

Automatic Verification of a Remote Code

Execution Vulnerability Detection Model Using

the SPIN Model Checker

By –
Zannatul Ferdous Anusha

ID: 161-35-1595

A thesis submitted in partial fulfillment of the requirement for the degree

of Bachelor of Science in Software Engineering

Department of Software Engineering

Daffodil International University

Spring-2020

Copyright © 2020 by Daffodil International University

I Copyright © 2020 by Daffodil International University

APPROVAL

This thesis titled on “Automatic Verification of a Remote Code Execution

Vulnerability Detection Model Using the SPIN Model Checker”, submitted by

Zannatul Ferdous Anusha (Student ID: 161-35-1595) to the Department of Software

Engineering, Daffodil International University has been accepted as satisfactory for the

partial fulfillment of the requirements for the degree of Bachelor of Science in Software

Engineering and approval as to its style and contents.

BOARD OF EXAMINERS

--- Chairman

Prof. Dr. Touhid Bhuiyan

Professor and Head
Department of Software Engineering

Faculty of Science and Information

Technology Daffodil International

University

--- Internal Examiner 1

Dr. Asraf Ali

Associate Professor
Department of Software Engineering

Faculty of Science and Information Technology

Daffodil International University

--- Internal Examiner 2
Asif Khan Shakir

Lecturer (Senior Scale)
Department of Software Engineering

Faculty of Science and Information Technology

Daffodil International University

--- External Examiner

Prof. Dr. Mohammod Abul Kashem

Professor
Department of Computer Science Engineering

Dhaka University of Engineering and Technology

Ii Copyright © 2020 by Daffodil International University

DECLARATION

I hereby declare that I have taken this thesis under the supervision of Md. Maruf

Hassan, Assistant Professor, Department of Software Engineering,

Daffodil International University. I also declare that neither whole document nor any

part of this thesis have been submitted elsewhere for award of any degree.

………………………………………
Student Name: Zannatul Ferdous Anusha
ID: 161-35-1595
Batch: 19th Batch
Department of Software Engineering

Faculty of Science & Information Technology

Daffodil International University

Certified by:

………………………………………
Md. Maruf Hassan
Assistant Professor
Department of Software Engineering
Faculty of Science & Information Technology

Daffodil International University

Iii Copyright © 2020 by Daffodil International University

ACKNOWLEDGEMENT

First of all, I am very grateful to my Almighty Allah for giving me the opportunity to

walk through the final year. I have learnt civility, ethics, and so on in the previous year of

my academic life. I am grateful to all of my teachers for this. I would like to express my

heartfelt gratitude to my supervisor Md. Maruf Hassan, Assistant Professor, DIU for

giving me the opportunity and continuous support to do this tremendous thesis on the

topic of Automatic Verification of A Remote Code Execution Vulnerability Detection

Model Using the SPIN Model Checker which helped me in doing a lot of Research and

writing of this thesis. Therefore, I have come to know so many new things for which I am

so thankful to him. Besides my supervisor, I acknowledge the authority of Cyber Security

Center, DIU (CSC, DIU) who have given me the permission to conduct my examination

and for the cooperation and support to execute the study.

Iv Copyright © 2020 by Daffodil International University

TABLE OF CONTENTS

DECLARATION ... iii
ACKNOWLEDGEMENT ... iii
TABLE OF CONTENTS ... iv
TABLE OF FIGURE ... iv
ABSTRACT .. iv
CHAPTER 1... 1
INTRODUCTION .. 1

1.1 Background Problem ... 1
1.2 Purpose of This Thesis... 2
1.3 Research Questions ... 2
1.4 Research Objectives .. 2
1.5 Thesis Organization ... 2

CHAPTER 2... 4
LITERATURE REVIEW .. 4

2.1 Case Study on Web Layer Vulnerability... 4
2.2 Remote Code Execution Vulnerability ... 5
2.3 Web Application Vulnerability Detection Model.. 5

CHAPTER 3... 8
EXPLOITATION TECHNIQUE .. 8

3.1 SQL injection attack .. 8
3.1.1 $_GET METHOD RCE .. 8

CHAPTER 4... 12
RESEARCH METHODOLOGY .. 12

4.1 Crawler ... 13
4.2 HTML/JavaScript Analyzer ... 13
4.3 Identifying JavaScript validation code ... 14
4.4 Analyzing validation code ... 14
4.5 Resolving RCE Vulnerability .. 15
4.6 Attack Code Generator .. 15
4.7 Analyzer ... 16
3.5 Response Pattern ... 16

3.6 FSM Construction ... 16
CHAPTER 5... 21
IMPLEMENTATION AND VARIFICATION .. 21

5.1 VARIFICATION .. 22
CHAPTER 6... 24
CONCLUSION AND FUTURE RECOMMENDATION .. 24

6.1 Findings and Contributions .. 24
6.2 Recommendations for Future Works .. 24

REFERENCES ... 25

v Copyright © 2020 by Daffodil International University

TABLE OF FIGURE

Figure 1: System Architecture of RCE Detection Model .. 12
Figure 2: RCE Finite State Machine .. 19
Figure 3: RCE Model Verification Screen Sort .. 22
Figure 4: RCE Model simulation Result .. 23

file:///C:/Users/HP/Desktop/RCE/Paper%20With%20Color/Final%20Draft/161-35-1595%20RCE%20Thesis.doc%23_Toc45190062

vi Copyright © 2020 by Daffodil International University

ABSTRACT

Background: Communicating and delivering services to the consumers through web

applications are now become very popular because of easily wide range information

support and integration of data with other applications. Absolute coding practices during

the programming and lack of security awareness are the main cause of various types of

vulnerabilities at the application level in the World Wide Web (WWW) system. Cyber

Attacks are becoming a critical risk for every digital transformation around the world.

One of the biggest weaknesses in this area is remote code execution (RCE). According to

the Web Application Security Project (CWE / SANS), RCE is on the list of sensitive

critical applications that have been vulnerable since 2016. Objective: This paper

proposes a model, and verify using SPIN model checker. Results: This research also

simulates the proposed model with automata called finite state machines and exhibits it as

a finite model. Conclusions: Various types of case studies and detection models are

introduced and compared with other vulnerability detection model. After reviewing

literatures, we found insignificant researches conducted on justifying web layer

vulnerability detection model using SPIN model.

Keywords: Cyber security; vulnerability of web applications; remote code execution

(RCE); Finite State of Machine; Automata; User-agent.

1 Copyright © 2020 by Daffodil International University

CHAPTER 1

INTRODUCTION

1.1 Background Problem

Internet applications currently play an important role in automating traditional daily

activities by updating existing solutions. Worldwide, over 3.88 billion people use the

Internet and various Internet applications from service providers because it is easy to use

and available anywhere, anytime. For the aforementioned beneficial reasons, most

organizations or service providers, such as industry, banks, government, education,

medicine and other industries, want to offer their services to interested parties via a web

application and other online systems. Companies automate processes and offer their

clients services via web applications to achieve higher profits with greater customer

satisfaction. A modern web application stores the confidential information of

organizations and consumers for the above-mentioned reasons: The risk of using these

web applications increases daily due to various cyber-attacks. A vulnerability in Internet

applications is a serious vulnerability in the system that can be affected. ISPs use the PHP

platform to create web applications that simplify the use of code According to OWASP

and SANS, the most common security vulnerabilities are SQLi (Structured Request

Language Injection), injection of the Cross Site Scripting (XSS) injection buffer overflow

system command and Interrupted Authentication Session Management , disclosure of

confidential data, remote code execution (RCE), attachment of local files (LFI) etc.

However, the new years of remote code execution were a major threat on the Internet that

could use the web server function for script / file files.

2 Copyright © 2020 by Daffodil International University

1.1.2 Remote Code Execution Attacks

Remote code execution is the ability an attacker has to access someone else's computing

device and make changes of that computer, no matter where the device is geographically

located. Vulnerabilities can provide an attacker with the ability to execute malicious code

and take complete control of an affected system with the privileges of the user running

the application. After gaining access to the system, attackers will often attempt to elevate

their privileges.

1.2 Purpose of This Thesis

Purpose model with Finite State Automata (FSM).

1.3 Research Questions

With having this background and motivation in mind, I pose the following questions:

 Is our proposed model a finite state machine?

1.4 Research Objectives

 To simulate the proposed model with Finite State Automata (FSM).

1.5 Thesis Organization

In this research, APA referencing system has been used in this document. The paper has

been furnished with six chapters which are described below:

Chapter 1: Research background, motivation, problem statement, objectives and

scopes are conferred in this chapter.

Chapter 2: This chapter includes discussion of the existing related works and figured

out the research gap.

3 Copyright © 2020 by Daffodil International University

Chapter 3: This chapter has the explanation of the vulnerability and its exploitation

techniques.

Chapter 4: This chapter contains the research methodology and approaches as it

follows for the research.

Chapter 5: Implementation and evaluation are discussed here.

Chapter 6: The outcome of research and direction of further work is presented here.

4 Copyright © 2020 by Daffodil International University

CHAPTER 2

LITERATURE REVIEW

This section presents previous works in web application layer vulnerability investigation,

detection and prevention techniques which focus on the database server.

2.1 Case Study on Web Layer Vulnerability

There is lots of case study available on web layer vulnerability Begum et al.,(2016)

conducted a case study on SQLi and RFI based LFI vulnerability where found out the

impact of SQLi and RFI based LFI vulnerability based on their exploitation techniques.

The study examined 153 web sites where found 45% were in critical condition. Hassan et

al., investigated web applications to find out the reasons of BAC vulnerability for

analyzing the significant relation with other domains. The research found 39.09% BAC

vulnerable web applications among 330 applications. SAT tools provide the most benefits

for detecting SQL Injection and XSS vulnerabilities with low false positive rates. A case

study explored the WAF based SQLi vulnerabilities exist in the web applications of

Bangladesh. Deepa and Santhi Thilagam presented a novel to summarize the current state

of the art for securing web applications from major flaws such as injection and logic

flaws. A research illustrated the principle of SQL injection, attacks, types and prevention

way with details and example. A detailed examination of an SQL attack case was injected

against a web service with the goal of testing in action SQL injection attacks. An

interactive learning platform capable of grading DML and DDL statements which can

expand the range of acceptable SQL statements and eliminate the limitations of current

SQL grading systems. A SQL injection detection system has proposed based on an

adaptive deep forest model that can automatically detect and improve the precision of the

5 Copyright © 2020 by Daffodil International University

detection during the training process. A framework for trusted remote execution of code

is built which can effectively solve the problems of integrating identity authentication,

application authentication, and behavior authentication. A research has proposed that

explores the efficacy of various proactive mitigation technologies included in the

standard exploit protection products and advanced anti-exploitation tools. Microsoft MS-

EMET standalone solution was able to block 74%, Symantec, AVAST, kaspersky,ESET

all get 100% success. A research has introduced a live wallpaper application that

demonstrates how trust can be used even on non-rooted Android devices to gain access to

shells. Alwan & Younis (2017) survey the detection and prevention techniques of SQLIA

- AMNESIA, SAFELI,WASP, R-WASP, RT-WASP web SQLi vulnerability detection

tools. Lawal et al., (2016) provided a systematic literature overview on SQLIA in order to

keep researchers up to date with the types, technique, and equipment of SQL injection

attacks. Hassan et al., (2018) studied Broken Authentication and Session Management, its

exploitation types and their impact in public and private sectors in Bangladesh. 56%

websites of our samples were found vulnerable.

2.2 Remote Code Execution Vulnerability

Sommestad et al., proposed an approach to identify the importance of the factors that

influence the success rate of remote arbitrary code execution attacks. The experimented

success rate varies between 15 and 67 percent for server-side attacks and between 43 and

67 percent for client-side attacks.

2.3 Web Application Vulnerability Detection Model

Fang et al., 2018 represented a tool named WOVSQLI, which can effectively identify

SQLIA by implementing a dataset from several sources to detect SQL injection behaviors

6 Copyright © 2020 by Daffodil International University

using word vector and LSTM. Liu and Wang proposed an algorithm (SECOND- ORDER

VULNERABILITY DETECTION) which could detect web second-order security

vulnerabilities (SQL, XSS and RCE) through two crawl scans. Ross et al., presented a

multi-source data analysis system for increased accuracy to detect SQL injection attacks.

Kao et al., proposed a framework of SQLi Investigation Architecture (SIA) to proves its

feasibility in fighting against of SQLi attacks. V.Nadar et al., developed a model that can

detect cross-site request forgery attack and broken authentication and session

management attack within the same simulation environment with updated rule libraries

and effective test environment. Saoudi Lalia and Ammiche Sarah developed a server side

XSS detection approach based on scripts features analysis, which permits detection of a

wide range injected scripts without any modification of application source code. Pan and

Mao proposed a model for detecting DOM-based XSS using browser extension Grease

monkey. Jain et al. proposed a framework to discover web application vulnerabilities by

scanning and also mitigating the discovered web vulnerability by customizing

configuration rules using Web Application firewall (ModSecurity). Rexha et al. presented

an approach to correlate different factors that influence the awareness rising regarding the

importance of using secure techniques and paradigms. D. Yadav et al. [16] provided a

comprehensive knowledge of web application security and vulnerabilities. CODDLE

technique is invent to detect code injection attack by transforming the original data into

an encode pattern using Convolutional (Deep) Neural Network [17]. IRONSIDES is

developed for implementation of DNS that is known to be invulnerable when running

remote code and refusing service attacks on a single package [25]. Alsmadi & Mira (2018

) developed a model that test invalid inputs. the research tested the model through

7 Copyright © 2020 by Daffodil International University

evaluating several websites selected randomly. Deepa et al., (2018) Proposed a prototype

referred to as DetLogic is developed for detecting different kinds of logic vulnerabilities

such as parameter manipulation, access control, and workflow bypass vulnerabilities.

Hassan et al., (2018) Proposed and developed a model for detecting LFI vulnerability.

The experimental evaluation shown 88% accuracy. Asish Kumar Dalai [28] described the

SQL injection attacks and the steps to exploit the attacks and also developed a method to

prevent SQL injection attacks.

In view of the above, it is observed that insignificant researches have been focused on

RCE vulnerability and its detection. In this paper, we will propose a model for automated

detection of RCE vulnerability. We also construct a finite state machine and verify using

SPIN model checker.

8 Copyright © 2020 by Daffodil International University

CHAPTER 3

EXPLOITATION TECHNIQUE

RCE vulnerability with examples is emphasized in the following subsection.

3.1 SQL injection attack

RCE attacks can be differentiated as –

- $_GET METHOD RCE

- $_POST METHOD RCE

3.1.1 $_GET METHOD RCE

Web application allows randomly crawling web pages through the referred links. During

the time of crawling the page returns some URL (Uniform Resource Locator) into the

address bar. These URL disclose sensitive parameters containing int or string related

input or submit functionalities are like below:

http://localhost/test/rcget.php?name=input_name&submit=Submit.

Here the web page is getting input from a user for against his name and the URL is

sending the values through the http $_GET protocols. So, this parameter can be easily

manipulated by an attacker at this time if the input function refers to the system ()

function directly then the attacker’s input will be dangerous and caused serious harm to

the system as it executes every server commands i.e: wget. Vulnerable Coding Pattern is

given below. The codding pattern collected from OWASP.

9 Copyright © 2020 by Daffodil International University

<!DOCTYPE html>

 <html>

 <head>

<title> RCE GET Method Testing </title>

 </head>

<body>

 <form action="" method="get" >

 Input your Name : <input type="text" name ="name" />

<input type=submit name=submit value=Submit />

</form>

 </body>

 </html>

<?php if(isset($_GET['submit'])){ $name = $_GET['name']; }

 if(!empty ($name))

{ system("echo $name"); }

 else "input your name"; ?>

From the above code we found the system function is allowing all kinds of user inputs

without restriction and directly executing to the server. As a result the attacker executes

some malicious codes for getting full control on the server.

a. MANUAL PROCEDURE OF CODE EXECUTION

If we consider the following URL:

10 Copyright © 2020 by Daffodil International University

http://localhost/test/rcget.php?name=input_name&submit=Submit

The input parameter is allowing all inputs. The attacker will then inject the parameter for

manipulation like as below:

http://localhost/test/rcget.php?name=input_name; pwd&submit=Submit

This pwd command will show the present directory and all file path's, i.e: name

/opt/lampp/htdocs/test. Now the attacker may include and execute their malicious code

using wget command.

B. $_POST METHOD RCE

A case of hiding or privacy policy, developers design web application is such a way that

the sensitive data will be hidden from the view of general users. Normally designers

control this situation using http $_POST protocols. This way they refer all kinds of

sensitive data/requests will be send through the $_POST methods.

The example of vulnerable coding pattern.The codding pattern collected from OWASP.

<?php

 if(isset($_POST['submit'])){ $name = $_POST['name']; }

if(!empty ($name)){ system("echo $name"); }

else "input your name";

?> <!DOCTYPE html>

11 Copyright © 2020 by Daffodil International University

<html>

 <head>

 <title>RCE POST Method Testing </title>

 </head>

<body>

<form action="" method="post" >

 Input your Name : <input type="text" name ="name" />
 <input type=submit

name=submit value=Submit />

 </form> </body>

 </html>

The above code describes that the user's inputted values are passing through the http

$_POST methods and all data are hidden from interacting a general user. But the

application is still vulnerable to attack by any attacker as a huge number of tools and

process are defined to check the http $_POST and cookie values e.g: butpsuite,

http_header, cookie_manager and mostly the Firefox’s officially provided add-on

hackbar.

a. MANUAL PROCEDURE OF CODE EXECUTION

Here our testing application url is http://localhost/test/rce_post.php, it will show a input

box for getting input of application's user's name. After entering the value it doesn't pass

the request thorough the url bar directly. In the backend it uses the http methods. I.e: if

user searches for "Jack" (name_value), the data "Jack" will be pass through the post and

will be found into the $_POST data. E.g: "? name=Jack&submit=Submit".

12 Copyright © 2020 by Daffodil International University

CHAPTER 4

RESEARCH METHODOLOGY

In this section it is described how our model works to detect RCE vulnerability. Firstly

the model is divided into two modules – crawling and RCE detection mechanism. The

proposed model drew using draw.io an online based tool.

Working process of this model began with validation of entered URL. The proposed

model tests the HTTP 200 web response code to ensure that the web application is

working or not. If the server is online, then send URL to crawl; otherwise give a warning

and exit.

Figure 1: System Architecture of RCE Detection Model

13 Copyright © 2020 by Daffodil International University

4.1 Crawler

In crawling phase, a request is sent to the target web application for source code using

BS4 (Beautiful soup 4) and store in a temporary variable. To find out all possible URLs

of the target web application, the specified code will be analyzed. The model must

analyze the parameterized URLs which may include RCE vulnerability. The proposed

model selects only the parameterized URLs to find out the vulnerabilities.

4.2 HTML/JavaScript Analyzer

To find out the working process of a parameter, we observe parameters passed in a web

application through HTTP request and response analysis. In this process every request is

waiting for a certain number of parameters where each parameter has a name and value.

Several researches are available for the detection of RCE vulnerabilities that are

conducted through HTML/JavaScript analyzer [Gupta, M. K. et al.]. This analyzer is used

for designing web pages to achieve the restrictions in each form field. The HTML

JavaScript parser is designed for parsing a web page in order to make restrictions (if any)

in each form field. Client-side validation is done on the browser side using scripting

languages such as JavaScript, HTML. At the server code level, an offender can avoid

bypassing validation by disabling and therefore disrupting JavaScript business logic. To

ensure that the limit is at all, the parameter is inserted on both the client and the server

side. JavaScript routines are considered to accept restrictions. The HTML / JavaScript

parser is designed for parsing a web page in order to make restrictions (if any) in each

form field. Client-side validation is done on the browser side using scripting languages

such as JavaScript, HTML. At the server code level, an offender can avoid bypassing

validation by disabling and therefore disrupting JavaScript business logic. To ensure that

14 Copyright © 2020 by Daffodil International University

the limit is at all, the parameter is inserted on both the client and the server side.

JavaScript routines are considered to accept restrictions.

4.3 Identifying JavaScript validation code

The analyzer must allocate the code fragment which is important for the validation of the

parameters and appreciate the working process of these code fragments accumulating the

variable temp_variable. This can be complicated because the validation procedure can be

performed in two different ways: (1) when a form is submitted and (2) each time the user

enters or modifies data on the form using managers of events. JavaScript patterns are

systematically performed by the state machine. The state machine consistently imitates

the event execution of JavaScript. Each state represents the data entered by the user and

the flag that indicates the data that contains an error. When the user submits or modifies

the data, the JavaScript code validates the data and updates the error flags accordingly,

causing a state transition. The constraints imposed by clients on specific datasets could

theoretically depend on the path that the user enters via the state machine, where the

temp_variable formula could depend on the structure of this state machine.

4.4 Analyzing validation code

If in the validation procedure the variables temp_variable is identified, they must be

analyzed. Such a code can cover several functions, each of which can contain numerous

control paths. Each of these control paths can illustrate a unique set of input constraints,

which requires the analysis of all the steps during the action. Improved JavaScript can

apply a contraction that does not depend on user input, such as sending a form frequently

to a global variable. The challenge is to extract only the limitations on entries from a

15 Copyright © 2020 by Daffodil International University

particular part of the JavaScript validation code. BeautifulSoup (BS4) addresses these

challenges by implementing a mixed web scraper using RCE Detection mechanism. This

application provides scope for all control paths in the verification code and reproduces

verification of data used by users.

4.5 Resolving RCE Vulnerability

BS4 extracts and stores all possible URLs from source code in a variable named

temp_variable. The existence of parameterised URLs is identified from the stored source

code. If any parameterized URL is found then ADT- RCE selects and splits the

parameterized URL to generate possible vulnerable links. It then compares the created

script to predefined script and returns vulnerable links with potential SQL injection if the

script matches.

4.6 Attack Code Generator

Logical formulas passed to the Attack code generator are written in the language

of string constraints. These components work with individual tasks, generating new

logical formulas whose solutions correspond to hostile data. The SQLi detection tool

identifies the parameterized URLs with the help of this detection mechanism procedure

named "attack code generator". The attack code generator mechanism covers individual

tasks by generating unique input data to solve these formulas. Afterwards it splits the

parameterized URL and also regenerates the URL. Then it defines malicious payload and

response patterns. To continue this process, it goes to the next step called "analyzer".

16 Copyright © 2020 by Daffodil International University

4.7 Analyzer

In the analyze segment have two phases- analyzer and compare. The analyzer

phase starts its process by generating formulas. In compare phase- the formula will be

executed to the combination of regenerated URL, payloads and firewall checker through

user agent. The user agent collects responses for the remaining process.

4.8 Response Pattern

In this segment predefined response for SQL and Firewall will be defined. The

main problem is that when the server is processed as a package, SQLi detection

mechanism must have to decide whether the server will carry a specific hostile scenario.

The detection mechanism will solve this complication by formulating a hostile script on

how the responses on the host script server match the predefined response. After getting

the result as SQLi vulnerability detected it ends up the procedure with storing the

location.

4.9 FSM Construction

The float and mechanism of RCE model is built as a FSM (finite state machine)

conceptually. In this area it will be described briefly.

An FSM is applied for mapping the flow and mechanism of RCE model as FSM

is well matched for modeling the disposition of any model or system. The requisite

records for creating FSM are accumulated from a testing environment, wherein it

presents the parameters which have been used for establishing the FSM model.

17 Copyright © 2020 by Daffodil International University

FSM Construction

To tune out damaged authentication vulnerability, an annotated FSM is modeled

with six tuples (Q, ∑, A, δ, q0,F)

Q denotes a finite set of states. In this model activity / vacation spot nodes are

recognized as states.

∑ defines a finite set of inputs. The input symbols that make the transition to the

subsequent state are illustrated as State which refer to the destination states in the FSM of

the model.

A is the set of annotations. In this model they are represented as two tuples [P, S],

which are being used to grant extra prerequisites to help the transition from one state to

next state

P represents the set of HTTP parameters and their respective values which are

passing along the http request.

S represents the set of Session Parameters described as session variables and

similar to values.

δ is the transition function which is defined as Q x ∑ x A into Q.It might also be

defined as, if δ(qs , i, a) = q1 it shows that if qs is the current nation with input symbol i

(i ε ∑) below the annotation a(a ε A),then there will be transition from the present day

kingdom qs to the subsequent state q1.This is called annotated FSM.

18 Copyright © 2020 by Daffodil International University

q0 Indicates the preliminary state, the place q0 ε Q.Herein Initial state is Input Url

from the place the FSM starts.

F represents the last set of states, the place F ⊆ Q.Final state/states refer to the

state/states that mark the quit state/states of a model.

The endeavor nodes are represented as states in the annotated FSM.The edges are

labeled with Destination State , HTTP parameters and session variables that are input/set

of inputs through the consumer or system.Whenever user/system enters a URL to

generate request, it will be introduced to input symbol set(∑) and that will be checked

with unique function HTTPConnection.The characteristic HTTPResponse will retrieve

the HTTP parameters from the request and define the transition to the next nation with

session variables as session parameter and Get parameters.The initial nation ‘Input URL’

will be blanketed in q0.The input symbols and annotation feature at a particular state

ascertains transitions to a posterior state wherein,

[δ(particular state , enter symbol, annotation function) = Destination state]

RCE injection vulnerability provoked due to improper coding and design of RCE

query which allows data to construct a RCE query dynamically. In the ADT-RCE model,

the state "Seed URL" will be included in initial state q0. The input symbols and

annotation function in a given state establishes transitions to a subsequent state and it is

called transition function which is denoted by δ (particular state , input symbol,

annotation function) = Destination state. The finite set of states Q = {Seed URL, Execute

URL for Source Code Using BS4, Store Source Code in temp variable, Extract all links

19 Copyright © 2020 by Daffodil International University

from source code, Select Parameterized URL, Select URLs Splitting the parameter,

Regenerate URL, Formula = Regenerated URL+Payloads+firewall Checker, Execute

Figure 2: RCE Finite State Machine

20 Copyright © 2020 by Daffodil International University

Formula, Send HTTP Request Using User Agent, HTTP Response from Formula, RCE

injection found, Store Location, RCE injection not found, END}. And the final states of

ADT-RCE, F = {Store Location, End}

21 Copyright © 2020 by Daffodil International University

CHAPTER 5

IMPLEMENTATION AND VARIFICATION

A (partial) Promela version of this protocol is shown below. State S1 is the initial state in

RCE model verification.

1 mtype = {live, offline, store_src_code,store_urls, execute,extract,
extract_urls, d_payload, d_response, c_response, generate,

check,match,notmatch,req_src_code,BS4,url_filter,g_formula }

2 chan Input=[0] of {mtype}
3 chan DataProcess=[0] of {mtype}

4 chan Crawler=[0] of {mtype}

5 chan AttackGenerator=[0] of {mtype}
6 chan UserAgent=[0] of {mtype}

7

8 active proctype Start()

9 {
10 S1: Input!execute

11 S2: if

12 :: Input?live -> goto S3
13 :: Input?offline -> goto S0

14 fi

15 S3: Crawler!req_src_code -> goto S4
16 S4: Crawler!store_src_code -> goto S5

17 S5: Crawler!BS4-> goto S6

18 S6: Crawler!extract_urls -> goto S7
19 S7: Crawler!url_filter -> goto S8

20 S8: Crawler!store_urls -> goto S9

21 S9: AttackGenerator!d_payload -> goto S10
22 S10: AttackGenerator!d_response -> goto S11

23 S11: AttackGenerator!g_formula -> goto S12

24 S12: UserAgent!c_response -> goto S13

25 S13: if
26 :: DataProcess?match -> goto S14

27 ::DataProcess?notmatch -> goto S0

28 fi
29 S14: DataProcess!store_urls -> goto S15

30 S15: printf("vulnerable URLs")

31 S0:
32 }

22 Copyright © 2020 by Daffodil International University

Hint: you can add fields to the messages with data values. To do so you have to change

the channel declarations. For instance, as follows:

 chan Input=[0] of {mtype}

chan DataProcess=[0] of {mtype}
chan Crawler=[0] of {mtype}

chan AttackGenerator=[0] of {mtype}

chan UserAgent=[0] of {mtype}

where the send and receive operations now have two field of matching types. For

instance:

 a2b!a1(78)

5.1 VARIFICATION

For verifying the model use a spin verification to see if there are any unreachable states.

The verification result shown below.

Figure 3: RCE Model Verification Screen Sort

We also simulate our model the simulation result shown below:

23 Copyright © 2020 by Daffodil International University

Figure 4: RCE Model simulation Result

The simulation clarifies that the model in finite state.

24 Copyright © 2020 by Daffodil International University

CHAPTER 6

CONCLUSION AND FUTURE RECOMMENDATION

6.1 Findings and Contributions

In these recent years, web application vulnerabilities have become a critical problem for

all types of people who have been connected with the web. This research has presented

an automated RCE vulnerability detection model, implemented a FSM based on the

model, which is developed in windows platform. An examination has been performed on

RCE FSM verification and the simulation result show the model in finite state. This study

has observed that the biggest problem has been recognized as the insecure design of the

applications and careless coding practice especially in using data/information

retrieving methods.

6.2 Recommendations for Future Works

This research is a continuous process we will verify other web application vulnerability

detection model using SPIN model checker.

25 Copyright © 2020 by Daffodil International University

REFERENCES

Begum, A., Hassan, M. M., Bhuiyan, T., & Sharif, M. H. (2016, December). RFI and

SQLi based local file inclusion vulnerabilities in web applications of Bangladesh.

In 2016 International Workshop on Computational Intelligence (IWCI) (pp. 21-25).

IEEE.

Hassan, M. M., Ali, M. A., Bhuiyan, T., Sharif, M. H., & Biswas, S. Quantitative

Assessment on Broken Access Control Vulnerability in Web Applications.

Yong Fang, Jiayi Peng, Liang Liu, and Cheng Huang. 2018. WOVSQLI: Detection of

SQL Injection Behaviors Using Word Vector and LSTM. In Proceedings of the

2nd International Conference on Cryptography, Security and Privacy (ICCSP

2018). ACM, New York, NY, USA, 170-174. DOI:

 https://doi.org/10.1145/3199478.3199503

M. Liu and B. Wang, "A Web Second-Order Vulnerabilities Detection Method," in IEEE

Access, vol.6,pp.70983-70988,2018. doi: 10.1109/ACCESS.2018.28810703.

Kevin Ross, Melody Moh, Teng-Sheng Moh and Jason Yao. “Multi-source data analysis

and evaluation of machine learning techniques for SQL injection

detection.”March 2018 ACMSE '18: Proceedings of the ACMSE 2018

Conference. Doi: 10.1145/3190645.3190670

D. Kao, C. Lai and C. Su, "A Framework for SQL Injection Investigations: Detection,

Investigation, and Forensics," 2018 IEEE International Conference on Systems,

Man, and Cybernetics (SMC), Miyazaki, Japan, 2018, pp. 2838-2843. doi:

10.1109/SMC.2018.00483

A. Algaith, P. Nunes, F. Jose, I. Gashi and M. Vieira, "Finding SQL Injection and Cross

Site Scripting Vulnerabilities with Diverse Static Analysis Tools," 2018 14th

European Dependable Computing Conference (EDCC), Iasi, 2018, pp. 57-64.

Nadar V.M., Chatterjee M., Jacob L. (2018) A Defensive Approach for CSRF and Broken

 Authentication and Session Management Attack. In: Perez G., Tiwari S., Trivedi

M., Mishra K. (eds) Ambient Communications and Computer Systems. Advances

in Intelligent Systems and Computing, vol 696. Springer, Singapore.

Lalia S., Sarah A. (2018) XSS Attack Detection Approach Based on Scripts Features

Analysis. In: Rocha Á., Adeli H., Reis L., Costanzo S. (eds) Trends and Advances in

 Information Systems and Technologies. WorldCIST'18 2018. Advances in

Intelligent Systems and Computing, vol 746. Springer, Cham. doi:

https://doi.org/10.1007/978-3-319-77712-2_19

26 Copyright © 2020 by Daffodil International University

J. Pan and X. Mao, "Detecting DOM-Sourced Cross-Site Scripting in Browser

Extensions," 2017 IEEE International Conference on Software Maintenance and

Evolution (ICSME), Shanghai, 2017, pp. 24-34. doi: 10.1109/ICSME.2017.11.

Teodor Sommestad, Hannes Holm, Mathias Ekstedt, (2012) "Estimates of success rates of

 remote arbitrary code execution attacks", Information Management & Computer

Security, Vol. 20 Issue: 2, pp.107-

122,https://doi.org/10.1108/09685221211235625

T. Jain and N. Jain, "Framework for Web Application Vulnerability Discovery and

Mitigation by Customizing Rules Through ModSecurity," 2019 6th

 International Conference on Signal Processing and Integrated Networks (SPIN),

 Noida, India, 2019, pp. 643-648. doi: 10.1109/SPIN.2019.8711673

B. Rexha, A. Halili, K. Rrmoku and D. Imeraj, "Impact of secure programming on web

 application vulnerabilities," 2015 IEEE International Conference on Computer

Graphics, Vision and Information Security(CGVIS),Bhubaneswar,2015, pp.

61-66. doi: 10.1109/CGVIS.2015.7449894

Farah, T., Alam, D., Ali, M. N. B., & Kabir, M. A. (2015). Investigation of Bangladesh

region based web applications: A case study of 64 based, local, and global SQLi

vulnerability. 2015 IEEE International WIE Conference on Electrical and

Computer Engineering (WIECONECE).doi:10.1109/wiecon-ece.2015.7443891

G. Deepa, P. Santhi Thilagam, Securing Web Applications from Injection and Logic

 Vulnerabilities: Approaches and Challenges, Information and Software

 Technology (2016), doi: 10.1016/j.infsof.2016.02.005

DivyaniYadav, D. Gupta, D. Singh, D. Kumar and U. Sharma, "Vulnerabilities and

Security of Web Applications," 2018 4th International Conference on

Computing Communication and Automation (ICCCA), Greater Noida, India,

2018, pp. 1-5. doi: 10.1109/CCAA.2018.8777558

S. Abaimov and G. Bianchi, "CODDLE: Code-Injection Detection With Deep Learning,"

in IEEE Access, vol. 7, pp. 128617-128627, 2019.doi:

10.1109/ACCESS.2019.2939870

L. Ma, D. Zhao, Y. Gao and C. Zhao, "Research on SQL Injection Attack and Prevention

Technology Based on Web," 2019 International Conference on Computer Network,

Electronic and Automation (ICCNEA), Xi'an, China, 2019, pp. 176-179.doi:

10.1109/ICCNEA.2019.00042

İ. KARA and M. AYDOS, "Detection and Analysis of Attacks Against Web Services by the

SQL Injection Method," 2019 3rd International Symposium on Multidisciplinary

Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 2019, pp. 1-4. doi:

10.1109/ISMSIT.2019.8932755

27 Copyright © 2020 by Daffodil International University

T. Permpool, S. Nalintippayawong and K. Atchariyachanvanich, "Interactive SQL

Learning Tool with Automated Grading using MySQL Sandbox," 2019 IEEE 6th

International Conference on Industrial Engineering and Applications (ICIEA),

Tokyo, Japan, 2019, pp. 928-932. doi: 10.1109/IEA.2019.8715175

Q. Li, W. Li, J. Wang and M. Cheng, "A SQL Injection Detection Method Based on

Adaptive Deep Forest," in IEEE Access, vol. 7, pp. 145385-145394, 2019. doi:

10.1109/ACCESS.2019.2944951

L. Zhang, H. Zhang, X. Zhang and L. Chen, "A New Mechanism for Trusted Code Remote

Execution," 2007 International Conference on Computational Intelligence and

Security Workshops (CISW 2007), Heilongjiang, 2007, pp. 574-578. doi:

10.1109/CISW.2007.4425561

J. Wu, A. Arrott and F. C. C. Osorio, "Protection against remote code execution exploits

of popular applications in Windows," 2014 9th International Conference on

Malicious and Unwanted Software: The Americas (MALWARE), Fajardo, PR,

2014, pp. 26-31. doi: 10.1109/MALWARE.2014.6999416

Q. H. Mahmoud, D. Kauling and S. Zanin, "Hidden android permissions: Remote code

execution and shell access using a live wallpaper," 2017 14th IEEE Annual

Consumer Communications & Networking Conference (CCNC), Las Vegas, NV,

2017, pp. 599-600. doi: 10.1109/CCNC.2017.7983184

M. Carlisle and B. Fagin, "IRONSIDES: DNS with no single-packet denial of service or

remote code execution vulnerabilities," 2012 IEEE Global Communications

Conference (GLOBECOM), Anaheim, CA, 2012, pp. 839-844. doi:

10.1109/GLOCOM.2012.6503217

Alsmadi, I., & Mira, F. (2018, April). Website security analysis: variation of detection

methods and decisions. In 2018 21st Saudi Computer Society National Computer

Conference (NCC) (pp. 1-5). IEEE.

Alwan, Z. S., & Younis, M. F. (2017). Detection and prevention of SQL injection attack:

A survey. International Journal of Computer Science and Mobile Computing, 6(8),

5-17.

Dalai, A. K., & Jena, S. K. (2017). Neutralizing SQL injection attack using server side

code modification in web applications. Security and Communication Networks,

2017.

Deepa, G., Thilagam, P. S., Praseed, A., & Pais, A. R. (2018). DetLogic: A black-box

approach for detecting logic vulnerabilities in web applications. Journal of

Network and Computer Applications, 109, 89-109.

28 Copyright © 2020 by Daffodil International University

Lawal, M. A., Sultan, A. B. M., & Shakiru, A. O. (2016). Systematic literature review on

SQL injection attack. International Journal of Soft Computing, 11(1), 26-35.

Hassan, M. M., Bhuyian, T., Sohel, M. K., Sharif, M. H., & Biswas, S. (2018). SAISAN:

An automated Local File Inclusion vulnerability detection model. International

Journal of Engineering & Technology, 7(2-3), 4.

Hassan, M. M., Nipa, S. S., Akter, M., Haque, R., Deepa, F. N., Rahman, M., ... & Sharif,

M. H. (2018). Broken authentication and session management vulnerability: A case

study of Web application. International Journal of Simulation Systems, Science &

Technology, 19(2), 6-1.

Code Injection. (n.d.). Retrieved from https://owasp.org/www-

community/attacks/Code_Injection

