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ABSTRACT 

 

Security is a big issue these days. People are becoming violent and the tendency to be 

armed is being noticed. Carrying a pistol or knife is now very common. Security guards 

are trying their best, but we think technology can be used very effectively in this case, such 

as machine learning. We designed this model to detect real-time weapons. It takes video 

input from a camera, CCTV, or any other device and can detect if there are any weapons. 

Here we use Deep Learning techniques based on CNN (Convolutional Neural Network). 

Since so many algorithms exist, it was difficult for us to choose an algorithm that suited 

our work. Finally, we choose “YOLOv3”, an algorithm that uses convolutional neural 

networks for object detection. Then we faced the biggest hurdle, "DATA". There was not 

enough data on the internet to train our model. Then, we decide to produce the data 

ourselves. We used the VLC media player to collect images from videos and then used 

LabelImg, a python library to label those images. After meeting all the pre-requirements, 

we started writing our scripts and training the model. Eventually, we were able to build 

what we expected. We have built a model that can detect weapons in real-time and it is 

very much possible to send signals to specific destinations or play an alarm. 
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CHAPTER 1 

Introduction 

 

1.1 Introduction 

Although the concept of machine learning is quite old, its use has been increasing at a 

significant rate over the past decade. Its use has increased day by day in almost all sectors 

of technology. Its use in other sectors is also quite noticeable. From the present situation it 

can be inferred that machine learning is going to be the most effective technology in the 

future. Violence, on the other hand, is a primitive human nature, but over the past decade, 

people have become increasingly violent. The rate of carrying firearms has increased at a 

significant rate. The crime rate is rising, the administration is failing to provide security to 

the public due to lack of skilled manpower and technology. In this research-based project 

we have tried to show how it is possible to control the growing problem by utilizing 

machine learning. 

 

1.2 Motivation 

Our supervisors have repeatedly encouraged us to do things that can be applied in real life. 

We were excited to work with machine learning. We wanted to do something with machine 

learning that would help people in the context of Bangladesh. 

The current security situation in Bangladesh and the lack of manpower in the 

administration have made us interested here. 

 

1.3 Rationale of the Study 

It is much easier and cheaper to build efficient and intelligent machines than to create 

skilled workers, at least in the long run. We think it makes more sense to use a machine in 

uncreative work since it can work seamlessly in the same accuracy for a long time. Thus it 

is quite a great choice to train a machine to do the boring but important in accuracy without 

delay works. And our research is an example of this. 
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1.4 Research Questions 

How can we overcome the lack of skilled manpower by utilizing machine learning in the 

fight against terrorism? 

 

1.5 Expected Output 

A model that can detect weapons in real-time almost perfectly by using Convolutional 

Neural Network. 
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CHAPTER 2 

Background 

 

2.1 Introduction 

Currently, there is a lot of research going on with machine learning. Research is also 

underway on machine learning in the security sector. Areas of research include 

cybersecurity, military robot, intelligent CCTV, etc. We are keen to use this technology to 

make CCTV intelligent. 

 

2.2 Related Works 

2.2.1 Automatic Weapons Detection [1] 

Designing an integrated system that allows for fast and reliable processing of high-quality 

video data and in doing so detects and reacts to the presence of a firearm or other weaponry 

when used in a threatening or dangerous manner. The formulated block diagram of their 

IVS system is shown in the figure: 2.2.1.1 below. 

 

Figure 2.2.1.1: Basic block diagram of this IVS system 

 

2.2.2 Firearm Detection using Convolutional Neural Networks [2] 

Designing and Creating a firearm detection system, demonstrating its effectiveness in this 

task using the YOLO algorithm. They also constructed a dataset based on  
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the website Internet Movie Firearm Database (IMFDB) for this study. They show that a 

rapid response from law enforcement agents is the main factor in reducing the number of 

victims. The demonstration of positive results in an environment with multiple objects of 

their object is shown in figure 2.2.2.1 below. And the overall object detection result chart 

is shown in figure 2.2.2.2. 

 

 

Figure 2.2.2.1: Demonstration of positive results in an environment with multiple objects. 
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Figure 2.2.2.2: Object detection result chart 

 

2.2.3 A Handheld Gun Detection using Faster R-CNN Deep Learning [3] 

They have used Deep Convolutional Network (DCN), a state-of-the-art Faster Region-

based CNN model, through transfer learning. They demonstrate that, against the number 

of several training images, the CNN model magnifies the classification accuracy, which is 

most advantageous in those practices where generous liberal is often not available. They 

tested the performance of their system is against various conditions such as varied 

backgrounds with guns, occlusion, etc. They have used three different classifiers namely 

Support Vector Machine (SVM), K-Nearest Neighbor (KNN) and Ensemble tree for 

classification and the results are shown in the figure 2.2.3.1. 
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Figure 2.2.3.1: Performance graph in terms of ROC and AUC C 

 (a) SVM (b) KNN and (c) Ensemble Tree 

 

2.3 Research Summary 

Our goal is to effectively address the shortage of skilled manpower in the security sector 

using machine learning. We want to design such a model that can detect weapons quickly 

and almost accurately on the fly. We have decided to solve this problem by using any 

existing algorithm effectively. To train our model we have decided to collect some data 

from online but we will produce most of the data ourselves. If we succeed our model will 

be able to detect any object based on train data, but we are more focused on weapon 

detection. 

 

2.4 Scope of the Problem 

 Existing CCTVs are stupid boxes. They can do nothing but capture videos. If they 

become disabled or unable to capture video they even cannot say so. But using 

some small machine learning algorithms it is possible to turn it into a smart device. 

Then they can understand what they capturing. And if they can detect something 

dangerous, they can send it to a specific destination in a predetermined. 

 Drones are a promising technology of the present. But in most cases, it has to be 

managed by a human. It is possible to automate it using our model. Although we 

are working on weapon detection, our model can detect any object based on train 

data.  
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 Another upcoming technology is the 'military robot' or 'security robot'. Our model 

can also be applied here. 

 

2.5 Challenges 

 The first challenge is to find an algorithm that is compatible with our project. Since 

there are so many algorithms, we have so many options, we have to work hard to 

find the right algorithm. We need a fast algorithm with acceptable accuracy that 

provides output in real-time. 

 Data is the most important element of our project. Since the machine learns based 

on the data, the more the data, the more efficient the machine will be, and the more 

accurately the machine will be able to detect a object. We need a lot of data for a 

truly functional model and the kind of data we need is not available on the Internet. 

Thus, data production is a big challenge. 
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CHAPTER 3 

Research Methodology 

 

3.1 Introduction 

Our project, weapon detection is a problem where we tried to identify weapons in picture 

frames as well as in videos. We do it by using convolutional neural network framework on 

YOLOv3. YOLOv3 is a convolutional neural network where it uses only one neural 

network to do the whole job. We used YOLOv3 to train our own custom weapon detector 

on our own dataset. It does quite a good job.  We tried many things before YOLOv3. One 

of them is TensorFlow. We used faster_rcnn_inception_v2_coco to detect weapons. We 

chose it because it has some decent speed with decent accuracy. But in the end, as we are 

focusing on building a real time object detector that can perform detecting weapons in real 

time mainly from a cc camera, it failed to meet our goals in terms of speed. So, we switched 

to YOLOv3 to implement our work as it is the state of the art nowadays. It is super-fast 

with decent accuracy. We used the darknet framework to implement our work. We built 

our own dataset and labeled them. We also merge some data from OID (Open Image 

Dataset) to enlarge our dataset. After that, using darknet we trained our own model and got 

yolo weights. Using that weight, we then ran detection on images or on videos. We used 

OpenCV to detect weapons using that weight. The train was done in google COLAB as it 

is high end GPU enabled. But the detection with OpenCV was done in a local computer 

which has moderate CPU and GPU. 

 

3.2 Research Subject and Instrumentation 

We tried to find a way to detect weapons from real time CC footage. In this system, no one 

needs to be seated in front of the display to detect weapons. The machine will do it as an 

assistance to the human. Also, humans make more mistakes than computers. So, a good 

machine which understands the problem very well and can perform detection can actually 

save some times, some life's as well. We tried many things but YOLOv3 worked well so 

far with our problem set. 
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We collected data which is pictures of guns or have guns in them. We collected them from 

YouTube CC camera footage and converted them to pictures frame by frame. We did that 

using VLC media player [4]. Then we label the images with LabelImg [5] into xml files in 

PASCAL VOC format. We did that to implement TensorFlow fashion. But to train in 

YOLOv3 fashion we need yolo format data labelling. We then convert them to yolo format 

using python script [6]. We installed darknet [7] in Google COLAB [8]. Set .names, .data 

file as to our need. We also changed the original .cfg file according to our need. We set the 

train.txt file, which basically holds the relative address of the train images. After setting 

everything up, we started our training. After training got our .weights file. Then we 

developed a python script [9] file to detect weapons using that .weights file. The script used 

OpenCV [10], NumPy and argparse for command line options. 

For training purpose, we also used CUDA-version: 10000 (10010), cuDNN: 7.6.5, 

CUDNN_HALF for GPU accelerated training process in COLAB [8]. 

 

3.3 Data Collection Procedure 

For any research on AI field data plays a vital role. And in Neural Networking, it has even 

more significance. More data means great training and lastly great accuracy. So, we 

focused on creating a decent sized dataset on weapon detection. We first gathered some 

videos of cc camera footage from YouTube related to weapons. They were as poor in 

quality as we can see from the figure 3.3.1 below. 
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Figure 3.3.1: Poor image quality 

 

But to start our work, we started with them. Then we downloaded them from YouTube 

using online website [11]. They were in .mp4 format but to train our weapon detector we 

need images in .jpg format. Basically, needed to break down the videos into images. One 

way to do it is using VLC media player [4]. 

 

 

Figure 3.3.2: VLC Media Player logo 
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VLC media player serves well as image extractor from videos. VLC has an option named 

scene video filter. Using that the output name of image files, format and location can be 

set. Also, one can easily change the recording ratio. It means the frames per second of the 

recording can be manipulated according to our need. Our videos were basically 20-25 

frame per seconds. We wanted to have 3-4 frames per second from that 20-25 frames. So, 

we set the ratio to 6-7. We preferred the .jpg format and set a location for image recording. 

All the setting is showed in figure 3.3.3 below. 

 

 

Figure 3.3.3: VLC Media Player recording images settings 

 

After getting all the images it is time for the next work, labelling. To perform Convolutional 

Neural Networking, we need ground truth box. The labelling is considered as that ground 

truth box. Labelling includes the box drawing and the labelling the box with class name as 

well. We used the labelImg [5] opensource project to do this. It is free and simple. It gives 

two option of format to label images. PASCAL VOC format and YOLO format. As 

mentioned earlier, we tried to implement the TensorFlow version of object detection at first 

so we labelled our images in PASCAL VOC format in .xml files as showed in figure 3.3.4. 
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Figure 3.3.4: Labelling with labelImg software 

 

These files hold the information about the boxes, and labels. There are four objects in figure 

[3.3.4]. So, the .xml file of this image containing information about all four weapons. But 

later we switched to YOLOv3 then we needed the YOLO format of the PASCAL VOC 

formal which is in .txt format. We did that with the help of a GitHub repo with changes 

according our needs [6]. The .txt files contains the object number as well as object location 

information in the image each on new line. The format is, 

<object number> <x> <y> <width> <height> 

Object number is type of object in integer format starts at 0. x, y are the center of the object 

and width and height are the float relative value. 

After that we trained our detector for a test run and get not a bad result. One problem was 

that, the train images we used all are very low-quality small weapon images. As a result, 

our detector was failing to detect large and interestingly more clear weapons. To resolve 

this issue, it needed more data especially more clearly and bigger images of weapon for 

training as shown in figure 3.3.5. 
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Figure 3.3.5: Image with clear view of weapon 

 

So, we used the Open Images Dataset (OID) V6 [12] to get more images related to 

weapons. The helping thing here is it is already labelled with slightly different annotations 

and about ready to feed into our desired model. The OID page is shown below figure 3.3.6. 

 

 

Figure 3.3.6: Open Image Dataset explore option (weapon selected) 

 

One thing left to do with the downloaded dataset is converting the .txt file in YOLO format. 

It was done with the help of a GitHub repo [13]. 
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Even after that to enlarge our dataset as more data is good, we took images from different 

movie clips which contains weapons show and videos with clear images of gun. Again, 

those were annotated with labelImag [5]. After all these steps, our dataset stands at a decent 

state with decent size with correctly annotation. It has about 4.5k images. It is not a very 

big dataset. But for our purpose, it serves well. 

 

3.4 Statistical Analysis 

We used Convolutional Neural Network to get our job done. The YOLOv3 is a 

Convolutional Neural Network that serves our purpose well.  Our preferred model has 106 

layers. 75 of them are convolutional layer and 31 of them are other layers. The model is 

FCN or Fully Convolutional Network. Means that there is no dense layer like typical CNN 

or Convolutional Neural Network.  The other 31 layers are nor dense layer. They are 

shortcut, route, upsampling and yolo layers.  

The final output of the network is a feature map. A 1x1 convolution layer is used to 

determine the final output feature map. As it is 1x1 convolution layer, the size of the feature 

map is exactly as the feature map of previous layer. The result is then interpreted as 

considering each element in the feature map as a cell in image at last layer. Each cell 

produces a fixed number of bounding boxes. Each bounding box has certain number of 

attributes. They are the center coordinates, the dimensions, the objectness score and class 

confidences. So, each bounding box has 5 (center coordinates, dimensions and objectness 

score) + C (class confidences) attributes. 

Let the size of the input image is 416 x 416 and the stride of the network is 32. Stride of 

the network act as a factor by which the out image is smaller than input image. So, the 

output image in this case will be 13 x 13.  We can see the bounding boxes in figure 3.4.1. 
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Figure 3.4.1: YOLOv3bounding box [14] 

 

Here, the tx, ty, tw, th are the center and height, width, P0 is the objectness score and P1, P2 to 

Pc are the class score of the bounding box. B is the number of the bounding boxes in each 

cell. Our model has 3 bounding boxes for each cell. Which cell contains the center of the 

object is responsible for drawing the bounding box for that object. Our Images were all 

RGB image. We worked with all three channels like in figure 3.4.2. 
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Figure 3.4.2: An image in RGB channels 

 

The network doesn’t predict the absolute value for coordinates of bounding box, rather it 

gives offset value of coordinates. They are relative to the upper left corner of the cell and 

normalized to be in range 0 to1. The objectness score is the value between 0 and 1 and 

means the probability of the object inside that bounding box. Class confidences means the 

probability of object being a class type. In our model, we have only one class, weapon. So, 

the model only gives prediction for object being a weapon. It is also normalized between 

0 and 1. 

The network has another extraordinary thing, the anchors. Anchors are the pre-defined 

bounding boxes of different sizes. We can determine the bounding box from scratch by 

convolution but this takes much more resource and time. But using anchors makes it 

simple. We just need to modify the anchors according to our needs. They are the sizes of 

the objects (width, height) in images that are converted to the network size (width, height 

in cfg). Formula showing in figure 3.4.3 is the rules for making bounding box predictions 

from network output. 
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Figure 3.4.3: Formulas for converting network output to bounding box prediction [15] 

 

Here, bx, by, bw, bh are the co-ordinates of center, height and width prediction. tx, ty, tw, 

th is the network outputs. cx and cy are the top-left co-ordinates of the cell. pw and ph are 

anchors value of the bounding boxes. 

The use of anchors is shown in figure 3.4.4 below, 

 

Figure 3.4.4: Anchor concept [15] 
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There is different level of prediction. It is because to make prediction better in different 

levels. Initially the network size is 416 x 416. The detection layer use three different sized 

feature map. They have stride of 32, 16, 8. They produce feature map of 13 x 13, 26 x 26 

and 52 x 52. They can detect object even they are small. 

Total number of bounding boxes will be (13 x 13 + 26 x 26 + 52 x 52) x 3 = 10647. But 

We need only those bounding boxes that holds our weapons. Here we used the objectness 

score. We put a threshold of 0.35 to choose only those boxes have probability greater than 

the threshold. We faced another problem of getting multiple bounding boxes for same 

object. We used Non-maximum Suppression to overcome this problem. 

The structure of the network is written in a file, .cfg format. It holds all the information and 

layers details of the network. There are 5 different kinds of layers in our network as we 

implement using YOLOv3. 

Convolutional: There are 75 of them in the network. They are the basic layer of the 

network. They are different in size, padding, stride and activations. 

Shortcut: They are skip connections. 

Upsample: Upsample the feature map of previous layer by a fixed stride. We can see that 

in 3.4.5. 
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Figure 3.4.5: Upsample with stride of 2 [16] 

 

Route: Route layers basically return the feature maps. They can also concatenate the feature 

maps of different layers and return one feature map. 

YOLO: YOLO layer is considered as the prediction layer of the network. It has mask 

values, anchors, number of classes etc. Mask values defines the index of anchors to be 

used. 

The other info about the network is written in a block called net. It holds the information 

about batch size, subdivisions, network size and training parameters like learning rate etc. 

To start training, we needed data file. We named it obj.data. It contains the info about class 

number, train-validation.txt, names file and location where the weights will be saved. train-

validation.txt is text file containing the location of train and validation images. name file 
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was named obj.name that holds the name of the classes. In our case, we have only one 

class, weapon. We used a pretrained weight file to initiate our training process. That weight 

file contains only weights for convolutional layers not for fully connected layers. This 

weight file is not completed. They just hold weight of prior layers. After setting all the 

ingredients, we started training. We divided our whole training in 4000 batches. Here, in 

figure 3.4.6, we can see the few information about training for batch 3905. 

 

 

Figure 3.4.6: Training log for batch number 3905 

 

We can see the output of IOU, GIOU, class probability, recall at 50%, 75%, class loss, IOU 

loss and total loss in each step. Total loss has an overall tend to decrease as the model is 

training. We expect to have equal or loss less than 0.05 as we can see in figure 3.4.7. 
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Figure 3.4.7: Training log for loss 

 

It shows loss after 4000 iteration. In early iteration it was extremely high. But with each 

iteration, it was decreased. And at our last iteration number 4000 it decreased to our 

expected value. After iteration 4000, average loss was 0.5543 and it is quite good. As we 

have only one class, we needed less iterations. 

 

3.5 Implementation Requirements 

By following our project website [17] one can implement our process. In the website all 

the necessary files have been uploaded. 

One need to go to GitHub repository [18] for this. This repository contains all the files and 

links to implement this project. 
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There is a link of config file. It is already modified for single class weapon detection. It 

can be used to re-produce the weight file. Or, one can use the fully trained weight file on 

weapon detection and detection script to detect weapons. 

To do this, one need to download the python script file for detection. Get the dataset, the 

name and data file from the link. To implement, one also need the train.txt file. After 

gathering all this files, one needs to install the dependencies of the python script. After that 

provide all the file path to appropriate location in script. One need a sample image or video 

to detect in image or video. Our model also supports the command line options. 
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CHAPTER 4 

Experimental Results and Discussion 

 

4.1 Introduction 

Model is working or not can be told by doing experiments on that. Basically, by the results 

of the experiments. We tried TensorFlow model to get our job done, but it didn’t give us 

good result. It was quite slow in speed because of pipeline it uses to detect weapons. 

Average FPS we got using TensorFlow faster R-CNN is about 4-7 FPS. But using our latest 

model, we got about 14-20 FPS on a moderate GPU enabled computer. For detecting 

weapons in real time, this speed is good. 

 

4.2 Experimental Results 

We trained our weapon detection model based on YOLOv3. After collecting data and 

labelling it we fed it into our network and ultimately got final weight files. These weight 

files are used later to detect weapons in frames of videos in real time. Videos are nothing 

but frames or images on sequence. We can detect on images and if we do it iteratively then 

it is similar to video. If we feed a video stream to our model, then the video stream is broken 

into frames and perform detection on each individual frame. We are here showing 3 

experimental results of our work. 

First experimental result is shown below, 

The input of first experimental is shown in figure 4.2.1. 
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Figure 4.2.1: Input for experiment 1 

 

Output for experiment 1 is shown in figure 4.2.2. 

 

 

Figure 4.2.2: Result of experiment 1 

 

We see that in input, there are actually 4 weapons. But our model could detect 3 of them. 

It is be because our model needs more data to detect all kind of objects. But for initial 

purpose, it has done a good job.  

We can see the log file for experiment no. 1 below. Here is log data of first 20 layers. 
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CUDA-version: 10010 (10010), cuDNN: 7.6.5, CUDNN_HALF=1, GPU count: 1 

CUDNN_HALF=1 OpenCV version: 3.2.0 compute_capability = 610, cudnn_half = 0 

net.optimized_memory = 0 mini_batch = 1, batch = 16, time_steps = 1, train = 0  

 

layer          filters       size/strd(dil)            input                          output   

0 conv          32             3 x 3/ 1          416 x 416 x 3    ->     416 x 416 x 32 0.299 BF 

1 conv          64             3 x 3/ 2          416 x 416 x 32  ->     208 x 208 x 64 1.595 BF 

2 conv          32             1 x 1/ 1          208 x 208 x 64  ->     208 x 208 x 32 0.177 BF 

3 conv          64             3 x 3/ 1          208 x 208 x 32  ->     208 x 208 x 64 1.595 BF 

4 Shortcut Layer: 1, wt = 0, wn = 0, outputs: 208 x 208 x 64 0.003 BF 

5 conv        128             3 x 3/ 2          208 x 208 x 64  ->     104 x 104 x 128 1.595 BF 

6 conv          64             1 x 1/ 1          104 x 104 x 128 ->    104 x 104 x 64 0.177 BF 

7 conv        128             3 x 3/ 1          104 x 104 x 64   ->    104 x 104 x 128 1.595 BF 

8 Shortcut Layer: 5, wt = 0, wn = 0, outputs: 104 x 104 x 128 0.001 BF 

9 conv          64             1 x 1/ 1          104 x 104 x 128 ->    104 x 104 x 64 0.177 BF 

10 conv      128             3 x 3/ 1          104 x 104 x 64   ->    104 x 104 x 128 1.595 BF 

11 Shortcut Layer: 8, wt = 0, wn = 0, outputs: 104 x 104 x 128 0.001 BF 

12 conv      256             3 x 3/ 2          104 x 104 x 128   ->    52 x 52 x 256 1.595 BF 

13 conv      128             1 x 1/ 1            52 x 52 x 256     ->    52 x 52 x 128 0.177 BF 

14 conv      256             3 x 3/ 1            52 x 52 x 128     ->    52 x 52 x 256 1.595 BF 

15 Shortcut Layer: 12, wt = 0, wn = 0, outputs: 52 x 52 x 256 0.001 BF 

16 conv      128             1 x 1/ 1            52 x 52 x 256     ->     52 x 52 x 128 0.177 BF 

17 conv      256             3 x 3/ 1            52 x 52 x 128     ->     52 x 52 x 256 1.595 BF 

18 Shortcut Layer: 15, wt = 0, wn = 0, outputs: 52 x 52 x 256 0.001 BF 

19 conv      128             1 x 1/ 1            52 x 52 x 256     ->     52 x 52 x 128 0.177 BF 

[yolo] params: iou loss: mse (2), iou_norm: 0.75, cls_norm: 1.00, scale_x_y: 1.00  

Total BFLOPS 65.304 

Allocate additional workspace_size = 52.43 MB  

Loading weights from yolov3_obj_final.weights... seen 64, trained: 256 K-images (4 Kilo-

batches_64) Done!  

Loaded 107 layers from weights-file  
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Enter Image Path: /content/mydrive/yolov3/weapon8.jpg  

/content/mydrive/yolov3/weapon8.jpg: Predicted in 32.492000 milli-seconds.  

Weapon: 49%  

Weapon: 47%  

Weapon: 74%  BF 

Here, we can see that the BFLOPS is 65.304, means our model calculate floating operation 

at that speed. It is the measurement of Billions Floating point Operation Per Second. Our 

model detected weapon in about 33 milli-seconds and all the detected weapons accuracy is 

also shown. Let’s do another experiment, experiment no. 2. 

Input image for experiment 2 is in figure 4.2.3. 

 

 

Figure 4.2.3: Input of experiment 2 

 

We feed the image in figure 4.2.3 to our model and get figure 4.2.4 as result after detection. 
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Figure [4.2.4]: Result of experiment 2 

 

For third experiment, figure 4.2.5 and figure 4.2.6 showing input and result respectively, 

 

 

 Figure 4.2.5: Input of experiment 3 Figure 4.2.6: Result of experiment 3 

 

In experiment 3, we feed some normal weapons photo and get some good predictions. In 

this 3-experiment which input weapon image our model missed are for lack of proper data 

relating to that type weapon.  
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4.3. Descriptive Analysis 

From the figures in section 4.2, we can see that the model is doing a decent job. We had 

mAP (mean Average Precition) of about 85%. This number works well for our purpose, at 

least for initial state. mAP can be increased by putting more data, specially verity in data. 

Means, there need more data from different shapes of weapon from many angles. It will be 

helpful if part of a weapon image is also part of data, to detect weapon with more abstract 

data. We can see that our model can handle most of the weapons in images we provided 

for experimenting. And the accuracies of detected weapons are pretty good. It is doing well 

in both 50% and 75% recall. 

 

4.4 Summary 

After doing bunch of experiments, it is clear that our trained model can handle its job. It 

can detect weapons from frames of images. It is also fast with decent accuracy and 

precision.  The main purpose of this model is to detect the weapons in live video stream. 

That is done by script that convert the video to frames. The trained weight holds the value 

for different layers of model in floats. By reading these floats, the model predicts the 

weapon location and draws the bounding box. And by doing these intermediate works, it 

gets its job done. 
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CHAPTER 5 

Summary, Conclusion, Recommendation and Implication for Future 

Research 

 

5.1 Summary of the Study 

Our goal was to implement a method to detect weapons from CC camera footage in real-

time. We chose YOLOv3 as our main framework because it is fast and efficient, state of 

the art. We collected data (images with weapons) from various videos and OID (Open 

Image Dataset). We labeled them according to their weapons size. Then we put all the data 

to pipeline for training. We trained our model for enough time to reach down total loss 

under 0.5, more or less. After training we got our weight file that contains values for 

parameter to detect weapons in images. We developed a python script [18] that allows one 

to detect weapons in frames. It is also command line option enabled. 

 

5.2 Conclusions 

We selected this work from a realization. A realization that concerns security of our public 

places. We have most of the important places under CC camera coverage. We tried to do a 

favor for this sector. We developed a system that can detect weapons from videos in real 

time. We were able to detect weapons in a frame in about 35 milli-seconds. On an average 

we got 15-20 fps. This level of speed of detection is good for detecting weapons in real 

time. 

We believe use of this model can save lot of human time from cumbersome and boring 

work of monitoring CC camera footage for detecting weapons in footage. 

 

5.3 Recommendations 

We recommend to use a good setup which contain good amount of RAM and GPU to 

implement our work. The more the CPU and RAM, the better means the faster the 

detection. To detect in real time, it requires a heavy amount of resources. Unless it is not 

possible to get expected result. 
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If one wants to train furthermore with more images, we recommend to use versatile 

weapons data. The benefit of this is the good detection. It is good to detect wrong object as 

weapons rather that not detecting real weapons. 

Another important thing is labeling. It is highly recommended to label all the images 

correctly. The labeling precision plays a vital role here. The ground truth box should 

include all the part of weapons but not more than that. This would increase the rate of 

correct detections. 

 

5.4 Implication for Further Study 

We got that convolutional neural network is a good way to detect weapons in images. We 

implemented the YOLOv3 version for detecting weapons. There is an improve version of 

that YOLO, YOLOv4 out there. It has more precision. The mAP of YOLOv4 is higher than 

YOLOv3. 

It is well proved that the accuracy depends on fine data. We had few kinds of weapons 

images. To get even better result, more clear data is required. More data is always good for 

convolutional neural network. 
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