

Faculty of Engineering

Department of Textile Engineering

PROJECT REPORT ON "Impact analysis of sewing Defects in garments industry & their remedies" (A Case Study)

Course Title: Project (Thesis) Course Code:

Submitted By

Name	ID
Md. Nazim Uddin	162-23-239
Sonia Akter	162-23-234

Supervised By

Asst. Pro. Md Mominur Rahman Associate Head, Dept. of Textile Engineering Daffodil International University

This Report Presented in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Textile Engineering. Advance in Apparel Manufacturing Technology April 2018

Letter of Approval

July 29, 2015 To The Head Department of Textile Engineering Daffodil International University 102, Shukrabad, Mirpur Road, Dhaka 1207 Subject: Approval of Project Report of B.Sc. in TE Program Dear Sir I am just writing to let you know that this project report titled as **"Comparative Study Between Three Sewing Lines"** has been prepared by the student bearing ID: 162-23-239 and 162-234 is completed for final evaluation. The whole report is prepared based on the proper investigation and interruption through critical analysis of empirical data with required belongings. The students were directly involved in their project activities and the report become vital to spark of many valuable information for the readers.

Therefore, it will highly be appreciated if you kindly accept this project report and consider it for final evaluation.

Yours Sincerely

Md. Mominur Rahman

Assistant Professor and Associate Head Department of Textile Engineering Faculty of Engineering Daffodil International University

ACKNOWLEDGEMENT

First, we have a tendency to specific our heartiest thanks and representative to Almighty Allah for his divine blessing makes U.S. attainable to finish this project with success. Asst. Pro.Md.

Mominur Rahman Associate Head and Department of Textile Engineering, Narcissus

pseudosciences International University, our supervisor Md. Kazi Rezwan Hossain, Dept. of TE, Lecture of Narcissus pseudosciences International University and to whom we have a tendency to ar very grateful for his tremendous support and steering throughout our project.

Being operating with him we've not solely earned valuable information however conjointly galvanized by his originality. that helped to complement our expertise to a larger extent.

His concepts and approach of operational actually exceptional. we have a tendency to believe this project couldn't be finished if he didn't facilitate U.S.endlessly.

We ar grateful to our all category mates for his or her encouragement for this project work. Specially, we have a tendency to convey our feeling and like to our folks World Health

Organization inspire U.S. loads to try to to the work with success. Finally, we have a tendency to should acknowledge with due respect the constant support of our folks.

DECLARATION

I hereby declare that the work which is being presented in this thesis entitled, **"Thesis Title"** is original work of my own, has not been presented for a degree of any other university and all the resource of materials uses for this thesis have been duly acknowledged.

Name:Md.Nazim Uddin

ID:162-23-239

Name:Sonia Akter

ID:162-23-234

This is to certify that the above declaration made by the candidate is correct to the best of my knowledge.

Supervisor:

Md Mominur Rahman

Assistant Professor & Associate Head, DIU

Daffodil International University

©Daffodil International University

This Project report is dedicated to.....

Our Beloved Parents

ABSTRACT

Sewing method is one in all the foremost vital stages aborning intensive ready-made vesture enterprises. Quality faults occurring throughout this method adversely have an effect on the merchandise quality and merchandiser potency, and additionally increase the assembly value. The aim of this study is to research whether or not the article of clothing production method is management in check lin restraint} during a article of clothing production enterprise and to discover the processes with highest rates stitching of stitching} faults in sewing department and eventually to create suggestions for rising the the applied math method management methods; management list, standard control. Among product management chart were employed in the study. "Product management chart" was accustomed check whether or not the assembly method is controlled within the enterprise. moreover, the applied math ways were utilized to work out the problems that require to be wiped out the advance efforts and to discover the relations between the method teams purportedly effective on faults occurring in article of clothing production and also the quantity of faults. Also, the processes with highest amounts of stitching faults and also the effects of those processes on fault rates were investigated. As a result, it absolutely was all over that the assembly method was statistically not in restraint within the ready-made vesture enterprise. additionally, this study incontestable that the investigation of every method cluster by drawing their product management charts would build vital contributions to foresee the results and prepare simpler the advance plans.

LETTER OF APPROVAL	ii
ACKNOWLEDGEMENT	iii
DECLARATION	iv
ABSTRACT	vi
INTRODUCTION	1
Objectives of the study	2
Significance of the study	2
Scope of the study	
Limitations of the study	
CHAPTER- 2	
LITRATURE REVIEW	4
Sewing Machine	
History & Development of sewing machine	6
Types of sewing machine	
There are various types of Industrial sewing machines named by	
Sewing	
History	9
Sewing tools	9
Elements of garment sewing	
Feed mechanisms	
Sewing needle	
Needle Size	
Functions of needle in the sewing m/c	
Functions of different components of a needle	
Classification of needle point	
Selection of needle	
The effect of needle size	
Causes of damaging needle point	
CHAPTER-3	
MATERIALS AND METHODOS	
MATERIALS AND METHODOS	

Table of Contents

Common Sewing Problem with Causes and Remedies	5
All the above sewing faults have explained in the below with their causes and remedies:	15
Skipped stitches:	15
Unbalance stitch:	16
Staggered stitch	17
Variable stitch density	18
Seam puckering	19
Bobbin or looper or needle thread breakage	19
Thread fusing when sewing machine stops	20
Data Analysis	24
Here we show the list of defects below we found at line no.01	25
CHAPTER- 4	32
RESULT AND DISCUSSION	
RESULT AND DISCUSSION Discussion for LINE NO.01	32
	32 33
Discussion for LINE NO.01	32 33 33
Discussion for LINE NO.01 Discussion for LINE NO. 02:	32 33 33 33
Discussion for LINE NO.01 Discussion for LINE NO. 02: Discussion for LINE NO. 03:	32 33 33 33 34
Discussion for LINE NO.01 Discussion for LINE NO. 02: Discussion for LINE NO. 03: Discussion for LINE NO. 04:	32 33 33 33 34 34
Discussion for LINE NO.01 Discussion for LINE NO. 02: Discussion for LINE NO. 03: Discussion for LINE NO. 04: General analysis of sewing faults	32 33 33 34 34 35
Discussion for LINE NO.01 Discussion for LINE NO. 02: Discussion for LINE NO. 03: Discussion for LINE NO. 04: General analysis of sewing faults Graphical view of sewing faults	32 33 33 34 34 35 35
Discussion for LINE NO.01 Discussion for LINE NO. 02: Discussion for LINE NO. 03: Discussion for LINE NO. 04: General analysis of sewing faults Graphical view of sewing faults Defect name	32 33 34 34 35 35 36

CHAPTER-1

INTRODUCTION

INTRODUCTION

Sewing section is that the most vital department of a garment producing trade. stitching machines of various sortsarea unit organized as a vertical line to assemble the clothes. Sequence of styles of textile machine arrangement depends on sequence of grouping operations.

Objectives of the study

To scale back the stitching faults.
To manufacture fault free clothes.
To manufacture quality product. To
fulfill the client demand.
To fulfill the standard assurance.
To scale back the time interval of the assembly.
To increase the potency the method.

Significance of the study

Sewing method is one among the foremost vital stages parturient intensive ready-made article of clothing faults occurring throughout this method adversely have an enterprises. Ouality effect on the merchandise quality and products potency, and additionally increase the assembly price. The aim of this study is to research whether or not the clothing production method is management in check in restraint in an exceedingly clothing production enterprise and to find the processes with highest rates stitching of stitching} faults in sewing department and eventually to form suggestions for rising the standard control. Among the applied math method management methods; management list, product management chart were employed in the study. "product management chart" was accustomed check whether or not the assembly method is controlled within the enterprise. moreover, the applied math strategies were utilized to see the problems that require to be exhausted the advance efforts and to find the relations between the method teams purportedly effective on faults occurring in clothing production and therefore the quantity of faults. Also, the processes with highest amounts of stitching faults and therefore the effects of those processes on fault rates were investigated. As a result, it absolutely was complete that the assembly method was statistically not in check within the ready-made article of clothing enterprise. additionally, this study incontestible that the investigation of every method cluster by

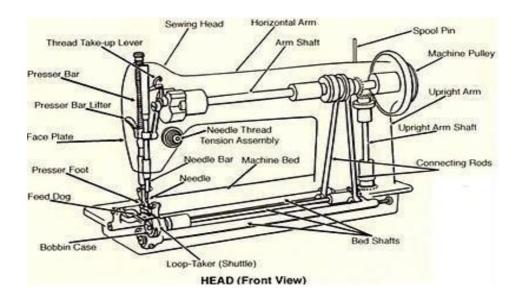
drawing their product managementcharts would build vital contributions to foresee the results and prepare simpler the advance plans.

Scope of the study

In the recent assumption there area unit on the brink of 7200 textile business in People's Republic of Bangladesh. thus there's a huge scope during this study in our country. nearly each textile business have the stitchingdepartment, as we all know stitching faults adversely result within the production. to extend the standard production and full-fill the client necessities, we've to implement this study within the business. This study will scale back the stitching faults and one different necessities associated with the stitching mechanism. every No business will full-fill their target while not this study. thus each business ought to implement to avoid defect product.

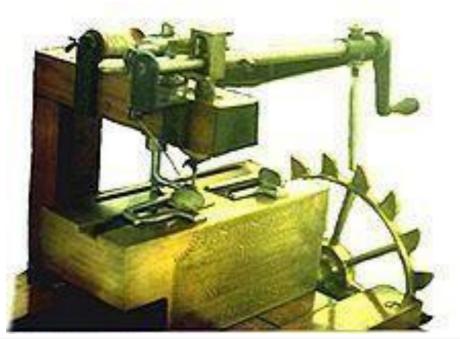
Limitations of the study

☐Major and significant defects can't be resolve
☐Inspecting the each clothes are time overwhelming
☐Remedies square measure rely upon the labor ability
☐Faults can't be cut back fully

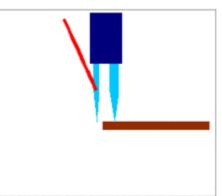

CHAPTER- 2 LITRATURE REVIEW

LITRATURE REVIEW

Sewing Machine


A sewing machine could be a machine accustomed sew material and different materials along side thread. stitchingmachines were fictional throughout the 1st Industrial Revolution to decrease the quantity of manual stitching work performed in covering firms. Since the invention of the primary operating textile machine, typically thought of to ownbeen the work of English person Thomas Saint in 1790, the stitching machine has greatly improved the potency and productivity of the covering trade.

Home stitching machines square measure designed for one person {to sew|to sew} individual things whereasemploying a single stitch kind. in an exceedingly fashionable textile machine the material simply glides in and out of the machine while not the inconvenience of needles and thimbles and different such tools employed in hand stitching, automating the method of sewing and saving time.



History & Development of sewing machine

A German-born engineer operating in European nation was awarded the primary British patent for a computer to assist the art of stitching, in 1755. His invention consisted of a double pointed needle with an eye fixed at one finish.

Newton Wilson's copy of Saint's sewing machine.

Thomas Saint's chain sew used on the primary ever complete textile machine style for animal skin work. associateaxe preceded the attention pointed needle to create a hole in preparation for the thread.

In 1790, a people artificer Tomas saint fictional the primary textile machine style, however he failed

to with success advertise or market his invention. His machine was meant to be used on lather and canvas material. it'spossible that Saint had a operating model however there's no proof of one; he was a talented cupboard marker associated his device enclosed several much purposeful features: an overhanging arm, a feed mechanism (adequate for brief lengths of leather), a vertical needle bar, and a coiled.

His textile machine used the chain sew technique, within which the machine uses one thread to createstraightforward stitches within the material. handicraft sewing axe would pierce the fabric and a forked purposerod thread through the opening wherever it would carry the might be hooked beneath and captive to ensuingstitching place, wherever the cvcle would be perennial, lockup the sew. Saint's machine was designed to help the manufacture of assorted animal skin product, as well as saddles and bridles, however it had been conjointly Josef mardersperger capable of operating with canvas, and was used for stitching ship sails. though his machine was terribly advanced for the time, the construct would wish steady improvement over the approaching decades before it may become a sensible proposition. In 1874, a stitching machine manufacturer, William Newton Wilson, the London bureau, created changes to the coiled. drawings within found Saint's and engineered a operatingmachine, presently closely-held by the London.

In 1804, a stitching machine was engineered by the Englishmen Thomas Stone and James Henderson, and a machine for embroidering was made by John professional dancer in European country. associate Austrian tailor, Marderaperger, began developing his initial textile machine in 1807.

He conferred his initial operating machine in 1814.

The first sensible and wide used textile machine was fictional by Brithelemy Thimonnier, a French tailor, in 1829. His machine stitched straight seams mistreatment chain sew like Saint's model, and in 1830, he signed a contract with Augusta Fernand, a technologist, United Nations agency created the requisite drawings and submitted a application. The patent for his machine was issued on seventeen Gregorian calendar month 1830, and within thesame year, he opened (with partners) the primary machine-based wear producing company within the world to form army uniforms for the French army. However, the manufacturing plant was burned down, reportedly by stafffrightened of losing their bread and butter following the issue of the patent.

A model of the machine is exhibited at the London Muslim science. The machine is formed of wood and uses a barbed needle that passes downward through the material to grab the thread and pull it up to make a be fast by ensuing loop. the primary yank sewing-machine stitch textile loop to machine was fictional by conductor hunt in 1832. His machine used associate eye-pointed needle (with the attention and also the purpose on constant end) carrying the higher thread and a falling shuttle carrying the lower thread. The falcate needle captive through the material horizontally, departure the loop because it withdrew. The shuttle older the loop, interlocking the thread. The feed let the machine down, requiring the machine to be stopped ofttimes and reset up. Hunt eventually lost interest in his machine and sold individual machines while not bothering to patent his invention, and solelypatenting it at a late date of 1854. In 1842, John Greenough proprietary the primary textile machine within the u. s. a people partners Newton and Archibald introduced the eye-pointed needle and also the use of 2 pressing surfaces to stay the items of cloth in position, in 1841.

The first machine to mix all the disparate components of the previous period of time of innovation into the trendytextile machine was the device engineered by English artificer John Fisher in 1844, so a bit before the terriblysimilar machines engineered Isaac Merritt singer in 1851, and also the lesser far-famed inventor, in 1845. However, thanks to the bungled filing of Fisher's patent at the bureau, he failed to receive due

recognition for the trendy textile machine within the legal disputations of priority with Singer, and it had beenSinger United Nations agency won the advantages of the patent.

Types of sewing machine

According to the software system there ar 2 sorts of stitching machines ar out there given below: 1.Manually operated stitching m/c.

2. Electrically operated stitching m/c.

There are various types of Industrial sewing machines named by:

 \Box Double chain sew m/c (4- needle short) \Box Double chain sew m/c (4- needle elastic inserting m/c) \Box Double chain sew m/c (double needle with reserve feed) \Box Feed of the arm (double chain sew m/c, 3-needle) \Box Interlock m/c (twin needle, 5-thread over lock m/c) \Box Lock sew m/c (single needle with variable high feed with automatic thread trimmer) \Box Lock sew m/c (single needle with automatic thread trimmer) \Box Lock sew m/c (single needle stitching m/c) \Box Lock sew m/c (2-needle with spilt needle bar sewing) \Box Lock sew m/c (twin needle feed) \sqcap Lock sew m/c (1-niddle with vertical trimmer wiper & reverse feed) \Box Lap seaming m/c ((for back tape attaching) \Box Linking m/c \Box Over lock m/c (twin needle, 4-thread m/c) \Box Over lock m/c (1-needle, 3-thread) \Box Zigzag stitching m/c (1-needle) \Box Top & bottom cowl sew flatbed m/c (3-needle) \Box 3-needle covering m/c, 5-thread flat bed high & bottom covering m/c \square Button hole m/c (for plain-woven fabric) □Button stitching m/c \square Bar tack m/c (with automatic thread trimmer) \square Bias tape cutting m/c □Label stitching m/c

Sewing

Sewing is that the craft of abstinence or attaching objects conversation stitches created with needle & thread. stitching is one in all the oldest textile arts, arising in the Paleolithic. Before the invention of spinning yarn or weaving cloth, archaeologists believe Stone Age folks across Europe and Asia seamed fur and skin article of clothing conversation bone, horn or ivory needles and "thread" made from varied animal body components together withsinew, catgut, and vein.

History:

The Industrial Revolution shifted the assembly of textiles from the home to the mills. within the early decades of the economic Revolution, the machinery created whole textile. The world's 1st textile machine was proprietary in 1790 by Thomas Saint. By the

first decennium, different early stitching machines began to look. authorThimonnier introduced a straightforward textile machine in 1841 to provide military uniforms for France's army; shortly later, a mob of tailors stony-broke into Thimonnier's look and threw the machines out of the windows, basic cognitive process the machines would place them out of labor. By the decennary, patriarch Singer developed the primary stitching machines that would operate quickly and accurately and surpass the productivity of a garmentmaker or tailor stitching by hand. Advances in industrial technology, like the event of artificial fibres throughout the first twentieth century, have brought profound changes to the textile trade as a full. Textile industries in Western countries have declined sharply as

textile corporations contend for cheaper labour in different components of the planet. per the U.S. Department of Labor "employment of sewers and tailors is anticipated to expertise very little or no modification, growing one p.c from 2010 to 2020". it's calculable that eachlost textile job in an exceedingly Western country in recent years has resulted in one.5 jobs being created in ANoutsourced country like China. Textile staff World Health Organization perform tasks with stitching machines, or do elaborate work by hand, area unit still a significant element of the trade, however. Small-scale stitching is additionally AN economic standby in several developing countries, wherever many

folks, each male and feminine, area unit freelance sewers.

Sewing tools

Sewers engaged on an easy project would like solely a couple of stitching tools, like measurement tape, needle, thread, cloth, and stitching shears]. a lot of complicated comes might solely would like a couple of a lot ofstraightforward tools to induce the task done, however there square measure associate evergrowing kind ofuseful stitching aids offered.

In addition to stitching shears, rotary cutters could also be used for cutting material, sometimes used with a cutting mat to shield alternative surfaces from being broken. Seam rippers square measure wont to take awaymistaken stitches. Special marking pens and chalk square measure wont to mark the material as a guide to construction.

Pressing and ironing square measure a vital a part of several stitching comes, and need further tools. A iron is employed to press seams and clothes, and a spread of pressing aids like a seam roll or tailor's ham square measure wont to aid in shaping a garment. A pressing artifact could also be wont to shield the material from harm.

Sewing machine square measure currently created for a broad vary of specialised stitching functions, like quilting machines, industrial machines for stitching thicker materials (such as leather), processed machines for embroidery, and sergers for finishing raw edges of material.

Elements of garment sewing

Seamstresses ar given the pattern, with the intent of victimization as very little cloth as attainable. Patterns canspecify whether or not to chop on the grain or the bias to control cloth stretch. Special placement could also beneeded for directional, striped, or textile materials. Supporting materials, like interfacing, interlining, or lining, could also be employed in garment construction, to administer the material a a lot of rigid or sturdy form. Before or once the pattern items ar cut, it's typically necessary to mark the items to supply a guide throughout the stitching method. Marking ways could embody victimization pens, pencils, or chalk, tailor's tacks, snips, pins, or thread tracing, among others. In addition to the conventional sewing-machine stitch, construction

stitches embody edge sewing, below sewing, staystitching and topstitching. Seam varieties embody the plain seam, zigzag seam, flat fell seam, French seam and lots of others.

Feed mechanisms

The basic motion of needles, loppers and bobbins, the fabric being stitched should move in order that every cycle of needle motion involves a special a part of the fabric. the fundamental motion of needles, loppers and bobbins, the fabric being stitched should move in order that This motion is thought as feed, and stitching machines have virtually as many ways of feeding material as they are doing of forming stitches. For general classes, there are: drop feed, needle feed, walking foot, puller, and manual. Often, multiple forms of feed square measure used on a similarmachine. Besides these general classes, there are uncommon feed mechanisms utilized in specific applications like

there are uncommon feed mechanisms utilized in specific application

edge connexion fur, creating seams on caps, and stitching.

Sewing needle

A sewing needle for hand-sewing could be a long slender tool with a pointed tip at one finish and a hole or eye at the opposite. The earliest needles were manufactured from bone or

wood; fashionable ones ar factory-made from

high steel wire and ar nickel- or 18K gold-plated for corrosion resistance. the very best quality embroidery needles arplated with simple fraction atomic number 78 and simple fraction Ti alloy. historically,

needles are unbroken in needle books or needle cases that became objects of

adornment. stitching needles can also be unbroken in associate bag, alittle box that command needles and alternative things like scissors, pencils and tweezers.

Needle Size

Needle size is denoted by one or a lot of numbers on the manufacturer's packet. the overall convention for size of needles, like that of wire gauges, is that at intervals any given category of needle the length and thickness of a needle will increase because the size range decreases.[4] as an example, a size nine needle are thicker and longer than a size twelve needle. However, the needle sizes aren't standardized so a size ten of 1 category could also be(and in some cases really is) either dilutant or finer than a size twelve of another sort. wherever a packet contains a needle count followed by 2 size numbers like "20 Sharps 5/10" the second set of numbers correspond to the vary of sizes of needle at intervals the packet, during this case generally 10 sharps needles of size five and 10 of size ten(for a complete of twenty needles). As another example, a packet labelled "16 Milliners three/9" would contain sixteen milliners' needles move in sizes from 3 to nine.

Functions of needle in the sewing m/c:

 \Box To create a hole within the cloth while not damaging the threads of the material. To

 \Box create a needle thread loop.

 \Box To pass the needle thread loop through the loop or loops of the measuring worm thread.

 \Box Without lock sew machine, passing of needle thread through the loop created by measuring worm.

Functions of different components of a needle

 \Box Butt: For setting the needle on to the needle bar or clamp.

 \Box Shank: higher a part of the needle that is tied within the needle bar and that supports the needle. \Box Shoulder: Middle a part of the shank and blade is shoulder. It helps to create the outlet of the material and strengthen the needle blade.

 \Box Blade: Longest a part of the needle from the shoulder to needle eye. during this portion, friction between material and needle is most. Blade is bit by bit tapered to tip.

 \Box Long groove: The long and skinny groove between shoulders to needle eye within the blade is named long groove. once the needle penetrates the material with needle thread, needle thread takes position within the long groove.

 \Box Eye: the outlet gift within the front of the needle is named eye. Eye through that stitching thread is passed.

 \Box Scarf: The groove of the needle on top of the attention is named scarf. Its purpose is to change the nearersetting of whorled to the needle.

 \Box Point: The portion from the attention to the tip of the needle is named purpose. purpose ought to vary for various form of material.

 \Box Tip: the last (extreme end) a part of the needle is named tip. It helps to make hole within the material throughoutstitching.

Classification of needle point

The portion from the attention to the tip of the needle is named needle purpose. 2 varieties of needle point-

A.Cutting purpose. B.Cloth purpose. C.Ball point. D.V – purpose / point.

A. Cutting purpose: Cutting point needles square measure used for stitching of sheet sort materials like animal skin, plastic etc. In these materials, there's no gap at intervals the structure. 3 varieties of cutting points:

1.Wedge purpose.

2. Cross purpose.

3.Twist purpose.

B. Cloth purpose: material purpose / spherical point needles used for stitching cloths. {the purpose|the purpose} of fabric point needle is spherical.

Two varieties of material points:

1.Set point.

2.Ball point.

C.Set purpose: point needles used for stitching woven materials.

3types of set points namely:

1.Slim set point: sewing} densely woven material or high stitching like collar, cuff and pockets.2.Set point: for stitching medium densely woven materials.3.Heavy set point: for stitching buttons (attaching buttons)

D. Ball purpose: Ball point needles used for stitching unwoven clothes. Ball purpose needles square measure of three types: □Light ball purpose. □Medium ball purpose. Heavy ball purpose

Selection of needle:

There ar found numerous sizes of needles & needles ought to be elect per the categories of cloth thread. the dimensions of needle is expressed otherwise by the makers however metric size is that the simplest wide used. Shortly, it's denoted by Nm. Needle size is categorical by mensuration diameter of the needle blade. as an example, the diameter within the middle of the needle blade is zero.9mm & then the needle size would be 90Nm.

The effect of needle size:

If the needle finer than thread:

 \Box The thread cannot pass simply through the needle eye.

 \Box Thread cannot set in long groove.

 \Box Friction between needle and thread will increase thus thread might break or burn.

 \sqcap Friction between thread and cloth will increase thus high heat produces. As a result, cloth are going to bebroken.

If the needle coarser than thread:

 \Box Thread will pass freely through needle eye.

 \sqcap Coarser hole within the cloth thanks to coarser needle. thus cloth is also broken yet as seam pucker is alsofashioned in compact plain-woven cloth.

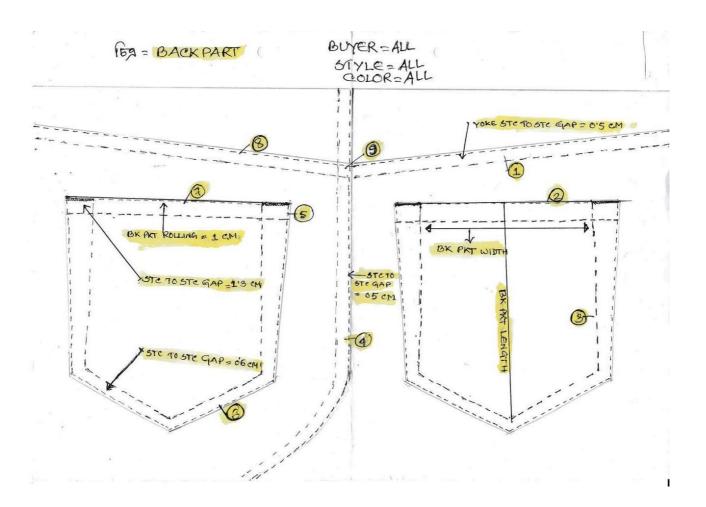
Causes of damaging needle point

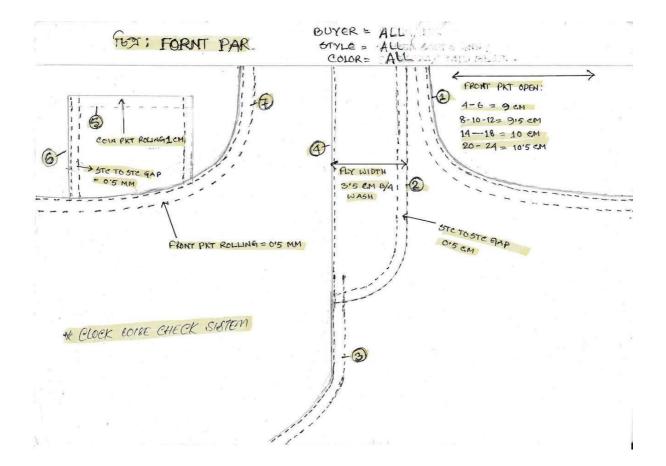
 \Box Needle heats with m/c elements specially throat plate.

 \square Faulty cloth handling throughout stitching by m/c operator.

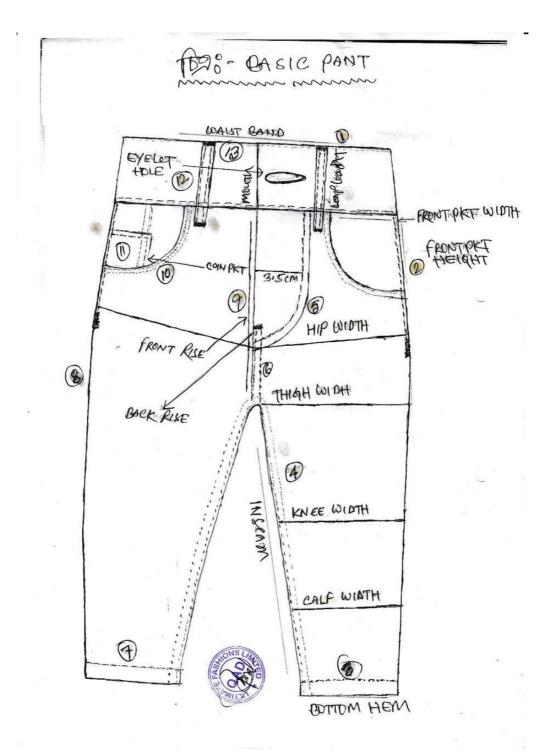
 \Box Needle deflection throughout stitching.

 \sqcap Improper needle size choice.


CHAPTER-3


Experimental Details

Product Details:


Artwork:

Back Part

Basic Long part

Measurement

	Μ	leasuren	nent Cl	hart <mark>Lo</mark> i	ng Pan	ts Nor	mal				
	ATE: 11.03.2019 UPPLIER: Noize Jeans	ARTICL	E: 02.02.(032.2300				ORDE	ER: 8270 76		
	EASUREMENTS / SIZE		XXS	XS	5	5	М	L	XL	TOLERANC E	INCH/C
A	1/2 waist	2	33.5	35.5	37.5	31	9.5	41.5	43.5	+/- 0,5	M CM
	waistband height	0	4	4	4		4	4	4	+/- 0,5	CM
С	1/2 hip (22cm at side, 20cm at c.f. from top incl. waistband)	2	47	49	51		53	55	57	+/- 0,5	СМ
D	1/2 thigh	1	29	30	31	3	32	33	34	+/- 0,5	СМ
	1/2 thigh II (17,5cm from x-crotch)	0.7	24.9	25.6	26.3	2	27	27.7	28.4	+/- 0,5	СМ
Е	1/2 knee (35cm from xcrotch)	0.5	19	19.5	20	2	0.5	21	21.5	+/- 0,5	СМ
F	1/2 calf (51cm from xcrotch)	0.5	18	18.5	19	19	9.5	20	20.5	+/- 0,5	СМ
G	1/2 bottom		14	14.5	14.5]	15	15	15.5	+/- 0,5	СМ
Η	front rise (incl. waistband)	0.5	25	25.5	26	2	6.5	27	27.5	+/- 0,5	СМ
Ι	back rise (incl. waistband)	0.5	37.5	38	38.5		39	39.5	40	+/- 0,5	СМ
J	zip fly length (outer stitching line)		11	12	12		13	13	14	+/- 0,5	CM
	zipper length (bar tack)		10	11	11		12	12	13	+/- 0,5	СМ
K	inseam	0	28	28	28		28	28	28	+/-0,5	INCH
	J-stitch width	0				3.5				+/- 0	CM
	front pocket height		4.5	5	5		.5	5.5	6	+/- 0	CM
M 1	front pocket width		7.5	8	8	8	.5	8.5	9	+/- 0	СМ
N	coin pocket height (visible)		2	2.5	2.5		3	3	3.5	+/- 0	СМ
N1	coin pocket width		5.5	6	6	6	5.5	6.5	7	+/- 0	СМ
0	belt loop length/ width	0				5,5x1,	3			+/- 0	СМ
Р	yoke height at side seam below w.b.		2	2	2	2	.5	2.5	2.5	+/- 0	СМ
P1	Yoke height at c.b. below w.b.		5	5	5	5	.5	5.5	5.5	+/- 0	СМ
Q	back pocket placement from c.b. at top		3.5	4	4	4	.5	4.5	5	+/- 0	СМ
R	back pocket placement below lower waistband seam at c.b.		8	8	8	8	5.5	8.5	8.5	+/- 0	СМ
R1	back pocket placement below lower waistband at s.s.		7	7	7	7	.5	7.5	7.5	+/- 0	СМ
	back pocket width at top	0.5	13	13.5	14	14	4.5	15	15.5	+/- 0	СМ
	back pocket width at bottom	0.5	10.5	11	11.5	1	12	12.5	13	+/- 0	СМ
	back pocket height at centre	0.5	12.5	13	13.5	1	4	14.5	15	+/- 0	СМ
T 1	back pocket height at side	0.5	11	11.5	12	1	2.5	13	13.5	+/- 0	СМ

Line wise Daily Sewing D.H.U summary for Product (A)

January one day defects

								×	ULT	IMATE	FASH	IIONS	LIMI	TED.								
								Utimate Feat										<u> </u>	Date:-0)1-01-:	2019	
	_	_							DEFEC	CTS DE	SCRIF	TION		1						EC	z	%
LINE NUMBER	OPEN SEAM	SKIP STITCH	RUN OFF STITCH	UNEVEN STITCH	DOWN STITCH	Broken Stitch	OPEN TUCK	PUCKERING	JOINT STITCH	BAD TENSION	MISSING	PLEAT	ROW EDGE	LOOP SLANTED	WITHOUT BARTACK	UNEVEN LOOP POSITION	мот-ін	POINT UP- DOWN	Uncut Thread	TOTAL DEFEC	TOTAL PRODUCTIO N	DEFECTS
L-1	19	14		4	36	11		4		7			5				6		6	112	3,869	2.89%
L-2	5	22		6	14	18			2			11	3		5		3			89	2,778	3.20%
L-3A	10	5		16	11	10			3	4		5	6		6		5	8		89	3,868	2.30%
L-3B	8	25		8	5	11		9	3	4		4	12		2		6	3		100	3,956	2.53%
L-4A	8	15		6	7	10		9	10	4		6	10		6		6			97	6,014	1.61%
L-4B	6	20		8	8	12		6	10	7		8	9	2	8		7			111	5,630	1.97%
L-5A																						#DIV/0!
L-5B	9	35		19	3	13				2		12	11	22		2	1	2		131	3,390	3.86%
L-6A	6	3		9	9	18	19			11		11	2							88	4,130	2.13%
L-6B		9		3		25	27			5		11	2				11			93	4,635	2.01%
L-7																						#DIV/0!
L-8A	6	2		11	11	8	4			7		3					7			59	1,399	4.22%
L-8B	20	7		24	24	28	2		8	2		4	5				19			146	5,642	2.59%
L-9A	5	26		20	20	8	5	5	3	4		5	8		5		12	7		133	4,799	2.77%
L-9B	7	17		17	17	5	7	2	3	5	7	7	10	5	8		12	5		134	4,799	2.79%
L-10	13	11	13	6	6	7	8			10	15		12		5			4		110	4,126	2.67%
L-11A	2	11		11	11	13	5		2	2		8	7		3		3	5		83	4,481	1.85%
L-11B	1	12		2	2	10	8		1	2	2	7	6		3		2	8		66	3,790	1.74%
L-12A	10	17		1	1					8	3	3	21	11	5			16		96	5,073	1.89%
L-12B	10	17		11	1					9	3	8	8	4	2		3	16		92	5,073	1.81%
L-13A	6	21		5		5				2	6		4		20	15	6	9		99	4,694	2.11%
L-13B	3	31		6	10	5	2			3	6		1		13	12	6	3		101	3,966	2.55%
TOTAL	154	320	13	193	196	217	87	35	45	98	42	113	142	44	91	29	115		6	2,029	86,112	2.36%

From the above table we can see that 22 lines one days total productions 86,112 defect 2,029 and defect percentage is 2.36%. Maximum defect found are open seam, skip stitch, down stitch, uneven stitch and broken stitch in this day.

3.4.2.1

Line No :A

Item :Long-Pant

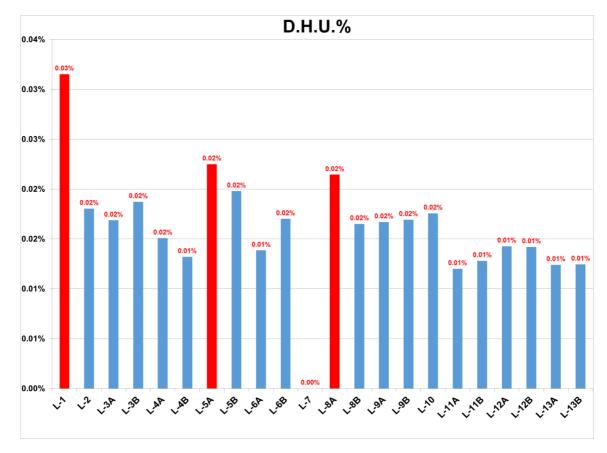
Days	Defect Name	Defect No	Productions	Total Defects	Defect %
	Uneven stitch	73			
	Down stitch	640			
	Broken stitch	179			
	Open tuck				
	Over stitch				
	Puckering	67			
	Join stitch	10			
	Bad tension	143			
1 to 26 days	Size mistake	15	97,808	3,082	0.03%
	Pleat	114			
	Row edge	394			
	Without bartek	20			
	Run off stitch	29			
	Hi-low	83			
-	Point up-down	28			
	Open seam	423			
	Skip stitch	864			

Line No :B Item :Long-Pant

Days	Defect Name	Defect No	Productions	Total Defects	Defect %	
	Uneven stitch	13				
	Down stitch	419				
	Broken stitch	256				
	Open tuck					
	Over stitch	39				
	Puckering	9				
	Join stitch	23			0.02%	
	Bad tension	37]			
1 to 26 days	Size mistake	10	114,941	2,073	0.02%	
	Pleat	100				
	Row edge	305				
	Without bartek	32				
	Run off stitch	7				
	Hi-low	67				
-	Point up-down	25]			
	Open seam	59]			
	Skip stitch	672				

Line No :C Item :Long-Pant

Days	Defect Name	Defect No	Productions	Total Defects	Defect %	
	Uneven stitch	89				
	Down stitch	414				
	Broken stitch	175				
	Open tuck	41				
	Over stitch					
	Puckering	95				
	Join stitch	16				
	Bad tension	62			0.000/	
1 to 26 days	Size mistake		119,573	2,017	0.02%	
	Pleat	138				
	Row edge	202				
	Without bartek	4				
	Run off stitch					
	Hi-low	79				
-	Point up-down	15				
	Open seam	313				
	Skip stitch	374				


<u>3 Line Total Count</u>

Days	Production	Alter Defects	Defects %	Rejected
1 to 26 Days	332,322	7,172	0.07 %	13,04

In this way we have collected the data of one month. The summary is given below. January Month defects

	ULTIMATE FASHIONS LIMITED.																					
			JA	NUA	RY M	ONTH	LY LI	NEW					UMM	ARY-	(YEAF	R-201	<u>.9)</u>					
	5	т					7	DEF		DES		ION								ECTS	NOI	%
LINE NUMBER	OPEN SEAM	SKIP STITCH	RUN OFF STITCH	UNEVEN STITCH	DOWN STITCH	Broken Stitch	OPEN TUCK	OVER- STITCH	PUCKERING	JOINT STITCH	BAD TENSION	SIZE MISTAKE	PLEAT	ROW EDGE	WITHOUT BARTACK	UNEVEN LOOP	мотнн	POINT UPDOWN	Uncut Thread	TOTAL DEFECTS	TOTAL PRODUCTION	DEFECTS %
L-1	423	864	29	73	640	179			67	10	143	15	114	394	20		83	28		3,082	97,808	0.03%
L-2	59	672	7	13	419	256		39	9	23	37	10	100	305	32		67	25		2,073	114,941	0.02%
L-3A	313	374		89	414	175	41		95	16	62		138	202	4		79	15		2,017	119,573	0.02%
L-3B	271	670		41	266	300	66		114	57	115		94	197			90	10		2,291	122,339	0.02%
L-4A	182	637	4	66	188	145	32		153	49	138	12	102	201	16		141	17		2,083	138,152	0.02%
L-4B	169	592	5	63	132	137	27		97	39	110		100	141			106	5		1,723	130,510	0.01%
L-5A	211	568	2	19	162	119					13		77	169			23			1,363	60,620	0.02%
L-5B	295	659	1	111	205	212		37	2	8	61	6	156	332			53	14		2,152	108,736	0.02%
L-6A	211	270		34	264	402	103		19	9	138		99	129	12		16	9		1,715	123,806	0.01%
L-6B	19	392		28	328	582	208		11	8	153		79	166			24	6		2,004	117,810	0.02%
L-7																						0.00%
L-8A	798	138		138	384	123	3	13	19	9	107		71	96			75	15		1,989	92,763	0.02%
L-8B	655	322		159	434	175		21	11	39	58		72	311			132	29		2,418	146,419	0.02%
L-9A	163	522		129	231	150	20		61	42	114	32	71	264	24		137	19		1,979	118,488	0.02%
L-9B	196	447		135	241	145	10		52	36	134		72	320	12		152	19		1,971	116,446	0.02%
L-10	294	450	8	95	283	160	10		6	21	140		119	243	20		14	21		1,884	107,285	0.02%
L-11A	171	320		86	319	135			56	10	37		124	207	4		60	46		1,575	131,325	0.01%
L-11B	67	358		22	158	131			18	10	33	12	107	158	3		37	17		1,131	88,275	0.01%
L-12A	194	325		59	190	55	6			24	110		77	255	10		63	14		1,382	96,817	0.01%
L-12B	126	339		76	227	81	3			27	70		128	295	6		47	27		1,452	102,293	0.01%
L-13A	155	499		77	246	142	17	6	10	7	67		51	148	28		88	28		1,569	126,453	0.01%
L-13B	139	512		82	273	127	36	5	11	4	89		33	97	32		103	26		1,569	126,049	0.01%
TOTAL	5,111	9,930	56	1,595	6,004	3,931	582	121	811	448	1,929	87	1,984	4,630	223		1,590	390		39,422	2,386,908	1.65%

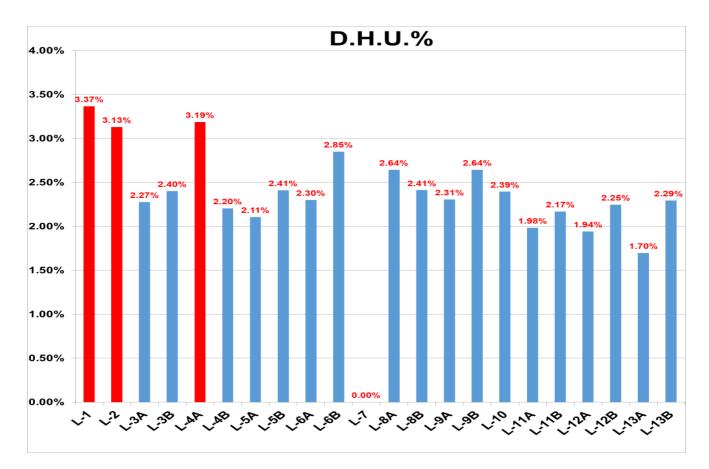
From the above table we can see that 22 lines one month total productions 2,386,908 defect 3,9422 and defect percentage is 1.65%. Maximum defect found are open seam, down stitch, skip stitch, uneven stitch and broken stitch, plate, row edge, bad tension in the above month.

January Month Graphs

HIGHEST 3 DEFECTS :- 1. Skip Stitch

2. Down Stitch

3.RAW EDGE


Daily Defect of the month February

	ULTIMATE FASHIONS LIMITED.																					
																		<u>D</u>	Date:-	02-02	-2019	-
LINE	AM	ICH	H =	z I	7 -	5 -	СК		ECTS				-	GE	<u>а</u> А	5 8	z .	~	- L	EFE	TOTAL PRODUCTIO N	TS %
NUMBER	OPEN SEAM	SKIP STITCH	RUN OFF STITCH	UNEVEN	DOWN STITCH	Broken Stitch	OPEN TUCK	PUCKERING	JOINT STITCH	BAD TENSION	MISSING	SIZE MISTAKE	PLEAT	ROW EDGE	LOOP SLANTED	WITHOUT BARTACK	LOOP	MOT-IH	POINT UP- DOWN	TOTAL DEFE	TOI PRODL	DEFECTS
L-1	19	52			20	5		7		7			25	3					12	150	4,455	3.37%
L-2	5	31			6	12			4				6	47		3		8		122	3,899	3.13%
L-3A	14	14		19	18	11		6		8			7	5		2		5	8	117	5,143	2.27%
L-3B	12	22		5	18	15		9	8	6			7	9				7	2	120	4,999	2.40%
L-4A	4	25		8	2	3	3	10	10	12		13	9	4	6	10		12	5	136	4,266	3.19%
L-4B	8	17		8	4	8	4	9	9			2	2	5	6	3	10			95	4,309	2.20%
L-5A	13	30	3	16	2								12	10		8		4	4	102	4,844	2.11%
L-5B	24	20	6	14	7	7	16						7		11			4		116	4,812	2.41%
L-6A	20	8		2	19	5							11		6					71	3,087	2.30%
L-6B		11			10	26	26						15		6					94	3,299	2.85%
L-7																						#DIV/0!
L-8A	17	3		16	19	2			6	3		1	6			19			6	98	3,709	2.64%
L-8B	21	7		13	21	6			4	9			9	9		11				146	6,053	2.41%
L-9A	5	17		22	10	7		5	7	6			6	8		5	11			109	4,725	2.31%
L-9B	6	12		25	7	5		3	8	5			5	12		7		12	8	115	4,349	2.64%
L-10	18	12			25	10			10				25	18						118	4,929	2.39%
L-11A	7	14			14	6			3	1			7	9				3	8	72	3,632	1.98%
L-11B	2	43		4	9	5			3	2			4	2		2		12	12	100	4,610	2.17%
L-12A	7	8		10	11	2		10	3				10	10					5	76	3,916	1.94%
L-12B	13	12		10	5	7		3					19	13					5	87	3,873	2.25%
L-13A		19		9	10	10		5		6	12		6	8						85	5,009	1.70%
L-13B		21		6	5	10		6		5	10		3	8			10	15	6	105	4,578	2.29%
TOTAL	215	398	9	187	242	162	49	73	75	70	22	16	201	180	35	70	31	82		2,234	92,496	2.42%

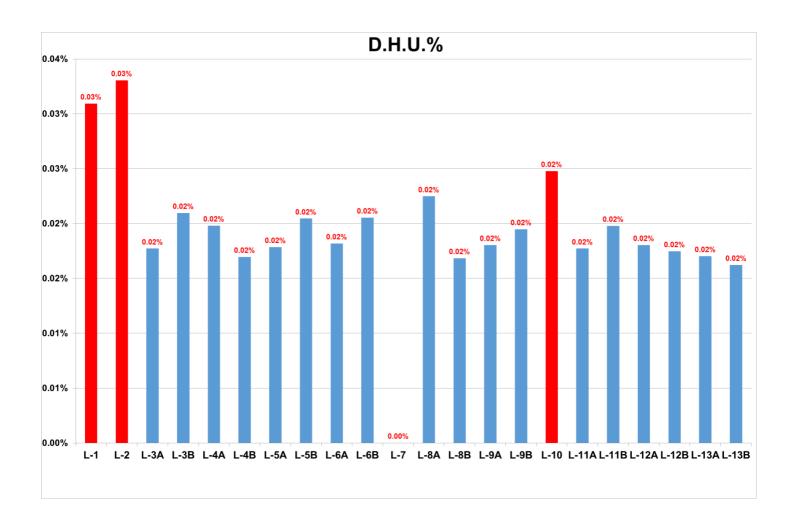
From the above table we can see that 22 lines one days total productions 92,496 defect 2,234 and defect percentage is 2.42%.

Maximum defect found are open seam, skip stitch, down stitch, uneven stitch and broken stitch, pleat and row edge in this day.

Fabruary Daily graphs

HIGHEST 3 DEFECTS :- 1. Skip Stitch

2.Down Stitch


3.Open Seam

Defects of the month February

©Daffodil International University

	ULTIMATE FASHIONS LIMITED.																				
									MONT	THLY L	INEWI	SE SE\	WING	D.H.U	. SUM	MARY-	(YEAR	-2019))		
								DEFE	CTS DI	ESCRII	PTION	-		[[[z	%
LINE NUMBER	OPEN SEAM	SKIP STITCH	RUN OFF STITCH	UNEVEN STITCH	DOWN STITCH	Broken Stitch	OPEN TUCK	OVER- STITCH	PUCKERING	JOINT STITCH	BAD TENSION	SIZE MISTAKE	PLEAT	ROW EDGE	WITHOUT BARTACK	UNEVEN LOOP POSITION	M01-IH	POINT UPDOWN	TOTAL DEFE	TOTAL PRODUCTIO N	DEFECTS
L-1	383	602	11		544	140		8	107	6	58	6	167	341			38	94	2,505	80,970	0.03%
L-2	117	694		32	586	308		39	3	89	143		79	437	42	6	140	11	2,726	82,465	0.03%
L-3A	318	223		108	356	183	41		64	46	79		153	208	31		95	75	1,980	111,758	0.02%
L-3B	281	540		59	337	309	66		139	129	87		128	202	16		100	37	2,430	115,921	0.02%
L-4A	107	525	9	36	138	164	32		130	103	147		145	215	82	4	111	44	1,992	100,607	0.02%
L-4B	121	444	10	36	83	124	27		84	68	80	44	77	125	49		133	47	1,552	91,592	0.02%
L-5A	296	629	8	50	121	61			11	35	28	7	184	282	14		56	27	1,809	101,300	0.02%
L-5B	312	480	4	78	131	242		37	3	13	23		206	342	16		87	63	2,037	99,600	0.02%
L-6A	203	233		57	329	362	103			2	92		148	138	30		40	31	1,768	97,255	0.02%
L-6B	31	333		39	371	486	208		3		88	7	134	135	3		36	30	1,904	92,763	0.02%
L-7																					0.00%
L-8A	509	155		169	314	156	3	13	23	12	98		75	50	68		43	128	1,816	80,785	0.02%
L-8B	679	210		125	341	130		21	31	67	77		114	177	58	6	74	159	2,269	134,773	0.02%
L-9A	139	394		145	193	154	20		73	96	85	6	95	220	73		113	81	1,887	104,653	0.02%
L-9B	145	396		137	174	147	10		78	88	96		100	273	61		135	70	1,910	98,085	0.02%
L-10	332	340	15	44	441	265	10		41	38	67		126	370	31		38	43	2,201	88,811	0.02%
L-11A	162	343		27	229	100			10	26	29		200	177	15		81	95	1,494	84,320	0.02%
L-11B	155	424		59	190	97			25	14	20		164	169	10		79	89	1,495	75,603	0.02%
L-12A	289	252		65	272	151	6		62	109	31	4	192	228	48		51	28	1,788	99,108	0.02%
L-12B	179	290		63	243	199	3		59	73	45	1	201	264	41		45	31	1,737	99,405	0.02%
L-13A	54	401		58	165	139	17	6	30	92	111		97	153	76	8	108	83	1,598	93,865	0.02%
L-13B	59	327		56	143	97	36	5	31	57	100		76	99	97	15	124	77	1,399	86,256	0.02%
TOTAL	4,871	8,235	57	1,443	5,701	4,014	582	129	1,007	1,163	1,584	75	2,861	4,605	861	39	1,727	1,343	40,297	2,019,895	2.00%

From the above table we can see that 22 lines one month total productions 2,019895 defect 40,297 and defect percentage is 2.00%. Maximum defect found are open seam, down stitch, skip stitch in the above month.

HIGHEST 3 DEFECTS :- 1. Skip Stitch

2.Down Stitch

3.Open Seam

CHAPTER- 4 RESULT AND DISCUSSION

RESULT AND DISCUSSION

As a end in this desertion we've got known many varieties of stitching fault. we have a tendency to try and decide the causes & remedies of these faults. we have a tendency to collect knowledge from the plant analysis those knowledge. Here we have a tendency to discuss regarding our collected knowledge below-

Discussion for LINE NO.01

We observe this stitching line for one days (01/01/19). From the road NO.01, we tend to found total three,869 pcs of clothes created in 14hrs by forty seven operators and four helpers. Here we tend to completely found 112 pcs of Defects clothes wherever 108 pcs square measure altered and 4pcs square measure rejected.

Defects most that we tend to found from line no.01 square measure down sew thirty six pcs; open seam nineteenpcs; broken eleven pcs; skip sew fourteen pcs,. From these defects 4pcs square measure rejected that don't have anyprobability of alter.

During our observation at there has been some downside we tend to detected in line no.01. There has been some downside on a stitching machine. Then the machine maintenance operator tries to unravel the matter as quickly as doable. Cause once a machine get stopped the assembly happening going cut, which might be pricey for a order needs.

Discussion for LINE NO. 02:

We observe this stitching line for one days (01/01/19). From the road NO.02, we have a tendency to found total a pair of,778 pcs of clothes made in 14hrs by forty two operators and three helpers. Here we have a tendency to allfound eighty nine pcs of defects clothes wherever eighty six pcs area unit altered and three pcs area unit rejected. Defects that we have a tendency to found from line no.02 area unit most defects twenty two pcs skip sew ; 18pcs broken stitch; fourteen pcs down stitch; 2pcs. From these defects three pcs area unit rejected that don't have anyprobability of alter.

Discussion for LINE NO. 03:

We observe this stitching line for one days (01/01/19). From the road NO.03, we have a tendency to found total three,868 pcs of clothes created in 14hrs by forty six operators and four helpers. Here we have a tendency to entirelyfound eighty nine pcs square measure defects eighty five pcs alter and 5pcs square measure rejected .Defects thatwe have a tendency to found from line no.03 square

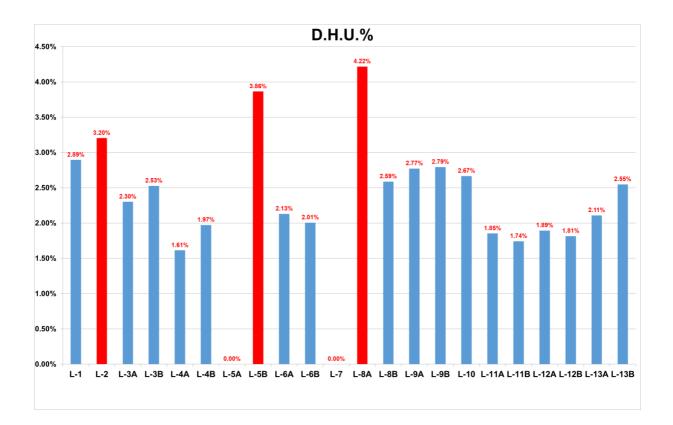
measure most defects ten pcs open seam ; ten pcs broken sew ; sixteen pcs in seam ; . From these defects five pcs square measure rejected that haven't any probability of alter.

Discussion for LINE NO. 04:

From the road NO.04, we have a tendency to found total three,956 pcs of clothes created in 14hrs by forty eightoperators and four helpers. Here we have a tendency to whole found one hundred pcs of defects clothes and 7pcs square measure rejected. Defects that we have a tendency to found from line no.04 square measure most defects twenty five pcs skip sew ; 11pcs broken sew ; 12pcs row edg. From these defects 7pcs square measure rejected thatdon't have any likelihood of alter.

General analysis of sewing faults:

In this study there we discuss about three major defect types occurred in a garment. We totally worked on 22 sewing line for 21 working hours and the defects we found are listed in below,


Row edge = Hi-low = 115Without bartek =Pleat = 113Bad tension = Open tuck=Uneven shape=Broken stitch = Down = 196Open seam = Skip Stitch =

From this list we tend to see that skip is one in all the key defect that found in stitching section. it's primarily fault of material however found in finish line scrutiny. Another fault we tend to noticed that's broken sew that is principallyoccurred for needle deflection.

During our investigation we tend to saw that once a operator get drawback|a drag|a haul|a retardant|a tangle} like sew formation problem then they fight to change it at that point. They absolutely open out the seam build a replacement sew on the clothes.

Sewing fault can't be reducing 100% however is remittent by taken correct auditory ossicle. we should always bear in mind that 1 Chronicles defective product for a corporation is 100% defective for the client World Health Organization buys that defective product

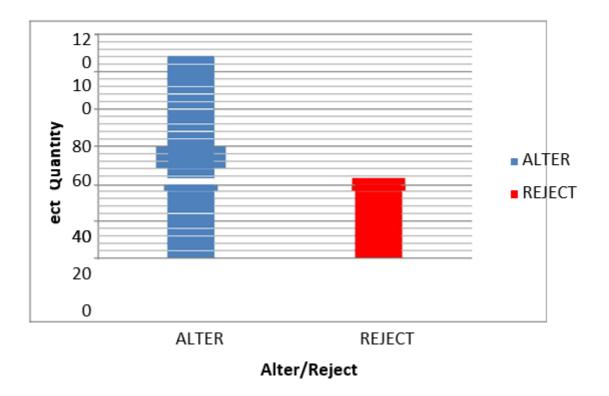
Graphical view of sewing faults

HIGHEST 3 DEFECTS :-

1. Skip Stitch

2.Broken Stitch

3.Down Stitch


Defect name:

Here, in this graph we show that the no. of defect each defect that found in our practical investigation. We totally inspect 86,112pcs of garments & found 2,029pcs of defective garments. In

graph vertically show the defect quantity & horizontally show the defect name.

Graphical view of alter& reject-

Graphical view of alter & reject-

In this chart we show the total alter & reject no. which we found in our practical investigation

Defects name at there cause and remedies:

Item :Long Pant

: Broken Stitch

Causes:

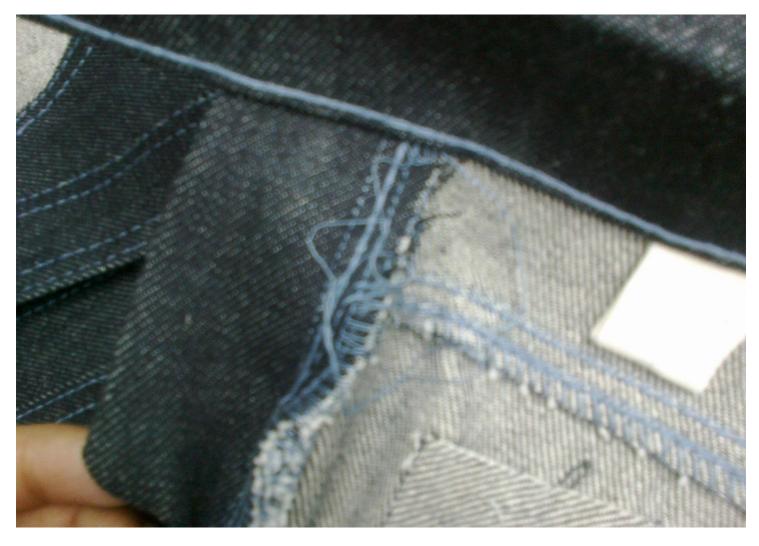
 \Box It seems thanks to improper trimming or machine usage. Remedies:

□Needle plate, presser foot and feed dog ought to be checked sporadically for damages

□Proper machine usage

Tension and threading mustn't be fiddled with abundant

□Washing parameters ought to be strictly followed


□Proper trimming

 \Box Good quality or D-core thread ought to be used

 \Box Needle thread cloth combination ought to be judged

 \Box Needle alignment ought to be right

:Skip stitch

Cause

Flagging of fabric due to poor presser foot control or too large a throat plate hole.

Needle deflections or bent needle.

Remedy

Re-adjust the presser foot pressure. Change the throat plate to match the needle.

Use a reinforced needle, reset the needle guard and replace the needle.

: Pleat

Probable Cause

Suggested Remedy

Cover curl material or seam stock too Consult cover manufacturer. short

Incorrect 1st Operation Seaming Roll Replace 1st Operation Seaming Roll with correct Roll groove profile groove profile 1st Operation Seaming Roll seam

setting incorrect.

Adjust 1st Operation Seaming Roll. Refer to the Parts List Instructions or Service Manual for procedures.

: Open seam

Causes:

 \Box This happens because of improper handling of the components of clothes, improper setting and temporal arrangement between needle and inchworm or hook etc. Remedies:

 \square Pattern has to be correct

 \Box Clear markings for sew line

 \sqcap Good quality or D-core thread ought to be used

□Proper setting and temporal arrangement between needle and inchworm or hook.

 \square Worker coaching

:Unenen Stitch

SL No.	Causes	Remedies
01	Incorrect tension of <u>sewing</u> thread.	Setting of accurate tension to the thread.
02	Used incorrect thread path.	Using of accurate thread path.
03	Incorrect adjustment of needle thread path.	Using of right thread path.
04	Snagging of needle with bobbin case and positioning finger.	Bobbin case to be smooth and finger positioning to be set again.
05	If sewing threads are not lubricated.	Better <u>quality</u> threads must be used here

CHAPTER- 5 CONCLUSION

In our country RMG is that the most respected foreign earning sector. however this sector isn't totally well equipped . stitching faults is additionally a giant threat for this sector. however because of enough information these threat cannot cut back entirely. In our thesis paper we have a tendency to try and mix all of the vital matter that's associated with stitching faults. we have a tendency to try and collect knowledge from plant and analysis and gift in our thesis paper. tho' we have a tendency to had some limitations nevertheless we have a tendency toattempt our greatest with the assistance of our honorable supervisor to create our thesis paper helpful. The importance of the textile trade within the economy of Bangladesh is extremely high. The explosive growth of the RMG trade within the country has not been enough supported by the expansion of backward linkage facilities. therefore producing the standard product is obligatory to sustain during this international competitive market. Quality is issue of client satisfaction.Good ultimately an quality will increase the worth of a product, establishes name, and builds up sensible name for the garment businessperson, that successively results into shoppersatisfaction, high sales and interchange for the country. For our thesis work we have a tendency to investigate much concerning differing kinds of stitching fault. we all know concerning their causes & remedies that is extremely effective for our future career. we have a tendency to get a sensible & theoretical informationconcerning stitching faults.

REFERENCES:

- [1] Class lecture of our course teachers of Daffodil International University.
- [2] http://www.isca.in/IJMS/Archive/v2/i8/2.ISCA-RJMS-2013-042.pdf
- [3] http://www.ijsrp.org/research-paper-0713/ijsrp-p19120.pdf
- [4] Quality Management in the Apparel Industry and T.Q.M by Engr. A.J.S.M. Khaled
- [5] <u>http://www.fibre2fashion.com/industry-article/41/4013/sewing-faults1.asp</u>
- [6] http://www.wikipedia.org/ Sewing Wikipedia, the free encyclopedia.html
- [7] http://sewing.about.com/od/sewingmachineindex
- [8] http://www.slideshare.net/textilevandana
- [9] http://www.generations-quilt-patterns.com/sewing-machine-problems.html
- [10] Industrial fault reports of Lodestar Fashions Ltd