graph and finding condition and selection clauses: We’re

iterating over the graph assuming it as a sentence. If a leaf node word is found

we’re trying to find a selection clause or a column name matching.

© Daffodil International University 14

Here we’re checking the parents of those words recursively as they hold some

dependencies. We’re also doing some checkups to detect if it’s a column match,

data match, stopword, selection clause or some aggregate query.

Here, by “stopword” we mean the type of words that holds no major significance

when doing SQL queries. There exists a drawback when we’re checking if it’s

a stopword or not. We may have selected a word that actually held significance.

For example:-

Figure 3.4 Lack of relative accuracy in stanfordCoreNLP

In above figure, you’ll notice that “a” is marked as DT(Determiner) which it’s

actually not. However, in below example we’ll see that changing the case of A

changes it’s pos tag:-

Figure 3.5 Change of pos tag after changing the casing

However, as we’re working with StanfordCoreNLP, we must follow it’s pos

tags. Which although can be improved by using other learning methods and not

covered in this research as we’ve reached a good level of accuracy following

current method.

This is because of the linguistic significance of capitalization. And overcoming

such problem is not yet proposed/implemented.

© Daffodil International University 15

3.5 Implementation Requirements

We’re pretty much using the similar requirements as mentioned on the previous

approach proposed by Mehedi Imam Shafi. The recommended system requirement

based on the environment we tested our new approach in is given below.

Hardware:

Processor:

Core i3 CPU @ 3.30GHz or above

RAM:

6.00 GB or above

Storage:

20 GB of Hard Disk Drive or above

Software Requirement:

Operating Systems:

 Windows OS – Windows 10 (Pro)

 Linux – Ubuntu 18.04

Either of them should be fine

Environments:

 Anaconda

 Python 3.7 or above

Python Packages:

 NLTK

 Stanford Core-NLP

 WordNet

 Messy Tables

 Pandas

 Json

Also, it must have internet connectivity available to function properly.

© Daffodil International University 16

SYSTEM IMPLEMENTATION

4.1 Introduction

In real life the theoretical findings often works differently than expected. So, although

we’re basically working to develop a methodology to solve our mentioned problem

we’re going to develop and implement our idea through a work friendly system. This

chapter will contain the detailed in and out report of the developed system. It will also

contain the details of input parameters and methods required to run the system.

4.2 Overview

Implementing a basic solution for testing purposes was one of the goals mentioned

before. As of the previous researcher of this project, python seemed easy to catch up

with keeping the previous version alive. This version is going to be almost similar to

the previous one as I’ve mentioned that it’s only going to be an extension of it. For

simplicity I’m still going to point out the basic functionalities and implementation for

the upgraded version.

The system is implemented in basic two parts. Back end and front end.

The front end will interact with user and the back end will do all the processing. The

detailed description is shared below.

4.3 Front End

The user interface is going to be almost exactly the same as the version we’ve mentioned

earlier. Big thanks to Mr. Shafi for letting me create a git branch of his private project

in github [7]. We’re just going to add an extra field in that same interface. He already

© Daffodil International University 17

has the details about most of the parts and we’re just going to explain the extension

we’ve included.

Aggregation SQL findings:

Figure 4.1 Aggregate query findings

After generating the query, if it finds any aggregate query it will be shown on the grey

field of “Aggregate findings” although this works for simple queries as well.

4.4 Back End

Language: We’ve used python and it’s environment in it’s back end. The reason why

we chose this language is because python has a very rich set of libraries for data analysis

and in this case Natural Language Processing. The libraries/packages we’ve used for

this project is already mentioned in the Implementation Requirement subsection.

The python version we’ve used here is 3.7.0

Framework: Flask framework is used to maintain the webserver and connections. We

actually had two mentionable options to implement it based on python. Django or Flask.

Django enforces the developer to maintain MVC model and requires heavy coding.

Which really is good for production level developments. Whereas, Flask offers a very

lightweight development module, easy to learn, use, develop and deploy which as a

researcher anyone would find interesting.

We’ve used flask version 1.1.1

© Daffodil International University 18

Easy to use functional program: Any researcher would find the project very easy to

use.

Any user having basic understanding of programming can follow the user guideline and

use it for further research.

User guideline with cmd/terminal:

1. First, install all the dependencies including environment if required. Anaconda

would lessen the work in case of basic environment. After that, just install the

required packages mentioned on 3.5 subsection. Usually pip(Package manager

for Python packages) is used to install the packages.

2. Open a terminal in your operating system

3. Change the directory to the targeted project folder

4. Open python IDLE in that directory. Make sure it’s the correct version of

python opened.

5. Import abeerQuery

6. Create an object of type aggQueryFinder.

7. Call ob.updateColumnNames(columns) where columns is the orderwise list of

string of column names.

8. Call ob.query(qq) where qq is the query string from user which will return an

object of type Sql from qClasses(For further use)

9. Call getSqlString(table_name) to get the final SQL string

10. After that if you write print(result), it will give you the Sql query found from

this natural language query.

For example:

``` 

import abeerQuery as aq 

ob = aq.aggQueryFinder() 

ob.updateColumnNames(["name", "department", "section", "solve"]) 

ob.query("find name and solve from cse department") 

result = ob.getSqlString("topcsmr17") 

print(result) 

 

``` 

Class attributes and methods: The class names, attributes and methods are

mentioned below. The attribute names and method names are very much definitive

and some of which are mentioned and explained in previous and next sections.

© Daffodil International University 19

The class diagram of the new implementation is shared below:

Figure 4.2 Class diagram

© Daffodil International University 20

Here, some of the mentionable classes and it’s uses are given below:-

aggQueryFinder: This class is the driver class of the whole system.

qWord: qWord is the class used to store all the information related to the characteristics

of the words.

wordGraph: This only holds the relationship between the words.

Sql: This class can be called as the resulting sql class. This holds all the information as

column matches and selection clauses.

All of the mentioned class, attributes and methods are new and holds no direct

dependency on the previous solution but for future improvements one may take it into

account.

4.5 Connection

Although we’ve brought an extension into account, the connection remains the same as

previous implementation and we didn’t to change any of it’s structure as it gets the job

done. However, it’s not much hard to get it working.

To make frontend cooperate with the backend we utilized ajax as the medium. Ajax

system gives us a chance to make demand among applications and procedure

approaching information. When something is told in the frontend an ajax demand is

made to the server. Furthermore, the server processes the solicitation as needs be and

when preparing is done it restores an outcome to the user end.

© Daffodil International University 21

Figure 4.3 Connection Diagram

© Daffodil International University 22

EXPERIMENTAL RESULTS AND DISCUSSION

5.1 Introduction

So far, we’ve been through the theoretical idea and implementation details of this

project. Now, it’s time to do some experiments with some hand-made queries. In this

chapter we’ll checkout some hand-made queries on different databases, measure the

expected accuracy and compare it with other available systems.

5.2 Experimental Results

In this section we’ll checkout some experimental queries and their results. As we’ve

mentioned earlier that we’re doing no data-oriented matching and is out of the scope of

this report, we’ll be providing the column name in some manner to test the current

system.

The below experiments are done on topcsmr17.csv file:-

Table 5.1 Experimental results from topcsmr17.csv

Query in natural

language

System output Correct

1 find the max solve from

section A

SELECT MAX(solve) FROM topcsmr17

WHERE Section=("C");

YES

2 find the max solve from

a section

SELECT Section, MAX(solve) FROM

topcsmr17_new;

NO

3 contact number of

student with token 14

SELECT Contact FROM topcsmr17

WHERE Token=("14");

YES

4 highest solve of students

from department of swe

and section C

SELECT MAX(solve) FROM topcsmr17

WHERE Section=("C") AND

Department=("swe");

YES

5 name of participant with

id 161-15-6764

SELECT Participant FROM topcsmr17

WHERE id=("161-15-6764");

YES

© Daffodil International University 23

6 lowest solve from day

shift

SELECT MIN(solve) FROM topcsmr17

WHERE shift=("day");

YES

7 show me all the names

and ids from cse

department

SELECT * FROM topcsmr17_new

WHERE Department=("cse");

NO

8 name and id from cse

department in day shift

SELECT Varsity_ID, Participant_Name

FROM topcsmr17 WHERE shift=("day")

AND Department=("cse");

YES

9 everyone from cse

department in evening

shift

SELECT * FROM topcsmr17 WHERE

shift=("evening") AND

Department=("cse");

YES

10 count of participants

having 0 solve

SELECT COUNT(*) FROM topcsmr17

WHERE solve=("0");

YES

11 average solve among all

participants

SELECT AVG(solve) FROM topcsmr17; YES

The table below holds the experimental results on music.db

Table 5.2 Experimental results from music.db

Query in natural

language

System output Correct

1 who sang you shook

me

SELECT * FROM tracks; NO

2 songs having 25000

length

SELECT * FROM tracks WHERE

length=("25000");

YES

3 Show all artists from

pop genre

SELECT artist FROM tracks WHERE

genre=("pop");

YES

4 longest length of a

song from rock genre

SELECT MAX(length) FROM tracks

WHERE genre=("rock");

YES

5 count songs in

nothingman album

SELECT COUNT(*) FROM tracks

WHERE album=("nothingman");

YES

6 minimum length of

song where artist is MJ

SELECT MIN(length) FROM tracks

WHERE artist=("MJ");

YES

7 Show id and artist

from pop genre

SELECT artist FROM tracks WHERE

genre=("pop");

NO

© Daffodil International University 24

5.3 Descriptive Analysis

After doing some experiments on different databases we can say that we’re pretty

satisfied about the results considering our proposed goal.

As we said earlier, we’re going to experiment following the constraints we’ve clarified

so that we can compare if we did good enough to implement a solution that meets the

expected requirements.

We’re going to analyze what we could achieve and what not through some reasonable

questions in the context of our research.

5.3.1 Does it support basic aggregation queries correctly?

- Yes, it does with many variations. From above examples you’ll see that MAX,

MIN, AVG, COUNT is working perfectly fine. Also, all of them chose the

correct column names which was much complex from General Point of View

while working with natural language. The column name could be placed

anywhere in different figure of speeches and may contain many unnecessary

words in between. We could successfully ignore that in our approach. However,

it’s interesting how “largest”, “smallest” words are converted to MAX or MIN

according to the context. We have such a good library to handle such

aggregation functions in our solution that resulted to this queries. This was the

main goal of our research and we’re happy to see that it’s working.

5.3.2 Does it support multiple selection clauses?

- Yes. #8 from table 5.1 is a good example. It’s very much clear that multiple

selection clauses is working just the way it should be. You’d also notice that in

this query it supported matching with segment of column name which is

impressive although in our current solution there’s a space of improvement in

this area.

5.3.3 Does it support multiple column matching?

- Yes. In #4 and #9 from table 5.1 we can see that it’s working perfectly. Column

matching is comparatively easier to select in most of the contexts. In all of the

© Daffodil International University 25

mentioned queries you’ll notice that only two of them has mistaken to find the

column match among all the queries in table 5.1 and 5.2.

5.3.4 Is it ignoring unnecessary words properly?

- Yes. As you should realize, we use many words that holds no significance for

SQL queries. “Show me all the ….”, “Find the …. for me” etc. In our solution

if you notice, we had an attribute in qWord class named stopword. We went

through all the pos tags and analyzed their behavior and came up with the type

of tags that in most of the cases are stopwords.

5.3.5 Does it support all figure of speech following same context?

- Not always. It’s working in most of the cases but with some flaws. In #5 from

table 5.1 the “a” in “a section” is marked as DT in pos tags whereas “A” is marks

as NN. In that context, we couldn’t manage to decide if it’s a valuable word for

the final query or not.

In #8 from table 5.1 is working but #7 from table 5.2 is surely not working well

even though the text is almost similar.

5.3.6 Would it work properly when column name doesn’t match exactly?

- No, not in current implementation. It’d work for aggregation functions but

we haven’t enriched the thesaurus for each words in other contexts. So, this

won’t work now but we’re planning to improve this problem very soon

afterwards.

5.3.7 Does it support basic queries excluding aggregate queries as of previous?

- Yes, but in our current implementation, only following the selected constraints.

Considering that we’re not matching the query with data entries and expecting

that users would usually mention the column names in some manner this would

give very good results. In the #1 query in table 5.2 which I’ve collected from the

pervious paper is a good example. The query was “who sang you shook me”.

Here as you can see only the name of the song is mentioned “you shook me”

and we failed to solve it as current implementation is not looking for data match

in databases.

However, although data matching is important it’s also important that if the user

is asking a song that’s not in the database the query is still created correctly.

© Daffodil International University 26

5.4 Comparison

In this section of the report we will compare our proposed solution with other existing

systems and methodologies.

Aggregation support: On the previous research regarding this topic, it had no

aggregation function support. In most of the researches done before, very few focused

particularly on aggregation query.

Selection clause determination: On the previous research the selection clause was

highly dependent on the dependency root/head. As they analyzed and found that in most

of the cases the root holds the selection clause but during our research we were

convinced enough that through our approach it won’t necessarily be depending on the

root. It will try to consider and analyze other nodes in dependency graph which has

given better results in our approach.

Multiple selection clause support: On the previous approach it could determine at best

one selection clause and that being the root of the sentence. In our approach as we are

considering to iterate over the whole graph and trying to determine selection clauses

based on the relationships between words, we’ve been able to detect multiple selection

clauses through the process.

Time efficiency: Not very important from current research perspective and if we could

integrate the relevance of data with the natural language query as planned, the

implementation would have been slower. However, as this is what we came up with

now, it’s fair to mention that we’ve already took it to a reasonable stage and it works

super-fast comparing to the previous system as we are just collecting meta-data of the

database.

© Daffodil International University 27

5.5 Summary

In this research we have tried to improve the generation of selection clauses and column

matchings and the experimented result implies that this is possible to reach a certain

level of standard to determine the selection clauses wisely analyzing the dependency

graph.

According to the study, this is a very satisfactory result under the given constraints. This

is a clear indication that the way we approached is doable and we’ve already reached a

level of success.

As we all know, there’s always a room for improvement, integrating the relationship

with database entries could improve the current performance and would require further

research for maximum throughput.

© Daffodil International University 28

SUMMARY, CONCLUSION, RECOMMENDATION AND

IMPLICATION FOR FUTURE RESEARCH

6.1 Summary of the Study

Before this research we had a solution that worked for simple queries pretty well but

not all types of query. The previous researcher on this area mentioned some of the future

scopes to work on and it’s a pleasure to work on one of the significant ones and we

surely took it to another higher level.

It’s fascinating to think that now we’ve a solution that can answer aggregate queries as

well. The way we approached this problem is new in this area of researched. There are

many areas to improve even in current approach but we’ve taken it to a reasonable stage

and it now can answer many basic queries and aggregate queries which we didn’t have

earlier.

6.2 Conclusions

The scope of the actual research is very large and may take years to perfect. Taking that

into consideration we had to select a subtask which we could work on. We had to clear

our scope of research to concentrate and improve from current stage. After a long

discussion we chose the most needed subtask after the previous version of work.

According to the analysis and results we’ve found we can now say that we’ve completed

the main objectives that we’ve mentioned earlier and so it completes the objectives of

this research.

6.3 Recommendation

No system is 100% perfect. It has to go through continuous research and development

to overcome newer challenges having it’s own limitation, constraints and scope to

© Daffodil International University 29

improve. Here, we’ll get to know some limitations and scope of future works regarding

this research.

6.3.1 Limitations

 Current system can only work on simple aggregate queries. Complex queries

will require more complex design and may not give a completely accurate result

on this approach which as we mentioned wasn’t in our research scope.

 Database column names sometimes can be irrelevant which is a great problem

in this approach. We are relying highly on the database managers and their

naming skills. The column names must be relevant to the type of data.

 The synonyms of column names can be very uncommon and in that case the

expected query may not meet the requirements

 Count query can have group by subparts which aren’t handled in this approach

and as it requires a complex design it lies out of current scope of research.

6.3.2 Future Works

 Better header name/word recognition: In our approach we’re not relying on

the data and it’s entity type. In future one can design a learning method where

we can recognize the entity type of the data or words by training the database

data. This will make the system slower but will give better results comparing to

the current approach.

 Complex aggregate queries: So far, we’ve collected many of the superlative

forms to map them with aggregation queries. In natural language one can explain

such queries even without mentioning the exact word for it or some comparative

explanations or maybe one can try using some count queries grouping by a

followed rule.

 Arithmetic calculations: One may try to make a complex query where each

subquery combined leads to find another mathematical calculation which is also

not very rare in database queries.

 Multiple tables: This is a commonly used in database queries and also one of

the significant scope to work on in future. Inner join, outer join, left join, right

© Daffodil International University 30

join etc for example. One solution could be to merge all the tables altogether

and solve it with simple queries but that leaves many more scopes to discuss and

possibly some better approaches will come out in future.

 Better relationships: Relationship comparison like less than, greater than,

greater than or equal, lesser than or equal etc are not handled yet in previous

solution or this solution. This is also an interesting future scope to work on.

6.4 Implications for Further Study

This research can be reached out to numerous degrees for a total framework that can

find any queries given to it in human language for some arbitrary databases whether

they follow different formats or not. The restrictions and conceivable future works

referenced in the report can be generally an excellent scope to continue this research

and improve likewise or otherwise. We are as yet taking a shot at the framework and

will keep on chipping away at the framework moreover for a superior and progressively

precise system. For any analysts that need to catch up the strategy we have proposed

can begin from where the system right now is. This report is the initial step of imitating

current condition of the system.

© Daffodil International University 31

REFERENCES

[1] W. WOODS, "The lunar sciences natural language information system: Final report," BBN Report,

1972.

[2] Berwick, M. Brady and R.C., Computational Models of Discourse, Cambridge, MA, USA: MIT

Press, 1983.

[3] G.G. Hendrix, E. D. Sacerdoti, D. Sagalowicz and J. Slocum, "Developing a natural language

interface to complex data.," ACM Transactions on Database Systems (TODS), vol. 3, pp. 105-147,

1078.

[4] G. Rao, C. Agarwal, S. Chaudhry, N. Kulkarni, and D. S. Patil, "Natural language query processing

using semantic grammar," International journal on computer science and engineering, vol. 2, pp.

219-223, 2010.

[5] N. Sukthankar, S. Maharnawar, P. Deshmukh, Y. Haribhakta, and V. Kamble, "nquery-a natural

language statement to sql query generator," in Proceedings of ACL 2017, Student Research

Workshop, 2017, pp. 17-29.

[6] I. Androutsopoulos, G. Ritchie, and P. Thanisch, "Masque/sql an e cient and portable natural

language query interface for relational databases," Database technical paper, Department of AI,

University of Edinburgh, 1993.

[7] M. I. Shafi, "Natural Language Query to SQL, Dynamically Adaptive System," Daffodil

International University, Dhaka, 2018.

[8] Tong Guo, Huilin Gao, "Using Database Rule for Weak Supervised Text-to-SQL Generation,"

China Electronic Technology Group Corporation Information Science Academy, Beijing, China,

2019.

[9] "Easy pace learning," [Online]. Available: <<https://www.easypacelearning.com/all-

lessons/grammar/1436-comparative-superlative-adjectives-list-from-a-to-z>>. [Accessed 20 May

2019].

[10] M. I. Shafi, "Github | mehedi-shafi," [Online]. Available: <<https://github.com/mehedi-

shafi/NLQ2SQL>>. [Accessed 17 June 2019].

[11] "Explosion AI," [Online]. Available: <<https://explosion.ai/demos/displacy/>>. [Accessed 23

August 2019].

[12] "CoreNLP," Stanford, [Online]. Available: <<https://corenlp.run>>. [Accessed 23 August 2019].

© Daffodil International University 32

APPENDIX

Appendix A:

Dependency Parsing

Phrase structure grammar is worried about how words and successions of words

consolidate to shape constituents. A particular and corresponding methodology,

dependency grammar, focuses rather around how words identify with different words.

Dependency in this context is a relation that holds between a head and its dependents.

The most tensed verb is usually considered as the head of a sentence and the other word

is either dependent on the head or connects to it through a way of dependencies.

A dependency representation is usually represented as directed graph.

Appendix B:

Open Source Repository

The development is done and managed on github. The project is still unstable and under

development. So, the repository is going to remain private to some selected researchers

only until a stable version is ready to release. However, we’re expecting it to make it

public not very far.

Github repo: https://github.com/M-S-Abeer/Natural-Language-to-SQL

https://github.com/M-S-Abeer/Natural-Language-to-SQL

© Daffodil International University 33

